DIPL.-GEOLOGE VOLKER FIRCHOW BDG

INGENIEURBERATUNG FÜR ANGEWANDTE GEOLOGIE UND GEOTECHNIK · VBI

ERD- UND GRUNDBAU TIEF- UND WASSERBAU INGENIEURGEOLOGIE HYDROGEOLOGIE NIEDERSCHLAGSVERSICKERUNG REGENWASSERBEWIRTSCHAFTUNG ERFASSUNG, BEWERTUNG UND SANIERUNG VON ALTLASTEN KIEBITZWEG 11 44534 LÜNEN TEL. 0 23 06 / 15 10 FAX 0 23 06 / 15 40 E-MAIL tb@ib-firchow.de

AUFTRAG Nr.: 02027

BEARBEITUNGSZEITPUNKT: 29.04.2002

FACHGUTACHTEN

ZUR

KONTAMINATIONSBEURTEILUNG DES UNTERGRUNDES UND RISIKOABSCHÄTZUNG FÜR DAS GRUNDSTÜCK KAMENER STRAßE 48 IN 59368 WERNE

AUFTRAGGEBER/IN:

Bernhardine Fränzer Bonenstraße 7 59368 Werne

INHALTSVERZEICHNIS

1.	VORGANG
2.	DURCHGEFÜHRTE UNTERSUCHUNGEN
3.	UNTERGRUNDBESCHREIBUNG
4.	CHEMISCHE ANALYTIK
5.	KONTAMINATIONSBEURTEILUNG UND RISIKOABSCHÄTZUNG 16
6.	SICHERUNGS- UND SANIERUNGSMABNAHMEN
7.	MASSENERMITTLUNG DER AUFFÜLLUNGEN UND IHRE EINSTUFUNG NACH LAGA
8.	SCHLUßBEMERKUNGEN
ΑN	LAGENVERZEICHNIS
1.1	ÜBERSICHTSLAGEPLAN IM MAßSTAB 1:25000 - AUSSCHNITT AUS DER TOPOGRAPHISCHEN KARTE, BLATT 4311 - LÜNEN - MIT EINTRAGUNG DES UNTERSUCHUNGSGELÄNDES
1.2	LAGEPLAN IM MABSTAB 1:500 MIT EINTRAGUNG DER EINZELNEN AUF- SCHLUBPUNKTE
1.3	Lageplan im Maßstab 1:500 mit Eintragung der Flächen in Abhängigkeit ihrer LAGA-Zuordnung
2	SCHICHTENPROFILE IN ANLEHNUNG AN DIN 4023

1. Vorgang

Frau Bernhardine Fränzer ist Eigentümerin des Grundstückes Kamener Straße 48 in 59368 Werne.

Die Liegenschaft hat eine Größe von ca. 5.000 m². Zum jetzigen Zeitpunkt liegt das Grundstück als ungenutzte Brachfläche vor. Die ehemalige Bebauung ist oberflächig komplett zurückgebaut.

Frau Fränzer plant, die o. g. Immobilie an die Stadt Werne zu veräußern oder alternativ gegen gleichwertige Liegenschaften zu tauschen.

Am 16.10.1995 ist durch das Institut Fresenius - Geschäftsbereich Fresenius Umwelt Consult - aus Dortmund eine Erstbewertung zur Kontaminationsbeurteilung für das o. g. Grundstück vorgelegt worden. Hier sind in den untersuchten Bodenmischproben Konzentrationsanreicherungen von Polycyclischen Aromatischen Kohlenwasserstoffen (PAK nach EPA) bis maximal 38,6 mg/kg nachgewiesen worden.

Seitens der Stadt Werne - Fachbereich Umwelt und Verkehr - wurde nun eine zweite Untersuchung gefordert. Hierbei soll die flächendeckende Beurteilung des gesamten Grundstückes erarbeitet werden.

Die Ingenieurberatung Dipl.-Geol. V. Firchow ist daraufhin durch Frau Bernhardine Fränzer beauftragt worden, auf diesem Grundstück eine ergänzende Altlastenuntersuchung durchzuführen. Anhand der erzielten Ergebnisse, hier besonders der ermittelten Untergrundbefunde, ist eine Kontaminationsbeurteilung sowie eine planungs- und nutzungsbezogene Risikoabschätzung zu erarbeiten.

Im Zuge der Kontaminationsbeurteilung sind mögliche feststellbare Verunreinigungen des Bodens bzw. der Auffüllmaterialien im Anschluß an die Bohraufschlußarbeiten auf die Art und Intensität ihrer eventuell schädlichen Wirkung hin zu analysieren.

Aus den Untersuchungsergebnissen werden unter dem Aspekt der aktuellen und zukünftigen Nutzung des Grundstückes die Emissionspfade des Bodens, des Bodenporengases und des Grundwassers dargelegt und das Risikopotential aufgezeigt und bewertet.

Die für die weitere Nutzung des Grundstückes eventuell notwendigen Sicherungsund Sanierungsmaßnahmen werden vorgegeben und beschrieben. Ergänzende Hinweise für die Beurteilung der Verwertungs- und Beseitigungsfähigkeit anfallender Aushubmassen werden erarbeitet.

1.1 Bearbeitungsunterlagen

Für die Bearbeitung in ein übernommener Lageplan im Maßstab 1:500 verwendet worden.

2. Durchgeführte Untersuchungen

2.1 Aufschlußarbeiten

Zur Bewertung des Grundstückes bzw. die Ermittlung von Auffüllmaterialien und Untergrundverunreinigungen sind am 22., 25. und 26.03.2002 durch die Mitarbeiter der Ingenieurberatung Dipl.-Geol. V. Firchow

fünfundvierzig Rammkernsondierungen DN 80/60 mm mit insgesamt 94,00 lfdm. Erkundungsstrecke und mit Endtiefen von 2,00 m bis 3,00 m

ausgeführt worden.

Weiterhin sind acht Rammkernbohrlöcher zu stationären Bodenporengasmeßstellen DN 35 ausgebaut worden.

Der Untersuchungsumfang ist vom Fachbereich Umwelt und Verkehr der Stadt Werne vorgegeben worden.

Bei den Aufschlußarbeiten sind insgesamt 94 Doppelproben aus der Rammkernsonde entnommen und in luftdicht verschließbare Probenbehälter aus Braunglas abgepackt worden. Diese werden bei den Unterzeichnern zurückgestellt.

Die einzelnen Aufschlußstellen wurden auch lage- und durch Nivellement höhenmäßig eingemessen. Als Höhenanschluß hat der Festpunkt OK KD - Oberkante Kanaldeckel - (vgl. Anlage 1.2) auf der Kamener Straße mit der relativen Anschlußhöhe von 10,00 m gedient.

Durch die Wahl des großen Rammkernsondendurchmessers steht eine ausreichend große Probenmenge für die altlastentechnische Untersuchung dieser während der Aufschlußarbeiten entnommenen Bodenproben zur Verfügung.

Das Probenmaterial, das zunächst einer organoleptischen Bewertung vor Ort unterzogen worden ist - wobei besonders auf visuell auffällige und geruchsintensive Inhaltsstoffe geachtet wird - wurde anschließend, wie zuvor beschrieben, auf Doppelproben aufgeteilt.

3. Untergrundbeschreibung

3.1 Allgemeine topographische, geologische und hydrogeologische Verhältnisse

Das untersuchte Grundstück liegt südlich der Innenstadt von Werne an der Kamener Straße.

Der oberflächennahe Untergrund wird durch die fluviatilen Ablagerungen des Hornebaches und der Lippe geprägt. Hierbei handelt es sich im wesentlichen um sandige Sedimente, die teilweise sowohl schluffige als auch kiesige Beimengungen enthalten. Die Quartärablagerungen werden durch den Mergelstein der Oberkreide unterlagert.

Grundwasser staut sich auf dem wenig durchlässigen Verwitterungshorizont des Oberkreidemergels und zirkuliert relativ oberflächennah innerhalb der quartären Deckschichten.

3.2 Schichtenaufbau

Das untersuchte Grundstück ist zum Zeitpunkt der Außenuntersuchungen als ungenutzte Brachfläche vorgefunden worden.

Die ehemalige Bebauung ist komplett zurückgebaut.

Mit den durchgeführten Rammkernsondierungen sind zunächst anthropogene Auffüllungen, deren Mächtigkeiten zwischen 0,30 m und 1,90 m variieren, erkundet worden (die jeweiligen Auffülldicken sind den Schichtenprofilen - vgl. Anlagen 2.1 bis 2.5 - zu entnehmen). Die Auffüllungen setzen sich im wesentlichen aus Oberboden und Sanden zusammen. Untergeordnet findet man häufig Beimengungen von Bauschutt und Schlacken sowie teilweise Kohlereste. Bereichsweise besteht die Auffüllung aus rein mineralischen Böden - Sanden und Oberboden -. Hierbei handelt es sich um vom Grundstück kommende Materialien, die z. B. für Geländeregulierungen umgelagert worden sind.

Unterlagert wird die anthropogene Anschüttung durch Fein- und Mittelsande des Quartärs.

Organoleptische, d. h. geruchliche, und visuelle Auffälligkeiten der Auffüllungen und des gewachsenen Bodens konnten weder während der Aufschlußarbeiten noch bei den Probenahmen bzw. den entnommenen Proben registriert werden.

3.3 Grundwasserverhältnisse

Grundwasser ist während und nach den Aufschlußarbeiten in den Rammkernsondierbohrlöchern nicht eingemessen worden.

4. Chemische Analytik

4.1 Untersuchung von Bodenproben

Für die Bewertung des Untergrundes, hier insbesondere der Auffüllmaterialien hinsichtlich möglicher Verunreinigungen, wurden die bei den Aufschlußarbeiten entnommenen Bodenproben während der Bohrerkundungsphase einer organoleptischen Überprüfung, bei der besonders auf geruchliche und visuelle Auffälligkeiten geachtet worden ist, unterzogen. Hierbei konnten keinerlei Hinweise auf Verunreinigungen nachgewiesen werden.

Daraufhin sind die nachfolgend aufgelisteten oberflächennahen Bodenproben, die aus den Rammkernsonden, (RKS - z. B. 1,2) entnommen worden sind, bei der chemischen Analytik aufgrund der Vorerhebungen berücksichtigt und zu einer Mischprobe zusammengestellt worden.

Mischprobe	Einzelprobe (RKS)	Entnahmetiefe (m)	Analyse auf
MP 1	11,1	0,00 - 0,50	Verwertungsanalyse
	12,1	0,00 - 0,80	für mineralische
	13,1	0,00 - 0,50	Reststoffe/Abfälle
	24,1	0,00 - 0,50	gemäß LAGA-
	25,1	0,00 - 0,70	Richtlinie 20,
	26,1	0,00 - 0,70	Tabelle II 1.2-2 und
	38,1	0,00 - 0,50	1.2-3, Feststoff- und
	39,1	0,00 - 0,50	Eluatuntersuchung
	40,1	0,00 - 0,50	für die Zuordnung
	41,1	0,00 - 0,70	Z 0 bis Z 2

Mischprobe	Einzelprobe (RKS)	Entnahmetiefe (m)	Analyse auf
MP 2	9,1	0,00 - 0,40	Verwertungsanalyse
	10,1	0,00 - 0,30	für mineralische
	22,1	0,00 - 0,50	Reststoffe/Abfälle
	23,1	0,00 - 0,50	gemäß LAGA-
	35,1	0,00 - 0,50	Richtlinie 20,
	36,1	0,00 - 0,60	Tabelle II 1.2-2 und
	37,1	0,00 - 0,70	1.2-3, Feststoff- und
	42,1	0,00 - 0,50	Eluatuntersuchung
			für die Zuordnung
			Z 0 bis Z 2
MP 3	7,1	0,00 - 0,80	Verwertungsanalyse
	8,1	0,00 - 1,00	für mineralische
	20,1	0,00 - 0,50	Reststoffe/Abfälle
	21,1	0,00 - 0,60	gemäß LAGA-
	33,1	0,00 - 0,50	Richtlinie 20,
	34,1	0,00 - 0,50	Tabelle II 1.2-2 und
	43,1	0,00 - 0,50	1.2-3, Feststoff- und
			Eluatuntersuchung
			für die Zuordnung
			Z 0 bis Z 2
MP 4	5,1	0,00 - 0,90	Verwertungsanalyse
	6,1	0,00 - 0,60	für mineralische
	17,1	0,00 - 1,90	Reststoffe/Abfälle
	18,1	0,00 - 0,60	gemäß LAGA-
	19,1	0,00 - 0,50	Richtlinie 20,
	31,1	0,00 - 0,90	Tabelle II 1.2-2 und
	32,1	0,00 - 0,70	1.2-3, Feststoff- und
	44,1	0,00 - 0,80	Eluatuntersuchung
			für die Zuordnung
			Z 0 bis Z 2

Mischprobe	Einzelprobe (RKS)	Entnahmetiefe (m)	Analyse auf
MP 5	2,1	0,00 - 0,50	Verwertungsanalyse
	3,1	0,00 - 0,50	für mineralische
	4,1	0,00 - 0,70	Reststoffe/Abfälle
	15,1	0,00 - 0,60	gemäß LAGA-
	16,1	0,00 - 0,70	Richtlinie 20,
	29,1	0,00 - 0,50	Tabelle II 1.2-2 und
	30,1	0,00 - 0,50	1.2-3, Feststoff- und
	30,2	0,50 - 1,60	Eluatuntersuchung
	45,1	0,00 - 0,70	für die Zuordnung
	45,2	0,70 - 1,90	Z 0 bis Z 2
MP 6	1,1	0,00 - 1,70	Verwertungsanalyse
	14,1	0,00 - 0,60	für mineralische
	27,1	0,00 - 1,00	Reststoffe/Abfälle
	27,2	1,00 - 2,00	gemäß LAGA-
	28,1	0,00 - 0,90	Richtlinie 20,
			Tabelle II 1.2-2 und
			1.2-3, Feststoff- und
			Eluatuntersuchung
			für die Zuordnung
			Z 0 bis Z 2
MP 7	1,2	1,70 - 3,00	Verwertungsanalyse
	5,2	0,90 - 2,00	für mineralische
	9,2	0,40 - 2,00	Reststoffe/Abfälle
	12,2	0,80 - 2,00	gemäß LAGA-
	16,2	0,70 - 2,00	Richtlinie 20,
	18,2	0,60 - 2,00	Tabelle II 1.2-2 und
	20,2	0,50 - 2,00	1.2-3, Feststoff- und
	22,2	0,50 - 2,00	Eluatuntersuchung
	26,2	0,70 - 2,00	für die Zuordnung
	27,3	2,00 - 3,00	Z 0 bis Z 2
	29,2	0,50 - 2,00	
	36,2	0,60 - 2,00	
	37,2	0,70 - 2,00	
	40,2	0,60 - 2,00	
	43,2	0,50 - 2,00	
	44,2	0,80 - 2,00	

Tab. 1: Zusammenstellung der Mischprobe

Der o. g. Untersuchungsumfang ist durch den Fachbereich Umwelt und Verkehr der Stadt Werne vorgegeben worden.

Das Probenmaterial für die chemische Untersuchung auf eventuelle Schadstoffe ist der Umwelt Control Labor GmbH (UCL) zugeführt worden.

4.2 Bewertung nach Bundes-Bodenschutzgesetz (BBodSchG)

Die Bewertung und der Abgleich der untersuchten Parameter erfolgt zunächst in Anlehnung an das Bundes-Bodenschutzgesetz (BBodSchG) - Gesetz zum Schutz von schädlichen Bodenveränderungen und zur Sanierung von Altlasten - .

Zweck dieses Gesetzes ist es, nachhaltig die Funktion des Bodens zu sichern oder wiederherzustellen. Hierzu sind schädliche Bodenveränderungen abzuwehren, der Boden und Altlasten sowie hierdurch verursachte Gewässerverunreinigungen zu sanieren und Vorsorge gegen nachteilige Einwirkungen auf den Boden zu treffen. Bei Einwirkungen auf den Boden sollen Beeinträchtigungen seiner natürlichen Funktionen sowie seiner Funktionen als Archiv der Natur- und Kulturgeschichte soweit wie möglich vermieden werden.

Für die Beurteilung und Bewertung der ermittelten Ergebnisse werden die im Anhang 2 der Bundes-Bodenschutz- und Altlastenverordnung (BBodSchV) niedergelegten Maßnahmen-, Prüf- und Vorsorgewerte berücksichtigt.

Dabei wird hier der Wirkungspfad Boden-Mensch (direkter Kontakt) betrachtet.

Weiterhin erfolgt eine Abgrenzung bzw. Differenzierung entsprechend der Nutzung von Flächen.

Dabei wird zwischen den nachfolgenden Nutzungen unterschieden.

a) Kinderspielflächen

Aufenthaltsbereiche für Kinder, die öffentlich zugänglich sind und ortsüblich zum Spielen genutzt werden, ohne den Spielsand von Sandkästen. Amtlich ausgewiesene Kinderspielplätze sind gegebenenfalls nach Maßstäben des öffentlichen Gesundheitswesens zu bewerten.

b) Wohngebiete

Dem Wohnen dienende Gebiete einschließlich Hausgärten, auch soweit sie nicht im Sinne der Baunutzungsverordnung planungsrechtlich dargestellt oder festgesetzt sind, ausgenommen Park- und Freizeitanlagen sowie Kinderspielflächen. Soweit unbefestigte Flächen in Wohngebieten als Kinderspielflächen genutzt werden, sind diese als solche zu bewerten.

c) Park- und Freizeitanlagen

Anlagen für soziale, gesundheitliche und sportliche Zwecke, insbesondere öffentliche und private Grünanlagen sowie unbefestigte Flächen, die regelmäßig zugänglich sind.

 d) Industrie- und Gewerbegrundstücke
 Unbefestigte Flächen von Arbeits- und Produktionsstätten, die nur während der Arbeitszeit genutzt werden.

Da das untersuchte Grundstück für die Wohnbebauung genutzt werden soll, erfolgt hier ein Abgleich mit den Prüfwerten für Kinderspielflächen und Wohngebiete.

Parameter in mg/kg TM [*]	Kinderspielflächen BBodSchV	Wohngebiete BBodSchV	MP 1	MP 2	MP3
Arsen	25	50	9	6	7
Blei	200	400	53	57	130
Cadmium	10	20	0,50	0,60	1,40
Chrom	200	400	21	28	31
Nickel	70	140	18	18	30
Quecksilber	10	20	0,20	0,20	0,30
Cyanide gesamt	50	50	n. n.	0,10	n. n.
Benzo(a)pyren	2	4	0,35	0,34	0,71
PCB	0,40	0,80	n. n.	0,05	n. n.

Parameter in mg/kg TM*	Kinderspielflächen BBodSchV	Wohngebiete BBodSchV	MP 4	MP 5	MP 6
Arsen	25	50	8	12	6
Blei	200	400	110	34	31
Cadmium	10	20	0,60	0,30	0,30
Chrom	200	400	20	18	24

Parameter in mg/kg TM*	Kinderspielflächen BBodSchV	Wohngebiete BBodSchV	MP 4	MP 5	MP6
Nickel	70	140	19	30	18
Quecksilber	10	20	0,70	0,20	0,30
Cyanide gesamt	50	50	0,15	n. n.	n. n.
Benzo(a)pyren	2	4	4,70	0,17	0,29
PCB	0,40	0,80	n. n.	n. n.	n. n.

Parameter in mg/kg TM [*]	Kinderspielflächen BBodSchV	Wohngebiete BBodSchV	MP 7
Arsen	25	50	4
Blei	200	400	6
Cadmium	10	20	0,30
Chrom	200	400	8
Nickel	70	140	5
Quecksilber	10	20	n. n.
Cyanide gesamt 50		50	n. n.
Benzo(a)pyren	2	4	n. n.
PCB	0,40	0,80	n. n.

Tab. 2: Gegenüberstellung der Prüfwerte aus BBodSchV und der ermittelten Analysenergebnisse

TM = Trockenmasse

n. n. = nicht nachgewiesen

Die chemischen Analysenergebnisse zeigen, dass nur der in der Mischprobe 4 nachgewiesene Gehalt von Benzo(a)pyren die in der Bundesbodenschutz- und Altlastenverordnung aufgeführten Prüfwerte für Kinderspielflächen und Wohngebiete überschreitet.

4.3 Bewertung gemäß Länderarbeitsgemeinschaft Abfall (LAGA)

Für die Beurteilung von Aushubmassen, die im Zuge der geplanten Baumaßnahme noch anfallen können, erfolgt eine weitergehende Bewertung der untersuchten Parameter in Anlehnung an die Anforderungen an die stoffliche Verwertung von mineralischen Reststoffen/Abfällen - Technische Regeln - der Mitteilungen der Länderarbeitsgemeinschaft Abfall (LAGA).

Hier wird wegen der Zusammensetzung der Auffüllmaterialien die Tabelle II. 1.2-2/3: Zuordnungswerte Feststoff und Eluat für Böden berücksichtigt.

In dieser Tabelle sind Zuordnungswerte (Z 0 bis Z 2), d. h. Orientierungswerte für bestimmte Einbaubedingungen, aufgeführt.

Dabei gilt:

Z 0 Uneingeschränkter Einbau

- Die Gehalte bis zum Zuordnungswert Z 0 kennzeichnen natürlichen Boden.

Z 1 Eingeschränkter offener Einbau

 Die Zuordnungswerte Z 1 stellen die Obergrenze für den offenen Einbau unter Berücksichtigung bestimmter Nutzungseinschränkungen dar.
 Maßgebend für die Festlegung der Werte ist in der Regel das Schutzgut Grundwasser.

Z 2 Eingeschränkter Einbau mit definierten technischen Sicherungsmaßnahmen

Die Zuordnungswerte Z 2 stellen die Obergrenze für den Einbau von Recyclingbaustoffen und nichtaufbereitetem Bauschutt mit definierten technischen Sicherungsmaßnahmen dar. Hierdurch soll der Transport von Inhaltsstoffen in den Untergrund und das Grundwasser verhindert werden. Auch hier ist für die Festlegung der Werte das Schutzgut Grundwasser maßgebend.

				Untersuc	chungsergebniss	e der Mischprob	en im Feststoff					
Parameter	Dimension	Z O	Z 1.1	Z 1.2	Z 2	MP1	MP 2	MP 3	MP 4	MP 5	MP 6	MP 7
pH-Wert		5,5 - 8	5,5 - 8	5 - 9	900	6,8	7,2	7,2	7,2	7,4	7,6	7,4
EOX	mg/kg	1	3	10	15	n. n.	6,60	n. n.				
Kohlenwasserstoffe	mg/kg	100	300	500	1.000	n. n.	n. n.	120	33	10	13	n. n.
BTEX	mg/kg	<1	1	3	5	n. n.	0,06	0,12	0,12	n. n.	n. n.	n. n.
PAK nach EPA	mg/kg	1	5	15	20	3,90	4,12	8,21	50,32	1,21	3,25	n. n.
LHKW	mg/kg	<1	1	3	5	n. n.	n. n.	n. n.	n. n.	n. n.	n. n.	n. n.
Cyanide gesamt	mg/kg	1	10	30	100	n. n.	0,10	n. n.	0,15	n. n.	n. n.	n. n.
PCB	mg/kg	0,02	0,10	0,50	1	n. n.	0,05	n. n.				
Arsen	mg/kg	20	30	50	150	9	6	7	8	12	6	4
Blei	mg/kg	100	200	300	1.000	53	57	130	110	34	31	6
Cadmium	mg/kg	0,6	1	3	10	0,50	0,60	1,40	0,60	0,30	0,30	0,30
Chrom	mg/kg	50	100	200	600	21	28	31	20	18	24	8
Kupfer	mg/kg	40	100	200	600	25	30	37	35	48	30	3
Nickel	mg/kg	40	100	200	600	18	18	30	19	30	18	5
Quecksilber	mg/kg	0,3	1	3	10	0,20	0,20	0,30	0,70	0,20	0,30	n. n.
Thallium	mg/kg	0,5	1	2	10	n. n.	n. n.	n. n.	n. n.	n. n.	n. n.	n. n.
Zink	mg/kg	120	300	500	1.500	120	210	830	130	64	98	19

	Untersuchungsergebnisse der Mischproben im Eluat											
Parameter	Dimension	ZO	Z 1.1	Z 1.2	Z2	MP 1	MP 2	MP 3	MP 4	MP 5	MP 6	MP 7
pH-Wert		6,5 - 9	6,5 - 9	6 - 12	5,5 - 12	8,9	8,5	8,3	8,2	8,1	7,9	8,1
elektrische Leitfähigkeit	μS/cm	500	500	1.000	1.500	120	110	110	100	110	700	70
Chlorid	mg/l	10	10	20	30	n. n.						
Sulfat	mg/l	50	50	100	150	n. n.	2,00	2,00	3,00	14	330	2,0
Cyanide gesamt	μg/I	< 10	10	50	100	n. n.						
Phenolindex	μg/l	< 10	10	50	100	n. n.						
Arsen	μg/l	10	10	40	60	n. n.						
Blei	μg/l	20	40	100	200	13	n. n.	36	n. n.	n. n.	n. n.	n. n.
Cadmium	μ g /l	2	2	5	10	n. n.						
Chrom	μg/l	15	30	75	150	n. n.						
Kupfer	μg/l	50	50	150	300	n. n.						
Nickel	μg/l	40	50	150	200	n. n.						
Quecksilber	μg/l	0,2	0,2	1	2	n. n.						
Thallium	μg/l	<1	1	3	5	n. n.	n.n.	n. n.				
Zink	μg/l	100	100	300	600	16	n. n.	24	n. n.	n. n.	n. n.	n. n.

Tab. 3: Untersuchungsergebnisse der Mischproben im Feststoff und Eluat - n. n. = nicht nachgewiesen

Unter Berücksichtigung der vorliegenden Untersuchungsergebnisse sind die einzelnen Bereiche wie folgt einzustufen:

Mischprobe	Zuordnungsklasse gemäß LAGA	Leitparameter für die Zuordnung
MP 1	Z 1.1	PAK
MP 2	Z 1.2	EOX
MP 3	Z 2	Zink
MP 4	> Z 2	PAK
MP 5	Z 1.1	PAK, Kupfer
MP 6*	Z 1.1	PAK
MP 7	Z 0	<u> </u>

Tab. 4: Einstufung der Mischproben in die Zuordnungsklasse der LAGA-Richtlinie

 * Aufgrund der Eluatwerte für die elektrische Leitfähigkeit (700 μ S/cm / Z 1.2) und Sulfat (330 mg/l / > Z 2) wäre die Probe MP 6 ebenfalls in die Zuordnungsklasse > Z 2 einzustufen. Der erhöhte Sulfat-Gehalt sowie die elektrische Leitfähigkeit der Mischprobe ist auf die Zement- und Betonanteile innerhalb des Probenmateriales zurückzuführen.

Da jedoch keine erhöhten Gehalte umweltgefährdender Parameter vorliegen, ist der untersuchte Bereich der MP 6 in die Zuordnungsklasse Z 1.1 eingestuft worden. Dies ist in Anlehnung an die LAGA-Richtlinien auch zulässig.

Wegen des PAK-Gehaltes von 50,32 mg/kg in der MP 4 sind die acht Einzelproben dieser Mischprobe jeweils auf PAK nach EPA hin analysiert worden.

Einzelprobe	PAK in mg/kg	Zuordnung nach LAGA
5,1	10,63	Z 1.2
6,1	3,19	Z 1.1
17,1	7,67	Z 1.2
18,1	29,77	> Z 2
19,1	11,39	Z 1.2
31,1	73,63	> Z 2
32,1	61,32	> Z 2
44,1	9,68	Z 1.2

Tab. 5: Gehalte der Einzelproben von MP 4 sowie die Zuordnung nach LAGA

Die Untersuchungsergebnisse der Einzelproben zeigen, dass der erhöhte PAK-Gehalt der MP 4 auf die Einzelproben 18,1; 31,1 und 31,2 zurückzuführen ist. Somit ist nur noch dieser Teilbereich in die Zuordnungsklasse > Z 2 einzustufen. Für die übrige Fläche bzw. die anstehende Auffüllung der MP 4 gilt das Zuordnungskriterium Z 1.2.

4.4 Untersuchung von Bodengasproben

Bei den Aufschlußarbeiten sind acht Rammkernbohrlöcher zu Bodenporengasmeßstellen ausgebaut worden.

In den nachfolgenden Tabellen sind die jeweiligen Meßstellen sowie die durchgeführte Analytik und deren Ergebnisse aufgelistet:

Bodenporengasmeßstelle	Analyse auf		
BL 4	Methan, BTEX		
BL 10	Methan, BTEX		
BL 13	Methan, BTEX		
BL 14	Methan, BTEX, LHKW Methan, BTEX, LHKW		
BL 19			
BL 38	Methan, BTEX, LHKW		
BL 43	Methan, BTEX, LHKW		
BL 45	Methan, BTEX, LHKW		

Tab. 6: Aufstellung der Bodenporengasmeßstellen und durchgeführte Analytik

Die Anzahl der Meßstellen und der Untersuchungsumfang ist durch den Fachbereich Umwelt und Verkehr der Stadt Werne vorgegeben worden.

Parameter	Dimension	BL 4	BL 10	BL 13	BL 14	BL 19	BL 38	BL 43	BL 45
Methan	Vol-%	< 0,1	< 0,1	< 0,1	< 0,1	< 0,1	< 0,1	< 0,1	< 0,1
BTEX	mg/m³	n. n.							
LHKW	mg/m³	n. u.	n. u.	n. u.	0,07	n. n.	n. n.	n. u.	n. u.

Tab. 7: Ergebnisse der Bodenluftmessungen

n. u. = nicht untersucht; n. n. = nicht nachgewiesen

Die Analysenergebnisse der Bodenluft zeigen, dass die zu untersuchenden Parameter mit Ausnahme der BL 14 - LHKW = 0,07 mg/m³ - nicht nachgewiesen worden sind.

5. Kontaminationsbeurteilung und Risikoabschätzung

Im Hinblick auf die weitere Nutzung des Grundstückes als Wohngebiet ist hinsichtlich der Emissionspfade Boden, Grundwasser und Bodenporengas die nachfolgende Risikoabschätzung aufzuzeigen.

Die chemischen Untersuchungsergebnisse der Auffüllmaterialien lassen nur mäßige Anreicherungen der untersuchten Parameter erkennen. Die Anreicherungen beziehen sich dabei im wesentlichen auf die Gruppe der Polycyclischen Aromatischen Kohlenwasserstoffe (PAK nach EPA).

Unter Beachtung der Bundes-Bodenschutz- und Altlastenverordnung (BBodSchV) werden die Zuordnungswerte für Wohngebiete und Kinderspielflächen nur mit einer Ausnahme überschritten. Hierbei handelt es sich um den Benzo(a)pyren-Gehalt von 4,70 mg/kg der MP 4.

Die durchgeführten PAK-Untersuchungen der Einzelproben der MP 4 zeigen, dass erhöhte Benzo(a)pyren-Gehalte nur an die Bereiche RKS 31 (4,3 mg/kg) und RKS 32 (4,8 mg/kg) gebunden sind.

Wegen der nachgewiesenen Auffüllung und der chemischen Untersuchungsergebnisse ist das Grundstück zur Zeit aber nicht multifunktional nutzbar.

Unter Berücksichtigung der vorliegenden Untersuchungsergebnisse ist ein unmittelbar vom Grundstück ausgehendes Risikopotential aber nicht abzuleiten.

Beeinträchtigungen des im tieferen Untergrund zirkulierenden Grundwassers können ausgeschlossen werden. Ein Hinweis hierfür ist das Analysenergebnis der MP 7 sowohl in der Feststoff- und Eluatuntersuchung (gewachsener Boden), da in dieser Mischprobe keine Anreicherungen der einzelnen Parameter nachgewiesen bzw. nicht enthalten sind.

Ausgasungen sind nach den vorliegenden Ergebnissen der Bodenluftmessungen ebenfalls nicht zu erwarten.

6. Sicherungs- und Sanierungsmaßnahmen

Aufgrund der nachgewiesenen Konzentrationsanreicherungen einzelner Parameter in den untersuchten Bodenmischproben sind zur Zeit keine Sicherungsmaßnahmen notwendig.

Der bei zukünftigen Baumaßnahmen anfallende Bodenaushub, hier Auffüllung, ist gemäß den diskutierten LAGA-Grenzwerten und den zur Zeit gültigen Rechtsvorschriften einer Wiederverwertung oder Beseitigung zuzuführen. Die entsprechenden Maßnahmen sind zuvor mit den Fachbetrieben der zuständigen Kommune bzw. des Kreises abzustimmen.

7. Massenermittlung der Auffüllungen und ihre Einstufung nach LAGA

Die Massenermittlung der Auffüllungen erfolgt nach den festgestellten Auffüllmächtigkeiten in Abhängigkeit zur Fläche.

Die jeweilige Zuordnung gemäß LAGA-Richtlinie resultiert aus den chemischen Untersuchungsergebnissen (vgl. Anlage 1.3 - Lageplan mit Eintragung der Flächen in Abhängigkeit ihrer LAGA-Zuordnung).

In der nachfolgenden Tabelle wird die Massenaufstellung aufgelistet:

Bezeichnung	mittlere Auffüllmächtigkeit (m)	Fläche (m²)	anfallender Aushub (m³)	Zuordnung
MP 1	0,62	~ 1,400	868,00	Z 1.1
MP 2	0,50	~ 1.080	540,00	Z 1.2
MP 3	0,62	~ 850	527,00	Z 2
MP 4-1	0,82	~ 520	426,50	Z 1.2
MP 4-2	0,67	~ 340	227,80	> Z 2
MP 5	0,92	~ 780	717,60	Z 1.1
MP 6	1,40	~ 720	1.008,60	Z 1.1

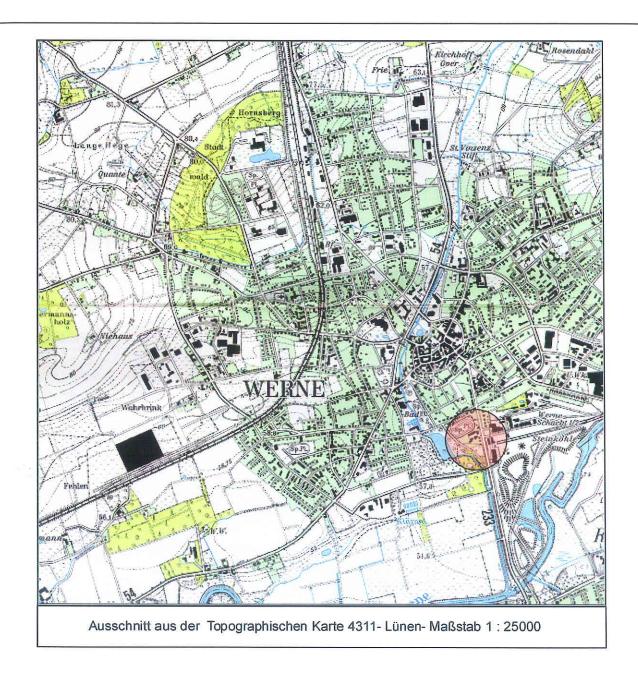
Tab. 8: Auflistung der mittleren Auffüllmächtigkeiten und des anfallenden Aushubes in Abhängigkeit zur Zuordnung nach LAGA

Der anfallende Gesamtaushub beträgt somit nach überschlägiger Ermittlung **4.315,40 m³**. Für eine Kalkulation sollte zur Sicherheit eine Menge von **5.000 m³** veranschlagt werden.

8. Schlußbemerkungen

Die Bewertung des Untergrundes zeigt, dass auf dem gesamten Grundstück eine anthropogene Auffüllung bzw. umgelagerter Boden in unterschiedlichen Mächtigkeiten vorhanden ist. (vgl. Anlagen 2.1 bis 2.5).

Mit der chemischen Analytik sind aber bis auf den Bereich der MP 4-2 (vgl. Anlage 1.3) nur mäßige Anreicherungen der untersuchten Parameter ermittelt worden.

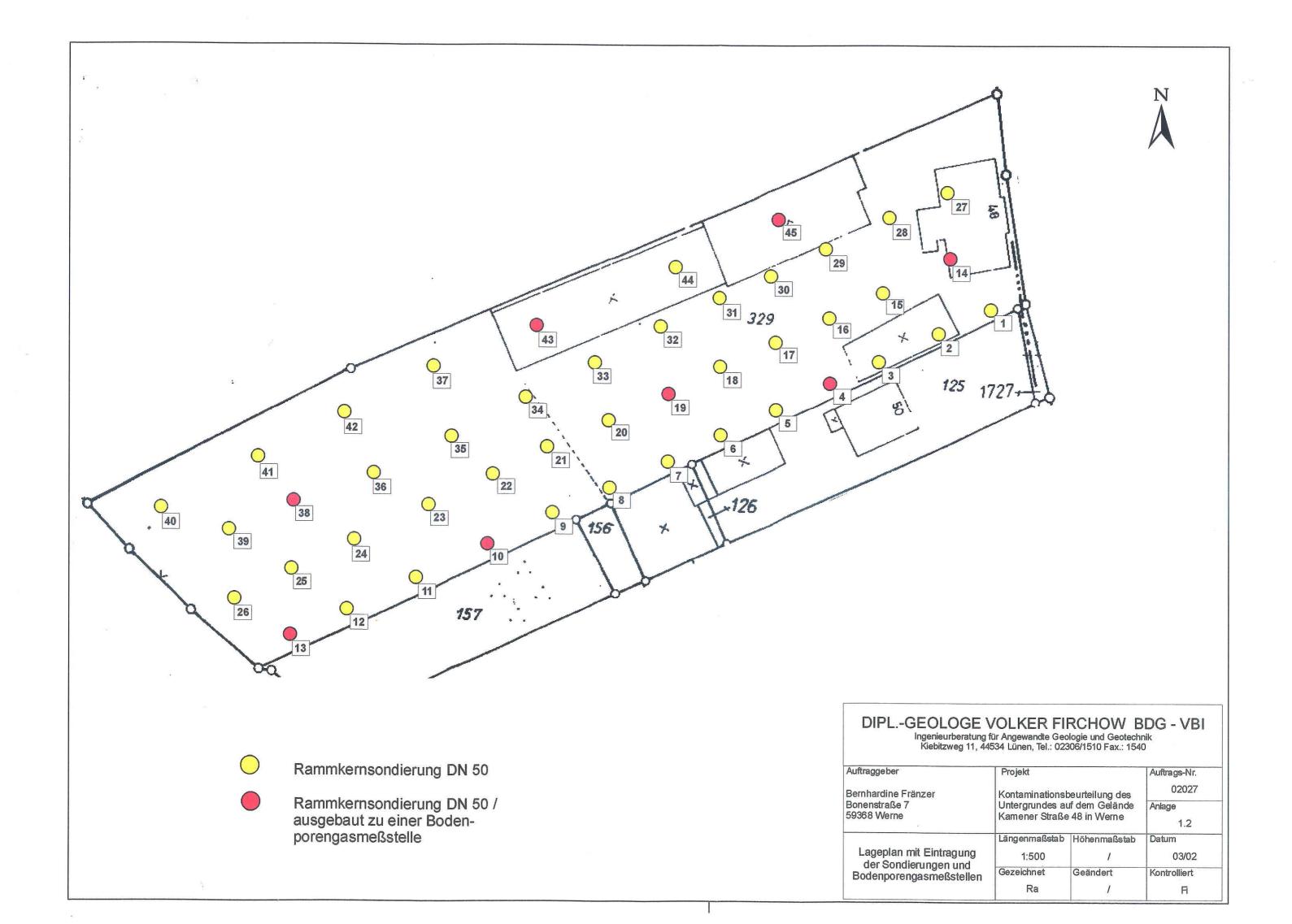

Die nachgewiesene Auffüllung und der damit verbundene zukünftig anfallende Aushub kann unter Berücksichtigung der jeweiligen Zuordnungsklasse gemäß den Mitteilungen der Länderarbeitsgemeinschaft Abfall (LAGA) verwertet oder beseitigt werden.

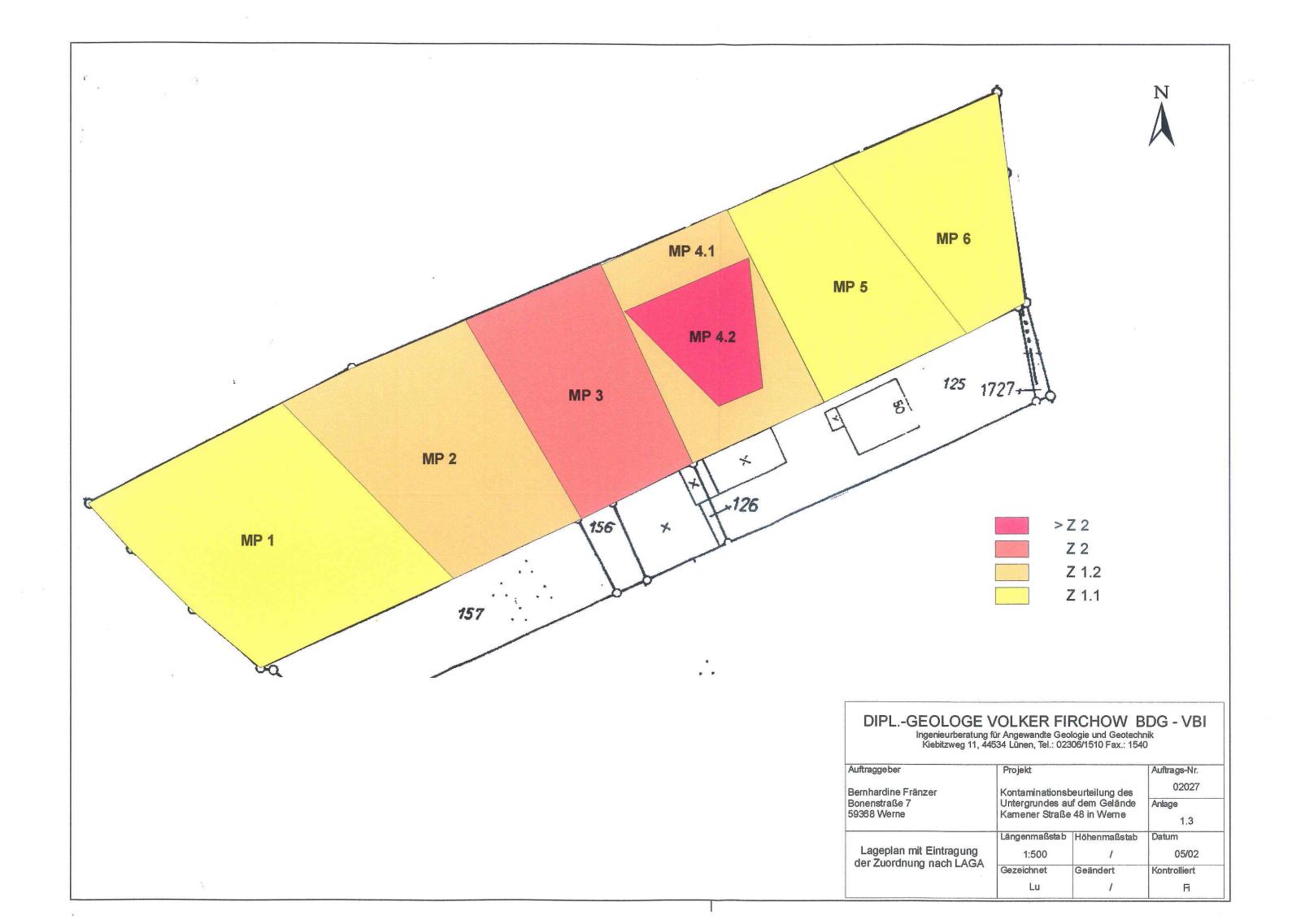
Für ergänzende Rückfragen oder Erläuterungen stehen Ihnen die Unterzeichner jederzeit gern zur Verfügung.

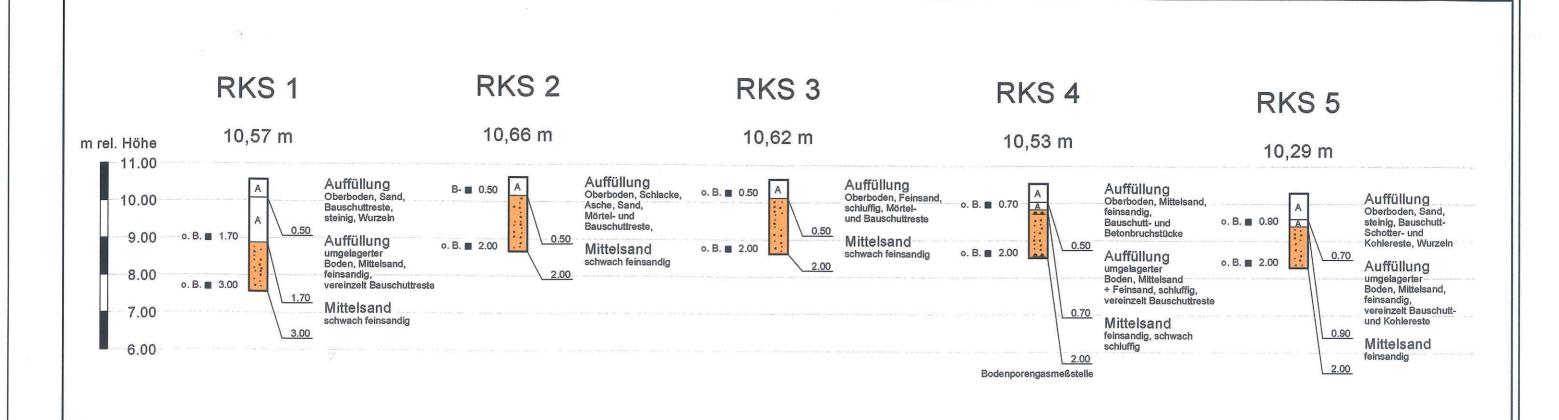
i.A. Joing Palmotte

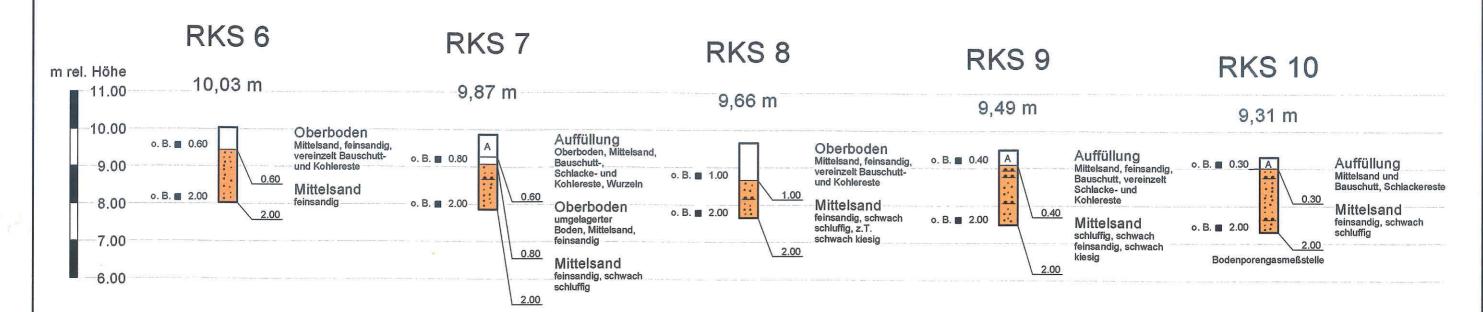
Dipl.-Geol. V. Firchow

H.-J. Nölle (geol. Sachbearbeiter)

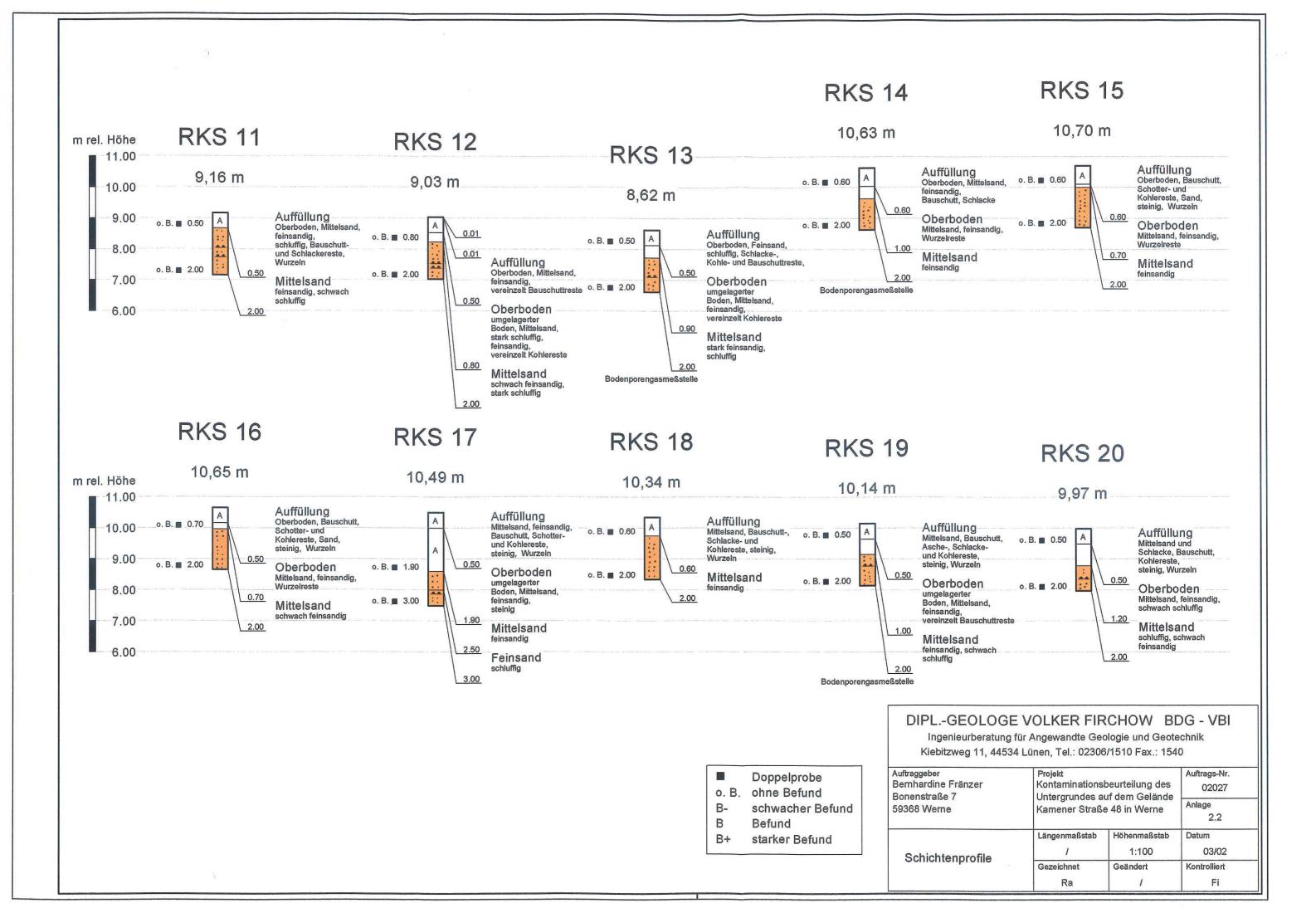


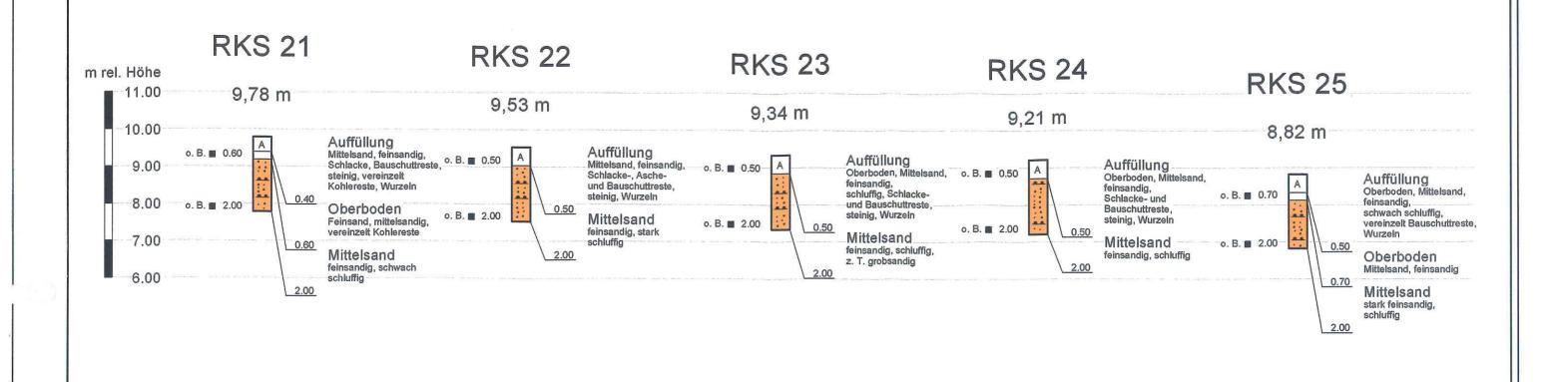

Regionale Lage des Bauvorhabens


DIPL.-GEOLOGE VOLKER FIRCHOW BDG - VBI


Ingenieurberatung für Angewandte Geologie und Geotechnik Kiebitzweg, 44534 Lünen, Tel.: 02306/1510 Fax.: 1540

Auftraggeber	Projekt	Auftrags-Nr	
Bernhardine Fränzer	Kontaminationsh	02027	
Bonenstraße 7 59368 Werne	Untergrundes au Kamener Straße	Anlage	
		1.1	
	Längenmaßstab	Höhenmaßstab	Datum
Übersichtslageplan	1 : 25000	/	04/02
	Gezeichnet	Geändert	Kontrolliert
	Lu	1	Fi

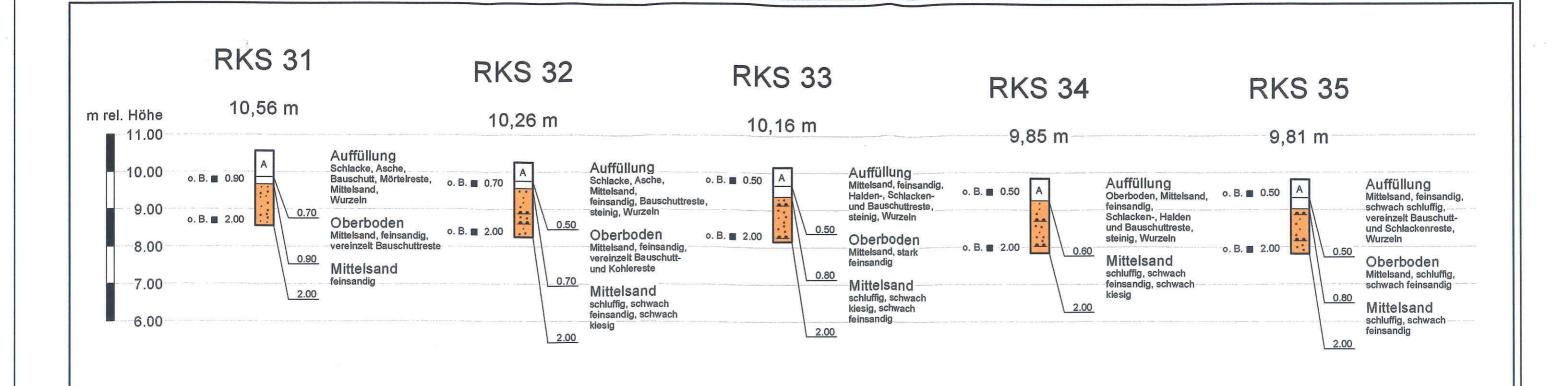


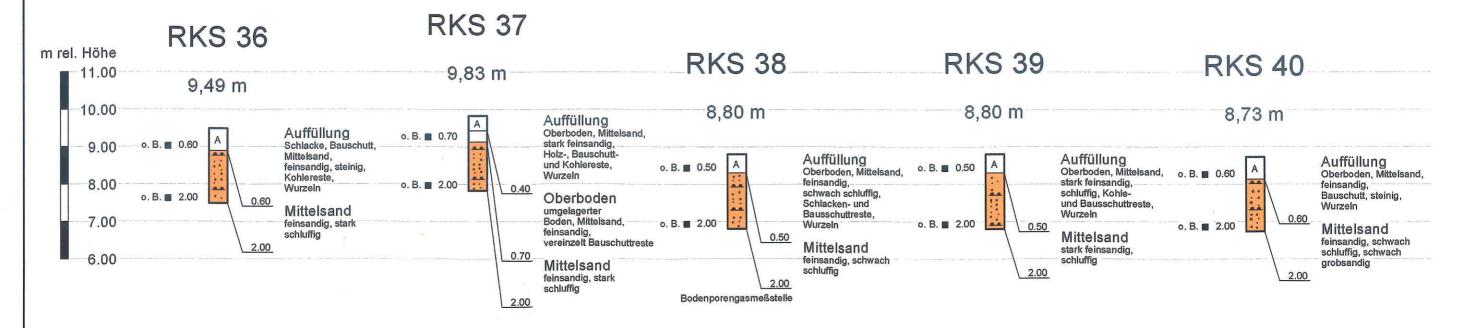

Doppelprobe
o. B. ohne Befund
B- schwacher Befund
B Befund
B+ starker Befund


DIPL.-GEOLOGE VOLKER FIRCHOW BDG - VBI

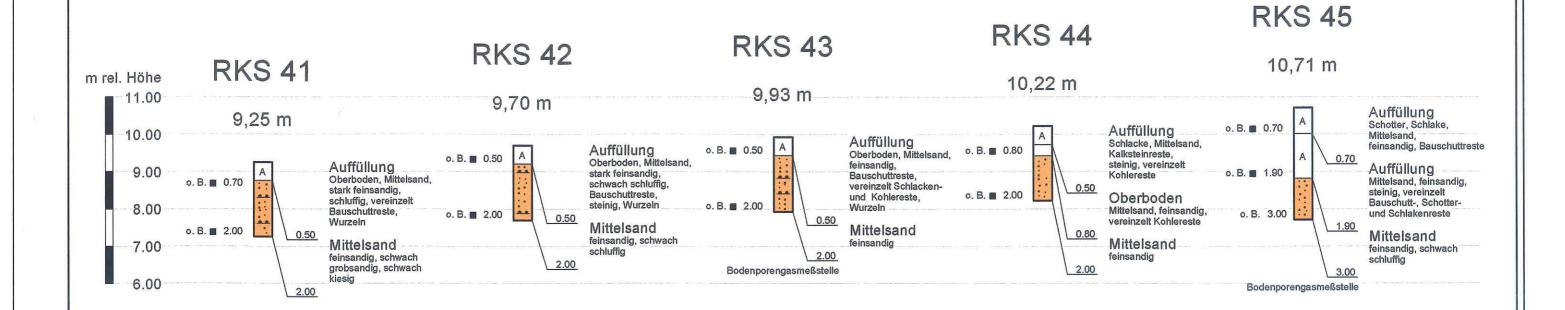
Ingenieurberatung für Angewandte Geologie und Geotechnik Kiebitzweg 11, 44534 Lünen. Tel.: 02306/1510 Fax.: 1540

Auftraggeber Bernhardine Fränzer Bonenstraße 7	Projekt Kontaminations Untergrundes a	Auftrags-Nr. 02027	
59368 Werne	Kamener Straß	Anlage 2.1	
Schichtenprofile	Längenmaßstab	Höhenmaßstab	Datum
	1	1:100	03/02
	Gezeichnet	Geändert	Kontrolliert
	Ra	1	Fi





Doppelprobe
o. B. ohne Befund
B- schwacher Befund
B Befund
B+ starker Befund


DIPL.-GEOLOGE VOLKER FIRCHOW BDG - VBI Ingenieurberatung für Angewandte Geologie und Geotechnik Kiebitzweg 11, 44534 Lünen, Tel.: 02306/1510 Fax.: 1540 Auftraggeber Auftrags-Nr. Kontaminationsbeurteilung des Bernhardine Fränzer 02027 Bonenstraße 7 Untergrundes auf dem Gelände Anlage 59368 Werne Kamener Straße 48 in Werne 2.3 Höhenmaßstab Längenmaßstab Datum 1:100 03/02 Schichtenprofile Gezeichnet Geändert Kontrolliert Fi Ra

	Doppelprobe
o. B.	ohne Befund
B-	schwacher Befund
В	Befund
B+	starker Befund

DIPLGEOLOGE VOLKER FIRCHOW BDG - VBI Ingenieurberatung für Angewandte Geologie und Geotechnik Kiebitzweg 11, 44534 Lünen, Tel.: 02306/1510 Fax.: 1540						
Auftraggeber Bernhardine Fränzer Bonenstraße 7 59368 Werne	Projekt Kontaminationsbeurteilung des Untergrundes auf dem Gelände Kamener Straße 48 in Werne Auftrags-Nr. 02027 Anlage 2.4					
Schichtenprofile	Längenmaßstab / Gezeichnet Ra	Höhenmaßstab 1:100 Geändert	Datum 03/02 Kontrolliert Fi			

Doppelprobe
o. B. ohne Befund
B- schwacher Befund
B Befund
B+ starker Befund

DIPLGEOLOGE Ingenieurberatung Kiebitzweg 11, 44534	für Angewandte Geo	ologie und Geote	chnik			
Auftraggeber Bernhardine Fränzer Bonenstraße 7		Kontaminationsbeurteilung des				
59368 Werne		Untergrundes auf dem Gelände Kamener Straße 48 in Werne				
	Längenmaßstab	Höhenmaßstab	Datum			
Cahiahtannasila	1	1:100	03/02			
Schichtenprofile	Gezeichnet	Geändert	Kontrolliert			
	Ra	1	Fi			

Auftrags-Nr.: 02027

Chemische Untersuchungsergebnisse

Ihr Zeichen RA/02027	Ihr Zeichen RA/02027			en-Nr.:	02-3402-001
MP1				angsdatum:	11.04.2002
Analysenparameter	Einheit	Ergebnis	BestGrenze	Methode	
Analyse gem. LAGA-Richtli	nie				
Trockenrückstand 105°C	%	83,7	0,1	DIN EN 12880	
pH-Wert		6,8		DIN 10390	
Analyse bezogen auf den T	rockenrücks	stand			
Cyanid gesamt	mg/kg	n.n.	0,1	E DIN ISO 11262	
EOX	mg/kg	n.n.	1	DIN 38414 S17	
Kohlenwasserstoffe (MKW)	mg/kg	n.n.	5	LAGA Richtlinie KW 85	
Schwermetalle					
Arsen	mg/kg	9	Ĩ	DIN EN ISO 11885	
Blei	mg/kg	53	1	DIN EN ISO 11885	
Cadmium	mg/kg	0,5	0,1	DIN EN ISO 11885	
Chrom gesamt	mg/kg	21	1	DIN EN ISO 11885	
Kupfer	mg/kg	25	1	DIN EN ISO 11885	
Nickel	mg/kg	18	1	DIN EN ISO 11885	
Quecksilber	mg/kg	0,20	0,1	DIN EN 1483	
Zink	mg/kg	120	. 1	DIN EN ISO 11885	
Thallium	mg/kg	n.n.	0,5	DIN 38406 E26	
втх					
Benzol*	mg/kg	n.n.	0,05	DIN 38407 F9/F4	
Toluol*	mg/kg	n.n.	0,05	DIN 38407 F9/F4	
Ethylbenzol*	mg/kg	n.n.	0,05	DIN 38407 F9/F4	
o-Xylol*	mg/kg	n.n.	0,05	DIN 38407 F9/F4	
m- und p-Xylol*	mg/kg	n.n.	0,05	DIN 38407 F9/F4	
Isopropylbenzol (Cumol)	mg/kg	n.n.	0,05	5 DIN 38407 F9/F4	
1,2,3-Trimethylbenzol	mg/kg	n.n.		5 DIN 38407 F9/F4	
1,2,4-Trimethylbenzol	mg/kg	n.n.		5 DIN 38407 F9/F4	
1,3,5-Trimethylbenzol	mg/kg	n.n.		5 DIN 38407 F9/F4	
*Summe BTEX	mg/kg	n.n.	0,0	5 DIN 38407 F9/F4	
LHKW					
Dichlormethan	mg/kg	n.n.	0,0	5 DIN 38407 F9/F4	
trans-1,2-Dichlorethen	mg/kg	n.n.	0,0	5 DIN 38407 F9/F4	
cis-1,2-Dichlorethen	mg/kg	n.n.	190731	5 DIN 38407 F9/F4	
Trichlormethan	mg/kg	n.n.		5 DIN 38407 F9/F4	
1,1,1-Trichlorethan	mg/kg	n.n.	2007	5 DIN 38407 F9/F4	
Tetrachlormethan	mg/kg	n.n.	50	5 DIN 38407 F9/F4	
Trichlorethen	mg/kg	n.n.		5 DIN 38407 F9/F4	
	ma/ka	n.n.	0,0	5 DIN 38407 F9/F4	
1,1,2-Trichlorethan	mg/kg				
1,1,2-Trichlorethan Tetrachlorethen	mg/kg	n.n.		05 DIN 38407 F9/F4	
50 50	SWAN .	n.n. n.n.		DIN 38407 F9/F4 DIN 38407 F9/F4	
Tetrachlorethen	mg/kg		0,0		

19.04.2002

hr Zeichen RA/02027				en-Nr.:	02-3402-001	
MP1			Eing	angsdatum:	11.04.2002	
Analysenparameter	Einheit	Ergebnis	BestGrenze	Methode		
PAK					*	
Acenaphthylen	mg/kg	n.n.	0,5	LUA Merkblatt NRW		
Acenaphthen	mg/kg	n.n.	0,05	LUA Merkblatt NRW		
Fluoren	mg/kg	n.n.	0,05	LUA Merkblatt NRW		
Phenanthren	mg/kg	0,39	0,05	LUA Merkblatt NRW		
Anthracen	mg/kg	n.n.	0,05	LUA Merkblatt NRW		
Fluoranthen*	mg/kg	0,79	0,05	LUA Merkblatt NRW		
Pyren	mg/kg	0,63	0,05	LUA Merkblatt NRW	90.	
Benzo[a]anthracen	mg/kg	0,39	0,05	LUA Merkblatt NRW		
Chrysen	mg/kg	0,41	0,05	LUA Merkblatt NRW		
Benzo[b]fluoranthen*	mg/kg	0,31	0,05	LUA Merkblatt NRW		
Benzo[k]fluoranthen*	mg/kg	0,18	0,05	LUA Merkblatt NRW		
Benzo[a]pyren*	mg/kg	0,35	0,05	LUA Merkblatt NRW		
Dibenz[ah]anthracen	mg/kg	n.n.	0,05	LUA Merkblatt NRW		
Benzo[ghi]perylen*	mg/kg	0,22	0,05	LUA Merkblatt NRW		
Indeno[1,2,3-cd]pyren*	mg/kg	0,23	0,05	LUA Merkblatt NRW		
Summe PAK nach EPA	mg/kg	3,90	0,05	LUA Merkblatt NRW		
PAK nach TVO*	mg/kg	2,08	0,05	LUA Merkblatt NRW		
PCB						
PCB-028	mg/kg	n.n.	0,01	DIN 38414 S20		
PCB-052	mg/kg	n.n.	0,01	DIN 38414 S20		
PCB-101	mg/kg	n.n.	0,01	DIN 38414 S20		
PCB-138	mg/kg	n.n.	0,01	DIN 38414 S20		
PCB-153	mg/kg	n.n.	0,01	DIN 38414 S20		
PCB-180	mg/kg	n.n.	0,01	DIN 38414 S20		
Summe PCB 028-PCB 180	mg/kg	n.n.	0,01	DIN 38414 S20		
Analyse vom Eluat DEV S4	(20) (24)					
pH-Wert		8,9		DIN 38404 C5		
Leitfähigkeit	μS/cm	120		I DIN EN 27888		
Chlorid	mg/l	n.n.	9	1 - DIN EN ISO 10304 (1	1/2)	
Sulfat	mg/l	n.n.		1 DIN EN ISO 10304 (1	1/2)	
Cyanid gesamt	μg/l	n.n.	1	0 E DIN EN ISO 14403	i.	
Phenol-Index	μg/l	n.n.		5 E DIN EN ISO 14402	2	
Schwermetalle	•					
Arsen	μg/l	n.n.	1	0 DIN EN ISO 11885		
Blei	μg/l	13	1	0 DIN EN ISO 11885		
Cadmium	μg/l	n.n.		1 DIN EN ISO 11885		
Chrom gesamt	μg/l	n.n.	1	0 DIN EN ISO 11885		
Kupfer	μg/l	n.n.	1	0 DIN EN ISO 11885		
Nickel	μg/l	n.n.	1	0 DIN EN ISO 11885		
Quecksilber	μg/l	n.n.	0	2 DIN EN 1483		

19.04.2002

Ihr Zeichen RA/02027	***		Proben-Nr.:		02-3402-001
MP1			Eing	11.04.2002	
- Analysenparameter	Einheit	Ergebnis	BestGrenze	Methode	
Schwermetalle					5
Zink	μg/l	16	10	DIN EN ISO 11885	
Thallium	μg/l	n.n.	1	DIN 38406 E26	
		n.n. = nicht nachweisba	r n.b. = r	nicht bestimmbar	- = nicht bestimmt

			Proben-Nr.:	02-3402-002
Ihr Zeichen RA/02027 MP2			Eingangsdatum:	11.04.2002
	Einheit	Ergebnis	BestGrenze Methode	111011200
Analysenparameter		Ligebilis	DOG. GIGIES	
Analyse gem. LAGA-Richtli		05.0	0.4 DIN EN 40000	•
Trockenrückstand 105°C	%	85,8	0,1 DIN EN 12880	
pH-Wert		7,2	DIN 10390	
Analyse bezogen auf den T				
Cyanid gesamt	mg/kg	0,10	0,1 E DIN ISO 11262	
EOX	mg/kg	6,6	1 DIN 38414 S17	-
Kohlenwasserstoffe (MKW)	mg/kg	n.n.	5 LAGA Richtlinie KW 8	5
Schwermetalle				
Arsen	mg/kg	6	1 DIN EN ISO 11885	
Blei	mg/kg	57	1 DIN EN ISO 11885	
Cadmium	mg/kg	0,6	0,1 DIN EN ISO 11885	
Chrom gesamt	mg/kg	28	1 DIN EN ISO 11885	
Kupfer	mg/kg	30	1 DIN EN ISO 11885	
Nickel	mg/kg	18	1 DIN EN ISO 11885	
Quecksilber	mg/kg	0,20	0,1 DIN EN 1483	
Zink	mg/kg	210	1 DIN EN ISO 11885	
Thallium	mg/kg	n.n.	0,5 DIN 38406 E26	
BTX				
Benzol*	mg/kg	n.n.	0,05 DIN 38407 F9/F4	
Toluol*	mg/kg	n.n.	0,05 DIN 38407 F9/F4	
Ethylbenzol*	mg/kg	n.n.	0,05 DIN 38407 F9/F4	
o-Xylol*	mg/kg	n.n.	0,05 DIN 38407 F9/F4	
m- und p-Xylol*	mg/kg	0,06	0,05 DIN 38407 F9/F4	
Isopropylbenzol (Cumol)	mg/kg	n.n.	0,05 DIN 38407 F9/F4	
1,2,3-Trimethylbenzol	mg/kg	n.n.	0,05 DIN 38407 F9/F4	
1,2,4-Trimethylbenzol	mg/kg	n.n.	0,05 DIN 38407 F9/F4	
1,3,5-Trimethylbenzol	mg/kg	n.n.	0,05 DIN 38407 F9/F4	
*Summe BTEX	mg/kg	0,06	0,05 DIN 38407 F9/F4	3
LHKW				
Dichlormethan	mg/kg	n.n.	0,05 DIN 38407 F9/F4	
trans-1,2-Dichlorethen	mg/kg	n.n.	0,05 DIN 38407 F9/F4	
cis-1,2-Dichlorethen	mg/kg	n.n.	0,05 DIN 38407 F9/F4	
Trichlormethan	mg/kg	n.n.	0,05 DIN 38407 F9/F4	
1,1,1-Trichlorethan	mg/kg	n.n.	0,05 DIN 38407 F9/F4	
Tetrachlormethan	mg/kg	n.n.	0,05 DIN 38407 F9/F4	
Trichlorethen	mg/kg	n.n.	0,05 DIN 38407 F9/F4	
1,1,2-Trichlorethan	mg/kg	n.n.	0,05 DIN 38407 F9/F4	
Tetrachlorethen	mg/kg	n.n.	0,05 DIN 38407 F9/F4	
Summe LHKW	mg/kg	n.n.	0,05 DIN 38407 F9/F4	
PAK				
Naphthalin	mg/kg	n.n.	0,05 LUA Merkblatt NRV	V
a carla reconstitutos				

Ihr Zeichen RA/02027			Prob	en-Nr.:	02-3402-002
MP2				angsdatum:	11.04.2002
Analysenparameter	Einheit	Ergebnis	BestGrenze	Methode	
PAK					s
Acenaphthylen	mg/kg	n.n.	0,5	LUA Merkblatt NRW	
Acenaphthen	mg/kg	n.n.	0,05	LUA Merkblatt NRW	
Fluoren	mg/kg	n.n.	0,05	LUA Merkblatt NRW	
Phenanthren	mg/kg	0,50	0,05	LUA Merkblatt NRW	
Anthracen	mg/kg	n.n.	0,05	LUA Merkblatt NRW	
Fluoranthen*	mg/kg	0,90	0,05	LUA Merkblatt NRW	
Pyren	mg/kg	0,68	0,05	LUA Merkblatt NRW	
Benzo[a]anthracen	mg/kg	0,40	0,05	LUA Merkblatt NRW	
Chrysen	mg/kg	0,30	0,05	LUA Merkblatt NRW	
Benzo[b]fluoranthen*	mg/kg	0,34	0,05	LUA Merkblatt NRW	
Benzo[k]fluoranthen*	mg/kg	0,19	0,05	LUA Merkblatt NRW	
Benzo[a]pyren*	mg/kg	0,34	0,05	LUA Merkblatt NRW	
Dibenz[ah]anthracen	mg/kg	n.n.	10.000	LUA Merkblatt NRW	
Benzo[ghi]perylen*	mg/kg	0,22	50.587.59	LUA Merkblatt NRW	
Indeno[1,2,3-cd]pyren*	mg/kg	0,25	0,05	LUA Merkblatt NRW	
Summe PAK nach EPA	mg/kg	4,12	0,05	LUA Merkblatt NRW	
PAK nach TVO*	mg/kg	2,24	0,05	LUA Merkblatt NRW	
PCB					
PCB-028	mg/kg	0,01	0,01	DIN 38414 S20	
PCB-052	mg/kg	0,02	0,01	DIN 38414 S20	
PCB-101	mg/kg	0,02	0,01	DIN 38414 S20	
PCB-138	mg/kg	n.n.	0,01	DIN 38414 S20	
PCB-153	mg/kg	n.n.	0,01	DIN 38414 S20	
PCB-180	mg/kg	n.n.	0,01	DIN 38414 S20	
Summe PCB 028-PCB 180	mg/kg	0,05	0,01	DIN 38414 S20	
Analyse vom Eluat DEV S	4				
pH-Wert		8,5		DIN 38404 C5	
Leitfähigkeit	μS/cm	110	ii ii	1 DIN EN 27888	
Chlorid	mg/l	n.n.	a 3	1 DIN EN ISO 10304 (1)	/2)
Sulfat	mg/l	2,0	74	1 DIN EN ISO 10304 (1.	/2)
Cyanid gesamt	μg/l	n.n.	1	0 E DIN EN ISO 14403	
Phenol-Index	μg/l	n.n.		5 E DIN EN ISO 14402	
Schwermetalle					
Arsen	μg/l	n.n.	1	0 DIN EN ISO 11885	
Blei	μg/l	n.n.	1	0 DIN EN ISO 11885	
Cadmium	μg/l	n.n.		1 DIN EN ISO 11885	
Chrom gesamt	μg/l	n.n.	1	0 DIN EN ISO 11885	
Kupfer	μg/l	n.n.	1	0 DIN EN ISO 11885	
Nickel	μg/l	n.n.	1	0 DIN EN ISO 11885	
Quecksilber	μg/l	n.n.		,2 DIN EN 1483	

19.04.2002

Ihr Zeichen RA/02027			Pro	ben-Nr.:	02-3402-002
MP2			Ein	gangsdatum:	11.04.2002
Analysenparameter	Einheit	Ergebnis	BestGrenze	Methode	
Schwermetalle					a a
Zink	μg/l	n.n.	10	DIN EN ISO 11885	
Thallium	μg/l	n.n.	1	DIN 38406 E26	1.1.1. and insend
		n.n. = nicht nachweisba	r n.b. = r	nicht bestimmbar	- = nicht bestimmt

		ay v annangan i Tra	Diesl	non Nr.	02-3402-003
Ihr Zeichen RA/02027				oen-Nr.: gangsdatum:	11.04.2002
MP3	Et ale alt	Franksis	BestGrenze		11.04.2002
Analysenparameter	Einheit	Ergebnis	BestGrenze	Metriode	
Analyse gem. LAGA-Richtli				WOODS MANAGEMENT 200	
Trockenrückstand 105°C	%	87,2	0,1	DIN EN 12880	
pH-Wert		7,2		DIN 10390	
Analyse bezogen auf den T	rockenrücks	stand			
Cyanid gesamt	mg/kg	n.n.	0,1	E DIN ISO 11262	
EOX	mg/kg	n.n.	1	DIN 38414 S17	
Kohlenwasserstoffe (MKW)	mg/kg	120	5	LAGA Richtlinie KW 85	
Schwermetalle				8	
Arsen	mg/kg	7	1	DIN EN ISO 11885	
Blei	mg/kg	130	1	DIN EN ISO 11885	
Cadmium	mg/kg	1,4	0,1	DIN EN ISO 11885	
Chrom gesamt	mg/kg	31	1	DIN EN ISO 11885	
Kupfer	mg/kg	37	1		
Nickel	mg/kg	30	1		
Quecksilber	mg/kg	0,30	0,1	DIN EN 1483	
Zink	mg/kg	830	1	DIN EN ISO 11885	
Thallium	mg/kg	n.n.	0,5	DIN 38406 E26	
ВТХ					
Benzol*	mg/kg	n.n.	0,05	DIN 38407 F9/F4	
Toluol*	mg/kg	n.n.	0,05	5 DIN 38407 F9/F4	
Ethylbenzol*	mg/kg	n.n.	0,05	5 DIN 38407 F9/F4	
o-Xylol*	mg/kg	0,06	0,0	5 DIN 38407 F9/F4	
m- und p-Xylol*	mg/kg	0,06	0,0	5 DIN 38407 F9/F4	
Isopropylbenzol (Cumol)	mg/kg	n.n.	0,0	5 DIN 38407 F9/F4	
1,2,3-Trimethylbenzol	mg/kg	n.n.	2050	5 DIN 38407 F9/F4	
1,2,4-Trimethylbenzol	mg/kg	0,07	100	5 DIN 38407 F9/F4	
1,3,5-Trimethylbenzol	mg/kg	0,05		5 DIN 38407 F9/F4	
*Summe BTEX	mg/kg	0,12	0,0	5 DIN 38407 F9/F4	
LHKW					
Dichlormethan	mg/kg	n.n.	0,0	5 DIN 38407 F9/F4	
trans-1,2-Dichlorethen	mg/kg	n.n.	0,0	5 DIN 38407 F9/F4	
cis-1,2-Dichlorethen	mg/kg	n.n.		5 DIN 38407 F9/F4	
Trichlormethan	mg/kg	n.n.		5 DIN 38407 F9/F4	
1,1,1-Trichlorethan	mg/kg	n.n.		5 DIN 38407 F9/F4	
Tetrachlormethan	mg/kg	n.n.		05 DIN 38407 F9/F4	
Trichlorethen	mg/kg	n.n.	e-n fin	5 DIN 38407 F9/F4	
1,1,2-Trichlorethan	mg/kg	n.n.		05 DIN 38407 F9/F4	
Tetrachlorethen	mg/kg	n.n.	500.43	05 DIN 38407 F9/F4	
Summe LHKW	mg/kg	n.n.	0,0	05 DIN 38407 F9/F4	
PAK					
Naphthalin	mg/kg	n.n.	0,	05 LUA Merkblatt NRW	
-v = 1000 € 100 0					

Ihr Zeichen RA/02027		Proben-Nr.:		02-3402-003	
MP3				gangsdatum:	11.04.2002
Analysenparameter	Einheit	Ergebnis	BestGrenze	Methode	
PAK					Se Se
Acenaphthylen	mg/kg	n.n.	0,5	LUA Merkblatt NRW	
Acenaphthen	mg/kg	n.n.	0,05	LUA Merkblatt NRW	
Fluoren	mg/kg	n.n.	0,05	LUA Merkblatt NRW	
Phenanthren	mg/kg	0,90	0,05	LUA Merkblatt NRW	
Anthracen	mg/kg	0,17	0,05	LUA Merkblatt NRW	
Fluoranthen*	mg/kg	1,6	0,05	LUA Merkblatt NRW	
Pyren	mg/kg	1,4	0,05	LUA Merkblatt NRW	
Benzo[a]anthracen	mg/kg	0,82	0,05	LUA Merkblatt NRW	
Chrysen	mg/kg	0,55	0,05	LUA Merkblatt NRW	
Benzo[b]fluoranthen*	mg/kg	0,60	0,05	LUA Merkblatt NRW	
Benzo[k]fluoranthen*	mg/kg	0,38	0,05	LUA Merkblatt NRW	
Benzo[a]pyren*	mg/kg	0,71	0,05	LUA Merkblatt NRW	
Dibenz[ah]anthracen	mg/kg	n.n.	0,05	LUA Merkblatt NRW	
Benzo[ghi]perylen*	mg/kg	0,49	0,05	LUA Merkblatt NRW	
Indeno[1,2,3-cd]pyren*	mg/kg	0,59	0,05	LUA Merkblatt NRW	
Summe PAK nach EPA	mg/kg	8,21	0,05	LUA Merkblatt NRW	
PAK nach TVO*	mg/kg	4,37	0,05	LUA Merkblatt NRW	
PCB					
PCB-028	mg/kg	n.n.	0,01	DIN 38414 S20	
PCB-052	mg/kg	n.n.	0,01	DIN 38414 S20	
PCB-101	mg/kg	n.n.	0,01	DIN 38414 S20	
PCB-138	mg/kg	n.n.	0,01	DIN 38414 S20	
PCB-153	mg/kg	n.n.	0,01	DIN 38414 S20	
PCB-180	mg/kg	n.n.	0,0	DIN 38414 S20	
Summe PCB 028-PCB 180	mg/kg	n.n.	0,0	I DIN 38414 S20	
Analyse vom Eluat DEV S4					
pH-Wert		8,3		DIN 38404 C5	
Leitfähigkeit	μS/cm	110	3	1 DIN EN 27888	
Chlorid	mg/l	n.n.		1 DIN EN ISO 10304 (1	/2)
Sulfat	mg/l	2,0		1 DIN EN ISO 10304 (1	/2)
Cyanid gesamt	μg/l	n.n.	1	0 E DIN EN ISO 14403	
Phenol-Index	μg/l	n.n.		5 E DIN EN ISO 14402	
Schwermetalle					
Arsen	μg/l	n.n.	1	0 DIN EN ISO 11885	
Blei	μg/l	36	1	0 DIN EN ISO 11885	
Cadmium	μg/l	n.n.		1 DIN EN ISO 11885	
Chrom gesamt	µg/l	n.n.	1	0 DIN EN ISO 11885	
Kupfer	μg/l	n.n.	1	0 DIN EN ISO 11885	
Nickel	μg/l	n.n.	1	0 DIN EN ISO 11885	
Quecksilber	μg/l	n.n.	0	,2 DIN EN 1483	

hr Zeichen RA/02027			Proben-Nr.:		02-3402-003
MP3			Eing	gangsdatum:	11.04.2002
Analysenparameter	Einheit	Ergebnis	BestGrenze	Methode	
Schwermetalle					
Zink	μg/l	24	10	DIN EN ISO 11885	
Thallium	μg/l	n.n.	1	DIN 38406 E26	
		n.n. = nicht nachweisba	r n.b. = r	nicht bestimmbar	- = nicht bestimmt

hr Zeichen RA/02027			Proben-Nr.:		02-3402-004
MP4			Eing	11.04.2002	
Analysenparameter	Einheit	Ergebnis	BestGrenze	Methode	
Analyse gem. LAGA-Richtli	nie				.2
Frockenrückstand 105°C	%	86,2	0,1	DIN EN 12880	
oH-Wert		7,2		DIN 10390	
Analyse bezogen auf den T	rockenrücks	stand			
Cyanid gesamt	mg/kg	0,15	0,1	E DIN ISO 11262	
EOX	mg/kg	n.n.	1	DIN 38414 S17	
Kohlenwasserstoffe (MKW)	mg/kg	33	5	LAGA Richtlinie KW 85	
Schwermetalle					
Arsen	mg/kg	8	1	DIN EN ISO 11885	
Blei	mg/kg	110	1	DIN EN ISO 11885	
Cadmium	mg/kg	0,6	0,1	DIN EN ISO 11885	
Chrom gesamt	mg/kg	20	1	DIN EN ISO 11885	
Kupfer	mg/kg	35	1	DIN EN ISO 11885	
Nickel	mg/kg	19	1	DIN EN ISO 11885	
Quecksilber	mg/kg	0,70	0,1	DIN EN 1483	
Zink	mg/kg	130	1	DIN EN ISO 11885	
Thallium	mg/kg	n.n.	0,5	DIN 38406 E26	
втх	.e. s				
Benzol*	mg/kg	n.n.	0,05	DIN 38407 F9/F4	
Toluol*	mg/kg	n.n.	0,05	DIN 38407 F9/F4	
Ethylbenzol*	mg/kg	n.n.	0,05	DIN 38407 F9/F4	
o-Xylol*	mg/kg	0,05	0,05	DIN 38407 F9/F4	
m- und p-Xylol*	mg/kg	0,07	0,05	DIN 38407 F9/F4	
Isopropylbenzol (Cumol)	mg/kg	n.n.	0,05	DIN 38407 F9/F4	
1,2,3-Trimethylbenzol	mg/kg	n.n.	0,05	DIN 38407 F9/F4	
1,2,4-Trimethylbenzol	mg/kg	n.n.	0,05	5 DIN 38407 F9/F4	
1,3,5-Trimethylbenzol	mg/kg	n.n.	0,05	5 DIN 38407 F9/F4	
*Summe BTEX	mg/kg	0,12	0,05	5 DIN 38407 F9/F4	
LHKW	AND DEEDA				
Dichlormethan	mg/kg	n.n.	0,0	5 DIN 38407 F9/F4	
trans-1,2-Dichlorethen	mg/kg	n.n.	0,0	5 DIN 38407 F9/F4	
cis-1,2-Dichlorethen	mg/kg	n.n.	0,0	5 DIN 38407 F9/F4	
Trichlormethan	mg/kg	n.n.	0,0	5 DIN 38407 F9/F4	
1,1,1-Trichlorethan	mg/kg	n.n.	0,0	5 DIN 38407 F9/F4	
Tetrachlormethan	mg/kg	n.n.	0,0	5 DIN 38407 F9/F4	
Trichlorethen	mg/kg	n.n.	0,0	5 DIN 38407 F9/F4	
1,1,2-Trichlorethan	mg/kg	n.n.	0,0	5 DIN 38407 F9/F4	
Tetrachlorethen	mg/kg	n.n.	0,0	5 DIN 38407 F9/F4	
Summe LHKW	mg/kg	n.n.	0,0	5 DIN 38407 F9/F4	
PAK					
Naphthalin	mg/kg	n.n.	0.0	5 LUA Merkblatt NRW	

Ihr Zeichen RA/02027			Proben-Nr.	•	02-3402-004
MP4			Eingangsdatum:		11.04.2002
Analysenparameter	Einheit	Ergebnis	BestGrenze Methode)	
PAK					
Acenaphthylen	mg/kg	n.n.	0,5 LUA Me	rkblatt NRW	
Acenaphthen	mg/kg	n.n.	0,05 LUA Me	rkblatt NRW	
Fluoren	mg/kg	0,33	0,05 LUA Me	rkblatt NRW	
Phenanthren	mg/kg	5,3	0,05 LUA Me	erkblatt NRW	
Anthracen	mg/kg	1,0	0,05 LUA Me	erkblatt NRW	
Fluoranthen*	mg/kg	9,6	0,05 LUA Me	erkblatt NRW	
Pyren	mg/kg	8,9	0,05 LUA Me	erkblatt NRW	
Benzo[a]anthracen	mg/kg	4,4	0,05 LUA Me	erkblatt NRW	
Chrysen	mg/kg	3,7	0,05 LUA Me	erkblatt NRW	
Benzo[b]fluoranthen*	mg/kg	4,1	0,05 LUA Me	erkblatt NRW	
Benzo[k]fluoranthen*	mg/kg	2,0	0,05 LUA M	erkblatt NRW	
Benzo[a]pyren*	mg/kg	4,7	0,05 LUA M	erkblatt NRW	
Dibenz[ah]anthracen	mg/kg	0,59	0,05 LUA M	erkblatt NRW	
Benzo[ghi]perylen*	mg/kg	2,5	0,05 LUA M	erkblatt NRW	
Indeno[1,2,3-cd]pyren*	mg/kg	3,2	0,05 LUA M	erkblatt NRW	
Summe PAK nach EPA	mg/kg	50,32	0,05 LUA M	erkblatt NRW	a
PAK nach TVO*	mg/kg	26,10	0,05 LUA M	erkblatt NRW	
PCB					
PCB-028	mg/kg	n.n.	0,01 DIN 38	414 S20	
PCB-052	mg/kg	n.n.	0,01 DIN 38	8414 S20	
PCB-101	mg/kg	n.n.	0,01 DIN 38	3414 S20	
PCB-138	mg/kg	n.n.	0,01 DIN 38	3414 S20	
PCB-153	mg/kg	n.n.	0,01 DIN 38	3414 S20	
PCB-180	mg/kg	n.n.	0,01 DIN 38	3414 S20	
Summe PCB 028-PCB 180	mg/kg	n.n.	0,01 DIN 38	3414 S20	
Analyse vom Eluat DEV S4	1				
pH-Wert		8,2	DIN 38	3404 C5	
Leitfähigkeit	μS/cm	100	1 DIN E	N 27888	
Chlorid	mg/l	n.n.	1 DIN E	N ISO 10304 (1/2)	
Sulfat	mg/l	3,0	1 DIN E	N ISO 10304 (1/2)	
Cyanid gesamt	μg/l	n.n.	10 E DIN	EN ISO 14403	
Phenol-Index	μg/l	n.n.	5 E DIN	EN ISO 14402	
Schwermetalle					
Arsen	μg/l	n.n.	10 DIN E	N ISO 11885	
Blei	μg/l	n.n.	10 DIN E	N ISO 11885	
Cadmium	μg/l	n.n.	1 DIN E	N ISO 11885	
Chrom gesamt	μg/l	n.n.	10 DIN E	N ISO 11885	
Kupfer	μg/l	n.n.	10 DIN E	N ISO 11885	
Nickel	μg/l	n.n.	10 DIN E	EN ISO 11885	
Quecksilber	µg/l	n.n.	0,2 DIN E	EN 1483	

19.04.2002

Ihr Zeichen RA/02027		15	Pro	ben-Nr.:	02-3402-004
MP4			Ein	gangsdatum:	11.04.2002
Analysenparameter	Einheit	Ergebnis	BestGrenze	Methode	¥
Schwermetalle					8
Zink	μg/l	n.n.	10	DIN EN ISO 11885	
Thallium	µg/l	n.n.	1	DIN 38406 E26	
**************************************		n.n. = nicht nachweisba	r n.b. = r	nicht bestimmbar	- = nicht bestimmt

hr Zeichen RA/02027				en-Nr.:	02-3402-005	
MP5			Eingangsdatum:		11.04.2002	
Analysenparameter	Einheit	Ergebnis	BestGrenze	Methode		
Analyse gem. LAGA-Richtli	nie				20	
Trockenrückstand 105°C	%	89,5	0,1	DIN EN 12880		
pH-Wert		7,4		DIN 10390		
Analyse bezogen auf den T	rockenrücks	stand				
Cyanid gesamt	mg/kg	n.n.	0,1	E DIN ISO 11262		
EOX	mg/kg	n.n.	1	DIN 38414 S17		
Kohlenwasserstoffe (MKW)	mg/kg	10	5	LAGA Richtlinie KW 85		
Schwermetalle						
Arsen	mg/kg	12	1	DIN EN ISO 11885		
Blei	mg/kg	34	1	DIN EN ISO 11885		
Cadmium	mg/kg	0,3	0,1	DIN EN ISO 11885		
Chrom gesamt	mg/kg	18	1	DIN EN ISO 11885		
Kupfer	mg/kg	48	1	DIN EN ISO 11885		
Nickel	mg/kg	30	1	DIN EN ISO 11885		
Quecksilber	mg/kg	0,20	0,1	DIN EN 1483		
Zink	mg/kg	64	1	DIN EN ISO 11885		
Thallium	mg/kg	n.n.	0,5	DIN 38406 E26		
ВТХ						
Benzol*	mg/kg	n.n.	0,05	DIN 38407 F9/F4		
Toluol*	mg/kg	n.n.	0,05	DIN 38407 F9/F4		
Ethylbenzol*	mg/kg	n.n.	0,05	5 DIN 38407 F9/F4		
o-Xylol*	mg/kg	n.n.	0,05	5 DIN 38407 F9/F4		
m- und p-Xyloi*	mg/kg	n.n.	0,0	5 DIN 38407 F9/F4		
Isopropylbenzol (Cumol)	mg/kg	n.n.	0,0	5 DIN 38407 F9/F4		
1,2,3-Trimethylbenzol	mg/kg	n.n.	0,0	5 DIN 38407 F9/F4		
1,2,4-Trimethylbenzol	mg/kg	n.n.	0,0	5 DIN 38407 F9/F4		
1,3,5-Trimethylbenzol	mg/kg	n.n.	0,0	5 DIN 38407 F9/F4		
*Summe BTEX	mg/kg	n.n.	0,0	5 DIN 38407 F9/F4		
LHKW						
Dichlormethan	mg/kg	n.n.	0,0	5 DIN 38407 F9/F4		
trans-1,2-Dichlorethen	mg/kg	n.n.	0,0	5 DIN 38407 F9/F4		
cis-1,2-Dichlorethen	mg/kg	n.n.	0,0	5 DIN 38407 F9/F4		
Trichlormethan	mg/kg	n.n.	0,0	5 DIN 38407 F9/F4		
1,1,1-Trichlorethan	mg/kg	n.n.	0,0	5 DIN 38407 F9/F4		
Tetrachlormethan	mg/kg	n.n.	0,0	5 DIN 38407 F9/F4		
Trichlorethen	mg/kg	n.n.	0,0	5 DIN 38407 F9/F4		
1,1,2-Trichlorethan	mg/kg	n.n.	0,0	05 DIN 38407 F9/F4		
Tetrachlorethen	mg/kg	n.n.	0,0	05 DIN 38407 F9/F4		
Summe LHKW	mg/kg	n.n.	0,0	05 DIN 38407 F9/F4		
PAK			3			
Naphthalin	mg/kg	n.n.	0.0	05 LUA Merkblatt NRW		

nr Zeichen RA/02027		Probe	02-3402-005		
MP5				angsdatum:	11.04.2002
Analysenparameter	Einheit	Ergebnis	BestGrenze	Viethode	
PAK					25
Acenaphthylen	mg/kg	n.n.	0,5	LUA Merkblatt NRW	
Acenaphthen	mg/kg	n.n.	0,05	LUA Merkblatt NRW	
Fluoren	mg/kg	n.n.	0,05	LUA Merkblatt NRW	
Phenanthren	mg/kg	0,18	0,05	LUA Merkblatt NRW	
Anthracen	mg/kg	n.n.	0,05	LUA Merkblatt NRW	
Fluoranthen*	mg/kg	0,42	0,05	LUA Merkblatt NRW	
Pyren	mg/kg	0,17	0,05	LUA Merkblatt NRW	
Benzo[a]anthracen	mg/kg	0,11	0,05	LUA Merkblatt NRW	
Chrysen	mg/kg	n.n.	0,05	LUA Merkblatt NRW	
Benzo[b]fluoranthen*	mg/kg	0,08	0,05	LUA Merkblatt NRW	
Benzo[k]fluoranthen*	mg/kg	0,08	0,05	LUA Merkblatt NRW	
Benzo[a]pyren*	mg/kg	0,17	0,05	LUA Merkblatt NRW	
Dibenz[ah]anthracen	mg/kg	n.n.	0,05	LUA Merkblatt NRW	
Benzo[ghi]perylen*	mg/kg	n.n.	0,05	LUA Merkblatt NRW	
Indeno[1,2,3-cd]pyren*	mg/kg	n.n.	0,05	LUA Merkblatt NRW	
Summe PAK nach EPA	mg/kg	1,21	0,05	LUA Merkblatt NRW	
PAK nach TVO*	mg/kg	0,75	0,05	LUA Merkblatt NRW	
PCB					
PCB-028	mg/kg	n.n.	0,01	DIN 38414 S20	
PCB-052	mg/kg	n.n.	0,01	DIN 38414 S20	
PCB-101	mg/kg	n.n.	0,01	DIN 38414 S20	
PCB-138	mg/kg	n.n.	0,01	DIN 38414 S20	
PCB-153	mg/kg	n.n.	0,01	DIN 38414 S20	
PCB-180	mg/kg	n.n.	0,01	DIN 38414 S20	
Summe PCB 028-PCB 180	mg/kg	n.n.	0,01	DIN 38414 S20	
Analyse vom Eluat DEV S4					
pH-Wert	9	8,1		DIN 38404 C5	
Leitfähigkeit	μS/cm	110	1	DIN EN 27888	
Chlorid	mg/l	n.n.	1	DIN EN ISO 10304 (1/2	2)
Sulfat	mg/l	14	1	DIN EN ISO 10304 (1/2	2)
Cyanid gesamt	μg/l	n.n.	10	E DIN EN ISO 14403	
Phenol-Index	μg/l	n.n.	5	E DIN EN ISO 14402	
Schwermetalle	14 (14 14 17)				
Arsen	μg/l	n.n.	10	DIN EN ISO 11885	
Blei	μg/l	n.n.	2002	DIN EN ISO 11885	
Cadmium	μg/l	n.n.	747	DIN EN ISO 11885	
Chrom gesamt	μg/l	n.n.	10		
Kupfer	μg/l	n.n.	10		
Nickel	μg/l	n.n.	10		
Quecksilber	μg/l	n.n.	0.2	2 DIN EN 1483	

19.04.2002

Ihr Zeichen RA/02027	i i		Pro	ben-Nr.:	02-3402-005
MP5			Eing	gangsdatum:	11.04.2002
Analysenparameter	Einheit	Ergebnis	BestGrenze	Methode	
Schwermetalle					8
Zink	µg/l	n.n.	10	DIN EN ISO 11885	
Thallium	μg/l	n.n.	1	DIN 38406 E26	
		n.n. = nicht nachweisba	r n.b. = r	nicht bestimmbar	- = nicht bestimmt

Ihr Zeichen RA/02027			Proben-Nr.:		02-3402-006
MP6			Eing	11.04.2002	
Analysenparameter	Einheit	Ergebnis	BestGrenze	Methode	
Analyse gem. LAGA-Richtli	inie				= ₈ ×
Trockenrückstand 105°C	%	88,1	0,1	DIN EN 12880	
pH-Wert		7,6		DIN 10390	
Analyse bezogen auf den 1	rockenrücks	stand			
Cyanid gesamt	mg/kg	n.n.	0,1	E DIN ISO 11262	
EOX	mg/kg	n.n.	1	DIN 38414 S17	
Kohlenwasserstoffe (MKW)	mg/kg	13	5	LAGA Richtlinie KW 85	
Schwermetalle					
Arsen	mg/kg	6	1	DIN EN ISO 11885	
Blei	mg/kg	31	1	DIN EN ISO 11885	
Cadmium	mg/kg	0,3	0,1	DIN EN ISO 11885	
Chrom gesamt	mg/kg	24	1	DIN EN ISO 11885	
Kupfer	mg/kg	30	1	DIN EN ISO 11885	
Nickel	mg/kg	18	1	DIN EN ISO 11885	
Quecksilber	mg/kg	0,30	0,1	DIN EN 1483	
Zink	mg/kg	98	1	DIN EN ISO 11885	
Thallium	mg/kg	n.n.	0,5	DIN 38406 E26	
втх					
Benzol*	mg/kg	n.n.	0,05	DIN 38407 F9/F4	
Toluol*	mg/kg	n.n.	4.500	DIN 38407 F9/F4	
Ethylbenzol*	mg/kg	n.n.		DIN 38407 F9/F4	
o-Xylol*	mg/kg	n.n.	0,05	DIN 38407 F9/F4	
m- und p-Xylol*	mg/kg	n.n.	0,05	DIN 38407 F9/F4	
Isopropylbenzol (Cumol)	mg/kg	n.n.	0,05	DIN 38407 F9/F4	
1,2,3-Trimethylbenzol	mg/kg	n.n.	0,05	DIN 38407 F9/F4	
1,2,4-Trimethylbenzol	mg/kg	n.n.	0,05	5 DIN 38407 F9/F4	
1,3,5-Trimethylbenzol	mg/kg	n.n.	0,05	5 DIN 38407 F9/F4	
*Summe BTEX	mg/kg	n.n.	0,05	5 DIN 38407 F9/F4	
LHKW					
Dichlormethan	mg/kg	n.n.	0,0	5 DIN 38407 F9/F4	
trans-1,2-Dichlorethen	mg/kg	n.n.		5 DIN 38407 F9/F4	
cis-1,2-Dichlorethen	mg/kg	n.n.	0,0	5 DIN 38407 F9/F4	
Trichlormethan	mg/kg	n.n.	0,0	5 DIN 38407 F9/F4	
1,1,1-Trichlorethan	mg/kg	n.n.	0,0	5 DIN 38407 F9/F4	
Tetrachlormethan	mg/kg	n.n.	0,0	5 DIN 38407 F9/F4	
Trichlorethen	mg/kg	n.n.	0,0	5 DIN 38407 F9/F4	
1,1,2-Trichlorethan	mg/kg	n.n.	0,0	5 DIN 38407 F9/F4	
Tetrachlorethen	mg/kg	n.n.	0,0	5 DIN 38407 F9/F4	
Summe LHKW	mg/kg	n.n.	0,0	5 DIN 38407 F9/F4	
PAK	V2697 UNANO				
Naphthalin	mg/kg	n.n.	0,0	5 LUA Merkblatt NRW	
	0.0		G8/#20		

r Zeichen RA/02027		Prob	en-Nr.:	02-3402-006	
MP6			Eingangsdatum:		11.04.2002
Analysenparameter	Einheit	Ergebnis	BestGrenze	Methode	
PAK					ঝ
Acenaphthylen	mg/kg	n.n.	0,5	LUA Merkblatt NRW	
Acenaphthen	mg/kg	n.n.	0,05	LUA Merkblatt NRW	
Fluoren	mg/kg	n.n.	0,05	LUA Merkblatt NRW	
Phenanthren	mg/kg	0,45	0,05	LUA Merkblatt NRW	
Anthracen	mg/kg	0,12	0,05	LUA Merkblatt NRW	
Fluoranthen*	mg/kg	0,71	0,05	LUA Merkblatt NRW	
Pyren	mg/kg	0,54	0,05	LUA Merkblatt NRW	
Benzo[a]anthracen	mg/kg	0,17	0,05	LUA Merkblatt NRW	
Chrysen	mg/kg	0,14	0,05	LUA Merkblatt NRW	
Benzo[b]fluoranthen*	mg/kg	0,24	0,05	LUA Merkblatt NRW	
Benzo[k]fluoranthen*	mg/kg	0,15	0,05	LUA Merkblatt NRW	
Benzo[a]pyren*	mg/kg	0,29	0,05	LUA Merkblatt NRW	
Dibenz[ah]anthracen	mg/kg	n.n.	0,05	LUA Merkblatt NRW	
Benzo[ghi]perylen*	mg/kg	0,20	0,05	LUA Merkblatt NRW	
Indeno[1,2,3-cd]pyren*	mg/kg	0,24	0,05	LUA Merkblatt NRW	
Summe PAK nach EPA	mg/kg	3,25	0,05	LUA Merkblatt NRW	
PAK nach TVO*	mg/kg	1,83	0,05	LUA Merkblatt NRW	
PCB					
PCB-028	mg/kg	n.n.	0,01	DIN 38414 S20	
PCB-052	mg/kg	n.n.	0,01	DIN 38414 S20	
PCB-101	mg/kg	n.n.	0,01	DIN 38414 S20	
PCB-138	mg/kg	n.n.	0,01	DIN 38414 S20	
PCB-153	mg/kg	n.n.	0,01	DIN 38414 S20	
PCB-180	mg/kg	n.n.	0,01	DIN 38414 S20	
Summe PCB 028-PCB 180	mg/kg	n.n.	0,01	DIN 38414 S20	
Analyse vom Eluat DEV S4	Common Administra				
pH-Wert		7,9		DIN 38404 C5	
Leitfähigkeit	μS/cm	700	1	DIN EN 27888	
Chlorid	mg/l	n.n.	1	DIN EN ISO 10304 (1/2)	
Sulfat	mg/l	330	1	DIN EN ISO 10304 (1/2)	
Cyanid gesamt	μg/l	n.n.	10	E DIN EN ISO 14403	
Phenol-Index	μg/l	n.n.	5	E DIN EN ISO 14402	
Schwermetalle					
Arsen	μg/l	n.n.	10	DIN EN ISO 11885	
Blei	μg/l	n.n.	10	DIN EN ISO 11885	
Cadmium	μg/l	n.n.	8	I DIN EN ISO 11885	
Chrom gesamt	μg/l	n.n.	10	DIN EN ISO 11885	
Kupfer	μg/l	n.n.	10	DIN EN ISO 11885	
Nickel	μg/l	n.n.	10	DIN EN ISO 11885	
Quecksilber	µg/l	n.n.	0,:	2 DIN EN 1483	

02-3402

Ihr Zeichen RA/02027	100	W.	Pro	ben-Nr.:	02-3402-006
MP6			Ein	gangsdatum:	11.04.2002
Analysenparameter	Einheit	Ergebnis	BestGrenze	Methode	
Schwermetalle					3
Zink	μg/l	n.n.	10	DIN EN ISO 11885	
Thallium	μg/l	n.n.	1	DIN 38406 E26	
		S 71 S S 102 N2			i a la la la madiana mad

n.n. = nicht nachweisbar

n.b. = nicht bestimmbar

Ihr Zeichen RA/02027		Prol	oen-Nr.:	02-3402-007	
MP7			Eingangsdatum:		11.04.2002
Analysenparameter	Einheit	Ergebnis	BestGrenze	Methode	
Analyse gem. LAGA-Richtli	nie				(se)
Trockenrückstand 105°C	%	87,7	0,1	DIN EN 12880	
pH-Wert		7,4		DIN 10390	
Analyse bezogen auf den T	rockenrück	stand			
Cyanid gesamt	mg/kg	n.n.	0,1	E DIN ISO 11262	
EOX	mg/kg	n.n.	1	DIN 38414 S17	
Kohlenwasserstoffe (MKW)	mg/kg	n.n.	5	LAGA Richtlinie KW 85	
Schwermetalle					
Arsen	mg/kg	4	1	DIN EN ISO 11885	
Blei	mg/kg	6	1	DIN EN ISO 11885	
Cadmium	mg/kg	0,3	0,1	DIN EN ISO 11885	
Chrom gesamt	mg/kg	8	1	DIN EN ISO 11885	
Kupfer	mg/kg	3	1	DIN EN ISO 11885	
Nickel	mg/kg	5	1	DIN EN ISO 11885	
Quecksilber	mg/kg	n.n.	0,1	DIN EN 1483	
Zink	mg/kg	19	1	DIN EN ISO 11885	
Thallium	mg/kg	n.n.	0,5	DIN 38406 E26	
втх					
Benzol*	mg/kg	n.n.	0,05	DIN 38407 F9/F4	
Toluol*	mg/kg	n.n.	0,05	DIN 38407 F9/F4	
Ethylbenzol*	mg/kg	n.n.	2	DIN 38407 F9/F4	
o-Xylol*	mg/kg	n.n.	- 5	DIN 38407 F9/F4	
m- und p-Xylol*	mg/kg	n.n.		DIN 38407 F9/F4	
Isopropylbenzol (Cumol)	mg/kg	n.n.		DIN 38407 F9/F4	
1,2,3-Trimethylbenzol	mg/kg	n.n.		DIN 38407 F9/F4	
1,2,4-Trimethylbenzol	mg/kg	n.n.		DIN 38407 F9/F4	
1,3,5-Trimethylbenzol	mg/kg	n.n.		DIN 38407 F9/F4	
*Summe BTEX	mg/kg	n.n.	0,05	5 DIN 38407 F9/F4	
LHKW					
Dichlormethan	mg/kg	n.n.	0,05	5 DIN 38407 F9/F4	
trans-1,2-Dichlorethen	mg/kg	n.n.	0,0	5 DIN 38407 F9/F4	
cis-1,2-Dichlorethen	mg/kg	n.n.	1919 1 8 0 1755	5 DIN 38407 F9/F4	
Trichlormethan	mg/kg	n.n.	*******	5 DIN 38407 F9/F4	
1,1,1-Trichlorethan	mg/kg	n.n.	000.49.00	5 DIN 38407 F9/F4	
Tetrachlormethan	mg/kg	n.n.	•	5 DIN 38407 F9/F4	
Trichlorethen	mg/kg	n.n.		5 DIN 38407 F9/F4	
1,1,2-Trichlorethan	mg/kg	n.n.	5.20, 4.00	5 DIN 38407 F9/F4	
Tetrachlorethen	mg/kg	n.n.	10.20	5 DIN 38407 F9/F4	
Summe LHKW	mg/kg	n.n.	0,0	5 DIN 38407 F9/F4	
PAK		2007 22.00			
Naphthalin	mg/kg	n.n.	0,0	5 LUA Merkblatt NRW	

Ihr Zeichen RA/02027			Prob	oen-Nr.:	02-3402-007
MP7		Eing	gangsdatum:	11.04.2002	
Analysenparameter	Einheit	Ergebnis	BestGrenze	Methode	
PAK			8		18
Acenaphthylen	mg/kg	n.n.	0,5	LUA Merkblatt NRW	
Acenaphthen	mg/kg	n.n.	0,05	LUA Merkblatt NRW	
Fluoren	mg/kg	n.n.	0,05	LUA Merkblatt NRW	
Phenanthren	mg/kg	n.n.	0,05	LUA Merkblatt NRW	
Anthracen	mg/kg	n.n.	0,05	LUA Merkblatt NRW	
Fluoranthen*	mg/kg	n.n.	0,05	LUA Merkblatt NRW	
Pyren	mg/kg	n.n.	0,05	LUA Merkblatt NRW	
Benzo[a]anthracen	mg/kg	n.n.	0,05	LUA Merkblatt NRW	
Chrysen	mg/kg	n.n.	0,05	LUA Merkblatt NRW	
Benzo[b]fluoranthen*	mg/kg	n.n.	0,05	LUA Merkblatt NRW	
Benzo[k]fluoranthen*	mg/kg	n.n.	0,05	LUA Merkblatt NRW	
Benzo[a]pyren*	mg/kg	n.n.	0,05	LUA Merkblatt NRW	
Dibenz[ah]anthracen	mg/kg	n.n.	0,05	LUA Merkblatt NRW	
Benzo[ghi]perylen*	mg/kg	n.n.	0,05	LUA Merkblatt NRW	
Indeno[1,2,3-cd]pyren*	mg/kg	n.n.	0,05	LUA Merkblatt NRW	
Summe PAK nach EPA	mg/kg	n.n.	0,05	LUA Merkblatt NRW	
PAK nach TVO*	mg/kg	n.n.	0,05	LUA Merkblatt NRW	
PCB					
PCB-028	mg/kg	n.n.	0,01	DIN 38414 S20	
PCB-052	mg/kg	n.n.	0,01	DIN 38414 S20	
PCB-101	mg/kg	n.n.	0,01	DIN 38414 S20	
PCB-138	mg/kg	n.n.	0,01	DIN 38414 S20	
PCB-153	mg/kg	n.n.	0,01	DIN 38414 S20	
PCB-180	mg/kg	n.n.	0,01	DIN 38414 S20	
Summe PCB 028-PCB 180	mg/kg	n.n.	0,01	DIN 38414 S20	
Analyse vom Eluat DEV S4	Į.				
pH-Wert		8,1		DIN 38404 C5	
Leitfähigkeit	μS/cm	70	1	DIN EN 27888	
Chlorid	mg/l	n.n.	1	DIN EN ISO 10304 (1/2	2)
Sulfat	mg/l	2,0	1	DIN EN ISO 10304 (1/2	2)
Cyanid gesamt	μg/l	n.n.	10	E DIN EN ISO 14403	
Phenol-Index	µg/l	n.n.	5	5 E DIN EN ISO 14402	
Schwermetalle					
Arsen	μg/l	n.n.	10	DIN EN ISO 11885	
Blei	μg/l	n.n.	10	DIN EN ISO 11885	
Cadmium	μg/l	n.n.	1	I DIN EN ISO 11885	
Chrom gesamt	μg/l	n.n.	10	DIN EN ISO 11885	
Kupfer	μg/l	n.n.	10	DIN EN ISO 11885	
Nickel	μg/l	n.n.	10	DIN EN ISO 11885	
Quecksilber	μg/l	n.n.	0,3	2 DIN EN 1483	

Ihr Zeichen RA/02027			Pro	ben-Nr.:	02-3402-007
MP7			Ein	11.04.2002	
Analysenparameter	Einheit	Ergebnis	BestGrenze	Methode	
Schwermetalle					*
Zink	μg/l	n.n.	10	DIN EN ISO 11885	
Thallium	μg/l	n.n.	1	DIN 38406 E26	
		n.n. = nicht nachweisbar	r n.b. = r	nicht bestimmbar	- = nicht bestimmt

Ihr Zeichen RA/02027		eichen RA/02027		ben-Nr.:	02-4030-001
5/1			Ein	gangsdatum:	25.04.2002
Analysenparameter	Einheit	Ergebnis	BestGrenze	Methode	
Analyse der Originalprobe					
Trockenrückstand 105°C	%	85,6	0,1	DIN EN 12880	
Analyse bez. auf den Troc	kenrückstar	nd			
•		:=			
PAK					
Naphthalin	mg/kg	0,09	0,05	LUA Merkblatt NRW	
Acenaphthylen	mg/kg	n.n.	0,5	LUA Merkblatt NRW	
Acenaphthen	mg/kg	n.n.	0,05	LUA Merkblatt NRW	
Fluoren	mg/kg	0,11	0,05	LUA Merkblatt NRW	
Phenanthren	mg/kg	1,9	0,05	LUA Merkblatt NRW	
Anthracen	mg/kg	0,17	0,05	LUA Merkblatt NRW	
Fluoranthen*	mg/kg	2,1	0,05	LUA Merkblatt NRW	
Pyren	mg/kg	1,8	0,05	LUA Merkblatt NRW	
Benzo[a]anthracen	mg/kg	0,72	0,05	LUA Merkblatt NRW	
Chrysen	mg/kg	0,93	0,05	LUA Merkblatt NRW	
Benzo[b]fluoranthen*	mg/kg	0,60	0,05	LUA Merkblatt NRW	
Benzo[k]fluoranthen*	mg/kg	0,39	0,05	LUA Merkblatt NRW	
Benzo[a]pyren*	mg/kg	0,63	0,05	LUA Merkblatt NRW	
Dibenz[ah]anthracen	mg/kg	0,07	0,05	LUA Merkblatt NRW	
Benzo[ghi]perylen*	mg/kg	0,47	0,05	LUA Merkblatt NRW	
Indeno[1,2,3-cd]pyren*	mg/kg	0,65	0,05	LUA Merkblatt NRW	
Summe PAK nach EPA	mg/kg	10,63	0,05	LUA Merkblatt NRW	
PAK nach TVO*	mg/kg	4,84 n.n. = nicht nachweisba	21.7/2	LUA Merkblatt NRW	- = nicht bestimmt

Ihr Zeichen RA/02027		Zeichen RA/02027		ben-Nr.:	02-4030-002
6/1			Eing	Eingangsdatum:	
Analysenparameter	Einheit	Ergebnis	Best,-Grenze	Methode	
Analyse der Originalprobe	į				
Trockenrückstand 105°C	%	88,0	0,1	DIN EN 12880	
Analyse bez. auf den Troc	kenrückstaı	nd			
		: ■			
PAK					
Naphthalin	mg/kg	n.n.	0,05	LUA Merkblatt NRW	
Acenaphthylen	mg/kg	n.n.	0,5	LUA Merkblatt NRW	
Acenaphthen	mg/kg	n.n.	0,05	LUA Merkblatt NRW	
Fluoren	mg/kg	n.n.	0,05	LUA Merkblatt NRW	
Phenanthren	mg/kg	0,35	0,05	LUA Merkblatt NRW	
Anthracen	mg/kg	0,07	0,05	LUA Merkblatt NRW	
Fluoranthen*	mg/kg	0,64	0,05	LUA Merkblatt NRW	
Pyren	mg/kg	0,57	0,05	LUA Merkblatt NRW	
Benzo[a]anthracen	mg/kg	0,27	0,05	LUA Merkblatt NRW	
Chrysen	mg/kg	0,33	0,05	LUA Merkblatt NRW	
Benzo[b]fluoranthen*	mg/kg	0,20	0,05	LUA Merkblatt NRW	
Benzo[k]fluoranthen*	mg/kg	0,14	0,05	LUA Merkblatt NRW	
Benzo[a]pyren*	mg/kg	0,24	0,05	LUA Merkblatt NRW	
Dibenz[ah]anthracen	mg/kg	n.n.	0,05	LUA Merkblatt NRW	
Benzo[ghi]perylen*	mg/kg	0,17	0,05	LUA Merkblatt NRW	
Indeno[1,2,3-cd]pyren*	mg/kg	0,21	0,05	LUA Merkblatt NRW	
Summe PAK nach EPA	mg/kg	3,19	0,05	LUA Merkblatt NRW	
PAK nach TVO*	mg/kg	1,60 n.n. = nicht nachweisba	(5155	LUA Merkblatt NRW	- = nicht bestimmt

Ihr Zeichen RA/02027			Prol	ben-Nr.:	02-4030-003
17/1			Eingangsdatum:		25.04.2002
Analysenparameter	Einheit	Ergebnis	Best,-Grenze	Methode	100 DEC-115
Analyse der Originalprobe	•				
Trockenrückstand 105°C	%	89,0	0,1	DIN EN 12880	
Analyse bez. auf den Troc	kenrückstan	d			
•		•			
PAK					
Naphthalin	mg/kg	0,17	0,05	LUA Merkblatt NRW	
Acenaphthylen	mg/kg	n.n.	0,5	LUA Merkblatt NRW	
Acenaphthen	mg/kg	n.n.	0,05	LUA Merkblatt NRW	
Fluoren	mg/kg	n.n.	0,05	LUA Merkblatt NRW	
Phenanthren	mg/kg	0,93	0,05	LUA Merkblatt NRW	
Anthracen	mg/kg	0,12	0,05	LUA Merkblatt NRW	
Fluoranthen*	mg/kg	1,2	0,05	LUA Merkblatt NRW	
Pyren	mg/kg	1,1	0,05	LUA Merkblatt NRW	
Benzo[a]anthracen	mg/kg	0,56	0,05	LUA Merkblatt NRW	
Chrysen	mg/kg	0,65	0,05	LUA Merkblatt NRW	
Benzo[b]fluoranthen*	mg/kg	0,54	0,05	LUA Merkblatt NRW	
Benzo[k]fluoranthen*	mg/kg	0,36	0,05	LUA Merkblatt NRW	
Benzo[a]pyren*	mg/kg	0,61	0,05	LUA Merkblatt NRW	
Dibenz[ah]anthracen	mg/kg	0,17	0,05	LUA Merkblatt NRW	
Benzo[ghi]perylen*	mg/kg	0,61	0,05	LUA Merkblatt NRW	
Indeno[1,2,3-cd]pyren*	mg/kg	0,65	0,05	LUA Merkblatt NRW	
Summe PAK nach EPA	mg/kg	7,67	0,05	LUA Merkblatt NRW	
PAK nach TVO*	mg/kg	3,97	0,05	LUA Merkblatt NRW	

n.b. = nicht bestimmbar

nr Zeichen RA/02027		Prol	ben-Nr.:	02-4030-004	
18/1			Eing	gangsdatum:	25.04.2002
Analysenparameter	Einheit	Ergebnis	BestGrenze	Methode	
Analyse der Originalprobe	ŀ				
Trockenrückstand 105°C	%	87,2	0,1	DIN EN 12880	
Analyse bez. auf den Troc	kenrückstand	d			
-		:=		19	
PAK					
Naphthalin	mg/kg	0,11	0,05	LUA Merkblatt NRW	
Acenaphthylen	mg/kg	n.n.	0,5	LUA Merkblatt NRW	
Acenaphthen	mg/kg	0,43	0,05	LUA Merkblatt NRW	
Fluoren	mg/kg	0,33	0,05	LUA Merkblatt NRW	
Phenanthren	mg/kg	4,2	0,05	LUA Merkblatt NRW	
Anthracen	mg/kg	1,0	0,05	LUA Merkblatt NRW	
Fluoranthen*	mg/kg	5,2	0,05	LUA Merkblatt NRW	
Pyren	mg/kg	4,8	0,05	LUA Merkblatt NRW	
Benzo[a]anthracen	mg/kg	2,6	0,05	LUA Merkblatt NRW	
Chrysen	mg/kg	3,0	0,05	LUA Merkblatt NRW	
Benzo[b]fluoranthen*	mg/kg	1,9	0,05	LUA Merkblatt NRW	
Benzo[k]fluoranthen*	mg/kg	1,3	0,05	LUA Merkblatt NRW	
Benzo[a]pyren*	mg/kg	1,9	0,05	LUA Merkblatt NRW	
Dibenz[ah]anthracen	mg/kg	0,40	0,05	LUA Merkblatt NRW	
Benzo[ghi]perylen*	mg/kg	1,3	0,05	LUA Merkblatt NRW	
Indeno[1,2,3-cd]pyren*	mg/kg	1,3	0,05	LUA Merkblatt NRW	
Summe PAK nach EPA	mg/kg	29,77	0,05	LUA Merkblatt NRW	
PAK nach TVO*	mg/kg	12,90	0,05	LUA Merkblatt NRW	

n.b. = nicht bestimmbar

hr Zeichen RA/02027		Pro	ben-Nr.:	02-4030-005	
19/1			Eingangsdatum:		25.04.2002
Analysenparameter	Einheit	Ergebnis	BestGrenze	Methode	
Analyse der Originalprobe	•				
Trockenrückstand 105°C	%	86,7	0,1	DIN EN 12880	
Analyse bez. auf den Troc	kenrückstand	d			
		:=			×
PAK					
Naphthalin	mg/kg	n.n.	0,05	LUA Merkblatt NRW	
Acenaphthylen	mg/kg	n.n.	0,5	LUA Merkblatt NRW	
Acenaphthen	mg/kg	n.n.	0,05	LUA Merkblatt NRW	
Fluoren	mg/kg	n.n.	0,05	LUA Merkblatt NRW	
Phenanthren	mg/kg	1,4	0,05	LUA Merkblatt NRW	
Anthracen	mg/kg	0,27	0,05	LUA Merkblatt NRW	
Fluoranthen*	mg/kg	2,2	0,05	LUA Merkblatt NRW	
Pyren	mg/kg	1,9	0,05	LUA Merkblatt NRW	
Benzo[a]anthracen	mg/kg	0,87	0,05	LUA Merkblatt NRW	
Chrysen	mg/kg	1,2	0,05	LUA Merkblatt NRW	
Benzo[b]fluoranthen*	mg/kg	0,79	0,05	LUA Merkblatt NRW	
Benzo[k]fluoranthen*	mg/kg	0,54	0,05	LUA Merkblatt NRW	
Benzo[a]pyren*	mg/kg	0,87	0,05	LUA Merkblatt NRW	
Dibenz[ah]anthracen	mg/kg	0,17	0,05	LUA Merkblatt NRW	
Benzo[ghi]perylen*	mg/kg	0,52	0,05	LUA Merkblatt NRW	
Indeno[1,2,3-cd]pyren*	mg/kg	0,66	0,05	LUA Merkblatt NRW	
Summe PAK nach EPA	mg/kg	11,39	0,05	LUA Merkblatt NRW	
PAK nach TVO*	mg/kg	5,58	0,05	LUA Merkblatt NRW	

n.b. = nicht bestimmbar

hr Zeichen RA/02027		Prol	ben-Nr.:	02-4030-006	
31/1			Eing	gangsdatum:	25.04.2002
Analysenparameter	Einheit	Ergebnis	Best,-Grenze	Methode	
Analyse der Originalprobe)				
Trockenrückstand 105°C	%	82,2	0,1	DIN EN 12880	
Analyse bez. auf den Troc	kenrückstan	d ·			
-					
PAK					
Naphthalin	mg/kg	0,37	0,05	LUA Merkblatt NRW	
Acenaphthylen	mg/kg	n.n.	0,5	LUA Merkblatt NRW	
Acenaphthen	mg/kg	0,28	0,05	LUA Merkblatt NRW	
Fluoren	mg/kg	0,44	0,05	LUA Merkblatt NRW	
Phenanthren	mg/kg	8,4	0,05	LUA Merkblatt NRW	
Anthracen	mg/kg	1,5	0,05	LUA Merkblatt NRW	
Fluoranthen*	mg/kg	14	0,05	LUA Merkblatt NRW	
Pyren	mg/kg	13	0,05	LUA Merkblatt NRW	
Benzo[a]anthracen	mg/kg	9,0	0,05	LUA Merkblatt NRW	
Chrysen	mg/kg	6,8	0,05	LUA Merkblatt NRW	
Benzo[b]fluoranthen*	mg/kg	6,3	0,05	LUA Merkblatt NRW	
Benzo[k]fluoranthen*	mg/kg	2,8	0,05	LUA Merkblatt NRW	
Benzo[a]pyren*	mg/kg	4,3	0,05	LUA Merkblatt NRW	
Dibenz[ah]anthracen	mg/kg	0,54	0,05	LUA Merkblatt NRW	
Benzo[ghi]perylen*	mg/kg	2,8	0,05	LUA Merkblatt NRW	
Indeno[1,2,3-cd]pyren*	mg/kg	3,1	0,05	LUA Merkblatt NRW	
Summe PAK nach EPA	mg/kg	73,63	0,05	LUA Merkblatt NRW	
PAK nach TVO*	mg/kg	33,30	0,05	LUA Merkblatt NRW	

n.b. = nicht bestimmbar

02-4030

Ihr Zeichen RA/02027		Prol	ben-Nr.:	02-4030-007	
32/1			Eingangsdatum:		25.04.2002
Analysenparameter	Einheit	Ergebnis	BestGrenze	Methode	
Analyse der Originalprobe					
Trockenrückstand 105°C	%	84,9	0,1	DIN EN 12880	
Analyse bez. auf den Troc	kenrückstan	d			
-		-			
PAK					
Naphthalin	mg/kg	0,10	0,05	LUA Merkblatt NRW	
Acenaphthylen	mg/kg	n.n.	0,5	LUA Merkblatt NRW	
Acenaphthen	mg/kg	0,23	0,05	LUA Merkblatt NRW	×
Fluoren	mg/kg	0,31	0,05	LUA Merkblatt NRW	
Phenanthren	mg/kg	5,9	0,05	LUA Merkblatt NRW	
Anthracen	mg/kg	0,98	0,05	LUA Merkblatt NRW	
Fluoranthen*	mg/kg	11	0,05	LUA Merkblatt NRW	
Pyren	mg/kg	9,8	0,05	LUA Merkblatt NRW	
Benzo[a]anthracen	mg/kg	6,6	0,05	LUA Merkblatt NRW	
Chrysen	mg/kg	4,9	0,05	LUA Merkblatt NRW	
Benzo[b]fluoranthen*	mg/kg	6,3	0,05	LUA Merkblatt NRW	
Benzo[k]fluoranthen*	mg/kg	2,5	0,05	LUA Merkblatt NRW	
Benzo[a]pyren*	mg/kg	4,8	0,05	LUA Merkblatt NRW	
Dibenz[ah]anthracen	mg/kg	1,4	0,05	LUA Merkblatt NRW	
Benzo[ghi]perylen*	mg/kg	2,8	0,05	LUA Merkblatt NRW	
Indeno[1,2,3-cd]pyren*	mg/kg	3,7	0,05	LUA Merkblatt NRW	
Summe PAK nach EPA	mg/kg	61,32	0,05	LUA Merkblatt NRW	
PAK nach TVO*	mg/kg	31,10	0,05	LUA Merkblatt NRW	

n.n. = nicht nachweisbar

n.b. = nicht bestimmbar

Ihr Zeichen RA/02027		Pro	ben-Nr.:	02-4030-008	
44/1			Ein	gangsdatum:	25.04.2002
Analysenparameter	Einheit	Ergebnis	BestGrenze	Methode	
Analyse der Originalprobe)			W.	
Trockenrückstand 105°C	%	86,3	0,1	DIN EN 12880	₩.
Analyse bez. auf den Troc	kenrückstan	d I			" 18
-		-			
PAK					
Naphthalin	mg/kg	0,34	0,05	LUA Merkblatt NRW	
Acenaphthylen	mg/kg	n.n.	0,5	LUA Merkblatt NRW	
Acenaphthen	mg/kg	n.n.	0,05	LUA Merkblatt NRW	
Fluoren	mg/kg	n.n.	0,05	LUA Merkblatt NRW	
Phenanthren	mg/kg	2,1	0,05	LUA Merkblatt NRW	
Anthracen	mg/kg	0,32	0,05	LUA Merkblatt NRW	
Fluoranthen*	mg/kg	2,0	0,05	LUA Merkblatt NRW	
Pyren	mg/kg	1,2	0,05	LUA Merkblatt NRW	
Benzo[a]anthracen	mg/kg	0,63	0,05	LUA Merkblatt NRW	
Chrysen	mg/kg	0,95	0,05	LUA Merkblatt NRW	
Benzo[b]fluoranthen*	mg/kg	0,56	0,05	LUA Merkblatt NRW	
Benzo[k]fluoranthen*	mg/kg	0,29	0,05	LUA Merkblatt NRW	
Benzo[a]pyren*	mg/kg	0,56	0,05	LUA Merkblatt NRW	
Dibenz[ah]anthracen	mg/kg	n.n.	0,05	LUA Merkblatt NRW	
Benzo[ghi]perylen*	mg/kg	0,35	0,05	LUA Merkblatt NRW	
Indeno[1,2,3-cd]pyren*	mg/kg	0,38	0,05	LUA Merkblatt NRW	
Summe PAK nach EPA	mg/kg	9,68	0,05	LUA Merkblatt NRW	
PAK nach TVO*	mg/kg	4,14	0,05	LUA Merkblatt NRW	

n.b. = nicht bestimmbar

Werne, Kamenerstraße 48	Proben-Nr.:	02-3042-001
BL 4	Eingangsdatum:	02.04.2002
Probenahmedaten:		
Probanhazaichnung: RI A		

Probenbezeichnung: Datum der Probenahme: 02.04.02 Uhrzeit der Probenahme: 10:50 Probenahmetiefe: 1,8m Temperatur (°C): 16 1003 Luftdruck (mbar): <0,1 Methan (%): Sauerstoff (%): 17,8 Kohlendioxid (%): 1,7 Kohlenmonoxid (V-ppm): <4

Schwefelwasserstoff (V-ppm):

Analysannarameter	Einheit	Ergebnis	BestGrenze	Methode
Analysenparameter	Emmen	Eigeniis	DestGrenze	Wetrode
BTX				
Benzol*	mg/m^3	n.n.	0,1	UCL SOP 52/3
Toluol*	mg/m^3	n.n.	0,1	UCL SOP 52/3
Ethylbenzol*	mg/m^3	n.n.	0,1	UCL SOP 52/3
o-Xylol*	mg/m^3	n.n.	0,1	UCL SOP 52/3
m- und p-Xylol*	mg/m^3	n.n.	0,1	UCL SOP 52/3
Isopropylbenzol (Cumol)	mg/m^3	n.n.	0,1	UCL SOP 52/3
1,2,3-Trimethylbenzol	mg/m^3	n.n.	0,1	UCL SOP 52/3
1,2,4-Trimethylbenzol	mg/m^3	n.n.	0,1	UCL SOP 52/3
1,3,5-Trimethylbenzol	mg/m^3	n.n.	0,1	UCL SOP 52/3
*Summe BTEX	mg/m^3	n.n.	0,1	UCL SOP 52/3

n.n. = nicht nachweisbar

<2

n.b. = nicht bestimmbar

<0,1

Werne, Kamenerstraße 48		Proben-Nr.:	02-3042-002
BL 10		Eingangsdatum:	02.04.2002
Probenahmedaten:			*
Probenbezeichnung:	BL 10		
Datum der Probenahme:	02.04.02		
Uhrzeit der Probenahme:	12:30		
Probenahmetiefe:	1,8m		
Temperatur (°C):	19		
Luftdruck (mbar):	1003		

Methan (%): Sauerstoff (%): 18,8 Kohlendioxid (%): 0,3 Kohlenmonoxid (V-ppm): <4 Schwefelwasserstoff (V-ppm): <2

Analysenparameter	Einheit	Ergebnis	BestGrenze	Methode
		- gobine		
BTX				
Benzol*	mg/m^3	n.n.	0,1	UCL SOP 52/3
Toluol*	mg/m^3	n.n.	0,1	UCL SOP 52/3
Ethylbenzol*	mg/m^3	n.n.	0,1	UCL SOP 52/3
o-Xylol*	mg/m^3	n.n.	0,1	UCL SOP 52/3
m- und p-Xylol*	mg/m^3	n.n.	0,1	UCL SOP 52/3
Isopropylbenzol (Cumol)	mg/m^3	n.n.	0,1	UCL SOP 52/3
1,2,3-Trimethylbenzol	mg/m^3	n.n.	0,1	UCL SOP 52/3
1,2,4-Trimethylbenzol	mg/m^3	n.n.	0,1	UCL SOP 52/3
1,3,5-Trimethylbenzol	mg/m^3	n.n.	0,1	UCL SOP 52/3
*Summe BTEX	mg/m^3	n.n.	0,1	UCL SOP 52/3

n.n. = nicht nachweisbar

n.b. = nicht bestimmbar

Werne, Kamenerstraße 48			Proben-Nr.:	02-3042-003
BL 13			Eingangsdatum:	02.04.2002
Probenahmedaten:				
Probenbezeichnung:	BL 13	8		
Datum der Probenahme:	02.04.02			N E2
Uhrzeit der Probenahme:	12:55			
Probenahmetiefe:	1,5m			
Temperatur (°C):	19			
Luftdruck (mbar):	1003			
Methan (%):	<0,1			
Sauerstoff (%):	19,1			
Kohlendioxid (%):	0,2			
Kohlenmonoxid (V-ppm):	<4			
Schwefelwasserstoff (V-ppm):	<2			

Analysenparameter	Einheit	Ergebnis	BestGrenze	Methode
втх				
Benzol*	mg/m^3	n.n.	0,1	UCL SOP 52/3
Toluol*	mg/m^3	n.n.	0,1	UCL SOP 52/3
Ethylbenzol*	mg/m^3	n.n.	0,1	UCL SOP 52/3
o-Xylol*	mg/m^3	n.n.	0,1	UCL SOP 52/3
m- und p-Xylol*	mg/m^3	n.n.	0,1	UCL SOP 52/3
Isopropylbenzol (Cumol)	mg/m^3	n.n.	0,1	UCL SOP 52/3
1,2,3-Trimethylbenzol	mg/m^3	n.n.	0,1	UCL SOP 52/3
1,2,4-Trimethylbenzol	mg/m^3	n.n.	0,1	UCL SOP 52/3
1,3,5-Trimethylbenzol	mg/m^3	n.n.	0,1	UCL SOP 52/3
*Summe BTEX	mg/m^3	n.n.	0,1	UCL SOP 52/3

n.b. = nicht bestimmbar

Werne, Kamenerstraße 48	Proben-Nr.:	02-3042-004
BL 14	Eingangsdatum:	02.04.2002

Probenahmedaten:

Probenbezeichnung:

BL 14 02.04.02

Datum der Probenahme: Uhrzeit der Probenahme:

10:20

Probenahmetiefe: Temperatur (°C): 1,9m

Luftdruck (mbar):

15 1003

Methan (%):

<0,1

Sauerstoff (%): Kohlendioxid (%): 16,2 1,2

Kohlenmonoxid (V-ppm):

<4

Schwefelwasserstoff (V-ppm):

<2

Analysenparameter	Einheit	Ergebnis	BestGrenze	Methode
ВТХ				
Benzol*	mg/m^3	n.n.	0,1	UCL SOP 52/3
Toluol*	mg/m^3	n.n.	0,1	UCL SOP 52/3
Ethylbenzol*	mg/m^3	n.n.	0,1	UCL SOP 52/3
o-Xylol*	mg/m^3	n.n.	0,1	UCL SOP 52/3
m- und p-Xylol*	mg/m^3	n.n.	0,1	UCL SOP 52/3
Isopropylbenzol (Cumol)	mg/m^3	n.n.	0,1	UCL SOP 52/3
1,2,3-Trimethylbenzol	mg/m^3	n.n.	0,1	UCL SOP 52/3
1,2,4-Trimethylbenzol	mg/m^3	n.n.	0,1	UCL SOP 52/3
1,3,5-Trimethylbenzol	mg/m^3	n.n.	0,1	UCL SOP 52/3
*Summe BTEX	mg/m^3	n.n.	0,1	UCL SOP 52/3
LHKW				
Dichlormethan	mg/m^3	n.n.	0,5	UCL SOP 52/2
trans-1,2-Dichlorethen	mg/m^3	n.n.	0,5	UCL SOP 52/2
cis-1,2-Dichlorethen	mg/m^3	n.n.	0,5	UCL SOP 52/2
Trichlormethan	mg/m^3	0,07	0,05	UCL SOP 52/2
1,1,1-Trichlorethan	mg/m^3	n.n.	0,05	UCL SOP 52/2
1,1,2-Trichlorethan	mg/m^3	n.n.	0,5	UCL SOP 52/2
Tetrachlormethan	mg/m^3	n.n.	0,05	UCL SOP 52/2
Trichlorethen	mg/m^3	n.n.	0,05	UCL SOP 52/2
Tetrachlorethen	mg/m^3	n.n.	0,05	UCL SOP 52/2
Summe LHKW	mg/m^3	0,07	0,05	UCL SOP 52/2

n.n. = nicht nachweisbar

n.b. = nicht bestimmbar

Schwefelwasserstoff (V-ppm):

<2

Werne, Kamenerstraße 48	Werne, Kamenerstraße 48		Prok	ben-Nr.:	C	02-3042-005 02.04.2002	
BL 19			Eingangsdatum:		C		
Probenahmedaten:							
Probenbezeichnung:	BL 19						
Datum der Probenahme:	02.04.02	200	0.40		128		
Uhrzeit der Probenahme:	12:00						
Probenahmetiefe:	1,7m						
Temperatur (°C):	19						
Luftdruck (mbar):	1003						
Methan (%):	<0,1						
Sauerstoff (%):	16,8						
Kohlendioxid (%):	2,5						
Kohlenmonoxid (V-ppm):	<4						

Analysenparameter	Einheit	Ergebnis	BestGrenze	Methode	
втх					
Benzol*	mg/m^3	n.n.	0,1	UCL SOP 52/3	
Toluol*	mg/m^3	n.n.	0,1	UCL SOP 52/3	
Ethylbenzol*	mg/m^3	n.n.	0,1	UCL SOP 52/3	
o-Xylol*	mg/m^3	n.n.	0,1	UCL SOP 52/3	a a
m- und p-Xylol*	mg/m^3	n.n.	0,1	UCL SOP 52/3	
Isopropylbenzol (Cumol)	mg/m^3	n.n.	0,1	UCL SOP 52/3	
1,2,3-Trimethylbenzol	mg/m^3	n.n.	0,1	UCL SOP 52/3	8
1,2,4-Trimethylbenzol	mg/m^3	n.n.	0,1	UCL SOP 52/3	
1,3,5-Trimethylbenzol	mg/m^3	n.n.	0,1	UCL SOP 52/3	
*Summe BTEX	mg/m^3	n.n.	0,1	UCL SOP 52/3	
LHKW					
Dichlormethan	mg/m^3	n.n.	0,5	UCL SOP 52/2	
trans-1,2-Dichlorethen	mg/m^3	n.n.	0,5	UCL SOP 52/2	
cis-1,2-Dichlorethen	mg/m^3	n.n.	0,5	UCL SOP 52/2	
Trichlormethan	mg/m^3	n.n.	0,05	UCL SOP 52/2	
1,1,1-Trichlorethan	mg/m^3	n.n.	0,05	UCL SOP 52/2	
1,1,2-Trichlorethan	mg/m^3	n.n.	0,5	UCL SOP 52/2	
Tetrachlormethan	mg/m^3	n.n.	0,05	UCL SOP 52/2	*
Trichlorethen	mg/m^3	n.n.	0,05	UCL SOP 52/2	
Tetrachlorethen	mg/m^3	n.n.	0,05	UCL SOP 52/2	
Summe LHKW	mg/m^3	n.n.	0,05	UCL SOP 52/2	

n.n. = nicht nachweisbar

n.b. = nicht bestimmbar

Werne, Kamenerstraße 48	Proben-Nr.:	02-3042-006
BL 38	Eingangsdatum:	02.04.2002

Probenahmedaten:

Probenbezeichnung: BL 38
Datum der Probenahme: 02.04.02
Uhrzeit der Probenahme: 13:15
Probenahmetiefe: 1,8m

Temperatur (°C): 19
Luftdruck (mbar): 1003
Methan (%): <0,1
Sauerstoff (%): 17,8
Kohlendioxid (%): 1,1

Kohlenmonoxid (V-ppm): <4
Schwefelwasserstoff (V-ppm): <2

Analysenparameter	Einheit	Ergebnis	Best,-Grenze	Methode	
втх				*	
Benzol*	mg/m^3	n.n.	0,1	UCL SOP 52/3	.59
Toluol*	mg/m^3	n.n.	0,1	UCL SOP 52/3	
Ethylbenzol*	mg/m^3	n.n.	0,1	UCL SOP 52/3	
o-Xylol*	mg/m^3	n.n.	0,1	UCL SOP 52/3	
m- und p-Xylol*	mg/m^3	n.n.	0,1	UCL SOP 52/3	
Isopropylbenzol (Cumol)	mg/m^3	n.n.	0,1	UCL SOP 52/3	·
1,2,3-Trimethylbenzol	mg/m^3	n.n.	0,1	UCL SOP 52/3	
1,2,4-Trimethylbenzol	mg/m^3	n.n.	0,1	UCL SOP 52/3	
1,3,5-Trimethylbenzol	mg/m^3	n.n.	0,1	UCL SOP 52/3	
*Summe BTEX	mg/m^3	n.n.	0,1	UCL SOP 52/3	
LHKW					
Dichlormethan	mg/m^3	n.n.	0,5	UCL SOP 52/2	
trans-1,2-Dichlorethen	mg/m^3	n.n.	0,5	UCL SOP 52/2	
cis-1,2-Dichlorethen	mg/m^3	n.n.	0,5	UCL SOP 52/2	
Trichlormethan	mg/m^3	n.n.	0,05	UCL SOP 52/2	
1,1,1-Trichlorethan	mg/m^3	n.n.	0,05	UCL SOP 52/2	
1,1,2-Trichlorethan	mg/m^3	n.n.	0,5	UCL SOP 52/2	
Tetrachlormethan	mg/m^3	n.n.	0,05	UCL SOP 52/2	3
Trichlorethen	mg/m^3	n.n.	0,05	UCL SOP 52/2	
Tetrachlorethen	mg/m^3	n.n.	0,05	UCL SOP 52/2	
Summe LHKW	mg/m^3	n.n.	0,05	UCL SOP 52/2	

n.n. = nicht nachweisbar

n.b. = nicht bestimmbar

Schwefelwasserstoff (V-ppm):

<2

Werne, Kamenerstraße 48	3	Proben-Nr.:	02-3042-007
BL 43		Eingangsdatum:	02.04.2002
Probenahmedaten:	ä		
Probenbezeichnung:	BL 43		
Datum der Probenahme:	02.04.02	p Epi	The second of the second of
Uhrzeit der Probenahme:	13:45		
Probenahmetiefe:	1,7m		
Temperatur (°C):	19		
Luftdruck (mbar):	1003		
Methan (%):	<0,1		
Sauerstoff (%):	18,9		
Kohlendioxid (%):	0,4		
Kohlenmonoxid (V-ppm):	<4		

Analysenparameter	Einheit	Ergebnis	BestGrenze	Methode
втх				
Benzol*	mg/m^3	n.n.	0,1	UCL SOP 52/3
Toluol*	mg/m^3	n.n.	0,1	UCL SOP 52/3
Ethylbenzol*	mg/m^3	n.n.	0,1	UCL SOP 52/3
o-Xylol*	mg/m^3	n.n.	0,1	UCL SOP 52/3
m- und p-Xylol*	mg/m^3	n.n.	0,1	UCL SOP 52/3
Isopropylbenzol (Cumol)	mg/m^3	n.n.	0,1	UCL SOP 52/3
1,2,3-Trimethylbenzol	mg/m^3	n.n.	0,1	UCL SOP 52/3
1,2,4-Trimethylbenzol	mg/m^3	n.n.	0,1	UCL SOP 52/3
1,3,5-Trimethylbenzol	mg/m^3	n.n.	0,1	UCL SOP 52/3
*Summe BTEX	mg/m^3	n.n.	0,1	UCL SOP 52/3

n.n. = nicht nachweisbar

n.b. = nicht bestimmbar

Kohlendioxid (%):

Kohlenmonoxid (V-ppm):

Schwefelwasserstoff (V-ppm):

1,9

<4

<2

Werne, Kamenerstraße 48		. Proben-Nr.:	02-3042-008
BL 45		Eingangsdatum:	02.04.2002
Probenahmedaten:			
Probenbezeichnung:	BL 45		
Datum der Probenahme:	02.04.02	385 % =	
Uhrzeit der Probenahme:	11:25		
Probenahmetiefe:	1,9m		
Temperatur (°C):	18		
Luftdruck (mbar):	1003		
Methan (%):	<0,1		
Sauerstoff (%):	17,6		

Analysenparameter	Einheit	Ergebnis	BestGrenze	Methode	
ВТХ					
Benzol*	mg/m^3	n.n.	0,1	UCL SOP 52/3	
Toluol*	mg/m^3	n.n.	0,1	UCL SOP 52/3	
Ethylbenzol*	mg/m^3	n.n.	0,1	UCL SOP 52/3	
o-Xylol*	mg/m^3	n.n.	0,1	UCL SOP 52/3	
m- und p-Xylol*	mg/m^3	n.n.	0,1	UCL SOP 52/3	
Isopropylbenzol (Cumol)	mg/m^3	n.n.	0,1	UCL SOP 52/3	
1,2,3-Trimethylbenzol	mg/m^3	n.n.	0,1	UCL SOP 52/3	
1,2,4-Trimethylbenzol	mg/m^3	n.n.	0,1	UCL SOP 52/3	
1,3,5-Trimethylbenzol	mg/m^3	n.n.	0,1	UCL SOP 52/3	
*Summe BTEX	mg/m^3	n.n.	0,1	UCL SOP 52/3	
LHKW					
Dichlormethan	mg/m^3	n.n.	0,5	UCL SOP 52/2	
trans-1,2-Dichlorethen	mg/m^3	n.n.	0,5	UCL SOP 52/2	
cis-1,2-Dichlorethen	mg/m^3	n.n.	0,5	UCL SOP 52/2	
Trichlormethan	mg/m^3	n.n.	0,05	UCL SOP 52/2	
1,1,1-Trichlorethan	mg/m^3	n.n.	0,05	UCL SOP 52/2	
1,1,2-Trichlorethan	mg/m^3	n.n.	0,5	UCL SOP 52/2	
Tetrachlormethan	mg/m^3	n.n.	0,05	UCL SOP 52/2	
Trichlorethen	mg/m^3	n.n.	0,05	UCL SOP 52/2	
Tetrachlorethen	mg/m^3	n.n.	0,05	UCL SOP 52/2	
Summe LHKW	mg/m^3	n.n.	0,05	UCL SOP 52/2	

n.n. = nicht nachweisbar

n.b. = nicht bestimmbar