

Paladini Geotechnik • Zippengasse 15 • 53359 Rheinbach

Kreisstadt Siegburg Amt für Baubetrieb und Immobilienmanagement Frau Hartmann Lindenstraße 87

53721 Siegburg

Baugrund, Hydrologie, Umwelt, Entsorgung, Arbeitssicherheit und Baubiologie

Paladini Geotechnik Zippengasse 15 53359 Rheinbach

Telefon: 02225 / 999 89 40 Telefax: 02225 / 999 89 44 info@paladini-geotechnik.de

Projekt Nr. 20161426

Rheinbach,

22. November 2016

Schreiben Nr. 20161426-001: Ergänzende Stellungnahme zur

Analytik der Mischproben MP 1 und MP 2 sowie der

Schwarzdeckenproben P 1 und P 2.

Bezug: Gutachten Nr. 20161426: Neubau Feuerwehrhaus

in Kaldauen-Stallberg in Siegburg, "Hauptstraße"

vom 17.10.2016.

Anlagen: 1 Lageplan mit Bohrpunkten

2.1 Bohrprofile nach DIN 4023

3.1 bis 3.8 Analysenprotokolle nach LAGA

TR Boden

3.9, 3.10 Schwarzdeckenanalytik 4.1, 4.2 Probennahmeprotokolle

Situation: Durch Frau Hartmann wurden wir am 11.11.2016 per Mail beauftragt, aus dem entnommenen Probenmaterial zwei Mischproben herzustellen und eine laboranalytische Untersuchung (Deklarationsanalytik) durchführen zu lassen. Weiterhin sollten die beiden Schwarzdeckenproben untersucht werden.

Durchgeführte Untersuchungen: Aus den Einzelproben der Bohrungen B 1 bis B 8 wurde die Mischprobe "MP 1" (künstlich angefüllte Schichten) aus dem Tiefenbereich von rund 0,0 m bis 2,5 m und aus den Bohrungen B 1 bis B 9 die Mischprobe MP 2 (gewachsener Sandboden) aus dem Tiefenbereich 0,5 bis 4,0 m bezüglich GOK zusammengestellt und auf die Parameter der LAGA TR Boden (2004) untersucht.

Seite 2 von 4 zum Schreiben Nr. 20161426-001 vom 22. November 2016

Hierbei handelt es sich bei beiden Proben um ± schwach schluffige bis schwach schluffige Fein- bis Mittelsande sowie Schottermaterial des Parkplatzes (siehe Anlagen 2.1, 4.1 und 4.2).

Ergebnisse: Die Analysenergebnisse der untersuchten Parameter sind in den Protokollen der Anlagen 3.1 bis 3.8 den Grenzwerten (LAGA TR Boden) gegenübergestellt. Die Untersuchung auf die Parameter ergab folgendes Bild:

Tabelle 1: Analysenergebnisse MP 1 und MP 2 sowie Grenzwerte der LAGA TR Boden.

	Dim	MP 1	MP 2		LAGA TR-Boden (2004)						
				Z 0 ¹	Z 0 ²	Z 0 ³	Z 0*	Z 1	Z 1.1	Z 1.2	Z 2
Trockensub.	Gew. % OS					-		-			
EOX	mg/kg	< 0,8	< 0,8	1	1	1	1	3			10
TOC	Gew. % TR	< 0,5	< 0,5	0,5	0,5	0,5	0,5	1,5			5
Arsen	mg/kg	< 4	4,50	10	15	20	15	45			150
Blei	mg/kg	18,9	6,76	40	70	100	140	210			700
Cadmium	mg/kg	< 0,4	< 0,4	0,4	1	1,5	1	3			10
Chrom ges.	mg/kg	11,0	11,0	30	60	100	120	180			600
Kupfer	mg/kg	7,11	5,40	20	40	60	80	120			400
Nickel	mg/kg	10,8	15,6	15	50	70	100	150			500
Thallium	mg/kg	< 0,4	< 0,4	0,4	0,7	1	0,7	2,1			7
Quecksilber	mg/kg	< 0,1	< 0,1	0,1	0,5	1	1	1,5			5
Zink	mg/kg	30,9	35,1	60	150	200	300	450			1.500
MKW ₁₀₋₄₀	mg/kg	< 100	< 100				400	600			2000
MKW ₁₀₋₂₂	mg/kg	< 100	< 100	100	100	100	200	300			1000
PAK ₁₆	mg/kg	< 0,24	< 0,24	3	3	3	3	3			30
B[a]p.	mg/kg	< 0,03	< 0,03	0,3	0,3	0,3	0,6	0,9			3
LHKW	mg/kg	< 0,18	< 0,18	1	1	1	1	1			1
BTXE	mg/kg	< 0,15	< 0,15	1	1	1	1	1			1
Cyanid ges.	mg/kg	< 1	< 1					3			10
PCB (n. DIN)	mg/kg	< 0,015	< 0,015	0,05	0,05	0,05	0,1	0,15			0,5
pH-Wert	-	8,5	8,4	6,5-9,5	6,5-9,5	6,5-9,5	6,5-9,5	1	6,5-9,5	6-12	5,5-12
el. Leitf.	μs/cm	25	14	250	250	250	250	-	250	1.500	2.000
Chlorid	mg/l	< 10	< 10	30	30	30	30	-	30	50	100
Sulfat	mg/l	< 20	< 20	20	20	20	20	1	20	50	200
Cyanid ges.	μg/l	< 5	< 5	5	5	5	5	-	5	10	20
Phenolindex	μg/l	< 10	< 10	20	20	20	20	-	20	40	100
Arsen	μg/l	< 10	< 10	14	14	14	14	-	14	20	60
Blei	μg/l	< 7	< 7	40	40	40	40		40	80	200
Cadmium	μg/l	< 0,5	< 0,5	1,5	1,5	1,5	1,5		1,5	3	6
Chrom ges.	μg/l	< 7	< 7	12,5	12,5	12,5	12,5	-	12,5	25	60
Kupfer	μg/l	< 10	< 10	20	20	20	20		20	60	100
Nickel	μg/l	< 10	< 10	15	15	15	15		15	20	70
Quecksilber	μg/l	< 0,2	< 0,2	<0,5	<0,5	<0,5	<0,5	-	<0,5	1	2
Zink	μg/l	< 40	< 40	150	150	150	150		150	200	600
LAGA TR Boden		ZO ¹⁾	ZO ¹⁾								

¹⁾ Z-0-Werte für Sand; ²⁾ Z-0-Werte für Lehm/Schluff; ³⁾ Z-0-Werte für Tone, * Z-0-Werte für die Verfüllung von Abgrabungen unter Einhaltung bestimmter Randbedingungen, **fett** gedruckte Ziffern = Überschreitung des Z0-Wertes, n.b. = nicht berechenbar.

Einstufung der Mischproben "MP 1" und "MP 2" nach LAGA TR Boden: Wie aus der Tabelle ersichtlich ist, werden in den Mischproben MP 1 und MP 2 die ZO¹⁾ - Werte (für Sande) fast sämtlicher Parameter deutlich unterschritten.

Die sehr geringe Überschreitung des Z0¹⁾-Wertes bei Nickel im Feststoff liegt noch im Rahmen der natürlichen Schwankungsbreite, so dass u.E. keine Einstufung in LAGA Z0* oder Z1 erfolgen muss.

Dies führt zu folgender Einstufung der Mischproben:

"MP 1" wird eingestuft als: Z0¹¹ nach LAGA TR Boden "MP 2" wird eingestuft als: Z0¹¹ nach LAGA TR Boden

Abfallrechtliche Einstufung der Materialproben "MP 1" und "MP 2": Nach dem vorbeschriebenen Analyseergebnis empfehlen wir, den Aushub des künstlich angefüllten und des gewachsenen Bodens (Mischproben MP 1 und MP 2) in die Abfallschlüsselnummer AVV 17 05 04 (Boden und Steine mit Ausnahme derjenigen, die unter 17 05 03* fallen) einzustufen.

Schwarzdecken: An den Proben P 1 und P 2 wurde im chemischen Labor der Parameter PAK nach EPA im Feststoff untersucht.

Wie aus der nachfolgenden Tabelle und den Anlagen 3.9 und 3.10 ersichtlich ist, wurden in den Proben folgende Konzentrationen ermittelt:

Probenbezeichnung	PAK nach EPA	Benz (a) pyren
P 1 (0,00 – 0,23 m)	0,92	0,06
P 2 (0,00 – 0,26 m)	0,44	< 0,03

[alle Angaben in mg/kg; ES = Einzelsubstanzen; NG = Nachweisgrenze], Phenolindex in [mg/l]

Es zeigt sich bei sämtlichen Proben eine Konzentration von PAK nach EPA jeweils knapp über der Nachweisgrenze. Die Grenzkonzentration von 25 mg/kg PAK nach EPA wird somit deutlich unterschritten.

Einstufung der Schwarzdeckenproben / Verwertungsklassen: Nach den Vorgaben der RuVA-StB 01 wird für die untersuchten Proben eine Einstufung wie folgt vorgenommen:

Probenbezeichnung	Verwertungsklasse
P 1 und P 2	Klasse A

An den Proben der o.a. Schwarzdecken wurden nach den oben aufgeführten chemischen Analyseergebnissen Konzentrationen von PAK nach EAP deutlich unterhalb von 25 mg/kg quantifiziert.

Ausbauasphalt: Nach Abschnitt 5.1 "Ausbaustoffe" der RuVA-StB 01 führt dies bei P 1 und P 2 zu einer Einstufung der Proben in die Verwertungsklasse A = Ausbauasphalt.

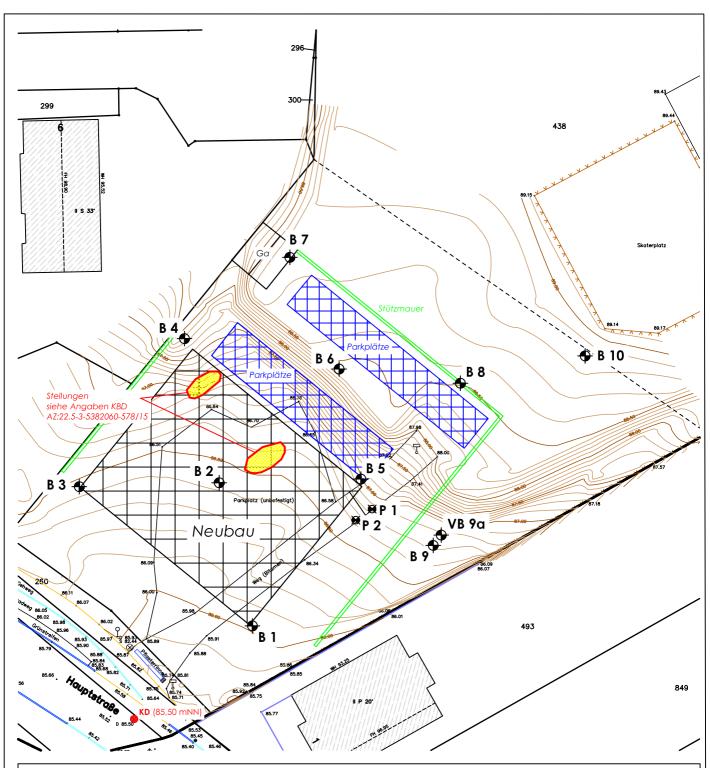
Der geltende Grenzwert von 25 mg / kg PAK nach EPA kann bei Bedarf nochmals in einer Mischprobe des Aushubmaterials verifiziert werden.

Bei einer Einstufung gemäß AVV muss die Eigenschaft H 7 eingehalten werden. In diesem Fall bedeutet dies, dass der Anteil des Parameters PAK nach EPA von 0,1 % (entsprechend 1.000 mg/kg) unterschritten werden muss. Für Benz(a)pyren liegt dieser Wert bei 50 mg/kg.

Da beide Parameter deutlich unterschritten werden, ist der Schwarzdeckenaufbruch nach AVV als nicht gefährlich, gemäß AVV 17 03 02 einzustufen. Die Bewertung nach LAGA bestätigt diese Einstufung.

Seite 4 von 4 zum Schreiben Nr. 20161426-001 vom 22. November 2016

In diesem Fall enthält der vorliegende Ausbauasphalt nach der Richtlinie ein kennzeichnungsfreies Bindemittel im Gemisch.


Der Straßenaufbruch kann nach Abschnitt 4.1 der RuVA – StB 01 als Asphaltgranulat im Heißmischverfahren eingesetzt werden, wobei sowohl ein Einsatz in Asphaltmischanlagen als auch im Baustellenmischverfahren möglich ist.

Anzumerken ist, dass bei diesen Verwertungsarten einerseits den "technischen Lieferbedingungen für Asphaltgranulat" TL AG – StB entsprochen wird (Asphaltmischanlagen) oder andererseits die "Zusätzlichen Vertragsbedingungen und Richtlinien für die bauliche Erhaltung von Verkehrsflächen – Asphaltbauweise" ZTV BEA – StB beachtet werden (Baustellenmischverfahren).

Bei weiteren Fragen bitten wir um telefonische Nachricht.

Mit freundlichen Grüßen

Dipl. - Geol. S. Paladini PALADINI GEOTECHNIK Baubiologe IBN

KD

B 1 / VB 9a Bohrpunkt Kleinrammbohrung (Ø 60 bis 36 mm) / Versickerungsbohrung Ø 80 mm

P1 Probenentnahmepunkt

Bezugshöhe, Kanaldeckel = 85,50 mNN

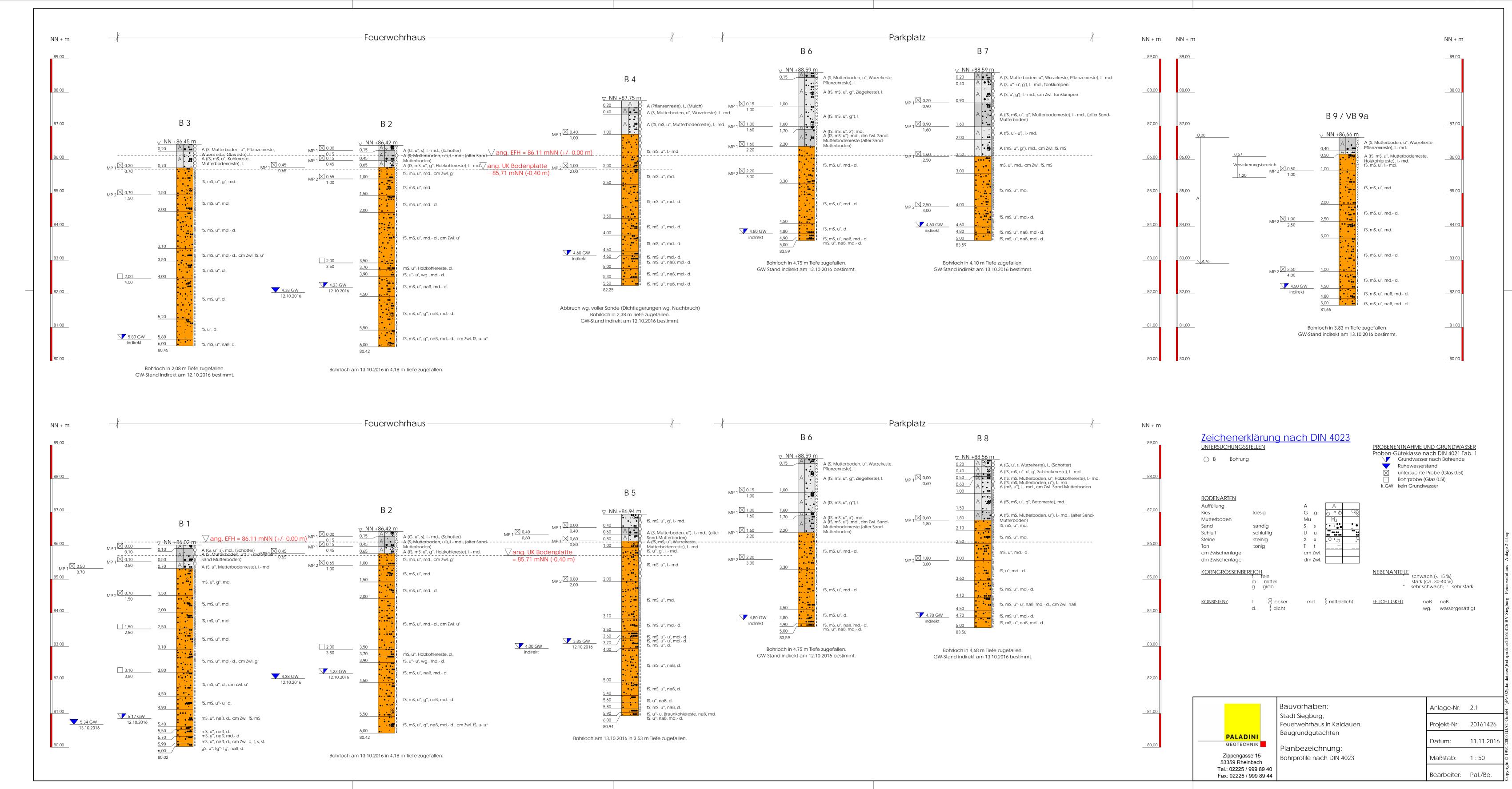
Tel.: 02225 / 999 89 40 Fax: 02225 / 999 89 44

TECHNIK

Zippengasse 15
53359 Rheinbach

Probenentna

Bauvorhaben: Stadt Siegburg, Feuerwehrhaus in Kaldauen, "Hauptstraße"


Planbezeichnung: Lageplan mit Bohr- und Probenentnahmepunkten Anlage Nr. 1

Projekt Nr. 20161426

Datum: 14.10.2016

Maßstab: 1: 500

Bearbeiter: Pal./Be.

SCHUMANSTR. 29 52146 WÜRSELEN TEL.: 02405/4685-0 FAX: 02405/4685-10

UMWELTTECHNOLOGIE GMBH

Seite 1/4

Chemische Untersuchung von Feststoffproben

(gem. "LAGA 20-Boden", Stand: 05.11.2004)

Auftraggeber: Paladini Geotechnik, Rheinbach

Unsere Auftragsnummer: X61633
Projekt: BV 20161426
Probeneingang: 14.11.2016
Probenahme: Anlieferung

Labornummer	Participation of the Control of the			Zuordnungswerte			
Probenbez.	MP 1		Z 0	Z 1.1	Z 1.2	Z 2	
1. Eluat	DIN EN 12457-4						
pH-Wert	DIN EN ISO 10523	8,5	6,5-9,5	6,5-9,5	6-12	5,5-12	
Leitfähigkeit	DIN EN 27888	25	250	250	1500	2000	μS/cm
Chlorid	DIN EN ISO 10304-2	< 10	30	30	50	100	mg/l
Sulfat	DIN EN ISO 10304-2	< 20	20	20	50	200	mg/l
Cyanide, ges.	DIN EN ISO 14403	< 5	5	5	10	20	μg/l
Arsen	DIN EN ISO 11885	< 10	14	14	20	60	µg/l
Blei	DIN EN ISO 11885	< 7	40	40	80	200	µg/l
Cadmium	DIN EN ISO 11885	< 0,5	1,5	1,5	3	6	µg/l
Chrom	DIN EN ISO 11885	< 7	12,5	12,5	25	60	µg/l
Kupfer	DIN EN ISO 11885	< 10	20	20	60	100	μg/l
Nickel	DIN EN ISO 11885	< 10	15	15	20	70	μg/l
Quecksilber	DIN EN 1483	< 0,2	< 0,5	< 0,5	1	2	µg/l
Zink	DIN EN ISO 11885	< 40	150	150	200	600	μg/l
Phenolindex	DIN EN ISO 14402	< 10	20	20	40	100	µg/l
2. Originalsubstanz: bez. auf TS		· · · · · · · · · · · · · · · · · · ·		Z 0 Sand/Lehm-Schluff/Ton		Z 2	F9
Arsen	DIN EN ISO 11885	< 4		10/15/20		150	mg/kg
Blei	DIN EN ISO 11885	18,9	40/70/	100	45 210	700	mg/kg
Cadmium	DIN EN ISO 11885	< 0,4	0,4/1/1,5		3	10	mg/kg
Chrom	DIN EN ISO 11885	11,0	30/60/100		180	600	mg/kg
Kupfer	DIN EN ISO 11885	7,11	20/40	20/40/60		400	mg/kg
Nickel	DIN EN ISO 11885	10,8	15/50	/70	150	500	mg/kg
Quecksilber	DIN EN 1483	< 0,1	0,1/0,	5/1	1,5	5	mg/kg
Thallium	DIN ISO 20279	< 0,4	0,4/0,	7/1	2,1	7	mg/kg
Zink	DIN EN ISO 11885	30,9	60/150		450	1500	mg/kg
Cyanide, ges.	DIN ISO 17380	< 1	(#0	HALL STATE OF THE	3	10	mg/kg
TOC	DIN EN 13137	< 0,5	0,5 (1,0)/0,5 (1	,0)/0,5 (1,0)	1,5	5	%
EOX	DIN 38414-S 17	< 0,8	1/1/		3	10	mg/kg
KW/GC (C ₁₀ -C ₄₀)	DIN EN 14039 (LAGA KW/04)	< 100	100/100	0/100	600	2000	mg/kg
KW/GC (C ₁₀ -C ₂₂)	DIN EN 14039 (LAGA KW/04)	< 100	100/100	100/100/100		1000	mg/kg
BTEX	ISO/DIS 22155	< 0,15	1/1/	1/1/1		1	mg/kg
LHKW	ISO/DIS 22155	< 0,18	1/1/	°1/1/1		1	mg/kg
PCB (n. DIN)	DIN EN 15308	<0,015	0,05/0,0	0,05/0,05/0,05		0,5	mg/kg
PAK (EPA)	DIN ISO 18287	<0,24	3/3/	3/3/3		30	mg/kg
Benzo(a)pyren	DIN ISO 18287	< 0,03	0,3/0,3/0,3		3 (9)	3	mg/kg

Dieses Zertifikat ersetzt den Analysenbericht "X61300" vom 17.11.2016.

Würselen, den 22.11.2016

Christopher Braun stv. Laborleiter

SCHUMANSTR. 29 52146 WÜRSELEN TEL.: 02405/4685-0

FAX: 02405/4685-10

Seite 2/4

UMWELTTECHNOLOGIE GMBH

Chemische Untersuchung von Feststoffproben

(gem. "LAGA 20-Boden", Stand: 05.11.2004)

Untersuchungsparameter: PAK gem. EPA-Liste in der Originalsubstanz

Analysenverfahren: DIN ISO 18287

PAK [mg/kg TS]	
Labornummer	X61300-001
Probenbezeichnung	MP 1
Einzelverbindungen	
Naphthalin	< 0,03
Acenaphthylen	< 0,03
Acenaphthen	< 0,03
Fluoren	< 0,03
Phenanthren	< 0,03
Anthracen	< 0,03
Fluoranthen	< 0,03
Pyren	< 0,03
Benzo(a)anthracen	< 0,03
Chrysen	< 0,03
Benzo(b)fluoranthen	< 0,03
Benzo(k)fluoranthen	< 0,03
Benzo(a)pyren	< 0,03
Dibenzo(a,h)anthracen	< 0,03
Benzo(ghi)perylen	< 0,03
Indeno(1,2,3-cd)pyren	< 0,03
Summe EPA-PAK	< 0,24

SCHUMANSTR. 29 52146 WÜRSELEN TEL.: 02405/4685-0

FAX: 02405/4685-10

Chemische Untersuchung von Feststoffproben

(gem. "LAGA 20-Boden", Stand: 05.11.2004)

Seite 3/4

Untersuchungsparameter: Polychlorierte Biphenyle (PCB) in der Originalsubstanz

Analysenverfahren: DIN EN 15308

[mg/kg TS]			
Labornummer	X61300-001		
Probenbezeichnung	MP 1		
PCB 28	< 0,005		
PCB 52	< 0,005		
PCB 101	< 0,005		
PCB 153	< 0,005		
PCB 138	< 0,005		
PCB 180	< 0,005		
Summe PCB (DIN)	< 0,015		

SCHUMANSTR. 29 52146 WÜRSELEN TEL.: 02405/4685-0 FAX: 02405/4685-10

UMWELTTECHNOLOGIE GMBH

Chemische Untersuchung von Feststoffproben

(gem. "LAGA 20-Boden", Stand: 05.11.2004)

Seite 4/4


Untersuchungsparameter: BTEX-Aromaten und LHKW in der Originalsubstanz

Analysenverfahren: ISO/DIS 22155

BTEX, LHKW [mg/kg TS]	
Labornummer	X61300-001
Probenbezeichnung	MP 1
Benzol	< 0,06
Toluol	< 0,06
Ethylbenzol	< 0,06
p,m-Xylol	< 0,06
o-Xylol	< 0,06
Summe BTEX	< 0,15
Dichlormethan	< 0,06
Trichlormethan	< 0,06
1.1.1-Trichlorethan	< 0,06
Tetrachlormethan	< 0,06
Trichlorethen	< 0,06
Tetrachlorethen	< 0,06
Summe LHKW	< 0,18

SCHUMANSTR. 29 52146 WÜRSELEN TEL.: 02405/4685-0 FAX: 02405/4685-10

UMWELTTECHNOLOGIE GMBH

Seite 1/4

Chemische Untersuchung von Feststoffproben

(gem. "LAGA 20-Boden", Stand: 05.11.2004)

Auftraggeber:

Paladini Geotechnik, Rheinbach

Unsere Auftragsnummer:

X61633

Projekt: Probeneingang: BV 20161426 14.11.2016

Probenahme:

Anlieferung

Labornummer X6130)-002		Zuordnungs	swerte		
Probenbez.	MP	2	Z 0	Z 1.1	Z 1.2	Z 2	
1. Eluat	DIN EN 12457-4						-
pH-Wert	DIN EN ISO 10523	8,4	6,5-9,5	6,5-9,5	6-12	5,5-12	
Leitfähigkeit	DIN EN 27888	14	250	250	1500	2000	μS/cm
Chlorid	DIN EN ISO 10304-2	< 10	30	30	50	100	mg/l
Sulfat	DIN EN ISO 10304-2	< 20	20	20	50	200	mg/l
Cyanide, ges.	DIN EN ISO 14403	< 5	5	5	10	20	µg/l
Arsen	DIN EN ISO 11885	< 10	14	14	20	60	µg/l
Blei	DIN EN ISO 11885	< 7	40	40	80	200	μg/l
Cadmium	DIN EN ISO 11885	< 0,5	1,5	1,5	3	6	μg/l
Chrom	DIN EN ISO 11885	< 7	12,5	12,5	25	60	µg/l
Kupfer	DIN EN ISO 11885	< 10	20	20	60	100	µg/l
Nickel	DIN EN ISO 11885	< 10	15	15	20	70	µg/l
Quecksilber	DIN EN 1483	< 0,2	< 0,5	< 0,5	1	2	µg/l
Zink	DIN EN ISO 11885	< 40	150	150	200	600	µg/l
Phenolindex	DIN EN ISO 14402	< 10	20	20	40	100	μg/l
2. Originalsubstanz: bez. auf TS				Z 0 Sand/Lehm-Schluff/Ton		Z 2	-5-
Arsen	DIN EN ISO 11885	4,50	10/15	10/15/20		150	mg/kg
Blei	DIN EN ISO 11885	6,76	40/70/	40/70/100		700	mg/kg
Cadmium	DIN EN ISO 11885	< 0,4	0,4/1/	0,4/1/1,5		10	mg/kg
Chrom	DIN EN ISO 11885	11,0	30/60/	30/60/100		600	mg/kg
Kupfer	DIN EN ISO 11885	5,40	20/40	/60	120	400	mg/kg
Nickel	DIN EN ISO 11885	15,6	15/50	/70	150	500	mg/kg
Quecksilber	DIN EN 1483	< 0,1	0,1/0,	5/1	1,5	5	mg/kg
Thallium	DIN ISO 20279	< 0,4	0,4/0,	7/1	2,1	7	mg/kg
Zink	DIN EN ISO 11885	35,1	60/150	/200	450	1500	mg/kg
Cyanide, ges.	DIN ISO 17380	< 1	2		3	10	mg/kg
TOC	DIN EN 13137	< 0,5	0,5 (1,0)/0,5 (1	1,0)/0,5 (1,0)	1,5	5	%
EOX	DIN 38414-S 17	< 0,8	1/1/	1	3	10	mg/kg
KW/GC (C ₁₀ -C ₄₀)	DIN EN 14039 (LAGA KW/04)	< 100	100/100	100/100/100		2000	mg/kg
KW/GC (C ₁₀ -C ₂₂)	DIN EN 14039 (LAGA KW/04)	< 100	< 100 100/100/100		300	1000	mg/kg
BTEX	ISO/DIS 22155	< 0,15		1/1/1		1	mg/kg
LHKW	ISO/DIS 22155	< 0,18		1/1/1		1	mg/kg
PCB (n. DIN)	DIN EN 15308	<0,015		0,05/0,05/0,05		0,5	mg/kg
PAK (EPA)	DIN ISO 18287	<0,24	3/3/	3/3/3		30	mg/kg
Benzo(a)pyren	DIN ISO 18287	< 0,03	0,3/0,3	0,3/0,3/0,3		3	mg/kg

Dieses Zertifikat ersetzt den Analysenbericht "X61300" vom 17.11.2016.

Würselen, den 22.11.2016

Christopher Braun stv. Laborleiter

DAKKS
Decruite
An endicongorable

SCHUMANSTR. 29 52146 WÜRSELEN TEL.: 02405/4685-0 FAX: 02405/4685-10

UMWELTTECHNOLOGIE GMBH

Seite 2/4

Chemische Untersuchung von Feststoffproben

(gem. "LAGA 20-Boden", Stand: 05.11.2004)

Untersuchungsparameter: PAK gem. EPA-Liste in der Originalsubstanz

Analysenverfahren: DIN ISO 18287

PAK [mg/kg TS]	
Labornummer	X61300-002
Probenbezeichnung	MP 2
Einzelverbindungen	
Naphthalin	< 0,03
Acenaphthylen	< 0,03
Acenaphthen	< 0,03
Fluoren	< 0,03
Phenanthren	< 0,03
Anthracen	< 0,03
Fluoranthen	< 0,03
Pyren	< 0,03
Benzo(a)anthracen	< 0,03
Chrysen	< 0,03
Benzo(b)fluoranthen	< 0,03
Benzo(k)fluoranthen	< 0,03
Benzo(a)pyren	< 0,03
Dibenzo(a,h)anthracen	< 0,03
Benzo(ghi)perylen	< 0,03
Indeno(1,2,3-cd)pyren	< 0,03
Summe EPA-PAK	< 0,24

SCHUMANSTR. 29 52146 WÜRSELEN TEL.: 02405/4685-0

FAX: 02405/4685-10

UMWELTTECHNOLOGIE GMBH

Chemische Untersuchung von Feststoffproben

(gem. "LAGA 20-Boden", Stand: 05.11.2004)

Seite 3/4

Untersuchungsparameter: Polychlorierte Biphenyle (PCB) in der Originalsubstanz

Analysenverfahren: DIN EN 15308

[mg/kg TS]				
Labornummer	X61300-002			
Probenbezeichnung	MP 2			
PCB 28	< 0,005			
PCB 52	< 0,005			
PCB 101	< 0,005			
PCB 153	< 0,005			
PCB 138	< 0,005			
PCB 180	< 0,005			
Summe PCB (DIN)	< 0,015			

SCHUMANSTR. 29 52146 WÜRSELEN TEL.: 02405/4685-0 FAX: 02405/4685-10

UMWELTTECHNOLOGIE GMBH

Chemische Untersuchung von Feststoffproben

(gem. "LAGA 20-Boden", Stand: 05.11.2004)

Seite 4/4

Untersuchungsparameter: BTEX-Aromaten und LHKW in der Originalsubstanz

Analysenverfahren: ISO/DIS 22155

BTEX, LHKW [mg/kg TS]	
Labornummer	X61300-002
Probenbezeichnung	MP 2
Benzol	< 0,06
Toluol	< 0,06
Ethylbenzol	< 0,06
p,m-Xylol	< 0,06
o-Xylol	< 0,06
Summe BTEX	< 0,15
Dichlormethan	< 0,06
Trichlormethan	< 0,06
1.1.1-Trichlorethan	< 0,06
Tetrachlormethan	< 0,06
Trichlorethen	< 0,06
Tetrachlorethen	< 0,06
Summe LHKW	< 0,18

SCHUMANSTR. 29 52146 WÜRSELEN TEL.: 02405/4685-0

FAX: 02405/4685-10

UMWELTTECHNOLOGIE GMBH

Chemische Untersuchung von Feststoffproben

Auftraggeber:

Paladini Geotechnik, Rheinbach

Auftragsnummer:

X61299

Projekt:

BV 20161426

Probeneingang: Probenahme:

14.11.2016 Anlieferung

Untersuchungsparameter: PAK gem. EPA-Liste im Feststoff

Analysenverfahren:

DIN EN 15527

Probenvorbereitung:

Teilen und Brechen

Untersuchungsergebnisse:

mg/kg TS			
Labornummer	X61299-001		
Probenbezeichnung	P1		
Einzelverbindungen			
Naphthalin	0,12		
Acenaphthylen	< 0,03		
Acenaphthen	0,05		
Fluoren	< 0,03		
Phenanthren	0,11		
Anthracen	< 0,03		
Fluoranthen	0,06		
Pyren	0,08		
Benzo(a)anthracen	0,04		
Chrysen	0,08		
Benzo(b)fluoranthen	0,09		
Benzo(k)fluoranthen	< 0,03		
Benzo(a)pyren	0,06		
Dibenzo(a,h)anthracen	0,04		
Benzo(ghi)perylen	0,15		
Indeno(1,2,3-cd)pyren	0,04		
Summe EPA-PAK	0,92		

Würselen, den 16.11.2016

Christopher Braun stv. Laborleiter

(DAkkS

SCHUMANSTR. 29 52146 WÜRSELEN TEL.: 02405/4685-0

FAX: 02405/4685-10

UMWELTTECHNOLOGIE GMBH

Chemische Untersuchung von Feststoffproben

Auftraggeber: Paladini Geotechnik, Rheinbach

Auftragsnummer: X61299

Projekt: BV 20161426
Probeneingang: 14.11.2016
Probenahme: Anlieferung

Untersuchungsparameter: PAK gem. EPA-Liste im Feststoff

Analysenverfahren: DIN EN 15527

Probenvorbereitung: Teilen und Brechen

Untersuchungsergebnisse:

mg/kg TS					
Labornummer	X61299-002 P 2				
Probenbezeichnung					
Einzelverbindungen					
Naphthalin	0,07				
Acenaphthylen	< 0,03				
Acenaphthen	0,04				
Fluoren	< 0,03				
Phenanthren	0,08				
Anthracen	< 0,03				
Fluoranthen	0,05				
Pyren	0,05				
Benzo(a)anthracen	< 0,03				
Chrysen	0,03				
Benzo(b)fluoranthen	0,04				
Benzo(k)fluoranthen	< 0,03				
Benzo(a)pyren	< 0,03				
Dibenzo(a,h)anthracen	< 0,03				
Benzo(ghi)perylen	0,08				
Indeno(1,2,3-cd)pyren	< 0,03				
Summe EPA-PAK	0,44				

Würselen, den 16.11.2016

Christopher Braunstv. Laborleiter

PALADINI GEOTECHNIK

Zippengasse 15 53359 Rheinbach

Tel.: 02225 / 999 89 40 Fax.: 02225 / 999 89 44

Probennahmeprotokoll zur Entnahme von Feststoff, Abfall gemäß LAGA PN 98

Projektdaten							
Drojokt Nr ·	: 20161	126					
Projekt Nr.:			ou or wohrhous	Hountstroßo# in	Claabura Kald	ou on	
Projekt:	BV Stadt Siegburg, Feuerwehrhaus "Hauptstraße" in Siegburg-Kaldauen s. Paladini, Paladini Geotechnik, Zippengasse 15, 53359 Rheinbach-Flerzheim						
Projektleiter:							
Probennehm Anwesende:			dini Geotechnik, K. Ziebold und H		o, 53359 RHEIHL	acn-rierzneim	
						ant Un Cabraitar	
Auftraggebe	er: Kreisst	adt siegburg, .	Amt für Baubetr	ieb una immob	illenmanagem	ent, Hr. Schreiter	
Drobonoshus							
Probennahm	Uhrzeit:	Luftdruck	Tomporatur	Mindetärke	Mindrighta	Mittoring	
Datum:	Unizeit:	Luftdruck:	Temperatur:	Windstärke:	Windrichtg.	Witterung:	
10 10 2017	0.00 - - 17.00	[hPa]	[°C]	[km/h]		l!4	
12.10.2016	9:00 bis 16:30	1024	6 bis 13	4 - 7	wechselnd	heiter	
13.10.2016	9:00 bis 16:30	1015	9 bis 12	11 - 29	Ost	halbbedeckt	
1/ 1 /01 11		DI ' C' 1/		1			
Kreis/Stadt:			reis / Stadt Sieg				
Straße/Ort:			/ Siegburg-Kalo	dauen			
Flurstuck / Flu	ır / Gemarkung:	Tell aus 438 /	/ 16 / Braschoß				
A				Duele end			
Art der Probe		Mana - F27		Probenbezeich	inung: MP I		
	Mulde	Menge [m³]					
	Haufwerk	Menge [m³]		00110=			
Х	Bohrsonde	Tiefe in [m]	siehe Anl. 2.1	ca. 0,0 bis 2,5	<u>m</u>		
	Gelände	Menge [m³]					
Probennahm				1		T	
	Bagger		Schaufel		Pürckhauer		
Х	Bohrung		Schappe		Speer		
. .	t 0	\		D 1 1 "11			
Probennahm		Volumen [l]:	-	Probenkühlung		1	
	PE Eimer		5		Kühlbox		
			1		Kühlakku		
Х	PE Beutel	Х	•		IZ / Martin and a marting		
Х	Braunglasfl.	X	0,5		Kühlschrank		
Х		X	•	х	Kühlschrank ungekühlt		
	Braunglasfl. Headspace		0,5	х			
Beschreibung	Braunglasfl. Headspace des beprobten N	Naterials:	0,5 0,1		ungekühlt		
	Braunglasfl. Headspace des beprobten N	Naterials: ± sehr schwa	0,5 0,1 ach schluffiger,	teils sehr schwa	ungekühlt	- und Mittelsand	
Beschreibung Art des Abfa	Braunglasfl. Headspace g des beprobten N	Materials: ± sehr schwa sowie Naturs	0,5 0,1 ach schluffiger, steinschotter (Ki	teils sehr schwa es, ± sandig)	ungekühlt ch kiesiger Feir		
Beschreibung	Braunglasfl. Headspace g des beprobten N	Materials: ± sehr schwa sowie Naturs Wurzel-, Gla	0,5 0,1 ach schluffiger, steinschotter (Ki	teils sehr schwa es, ± sandig) cke-, Ziegel- un	ungekühlt ch kiesiger Fein d Betonreste ur		
Beschreibung Art des Abfa Beimengung	Braunglasfl. Headspace g des beprobten N	Materials: ± sehr schwa sowie Naturs Wurzel-, Gla Mutterbode	0,5 0,1 ach schluffiger, steinschotter (Kinser, Kohle-, Schlandecke" sowie	teils sehr schwa es, ± sandig) cke-, Ziegel- un Tonklumpen	ungekühlt ch kiesiger Fein d Betonreste ur	nd "alte Sand-	
Beschreibung Art des Abfa	Braunglasfl. Headspace g des beprobten N	Materials: ± sehr schwasowie Naturs Wurzel-, Gla Mutterbode überwiegen	0,5 0,1 ach schluffiger, steinschotter (Ki s-, Kohle-, Schla ndecke" sowie d hellbraun bis	teils sehr schwa es, ± sandig) cke-, Ziegel- un Tonklumpen braun (Sande),	ungekühlt ch kiesiger Fein d Betonreste ur untergeordnet	nd "alte Sand- graubraun oder	
Beschreibung Art des Abfa Beimengung	Braunglasfl. Headspace g des beprobten N	# sehr schwa sowie Naturs Wurzel-, Gla Mutterbode überwiegen schwarzbrau	0,5 0,1 ach schluffiger, steinschotter (Kinss-, Kohle-, Schlandecke" sowie d hellbraun bis un ("Sandmutter	teils sehr schwa es, ± sandig) cke-, Ziegel- un Tonklumpen braun (Sande), rboden"), unter	ungekühlt ch kiesiger Fein d Betonreste ur untergeordnet	nd "alte Sand- graubraun oder	
Beschreibung Art des Abfa Beimengung Farbe:	Braunglasfl. Headspace g des beprobten M lls: en:	# sehr schwa sowie Naturs Wurzel-, Gla Mutterbode überwiegen schwarzbrau Schotter), w	0,5 0,1 ach schluffiger, steinschotter (Ki s-, Kohle-, Schla ndecke" sowie d hellbraun bis un ("Sandmutte eißgrau (Tonklur	teils sehr schwa es, ± sandig) cke-, Ziegel- un Tonklumpen braun (Sande), rboden"), unter	ungekühlt ch kiesiger Fein d Betonreste ur untergeordnet	nd "alte Sand- graubraun oder	
Beschreibung Art des Abfa Beimengung Farbe:	Braunglasfl. Headspace g des beprobten Mils: en: agerungsdichte:	# sehr schwa sowie Naturs Wurzel-, Gla Mutterbode überwiegen schwarzbrau Schotter), w	0,5 0,1 ach schluffiger, steinschotter (Kirs-, Kohle-, Schlandecke" sowierd hellbraun bis lun ("Sandmutteleißgrau (Tonklurtteldicht	teils sehr schwa es, ± sandig) cke-, Ziegel- und Tonklumpen braun (Sande), rboden"), unter mpen)	ungekühlt ch kiesiger Fein d Betonreste ur untergeordnet geordnet grau	nd "alte Sand- graubraun oder	
Beschreibung Art des Abfa Beimengung Farbe: Konsistenz / L Geruch / Ber	Braunglasfl. Headspace g des beprobten Nulls: en: agerungsdichte: merkungen:	# sehr schwa sowie Naturs Wurzel-, Gla Mutterbode überwiegen schwarzbrau Schotter), w locker bis mi	0,5 0,1 ach schluffiger, steinschotter (Kies-, Kohle-, Schlandecke" sowied hellbraun bis lun ("Sandmutteleißgrau (Tonklurtteldicht efüllter oder um	teils sehr schwa es, ± sandig) cke-, Ziegel- un Tonklumpen braun (Sande), rboden"), unter mpen)	ungekühlt ch kiesiger Fein d Betonreste ur untergeordnet geordnet grau en	nd "alte Sand- graubraun oder bis schwarz	
Beschreibung Art des Abfa Beimengung Farbe: Konsistenz / L Geruch / Ber Probenzusan	Braunglasfl. Headspace g des beprobten Nulls: en: agerungsdichte: merkungen: mmenstellung:	# sehr schwa sowie Naturs Wurzel-, Gla Mutterbode überwiegen schwarzbrau Schotter), w locker bis mi	0,5 0,1 ach schluffiger, steinschotter (Kir s-, Kohle-, Schla ndecke" sowie d hellbraun bis l un ("Sandmutter eißgrau (Tonklur	teils sehr schwa es, ± sandig) cke-, Ziegel- un Tonklumpen braun (Sande), rboden"), unter mpen)	ungekühlt ch kiesiger Fein d Betonreste ur untergeordnet geordnet grau en	nd "alte Sand- graubraun oder bis schwarz	
Beschreibung Art des Abfa Beimengung Farbe: Konsistenz / L Geruch / Ber Probenzusan Transport ins	Braunglasfl. Headspace g des beprobten N lls: en: agerungsdichte: merkungen: menstellung: Labor:	# sehr schwa sowie Naturs Wurzel-, Gla Mutterbode überwiegen schwarzbrau Schotter), w locker bis mi	0,5 0,1 ach schluffiger, steinschotter (Kiss-, Kohle-, Schlandecke" sowied hellbraun bis un ("Sandmutteleißgrau (Tonkluritteldicht efüllter oder um e aus 24 Einzelp	teils sehr schwa es, ± sandig) cke-, Ziegel- un Tonklumpen braun (Sande), rboden"), unter mpen)	ungekühlt ch kiesiger Fein d Betonreste ur untergeordnet geordnet grau en	nd "alte Sand- graubraun oder bis schwarz	
Beschreibung Art des Abfa Beimengung Farbe: Konsistenz / L Geruch / Ber Probenzusan Transport ins	Braunglasfl. Headspace g des beprobten N lls: en: agerungsdichte: merkungen: menstellung: Labor: Probennehmer	# sehr schwa sowie Naturs Wurzel-, Gla Mutterbode überwiegen schwarzbrau Schotter), w locker bis mi	0,5 0,1 ach schluffiger, steinschotter (Kiss-, Kohle-, Schlandecke" sowie d hellbraun bis un ("Sandmutteleißgrau (Tonkluritteldicht efüllter oder um e aus 24 Einzelp	teils sehr schwa es, ± sandig) cke-, Ziegel- un Tonklumpen braun (Sande), rboden"), unter mpen)	ungekühlt ch kiesiger Fein d Betonreste ur untergeordnet geordnet grau en	nd "alte Sand- graubraun oder bis schwarz	
Beschreibung Art des Abfa Beimengung Farbe: Konsistenz / L Geruch / Ber Probenzusan Transport ins	Braunglasfl. Headspace g des beprobten N lls: en: agerungsdichte: merkungen: menstellung: Labor:	# sehr schwa sowie Naturs Wurzel-, Gla Mutterbode überwiegen schwarzbrau Schotter), w locker bis mi	0,5 0,1 ach schluffiger, steinschotter (Kiss-, Kohle-, Schlandecke" sowied hellbraun bis un ("Sandmutteleißgrau (Tonkluritteldicht efüllter oder um e aus 24 Einzelp	teils sehr schwa es, ± sandig) cke-, Ziegel- un Tonklumpen braun (Sande), rboden"), unter mpen)	ungekühlt ch kiesiger Fein d Betonreste ur untergeordnet geordnet grau en	nd "alte Sand- graubraun oder bis schwarz	
Beschreibung Art des Abfa Beimengung Farbe: Konsistenz / L Geruch / Ber Probenzusan Transport ins x	Braunglasfl. Headspace g des beprobten Mils: en: agerungsdichte: merkungen: menstellung: Labor: Probennehmer Paketdienst	# sehr schwa sowie Naturs Wurzel-, Gla Mutterbode überwiegen schwarzbrau Schotter), w locker bis mi keiner / ang 1 Mischprob	0,5 0,1 ach schluffiger, steinschotter (Kiss-, Kohle-, Schlandecke" sowie d hellbraun bis un ("Sandmutteleißgrau (Tonkluritteldicht efüllter oder um e aus 24 Einzelp	teils sehr schwa es, ± sandig) cke-, Ziegel- un Tonklumpen braun (Sande), rboden"), unter mpen)	ungekühlt ch kiesiger Fein d Betonreste ur untergeordnet geordnet grau en	nd "alte Sand- graubraun oder bis schwarz	
Beschreibung Art des Abfa Beimengung Farbe: Konsistenz / L Geruch / Ber Probenzusan Transport ins X X Abfallrechtlic	Braunglasfl. Headspace g des beprobten Mils: en: agerungsdichte: merkungen: menstellung: Labor: Probennehmer Paketdienst	# sehr schwa sowie Naturs Wurzel-, Gla Mutterbode überwiegen schwarzbrau Schotter), w locker bis mi keiner / ang 1 Mischprob	0,5 0,1 ach schluffiger, steinschotter (Kirs-, Kohle-, Schlandecke" sowied hellbraun bis lun ("Sandmuttereißgrau (Tonklurteldichterus 24 Einzelptabor-Kurier Post	teils sehr schwa es, ± sandig) cke-, Ziegel- un Tonklumpen braun (Sande), rboden"), unter mpen) ngelagerter Bod proben der Bohr	ungekühlt ch kiesiger Fein d Betonreste ur untergeordnet geordnet grau en ungen B 1 bis B	nd "alte Sand- graubraun oder bis schwarz	
Beschreibung Art des Abfa Beimengung Farbe: Konsistenz / L Geruch / Ber Probenzusan Transport ins x	Braunglasfl. Headspace g des beprobten Mils: en: agerungsdichte: merkungen: menstellung: Labor: Probennehmer Paketdienst	# sehr schwa sowie Naturs Wurzel-, Gla Mutterbode überwiegen schwarzbrau Schotter), w locker bis mi keiner / ang 1 Mischprob	0,5 0,1 ach schluffiger, steinschotter (Kiss-, Kohle-, Schlandecke" sowie d hellbraun bis un ("Sandmutteleißgrau (Tonkluritteldicht efüllter oder um e aus 24 Einzelp	teils sehr schwa es, ± sandig) cke-, Ziegel- un Tonklumpen braun (Sande), rboden"), unter mpen)	ungekühlt ch kiesiger Fein d Betonreste ur untergeordnet geordnet grau en	nd "alte Sand- graubraun oder bis schwarz	
Beschreibung Art des Abfa Beimengung Farbe: Konsistenz / L Geruch / Ber Probenzusan Transport ins x x Abfallrechtlic	Braunglasfl. Headspace g des beprobten Mils: en: agerungsdichte: merkungen: menstellung: Labor: Probennehmer Paketdienst	# sehr schwa sowie Naturs Wurzel-, Gla Mutterbode überwiegen schwarzbrau Schotter), w locker bis mi keiner / ang 1 Mischprob	0,5 0,1 ach schluffiger, steinschotter (Kirs-, Kohle-, Schlandecke" sowied hellbraun bis lun ("Sandmuttereißgrau (Tonklurteldichterus 24 Einzelptabor-Kurier Post	teils sehr schwa es, ± sandig) cke-, Ziegel- un Tonklumpen braun (Sande), rboden"), unter mpen) ngelagerter Bod proben der Bohr	ungekühlt ch kiesiger Fein d Betonreste ur untergeordnet geordnet grau en ungen B 1 bis B	nd "alte Sand- graubraun oder bis schwarz	
Beschreibung Art des Abfa Beimengung Farbe: Konsistenz / L Geruch / Ber Probenzusan Transport ins X X Abfallrechtlic	Braunglasfl. Headspace g des beprobten Mils: en: agerungsdichte: merkungen: menstellung: Labor: Probennehmer Paketdienst	# sehr schwa sowie Naturs Wurzel-, Gla Mutterbode überwiegen schwarzbrau Schotter), w locker bis mi keiner / ang 1 Mischprob	0,5 0,1 ach schluffiger, steinschotter (Kirs-, Kohle-, Schlandecke" sowied hellbraun bis lun ("Sandmuttereißgrau (Tonklurteldichterus 24 Einzelptabor-Kurier Post	teils sehr schwa es, ± sandig) cke-, Ziegel- un Tonklumpen braun (Sande), rboden"), unter mpen) ngelagerter Bod proben der Bohr	ungekühlt ch kiesiger Fein d Betonreste ur untergeordnet geordnet grau en ungen B 1 bis B	nd "alte Sand- graubraun oder bis schwarz	
Beschreibung Art des Abfa Beimengung Farbe: Konsistenz / L Geruch / Ber Probenzusan Transport ins X X Abfallrechtlic	Braunglasfl. Headspace g des beprobten Mils: en: agerungsdichte: merkungen: menstellung: Labor: Probennehmer Paketdienst	# sehr schwa sowie Naturs Wurzel-, Gla Mutterbode überwiegen schwarzbrau Schotter), w locker bis mi keiner / ang 1 Mischprob	0,5 0,1 ach schluffiger, steinschotter (Kirs-, Kohle-, Schlandecke" sowied hellbraun bis lun ("Sandmuttereißgrau (Tonklurteldichterus 24 Einzelptabor-Kurier Post	teils sehr schwa es, ± sandig) cke-, Ziegel- un Tonklumpen braun (Sande), rboden"), unter mpen) ngelagerter Bod proben der Bohr	ungekühlt ch kiesiger Fein d Betonreste ur untergeordnet geordnet grau en ungen B 1 bis B	nd "alte Sand- graubraun oder bis schwarz	

PALADINI GEOTECHNIK

Zippengasse 15 53359 Rheinbach

Tel.: 02225 / 999 89 40 Fax.: 02225 / 999 89 44

Probennahmeprotokoll zur Entnahme von Feststoff, Abfall gemäß LAGA PN 98

Projektdater	า:					
Projekt Nr.:	20161	426				
Projekt:			euerwehrhaus "	Hauptstraße" ir	n Siegburg-Kalc	dauen
Projektleiter:			Geotechnik, Zip			
Probennehn			dini Geotechnik			
Anwesende			K. Ziebold und H		5, 55557 KHCIH	Dacif-licizificiiii
Auftraggeb					ilionmanagom	ent, Hr. Schreite
Aumayyeb	er. Neiss	iaut siegbuig,	Ami iui baubeii		mermanagen	епт, пг. зсптене
Probennahn						
Datum:	Uhrzeit:	Luftdruck:	Temperatur:	Windstärke:	Windrichtg.	Witterung:
		[hPa]	[°C]	[km/h]		
12.10.2016	9:00 bis 16:30	1024	6 bis 13	4 - 7	wechselnd	heiter
13.10.2016	9:00 bis 16:30	1015	9 bis 12	11 - 29	Ost	halbbedeckt
		1				
Kreis/Stadt:		Rhein-Sieg-k	(reis / Stadt Sieg	burg		
Straße/Ort:			: / Siegburg-Kald			
	ur / Gemarkung:	· · · · · · · · · · · · · · · · · · ·	/ 16 / Braschoß			
Art der Prob		T. a	Τ	Probenbezeic	hnung: MP 2	
	Mulde	Menge [m³]				
	Haufwerk	Menge [m ³]				
Х	Bohrsonde	Tiefe in [m]	siehe Anl. 2.1	ca. 0,5 bis 4,0	m	
	Gelände	Menge [m ³]				
Drohonnahn	no gorāti					
Probennahn		I	Coboufol	1	Dürakhayar	
	Bagger		Schaufel		Pürckhauer	
Х	Bohrung		Schappe		Speer	
Probennahn	negefäß:	Volumen [l]:		Probenkühlung	 g:	
	PE Eimer		5		Kühlbox	
Х	PE Beutel	х	1		Kühlakku	
	Braunglasfl.	, A	0,5		Kühlschrank	
	Headspace		0,1	х	ungekühlt	
	псаазрасс		0,1	Λ	ungekunt	
Reschreibun	ng des beprobten	Materials [.]				
Art des Abfa			ach schluffiger,	teils sehr schwa	ch kiesiger Feir	n- und Mittelsand
			3.,		3	
Beimengung	gen:	keine				
Farbe:		hellbraun bi	s braun			
Konsistenz /	Lagerungsdichte:	locker his m	itteldicht-dicht			
	merkungen:		vachsener Bode	n		
	mmenstellung:	<u> </u>	e aus 13 Einzelp		rungen R 1 bis E	2 0
Transport ins		i iviiscripiot	re aus 13 EIIIZEIL	NODELLUE DULI	ungen bit bis t	<i>)</i> /
	Probennehmer		Labor Vurior			
X			Labor-Kurier		+	+
Х	Paketdienst	1	Post	1	<u> </u>	1
Abfallrechtli	che Deklaration u	nd Menge:				
AVV	17 05 04	Masse:	ca. 1000 to	Volumen:	ca. 500 m ³	
Unterschrift:						Anlage: 4.2
	·		·		·	·