

Weitergehende erschütterungstechnische Untersuchung zur 3. Änderung des Bebauungsplans SW263 "Felderhof II" in Ratingen

Bericht VA 6464-2 vom 08.11.2013

Auftraggeber: InDor Immobilienwelt GmbH & Co. KG

Europaring 60 40878 Ratingen

über:

ISR Stadt + Raum GmbH & Co. KG

Zur Pumpstation 1

42781 Haan

Bericht-Nr.: VA 6464-2

Datum: 08.11.2013

Niederlassung: Düsseldorf

Ref.: MP / MB

Peutz Consult GmbH Beratende Ingenieure VBI

Messstelle nach § 26 BlmSchG zur Ermittlung der Emissionen und Immissionen von Geräuschen und Erschütterungen

VMPA Güteprüfstelle für den Schallschutz im Hochbau

Leitung:

Dipl.-Phys. Axel Hübel

Dipl.-Ing. Heiko Kremer Staatlich anerkannter Sachverständiger für Schall- und Wärmeschutz

Dipl.-Ing. Mark Bless

Anschriften:

Kolberger Straße 19 40599 Düsseldorf Tel. +49 211 999 582 60 Fax +49 211 999 582 70 dus@peutz.de

Martener Straße 535 44379 Dortmund Tel. +49 231 725 499 10 Fax +49 231 725 499 19 dortmund@peutz.de

Knesebeckstraße 3 10623 Berlin Tel. +49 30 310 172 16 Fax +49 30 310 172 40 berlin@peutz.de

Geschäftsführer:

Dipl.-Ing. Gerard Perquin Dr. ir. Martijn Vercammen Dipl.-Ing. Ferry Koopmans AG Düsseldorf HRB Nr. 22586

Ust-IdNr.: DE 119424700 Steuer-Nr.: 106/5721/1489

Bankverbindungen:

Stadt-Sparkasse Düsseldorf Konto-Nr.: 220 241 94 BLZ 300 501 10 DE79300501100022024194

BIC: DUSSDEDDXXX

Niederlassungen:

Mook / Nimwegen, NL Zoetermeer / Den Haag, NL Groningen, NL Paris, F Lyon, F Leuven, B Sevilla, E

www.peutz.de

Inhaltsverzeichnis

1	Situation und Aufgabenstellung	3
2	Bearbeitungsgrundlagen, zitierte Normen und Richtlinien	4
3	Örtliche Gegebenheiten / Betriebsprogramm / Gebietsnutzungen	6
4	Beurteilungsgrundlagen für Erschütterungen	7
	4.1 Allgemeines	9
5	Erschütterungsmessungen	13
	 5.1 Ort und Zeit der Messungen. 5.2 Messgeräte	13 13
6	Auswerte- und Prognoseverfahren. 6.1 Einflussgrößen für Erschütterungen. 6.2 Beschreibung der Methodik.	15
7	6.3 Prognoseunsicherheit Prognose der Erschütterungsimmissionen	
	7.1 Erste Baureihe (minimaler Abstand zum Gleis: 25m)7.2 Zweite Baureihe (Abstand zum Gleis > 50m)	
8	Berechnung und Beurteilung des sekundären Luftschallpegels	21
9	Zusammenfassung	23

1 Situation und Aufgabenstellung

Für das Gebiet des Bebauungsplanes SW 263 am Felderhof in Ratingen ist eine Über planung vorgesehen. Mit der dritten Änderung des Bebauungsplanes soll hier anstelle der heute planungsrechtlich abgesicherten gewerblichen Nutzungen nun Wohnbebauung angesiedelt werden. Innerhalb des gesamten Plangebietes ist die Festsetzung eines allgemeinen Wohngebietes (WA) vorgesehen.

Ein Übersichtslageplan der örtlichen Gegebenheiten und der Planung ist Anlage 4 zu ent nehmen.

Da sich das Gelände neben einer Schienenstrecke befindet, könnten relevante Er schütterungs- und sekundäre Luftschallimmissionen in den geplanten Wohnhäusern auf treten. Daher wurde im Zuge des Bebauungsplanverfahrens eine Erschütterungsmessung auf dem Gelände der geplanten Wohnbebauung sowie in einem bestehenden Musterhaus des angrenzenden Neubaugebietes "Felderhof (I)" am 13.02.2013 durchgeführt[20].

Die Erschütterungsmessung vom 13.02.2013 fand im nördlichen Teil des Bebauungsplangebietes statt. Da auf dem Bebauungsplangebiet zu einem früheren Zeitpunkt Gewerbe betriebe angesiedelt waren, befindet sich in einigen Bereichen des Gebietes ausgetauschter Boden oder mit Bauschutt verfüllter Boden. In diesen Bereichen kann sich die Weiterleitung von Erschütterungen im Erdboden aufgrund der anderen Bodenzusammensetzung von der Weiterleitung im nördlichen Teil unterscheiden. Daher wurden am 06.11.2013 weitere Erschütterungsmessungen auf dem Bebauungsplangebiet durchgeführt.

Die Ergebnisse dieser Messungen sowie der sich daraus ergebenden Prognose sind im nachfolgenden Bericht dargestellt.

Die Ergebnisse der Untersuchung werden gemäß DIN 4150 Teil 2 [4] und der aktuellen Rechtslage [16] für die Erschütterungen und gemäß den Anforderungen nach 24.BImSchV [3] für die sekundären Luftschallimmissionen beurteilt. Bei Überschreitungen der Anforderungen an die Erschütterungs- oder sekundären Luftschallimmissionen werden Minderungsmaßnahmen vorgeschlagen.

2 Bearbeitungsgrundlagen, zitierte Normen und Richtlinien

Tite	I / Beschreibung / Bemerkung		Kat.	Datum
[1]	BlmSchG Bundes-Immissionsschutzgesetz	Gesetz zum Schutz vor schäd- lichen Umwelteinwirkungen durch Luftverunreinigungen, Geräusche, Erschütterungen und ähnliche Vorgänge	G	Aktuelle Fassung
[2]	Erschütterungserlass Messung, Beurteilung und Verminderung von Erschütterungsimmissionen	Gem. Runderlass des Ministeriums für Umwelt und Naturschutz, Landwirtschaft und Verbraucherschutz Nord- rhein-Westfalen u.a., IV A6 –46-63- vom 31.7.2000 und Änderung durch gem. RdErl. V-5-882) (VNr. 6/03) vom -4.11.2003	RdErl.	31.07.2000 und 04.11.2003
[3]	24. BlmSchV 24. Verordnung zur Durchführung des Bundes-Immissionsschutz- gesetzes / Verkehrswege-Schall- schutzmaßnahmenverordnung	Geändert am 23.09.1997 und Begründung in Bundesrats- drucksache 363/96 vom 02.07.1996	V	04.02.1997
[4]	DIN 4150, Teil 2	Erschütterungen im Bau- wesen, Einwirkungen auf Menschen in Gebäuden	N	Juni 1999
[5]	DIN 4150, Teil 3	Erschütterungen im Bauwesen, Teil 3: Einwirkungen auf bauliche Anlagen	N	Februar 1999
[6]	DIN 45 669, Teil 1	Messung von Schwingungs- immissionen, Teil 1: Schwingungsmesser, An- forderungen, Prüfung	N	Juni 1995 Entwurf: September 2008
[7]	DIN 45 669, Teil 2	Messung von Schwingungs- immissionen - Messverfahren	N	Juni 2005
[8]	DIN 45 669, Teil 3	Messung von Schwingungs- immissionen - Prüfung (Kalibrierung und Beurteilung) der Schwingungsmessein- richtung; Erstprüfung, Nach- prüfung, Zwischenprüfung, Prüfung für den Messeinsatz	N	Juni 2006
[9]	DIN 45 672, Teil 1	Schwingungsmessung in der Umgebung von Schienenver- kehrswegen - Messverfahren	N	Dezember 2009

Titel	/ Beschreibung / Bemerkung		Kat.	Datum
10]	DIN 45 672, Teil 2	Schwingungsmessung in der Umgebung von Schienenver- kehrswegen - Auswertever- fahren	N	Juli 1995
11]	Taschenbuch der technischen Akustik	G. Müller, M. Möser (Hrsg.), 3. Auflage	Lit.	2003
12]	Körperschall und Er- schütterungsschutz, Leitfaden für den Planer, Beweissicherung, Prognose, Beurteilung und Schutzmaßnahmen	Landesumweltamt NRW	Lit.	1999
13]	A.Said, D. Fleischer, H. Fastl, HP. Grütz, G. Hölzl "Laborversuche zur Ermittlung von Unterschiedsschwellen bei der Wahrnehmung von Erschütterungen aus dem Schienenverkehr"	DAGA 2000, Seite 496- 497	Lit.	2000
14]	Materialien Nr. 22, Erschütterungen und Körperschall des landgebundenen Verkehrs, Prognose und Schutzmaßnahmen	Landesumweltamt Nordrhein- Westfalen, Juli 1995, ISSN:0947-5206	Lit	Juli 1995
15]	DB Richtlinie 800.2502 "Erschütterung und sekundärer Luftschall, Messung und Prognose"	DB AG, Abt. Bautechnik, Leit-, Signal- u. Tele- kommunikationstechnik, TZF 12	Lit.	November 2006
16]	Urteil des Bundesverwaltungs- gerichtes (BVerwG) zum Ausbau einer Eisenbahnstrecke; Schutz gegen Erschütterungen und sekundären Luftschall	Aktenzeichen 7 A 14/09	Lit	21.12.2010
17]	Schienenverkehr Prognose 2025 - Zugzahlen für Strecke 2324 Tiefenbroich - D-Rath		Р	11.05.2012
18]	Planunterlagen zur 3. Änderung des Bebauungsplanes SW 263	Zur Verfügung gestellt durch ISR Stadt + Raum GmbH	Р	07.03.2013
19]	Messergebnisse von Rammkern- bohrungen auf dem Gelände der ehemaligen Spiegelglasfabrik	EBE Entsorgungsbetriebe Essen GmbH über ISR Stadt + Raum GmbH	Р	16.07.2007
20]	Erschütterungstechnische Unter- suchung zur 3. Änderung des Bebauungsplans SW263 "Felderhof II" in Ratingen	Bericht VA6464-1, Peutz Consult GmbH	Lit	19.02.2013

Kategorien:

G V VV N RIL Gesetz Norm Verordnung Richtlinie

Buch, Aufsatz, Bericht Planunterlagen / Betriebsangaben Verwaltungsvorschrift Runderlass Lit P RdErl.

3 Örtliche Gegebenheiten / Betriebsprogramm / Gebietsnutzungen

Das Gebiet des Bebauungsplanes SW 263 in Ratingen umfasst den Bereich zwischen einer Bahnstrecke Düsseldorf – Duisburg, der Volkardeyer Straße und der Straße Felderhof. Für den nördlichen Bereich besteht heute eine Gebietsfestsetzung als Gewerbegebiet, südlich angrenzend befindet sich bereits Wohnbebauung. Für den nördlichen Bereich des Plan gebietes ist eine Überplanung vorgesehen. Mit der dritten Änderung des Bebauungsplanes soll hier Planungsrecht für die Errichtung weiterer Wohnbebauung geschaffen werden. Innerhalb des gesamten Plangebietes ist die Festsetzung eines allgemeinen Wohngebietes (WA) vorgesehen.

Südlich des Plangebietes befindet sich die Neubausiedlung "Felderhof (I)", welche von der selben Firma realisiert wurde, welche nun die Bebauung des Plangebiets "Felderhof II" plant (InDor Immobilienwelt GmbH). Insofern kann die hier im Süden vorliegende Bauweise als Muster für die geplante Bebauung genutzt werden.

Östlich angrenzend an das Plangebiet verläuft eine stark befahrene, zweigleisige Güterzug trasse (Strecke 2324), weiter südlich zweigt eine S-Bahn-Trasse ab, sodass diese nicht mehr in unmittelbarer Nähe des Plangebietes verläuft. In der DB-Trassenprognose 2025[17] ist für die Güterzugstrecke zudem eine Reaktivierung des Schienenpersonennahverkehrs ent halten. Westlich des Plangebietes angrenzend sowie östlich der Eisenbahntrasse besteht heute bereits Wohnnutzung mit in der Regel einer 2- bis 3-geschossiger Bauweise.

In den Baufeldern ist Wohnbebauung mit 2 bis 4 Vollgeschossen geplant. Ein Lageplan des Bereiches des Bebauungsplanes, der überplant werden soll, ist in Anlage 4 dargestellt. Darin ist auch das geplante aktuelle Bebauungskonzept enthalten, das Grundlage der vorliegenden Untersuchung ist. In Anlage 4.2 ist der Bebauungsplanentwurf mit Darstellung der Baugrenzen dargestellt. In Anlage 4.3 ist eine grobe Übersicht über die Bodenverhältnisse gegeben.

Die in der Erschütterungsprognose angenommene Streckenbelastung wird der DB-Prognose für das Jahr 2025 entnommen, in welcher die o.a. Reaktivierung des Schienenpersonen nahverkehrs berücksichtigt ist (siehe Tabelle 3.1).

Tabelle 3.1:Streckenbelastung 2025 für die Strecke 2324[17]

	Geschwindigkeit	Anzahl Vorbeifahrten			
Zugart		Tag	Nacht		
	[km/h]	(6 – 22 Uhr)	(22 – 6 Uhr)		
Güterzug	90	164	74		
S-Bahn	140	64	8		

4 Beurteilungsgrundlagen für Erschütterungen

4.1 Allgemeines

Die während einer Erschütterungsimmissionsmessung erfasste und registrierte Messgröße ist die Schwingschnelle v(t) in mm/s (das Schnellesignal). Diese Größe ist gemäß DIN 4150 Teil 3 [5] ohne jegliche Zeit- und Frequenzbewertung zur Beurteilung der Erschütterungs einwirkung auf Gebäude heranzuziehen.

Entsprechend der DIN 4150, Teil 2 [4] wird zur Beurteilung der Erschütterungseinwirkungen auf <u>Menschen in Gebäuden</u> als Beurteilungsgröße das frequenz- und zeitbewertete Erschütterungssignal, gemessen in Raummitte der am stärksten betroffenen Geschossdecke, herangezogen. Die Frequenzbewertung erfolgt dabei nach DIN 4150, Teil 2[4] in Form der so genannten "KB-Bewertung". Das Ergebnis der Bewertung ist der gleitende Effektivwert des frequenzbewerteten Erschütterungssignals nach folgender Gleichung:

$$KB_{\tau}(t) = \sqrt{\frac{1}{\tau} \int_{\xi=0}^{t} e^{-\left(\frac{t-\xi}{\tau}\right)} \cdot KB^{2}(\xi) d\xi}$$

Als Zeitbewertung wird der gleitende Effektivwert mit einer Zeitkonstanten $von_{\tau} = 0,125 \text{ s}$ gebildet. Zur Konkretisierung der verwendeten Zeitkonstante wird, entsprechend der Norm, die bewertete Schwingstärke KB_F(t) genannt. Die während der Beurteilungszeit erfasste höchste bewertete Schwingstärke wird als Maximalwert KB_{Fmax} bezeichnet.

Da es sich bei Erschütterungsimmissionen nicht um gleichförmige Schwingungen, sondern um stochastische Einzelvorgänge handelt, kann gemäß DIN 4150, Teil 2, der Beginn eines jeden Ereignisses (Zugvorbeifahrt) an den Anfang eines Taktes gelegt werden. Durch dieses Verfahren wird die Anwendung des Takt-Maximal-Bewertungsverfahrens auf Er schütterungen aus oberirdischem Bahnverkehr deutlich vereinfacht. Dies bedeutet nämlich, dass jedem Maximalwert KB= einer Zugvorbeifahrt bei üblicher Zuggeschwindigkeit und -länge jeweils ein Takt zugeordnet wird. Aus diesen ermittelten Taktmaximalwerten KB-TIII wird der Taktmaximal-Effektivwert KB-TIIII nach nachfolgender Gleichung berechnet:

$$KB_{FTm} = \sqrt{\frac{1}{N} \sum_{i=1}^{N} KB_{FTi}^2}$$

Bei Anwendung dieser Gleichung sind alle Werte $KB_{FTi} \le 0,1$ zu Null zu setzen, jedoch gehen diese Takte in die Anzahl N ein und beeinflussen somit den Effektivwert.

Für die Beurteilung der Erschütterungsimmissionen werden zwei Beurteilungsgrößen herangezogen. Dies sind zum einen die maximal bewertete Schwingstärke KB_{max} sowie, falls erforderlich, die Beurteilungsschwingstärke KB_{FTr}. Die Beurteilungs-Schwingstärke KB_{FTr} ist der Taktmaximal-Effektivwert über die Beurteilungszeit. Diese Beurteilungs-Schwingstärke wird nach DIN 4150, Teil 2[4] mit folgender Gleichung berechnet:

$$KB_{FTr} = \sqrt{\frac{1}{T_r} \sum_{j} T_{e,j} \cdot KB_{FTm,j}^2}$$

T_r = Beurteilungszeit (tags 16 h, nachts 8 h)

T_{e,j} = Teileinwirkungszeiten

 $\mathsf{KB}_{\mathsf{FTm},j}$ = Taktmaximal-Effektivwerte die für die Teileinwirkungszeiten $T_{\!\!\!\!\!\mathsf{I},j}$ repräsentativ

sind

In die Beurteilungsschwingstärke KB_{FTr} geht also Art und Anzahl der Erschütterungsereignisse innerhalb der Beurteilungszeiten Tag und Nacht mit dem jeweiligen von der ent sprechenden Erschütterungsquelle abhängigen Takt-Maximal-Effektivwert KB_{Tm} ein.

Die so ermittelten Beurteilungsgrößen KB-max und KB-Tr werden mit den in der DIN 4150, Teil 2, angegebenen Anhaltswerten, unter Zugrundelegung verschiedener Gebietsnutzungen für die Beurteilung von Erschütterungsimmissionen, verglichen (siehe Tabelle 4.2).

Hierbei sind drei unterschiedliche Anhaltswerte A_r, A₀ und A_r angegeben.

Ist der ermittelte KB_{Fmax}-Wert kleiner oder gleich dem "unteren" Anhaltswert A_s, ist die Anforderung der DIN 4150, Teil 2, erfüllt.

Ist der ermittelte KB_{Fmax}-Wert größer als der "obere" Anhaltswert A₀, sind die Anforderungen der Norm nicht eingehalten.

Für Werte von $A_0 \ge KB_{Fmax} \ge A_u$ ist die Beurteilungsschwingstärke KB_{FTr} zu ermitteln und mit dem Anhaltswert A_r zu vergleichen. Ist KB_{FTr} kleiner bzw. gleich dem Anhaltswert A_r , so sind die Anforderungen der Norm eingehalten.

KB-Werte ≤ 0,1 gehen gemäß Norm nicht in die Beurteilung mit ein. Ein solcher Wert kann als Maß für die Fühlschwelle herangezogen werden, wobei die Tatsache ob ein Er schütterungsereignis gespürt wird von vielen individuellen Faktoren und dem subjektiven Empfinden abhängt (siehe auch Tabelle 4.1).

Tabelle 4.1 Zusammenhang zwischen bewerteter Schwingstärke und subjektiver Wahrnehmung [11]

Bewertete Schwingstärke KB	Beschreibung der Wahrnehmung
< 0,1	nicht spürbar
0,1	Fühlschwelle
0,1 – 0,4	gerade spürbar
0,4 – 1,6	gut spürbar
1,6 – 6,3	stark spürbar
> 6,3	sehr stark spürbar

4.2 Beurteilungsgrößen für Schienenverkehr

Die Erschütterungsimmissionen durch Schienenverkehr sind nach Kapitel 4.1 zu beurteilen und mit den Anhaltswerten der Tabelle 1 der DIN 4150, Teil 2 (siehe hier Tabelle 4.2) zu vergleichen. Hierbei sind die Besonderheiten nach Punkt 6.5.3.1, 6.5.3.4 und 6.5.3.5. der DIN 4150, Teil 2 zu beachten, welche u.a. dem oberen Anhaltswert A_o eine neue Bedeutung verleihen (siehe Anmerkung * Tabelle 4.2).

Zuschläge für Einwirkungen innerhalb der Ruhezeiten sind hierbei nicht anzuwenden (DIN 4150, Teil 2, Abschnitt 6.5.3.1).

Tabelle 4.2: Anhaltswerte A gemäß DIN 4150, Teil 2, Tabelle 1, Abschnitt 6.5.3.5.

F		Au		A _o		A r	
Einwirkungsgrad	Einwirkungsgrad		Nacht	Tag	Nacht	Tag	Nacht
Anhaltswerte A Zeile 2 gemäß DIN ∆GE		0,3	0,2	6	0,6*	0,15	0,1
4150, Teil 2, Tabelle 1, mit Abschnitt	Zeile 3 <u>∆</u> MI/MK	0,2	0,15	5	0,6*	0,1	0,07
6.5.3.3 und 6.5.3.5.	Zeile 4 <u>∆</u> WR/WA	0,15	0,1	3	0,6*	0,07	0,05

^{*} Für Schienenverkehr hat der obere Anhaltswert A on nachts nicht die Bedeutung, dass bei dessen seltener Über schreitung die Anforderungen der Norm als nicht eingehalten gelten. Liegen zum Nachtzeitraum einzelne Ereig nisse über dem oberen Anhaltswert, so ist nach der Ursache bei der entsprechenden Zugeinheit zu forschen (z.B. Flachstelle an den Rädern) und diese möglichst rasch zu beheben. Diese hohen Werte sind jedoch bei der Berechnung der Beurteilungs-Schwingstärke KB

Bezüglich des Erschütterungsschutzes von Verkehrswegen existieren im Gegensatz zum Verkehrslärm keine rechtsverbindlich festgelegten Grenzwerte und Beurteilungskriterien. Auch die für die Beurteilung von Erschütterungsimmissionen hier hilfsweise herangezogene

DIN 4150, Teil 2 [4], kann ausweislich der Anmerkungen unter Abschnitt 6.5.3.4 dieser Norm auf bestehende Bahnstrecken nicht unmittelbar angewendet werden.

Bewertungsmaßstab für die vorgesehenen Baumaßnahmen ist daher nicht stets die Ein haltung der in o.g. Norm angegebenen Anhaltswerte, sondern auch der Grundsatz, durch die Baumaßnahme keine wesentliche, d.h. im Einzelfall unzumutbare Erhöhung der vor handenen Erschütterungssituation aus dem Schienenverkehr hervorzurufen.

Zur Ermittlung und Bewertung der vorhandenen sowie der erwarteten Erschütterungs immissionen wird in Ermangelung rechtsverbindlich festgelegter Vorgehensweisen (s.o.) hilfsweise auf die DIN 4150, Teil 2, zurückgegriffen. Diese Vorgehensweise wird auch durch die aktuelle Rechtsprechung vom Bundesverwaltungsgericht[16] bestätigt.

Das Bundesverwaltungsgericht trifft in einem Urteil zur Zumutbarkeit von Erschütterungsund Sekundärluftschallimmissionen vom 21.12.2010 folgende Festlegung: "Die korrelierten Anhaltswerte A_0 und A_r "der DIN 4150, Teil 2" bezeichnen ... nicht die Schwelle des ent eignungsrechtlich nicht Zumutbaren, sondern liegen, da sie auf das billigerweise nicht Zu mutbare bezogen sind, deutlich darunter. Auf Ausbaumaßnahmen sind diese Anhaltswerte aber nicht unmittelbar anwendbar (Ziffer 6.5.3.4 c). Denn hier ist die immissionsschutzrecht liche Situation entscheidend durch den vorhandenen Bestand geprägt. Aus dem Gebot der gegenseitigen Rücksichtnahme folgen besondere Duldungspflichten, sodass Erschütterungen, die sich im Rahmen einer plangegebenen oder tatsächlichen Vorbelastung halten, deswegen – jedenfalls in aller Regel – zumutbar sind, auch wenn sie die Anhaltswerte übersteigen."

Demnach können Betroffene lediglich verlangen, dass durch den Ausbau einer Bahnstrecke die schon vor Baudurchführung möglichen Erschütterungsbelastungen nicht wesentlich er höht werden. Es besteht kein Anspruch auf Verbesserung der vorhandenen Erschütterungsvorbelastung.

Für die Bewältigung des Belanges der Erschütterungsimmissionen in der Planfeststellung (Ausbaustrecken mit Erschütterungsvorbelastungen) ist die Vorbelastung der bereits vor handenen Schienenwege möglichst genau zu ermitteln. Der Vergleich mit der Prognose muss zur Beurteilung herangezogen werden, um feststellen zu können, ob im Falle der Erhöhung eine unzumutbare Beeinträchtigung vorliegt.

Zur Bewertung einer im Einzelfall vorliegenden Erhöhung können u.a. die Ergebnisse einer Laborstudie zur Ermittlung von Unterschiedsschwellen bei der Wahrnehmung von Erschütterungen aus dem Schienenverkehr herangezogen werden [13]. Ein Ziel dieser Laborstudie war, zu ermitteln, welcher Minimalbetrag an Erschütterungsenergieänderung benötigt wird, um wahrgenommen zu werden. Die Ergebnisse dieser Studie bestätigen die im Leitfaden der Deutschen Bahn AG [15] getroffene Schlussfolgerung und zeigen, dass die im

Labor untersuchte Erschütterungsdifferenz von 25%-Erhöhung als Laborunterschiedsschwelle, d.h. als untere Grenze der Wahrnehmung zu verstehen ist.

Die Anwendbarkeit dieser Untersuchung wird auch durch das Bundesverwaltungsgericht wie folgt bestätigt [16]: "Die Übertragbarkeit der so gefundenen Wahrnehmbarkeitsschwelle auf den für die Frage der Zumutbarkeit von Erschütterungen entscheidenden Anhaltswert A ist undenklich. Die Untersuchung bezieht sich zwar auf die Bewertung der maximalen Schwingstärke KB_{FTr}, während die Beurteilungs-Schwingstärke KB_{FTr}, die mit dem genannten Anhaltswert korreliert, nicht unmittelbar Gegenstand der Versuchsreiche war. Beide Werte sind aber eng miteinander verknüpft, da die Beurteilungs-Schwingstärke KB_{Tr} aus einem gewichteten Mittelwert der in der Beurteilungszeit auftretenden Erschütterungs immissionen gebildet wird."

4.3 Sekundärluftschall

Durch die durch den Schienenverkehr hervorgerufenen Erschütterungen innerhalb der Ge bäude können durch die Anregung der Raumbegrenzungsflächen und der dadurch bedingten Schallabstrahlung Schallimmissionen in Form von Sekundärluftschall auftreten.

Bei oberirdisch geführten Strecken, wie es in der vorliegenden Situation der Fall ist, liegen die Anteile des Sekundärluftschalls in der Regel deutlich unterhalb der Immissionen durch direkt einfallenden Luftschall.

Innerhalb einer umfangreichen Studie [12] zum Sekundärluftschall wurde aus einer Vielzahl von Messungen ein empirischer Zusammenhang zwischen dem Schwingschnellepegel sowie dem Sekundärluftschallpegel ermittelt.

Dieser Zusammenhang ist im Wesentlichen abhängig von der jeweiligen Bauweise der Häuser. So ergaben sich z.B. für Häuser mit Betondecken andere Abhängigkeiten zwischen Sekundärluftschall und Erschütterungen als für den Fall von Häusern mit Holzbalkendecken.

Eine messtechnische Erfassung des sekundären Luftschallanteils bei oberirdisch ver laufenden Strecken ist, da gleichzeitig direkt einfallender Luftschall auftritt, in der Regel nicht möglich. Ein solch messtechnischer Nachweis wäre nur bei einem entsprechend großen Abstand von Sekundärluftschallpegel zum direkten Luftschall möglich. Dies ist z.B. möglich, wenn eine ausreichende Schalldämmung der Fassade (Massivbauweise ohne Fenster) eines Messraums vorliegt. In solchen Fällen ist in der Regel der Sekundärluftschall bei Zugdurch fahrten auch deutlich wahrzunehmen.

Für die Beurteilung der Sekundärluftschallpegel aus Bahnbetrieb existieren keine verbind lichen Normen und Regelwerke. Eine aktuelle Rechtsverordnung, die sich mit zulässigen Innenraumpegeln im Zusammenhang mit der Dimensionierung von passiven Lärmschutz

maßnahmen beschäftigt, ist die 24. Verordnung zur Durchführung des Bundes-Immissions schutzgesetzes.

Aus den Regularien der 24. BImSchV lassen sich als Zumutbarkeitsschwelle mittlere Innen raumpegel von 40 dB(A) (tags) für Wohnräume und 30 dB(A) (nachts) für Schlafräume ab leiten. Hierbei erfolgt keine Unterscheidung hinsichtlich der Gebietsnutzung. Das Bundes verwaltungsgericht legt in seinem Urteil vom 21.12.2010[16] diese Vorgehensweise ebenfalls nahe: "Ein spezielles Regelwerk zur Bestimmung der Zumutbarkeit beim sekundären Luftschall gibt es bislang nicht. Zur Schließung dieser Lücke ist auf Regelwerke zurückzu greifen, die auf von der Immissionscharakteristik vergleichbare Sachlagen zugeschnitten sind. Dabei ist in erster Linie dem Umstand Rechnung zu tragen, dass es sich bei dem hier auftretenden sekundären Luftschall um einen verkehrsinduzierten Lärm handelt. Das legt eine Orientierung an den Vorgaben der auf öffentliche Verkehrsanlagen bezogenen 24. BImSchV nahe...."

Weiterhin heißt es in dem Urteil vom Bundesverwaltungsgericht vom 21.12.2010 zum Schienenbonus: "Auch die Anwendung eines Schienenbonus, der in Höhe von 5 dB(A) vor dem Vergleich mit dem höchstzulässigen Innenpegel von den zu ermittelnden Luftschall pegel angesetzt wird ..., ist von Rechtswegen nicht zu beanstanden "

5 Erschütterungsmessungen

5.1 Ort und Zeit der Messungen

Die weitergehende Erschütterungsmessung wurde am 06.11.2013 auf dem Bebauungsplangebiet durchgeführt. Eine detaillierte Beschreibung der Messumgebung und des Messaufbaus ist in den Anhängen 1.1-4 dargestellt.

Die Messpunkte MP1.1 – MP1.3 sind mit den Messpunkten aus der Ausbreitungsmessung vom 13.02.2013 identisch. Die Dokumentation und Auswertung der Messung vom 13.02.2013 ist [20] zu entnehmen.

Die Messpunktpositionsgruppe MP2.1 - MP2.3 befindt sich über einem Sanierungsbereich (vgl. Anlage 4.3 bzw.[19])

5.2 Messgeräte

Die Erschütterungsmessungen wurden entsprechend der DIN 4150, Teil 2, in Verbindung mit DIN 45669, Teil 1 [6] und Teil 2 [7] sowie dem DB-Leitfaden zum Erschütterungs- und Körperschallschutz [15] durchgeführt.

Die Bodenmesspunkte werden gemäß DIN 45669 mittels Erdspießen an den Boden ge koppelt. Die Lage der einzelnen Messorte ist in den Anhängen 1.1-4 im Detail wiedergegeben.

Die Erschütterungsimmissionen wurden mittels Geophonen (Schwingungsmesser nach DIN 45669 A3HV 315/1) mit einem computergestützten Messsystem der Firma M. Beitzer Mess technik (System 9000 bzw. System 9800) aufgezeichnet.

Die Frequenzanalysen erfolgten mittels der Auswertesoftware (System 9000 bzw. System 9800) der Firma M. Beitzer Messtechnik.

5.3 Messdurchführung

Während der Messungen wurden die Erschütterungsanregungen durch den regulären Zugbetrieb registriert. Es wurde das befahrene Gleis, und die Wagenanzahl sowie ggf. Be sonderheiten / Auffälligkeiten erfasst.

Während des Messtages verkehrten ausschließlich Güterzüge auf der Strecke 2324, da die Reaktivierung als S-Bahnstrecke noch nicht vollzogen ist. In der späteren Prognose kann jedoch auf Emissionsspektren aus vergleichbaren Messungen zurückgegriffen werden.

Da zwei Messsysteme eingesetzt wurden, konnten die Erschütterungsimmissionen an je zwei Messpositionsgruppen parallel für die gleichen Zugvorbeifahrten gemessen werden. Parallel gemessen wurde:

- an Messpositionen MP1.x und MP2.x
- an Messpositionen MP2.x und MP3.x
- an Messpositionen MP2.x und MP4.x

5.4 Auswertung der Erschütterungsmessungen

Die Auswertung der Erschütterungsimmissionen erfolgt gemäß DIN 4150 Teil 2 [7] beziehungsweise dem DB-Leitfaden zum Erschütterungs- und Körperschallschutz[15].

Die einzelnen Messergebnisse für die vier Messpositionsgruppen ist in den Anlagen 3.1 - 3.4 dargestellt.

Die erste Reihe für Wohnbebauung ist nach dem vorliegenden Bebauungsplanentwurf[18] in 25 – 35 m Entfernung zum nächstgelegenen Gleis geplant. Dieser Entfernung entsprechen die Messpositionen MP1.2, MP2.2 und MP3.2; die in [20] dargestellte Prognose beruht auf Messungen an MP1.2.

Die am 06.11.2013 am Messpunkt MP3.2 gemessenen Erschütterungen sind ähnlich wie die am Messpunkt MP1.2 gemessenen Erschütterungen (vgl. Anlagen 3.1 und 3.3); an Messposition MP2.2 wurden etwas höhere Erschütterungsimmissionen gemessen. Ursache hierfür können durchaus die anderen Bodenverhältnisse am Ort MP2.2 sein.

Als Vorbereitung der Prognoseberechnung wurden zudem Frequenzanalysen der gemessenen Erschütterungssignale durchgeführt. Hiermit können dann einerseits die zu künftigen Immissionen auf dem Plangebiet prognostiziert werden.

Andererseits lassen sich aus der Diffferenz der Frequenzspektren an den jeweiligen drei Messpositionen MPx.1 – MPx.3 die Weiterleitungseigenschaften für Erschütterungen im Erdboden im Bereich der entsprechenden Messpositionsgruppe bestimmen.

An den Messpositonen MP2.x und MP3.x wurde hierbei eine andere Bodendämpfung als an der Position MP1.x festgestellt; insbesondere der Übergang vom gewachsenen Erdboden in Bahndammnähe (Messpunkte MP2.1 und MP3.1) in den Bereich der Bauschuttverfüllung (MP2.2-3 und MP3.2-3) verhält sich anders als an Position MP1.x. Bei Messpositionsgruppe MP3.x befindet hier auch eine kleine Böschung, die das Weiterleitungsverhalten beeinflusst.

6 Auswerte- und Prognoseverfahren

6.1 Einflussgrößen für Erschütterungen

Maßgeblich für die Höhe der Erschütterungsimmissionen ist die Höhe der Emission und der Abstand der zu betrachtenden Gebäude zu den Bahngleisen. Weitere Einflussgrößen sind:

- die Bodenbeschaffenheit auf dem Übertragungsweg,
- die Bauweise der Gebäude,
- die gefahrene Geschwindigkeit,
- der Zustand der Gleise,
- das eingesetzte Wagenmaterial.

Beim Einfluss des Abstandes des zu betrachtenden Gebäudes von den Bahngleisen ist in der Regel bei einer mehrgleisigen Strecke davon auszugehen, dass je näher das Gebäude an der Bahntrasse steht, desto größer werden die Unterschiede zwischen den Immissionen aus den einzelnen Gleisen.

Vergrößert sich der Abstand von der Trasse, so gleichen sich die Immissionen aus den einzelnen Gleisen an, da der Einfluss der relativen Abstandsunterschiede gegenüber dem Gesamtabstand an Relevanz verliert.

Die Bodenbeschaffenheit auf dem Übertragungsweg sowie die Bauweise des jeweiligen Gebäudes haben bei der Prognose von Erschütterungen meist einen schwer abschätzbaren Einfluss. Um diese Unsicherheit zu umgehen, wurden im Rahmen von Bestandsmessungen die spezifischen Übertragungsfunktionen in einem Vergleichsgebäude (Musterhaus) mess technisch erfasst und den weiteren Untersuchungen zugrunde gelegt. In Fällen, bei denen keine Messungen der Ausbreitungsbedingungen vor Ort möglich waren, wurden theoretische Ansätze aus der Literatur oder den Messungen der anderen Gebäude herangezogen.

Die gefahrene Geschwindigkeit beeinflusst ebenfalls die Höhe der Erschütterungs immissionen. Hierbei verschiebt sich jedoch besonders die spektrale Zusammensetzung der Erschütterungsanregung. So kann in speziellen Fällen auch eine Minderung oder zumindest keine Verschlechterung der Erschütterungsimmissionen bei gesteigerter Geschwindigkeit auftreten, wenn zum Beispiel bei einer geringeren Streckengeschwindigkeit die Erschütterungsimmissionen durch die Anregung der Gebäudedecken, innerhalb deren Resonanzfrequenz geprägt wird. Bei veränderten Streckengeschwindigkeiten kommt es zu einer Verschiebung des Anregespektrums und somit u. U. auch zu einer Anregung außerhalb von Deckenresonanzen.

Bei einem Vergleich der Vorbelastung mit der Prognose werden jeweils die gleichen An nahmen des Wagenmaterials getroffen, um mögliche Materialverbesserungen nicht zu Un gunsten der Betroffenen auszulegen.

6.2 Beschreibung der Methodik

Mittels der messtechnisch erfassten Emissionen bzw. Immissionen sowie der daraus berechneten Übertragungsfunktionen erfolgte die Prognose der in den geplanten Gebäuden im Plangebiet zu erwartenden Erschütterungsimmissionen.

Dafür wurden im ersten Schritt für die Zugvorbeifahrten Frequenzanalysen (Terz-F-max) durchgeführt und diese anschließend für jedes Gleis getrennt energetisch gemittelt. Diese gemittelten Terz-F-max Frequenzspektren für die Messpunkte der Freifeldmessung gehen als Eingangsdaten in die Prognose ein.

Durch die Verwendung von Terz-F-Max Spektren liegen die berechneten Prognosen auf der sicheren Seite, da für diese Spektren zu jeder Terz der während einer Vorbeifahrt maximal aufgetretene Messwert zugeordnet wird. Dies tritt so in der Realität allgemein nicht auf und führt daher bei der Prognose in der Regel zu höheren Werten.

Aus den gemessenen und spektral ausgewerteten Erschütterungssignalen an den drei Messpunkten einer Messpunktpositionsgruppe wird eine Übertragungsfunktion für die Ausbreitung im Erdboden an der jeweiligen Stelle ermittelt.

Für die Prognose der Erschütterungen in den geplanten Gebäuden im Plangebiet werden einerseits die im Musterhaus des angrenzenden Neubaugebietes "Felderhof (I)" gemessene Übertragungsfunktion vom Bodenmesspunkt auf die Geschossdecken [20] als auch typische Übertragungsfunktionen für Betondecken mit Deckeneigenfrequenzen von 25 und 40 Hz (übliche Massivbauweise) aus der Literatur [15] herangezogen. Höhere Deckeneigenfrequenzen sind bzgl. der Erschütterungsimmissionen unkritischer, da die von Güterzug vorbeifahrten verursachten Erschütterungen meist niederfrequent sind und die hoch frequenten Anteile durch die Ausbreitung im Boden stärker gedämpft werden.

Des Weiteren wurde eine Geschwindigkeitskorrektur von der am 13.02.2013 gemessenen auf die angegebene zugelassene Streckengeschwindigkeit der Güterzüge von 90km/h durchgeführt.

Für die Prognose der durch die geplante Reaktivierung des Schienenpersonennahverkehrs verursachten Erschütterungen kann nicht auf Messungen an der Strecke 2324 zurückgegriffen werden, da hier derzeit keine S-Bahnen verkehren. Deshalb wurde für die Vorbei fahrten ein Erschütterungsemissionsspektrum einer typischen, an Rhein und Ruhr ein

gesetzten S-Bahn (Baureihe 425) zugrunde gelegt, welches in einem früheren Projekt an mehreren Orten in jeweils 8 m Entfernung zum Gleis (ebenerdige Lage) gemessen worden ist. Die betrachteten Geschwindigkeiten lagen dabei etwa 100km/h. Eine Geschwindigkeitsanpassung auf die zulässige Streckenhöchstgeschwindigkeit für S-Bahnen erfolgt in der Prognose.

Es können sich in den detailliert dargestellten Berechnungen in den Anlagen scheinbare Rechenfehler um 0,1 dB in den spektralen Darstellungen ergeben. Diese rühren aus der Tatsache, das intern mit genaueren Zahlen gerechnet wurde, als in den auf eine Nachkommastelle gerundeten Werten, welche in den Anlagen dargestellt werden.

Weiterhin können sich durch das eingesetzte spektrale Prognoseverfahren Unterschiede in den berechneten Beurteilungsschwingstärken KB_{FTr} für die rechnerische Nachbildung der Messsituation gegenüber der aus den Messwerten direkt berechneten Beurteilungsschwingstärke KB_{FTr} ergeben. Ursächlich hierfür ist der Einsatz von Terz-F-Max Spektren welche in der Regel eine Prognose auf der sicheren Seite ergeben (siehe oben).

Im nachfolgenden Kapitel ist das zusammengefasste Ergebnis der Erschütterungsprognose wiedergegeben. Die detaillierten Rechenergebnisse sind im Anhang dokumentiert.

6.3 Prognoseunsicherheit

Die generelle messtechnische Unsicherheit bei der Ermittlung von KB-Werten kann gemäß DIN 4150, Teil 2 [4] mit 15 % beziffert werden. Die zur Prognose herangezogenen Über tragungsfunktionen für den Übergang vom Fundament auf die Decken im Gebäude sowie die Geschwindigkeitskorrektur sind ebenfalls mit Unsicherheiten behaftet.

Als Eingangsdaten für die Prognose werden jedoch Emissionsspektren herangezogen, welche die Zugvorbeifahrten mit den höchsten Erschütterungsimmissionen verursacht haben. Im Mittel aller Zugvorbeifahrten wird eine niedrigere Erschütterungsimmission auf treten. Weiterhin wurden für die Prognose sogenannte Terz-F-Max-Spektren verwendet[15], welche in der Regel bis zu 10 dB über dem gemittelten Emissionsspektrum liegen. Eine Prognoseunsicherheit von 20 % bewirkt eine Pegelunsicherheit, die deutlich geringer (< 2 dB) ist. Erfahrungsgemäß werden daher die zukünftig zu erwartenden Erschütterungen tendenziell konservativ überschätzt.

7 Prognose der Erschütterungsimmissionen

7.1 Erste Baureihe (minimaler Abstand zum Gleis: 25 m)

Für die Prognose der Erschütterungsimmissionen in einem Gebäude der ersten Baureihe können die an den Messpunkten MP1.2, MP2.2 und MP3.2 gemessenen Emissionsspektren herangezogen werden.

Die stärksten Erschütterungen wurden an Messposition MP2.2 gemessen. Anlage 2.1-2.3 gibt die sich aus der Prognoseberechnung für die Erschütterungsimmissionen in einem Gebäude in 30 m Abstand zu Bahngleis 1 im Bereich der Messpositionsgruppe MP2.x er gebenden Beurteilungsschwingstärken KB_{FTr} wieder. Dieser Prognoserechnung zufolge ist wie bei der in [20] dargestellten und auf Messungen an Messposition MP1.2 beruhenden Prognoseberechnung grundsätzlich nicht auszuschließen, dass die Anhaltswerte aus der DIN 4150-2 für Wohngebiete überschritten werden (z. B. bei Verwendung der Übertragungs funktionen aus der Literatur [15] für übliche Deckeneigenfrequenzen (25Hz, 40 Hz)).

Bei Ergreifung geeigneter Maßnahmen – z.B. einer Bauweise wie im Musterhaus "Meygner Busch 94" oder bei Beschränkung auf Deckeneigenfrequenzen von über 100Hz – kann jedoch auch der Prognoseberechnung für die Messposition MP2.2 zufolge eine Einhaltung der Anhaltswerte aus DIN 4150-2 für Wohngebiete erreicht werden.

Die für Gebäude am Ort der an Messposition MP2.2 prognostizierten Erschütterungs immissionen sind geringfügig höher als für den Ort der Messposition MP1.2; die berechnete Einhaltung der Anhaltswerte für Wohngebiete im Fall der Bauweise wie am "Meygner Busch 94" ist noch stets gegeben. Daher sind neben der Wahl einer Bauweise wie im Musterhaus die Anwendung verschiedener weiterer schwingungsmindernder Maßnahmen beim Bau der Gebäude, welche sich in der Vergangenheit sowohl praktikabel wie effektiv erwiesen haben, zu empfehlen. Durch folgende Maßnahmen lassen sich beispielsweise die zu erwartenden Erschütterungsimmissionen weiter (aber nur in beschränktem Maße) vermindern; die Wirkung dieser Maßnahmen ist jedoch im Detail schwer quantitativ fassbar:

- Seitenwandentkopplung der Keller- / Untergeschosswände, z.B. mit luftgefüllter Trennschicht oder Sandverfüllung
- geeignete Bodenaufbauten (dicker schwimmender Estrich mit weicher Trittschalł dämmung mit dynamischer Steifigkeit ≤ 10 MN/m³)
- Bodenaustausch im Ausbreitungsweg durch natürlichen Boden ohne Baustoffreste

Zur Berücksichtigung der angeführten Einschränkungen im Bezug auf den Erschütterungs schutz wurde in [20] eine wie folgt lautende textliche Festsetzung im Bebauungsplan vor geschlagen:

"Das Plangebiet ist in Bezug auf Erschütterungen (Schienenverkehr) vorbelastet. Inner halb der Baugebiete WA 6, WA 10, WA 18 und WA 22 sind bei Aufenthaltsräumen Deckeneigenfrequenzen von ≥ 100 Hz nachzuweisen.

Es können Aufenthaltsräume mit geringeren Deckeneigenfrequenzen <100 Hz zugelassen werden, soweit durch einen Sachverständigen für Erschütterungsschutz nach gewiesen wird, dass zur Einhaltung des sich aus der DIN4150-2 ergebenden Schutzziels andere Maßnahmen (z.B. geeignete steife Gebäudekonstruktionen, elastische Gebäude lagerungen oder Maßnahmen im Ausbreitungsweg der Erschütterungen) ausreichen."

Auch nach der weitergehenden Erschütterungsuntersuchung wäre dieser Festsetzung nichts hinzuzufügen.

Tabelle 7.1: Prognostizierte Erschütterungsimmissionen in einem Gebäude im Abstand von 30 m zum Gleis am Ort der Messposition MP2.2

	KB _{FTr}		Ar	WA)	$KB_{FTr} \le A_{r(WA)}$	
	Tag	Nacht	Tag	Nacht	Tag	Nacht
1. OG vorne (gemessen)	0,053	0,05	0,07	0,05	JA	JA
1. OG hinten (gemessen)	0,044	0,041	0,07	0,05	JA	JA
25 Hz Betondecke	0,089	0,084	0,07	0,05	NEIN	NEIN
40 Hz Betondecke	0,106	0,101	0,07	0,05	NEIN	NEIN

7.2 Zweite Baureihe (Abstand zum Gleis > 50 m)

Die an den Messpunkten MP1.3, MP2.3 und MP3.3 gemessenen Erschütterungsimmissionen unterscheiden sich nur innerhalb der Messunsicherheit. Wie in [20] dargestellt, ist in dieser Entfernung zum nächstgelegenen Gleisfür Gebäude mit einem Abstand größer 50 m von den Gleisen nicht mit einer Überschreitung der Anhaltswerte ausDIN 4150, Teil 2 [4] für Wohngebiete zu rechnen.

Zur Information sind in Anlage 2.4 – 2.6 die aufgrund der Messungen an Messposition MP2.3 in 50 m Entfernung zum nächstgelegenen Gleis prognostizierten Erschütterungsimmissionen dargestellt.

Ebenfalls wurde eine Prognose der Erschütterungsimmissionen in den jenseits der Straße "Zur Spiegelglasfabrik" geplanten Wohngebäuden auf Grundlage der an der Messposition MP4.1 gemessenen Emissionsspektren durchgeführt (vgl. Anlage 2.7 – 2.9). Auch hier ist der Prognoseberechnung zufolge nicht mit einer Überschreitung der Anhaltswerte aus DIN 4150, Teil 2 [4] für Wohngebiete zu rechnen.

Tabelle 7.2: Prognostizierte Erschütterungsimmissionen in einem Gebäude im Abstand von 50 m zum Gleis am Ort der Messposition MP2.3

	KB _{FTr}		A _{r(WA)}		$KB_{FTr} \leftarrow A_{r(WA)}$	
	Tag	Nacht	Tag	Nacht	Tag	Nacht
1. OG vorne (gemessen)	0,043	0,041	0,07	0,05	JA	JA
1. OG hinten (gemessen)	0,036	0,034	0,07	0,05	JA	JA
25 Hz Betondecke	0,05	0,047	0,07	0,05	JA	JA
40 Hz Betondecke	0,054	0,051	0,07	0,05	JA	JA

Tabelle 7.3: Prognostizierte Erschütterungsimmissionen in einem Gebäude jenseits der Straße "Zur Spiegelglasfabrik" am Ort der Messposition MP4.1

	KB _{FTr}		A _{r(}	WA)	$KB_{FTr} \leq A_{r(WA)}$	
	Tag	Nacht	Tag	Nacht	Tag	Nacht
1. OG vorne (gemessen)	0,021	0,019	0,07	0,05	JA	JA
1. OG hinten (gemessen)	0,018	0,016	0,07	0,05	JA	JA
25 Hz Betondecke	0,025	0,022	0,07	0,05	JA	JA
40 Hz Betondecke	0,024	0,022	0,07	0,05	JA	JA

8 Berechnung und Beurteilung des sekundären Luftschallpegels

Eine messtechnische Erfassung des sekundären Luftschallanteils bei oberirdisch ver laufenden Strecken ist, da gleichzeitig direkt einfallender (primärer) Luftschall auftritt, in der Regel nicht möglich. Ein solch messtechnischer Nachweis wäre nur bei einem entsprechend großen Abstand von Sekundärluftschallpegel zum direkt über die Gebäudefassade ein fallenden Luftschall möglich. Dies ist z.B. möglich, wenn eine ausreichende Schalldämmung der Fassade (Massivbauweise ohne Fenster) eines Messraums vorliegt.

Durch Anwendung des in Kapitel 4.3 erwähnten empirischen Zusammenhangs zwischen auftretendem Schwingschnellepegel und dem Sekundärluftschallpegel konnten die der zeitigen und die nach dem Ausbau zu erwartenden sekundären Luftschallimmissionen analog zu der Prognose der auftretenden Erschütterungsimmissionen ermittelt werden.

Aus den Regularien der 24. BImSchV lassen sich mittlere Innenraumpegel von 40 dB(A) (tags) für Wohnräume und 30 dB(A) (nachts) für Schlafräume als Zumutbarkeitsschwelle ab leiten. Hierbei erfolgt keine Unterscheidung hinsichtlich der Gebietsnutzung.

In der nachfolgenden Tabelle 8.1 sind die prognostizierten Sekundärluftschallimmissionen für die Gebäude in 30 m Entfernung zum Gleis1 (erste Baureihe), basierend auf den Messungen an Messposition MP2.2, aufgeführt. Es ist zu beachten, dass die in den Anlagen aufgeführten Sekundärluftschallpegel noch nicht den Schienenbonus von 5 dB enthalten; in der nachfolgenden Tabelle 8.1 wurde der Schienenbonus für die abschließende Beurteilung berücksichtigt.

Bei Berücksichtigung des Schienenbonus ist den in Anlagen 2.1 - 2.4 und [20] dokumentierten Prognoseberechnungen zufolge also davon auszugehen, dass die Anforderungen an die sekundären Luftschallimmissionen eingehalten werden. Im Hinblick auf den Wohnkomfort ist es jedoch wünschenswert, dass die Zumutbarkeitsschwellen von 40 dB(A) tags und 30 dB(A) nachts um wenigstens 5 dB unterschritten werden. Daher wird empfohlen, in den Gebäuden der ersten Baureihe mindernde Maßnahmen zu ergreifen, wie z. B. der Einbau eines besonders schweren schwimmenden Estrichs, welcher eine höhere Dämmwirkung als der im berücksichtigten Gebäude "Meygner Busch 94" verwendete Bodenaufbau aufweist. Die Geschossdecken in "Meygner Busch 94" sind mit einem 5 cm dicken Estrich auf einer Trittschalldämmung mit dynamischer Steifigkeit 20MN/m³ versehen; für die geplanten Gebäude ist eine Estrichdicke von mindestens 65mm mit weicher Trittschalldämmung mit dynamischer Steifigkeit ≤ 10 MN/m³ zu empfehlen. Diese Maßnahme ist im Zuge der zu ergreifenden Maßnahmen zur Verringerung der Erschütterungsimmissionen (vgl. Kapitel 7.1) ohnehin sinnvoll.

In den Gebäuden mit mehr als 50 m Abstand zu Gleis 1 ist auch den Berechnungen für den Ort der Messposition MP2.3 zufolge eine Unterschreitung der Grenzwerte für die sekundären Luftschallimmissionen von über 5 dB zu erwarten (sieheTabelle 7.2).

Tabelle 8.1: Prognostizierte sekundären Luftschallimmissionen im Gebäude**im Abstand von 30 m** zum Gleis am Ort der Messposition MP2.2

	L _r [dB(A)]		A _r [dB(A)]		Einhaltung	
	Tag	Nacht	Tag	Nacht	Tag	Nacht
1. OG vorne (gemessen)	27	26	40	30	JA	JA
1. OG hinten (gemessen)	26	26	40	30	JA	JA
25 Hz Betondecke	26	25	40	30	JA	JA
40 Hz Betondecke	28	27	40	30	JA	JA

Tabelle 8.2: Prognostizierte sekundären Luftschallimmissionen im Gebäude**im Abstand von 50 m** zum Gleis am Ort der Messposition MP2.3

	L _r [dB(A)]		A _r [dB(A)]		Einhaltung	
	Tag	Nacht	Tag	Nacht	Tag	Nacht
1. OG vorne (gemessen)	23	22	40	30	JA	JA
1. OG hinten (gemessen)	23	22	40	30	JA	JA
25 Hz Betondecke	21	20	40	30	JA	JA
40 Hz Betondecke	22	21	40	30	JA	JA

9 Zusammenfassung

Im Rahmen der Überplanung des Bebauungsplanes SW 263 am Felderhof in Ratingen ist eine Festsetzung als allgemeines Wohngebiet (WA) vorgesehen. Da das Gebiet direkt an die Strecke 2324 der Deutschen Bahn, welche derzeit stark von Güterzügen frequentiert ist, an grenzt, war die Durchführung einer erschütterungstechnischen Untersuchung notwendig.

Im Rahmen der erschütterungstechnischen Untersuchung wurde am 13.02.2013 eine Freifeldmessung auf dem Plangebiet sowie eine Messung im Gebäude "Meygner Busch 94", dem Musterhaus des direkt südlich angrenzenden Neubaugebietes "Felderhof (I)" durchgeführt [20].

Da innerhalb des Bebauungsplangebietes verschiedene Bodenzusammensetzungen vor liegen, wurden am 06.11.2013 weitergehende Erschütterungsmessungen auf dem Plangebiet vorgenommen.

Auf der Grundlage dieser Messungen wurde eine Prognose der zu erwartenden Erschütterungsimmissionen und sekundären Luftschallimmissionen vorgenommen.

Bei der weitergehenden Erschütterungsmessung am 06.11.2013 wurden an einem der Messorte auf dem Plangebiet im Bereich der Bauschuttverfüllung höhere Erschütterungs immissionen im Vergleich zur Messort vom 13.02.2013 gemessen.

An den grundsätzlichen Schlussfolgerungen aus der ersten Erschütterungsuntersuchung [20] ergeben sich jedoch auch aus den weitergehenden Messungen keine Änderungen:

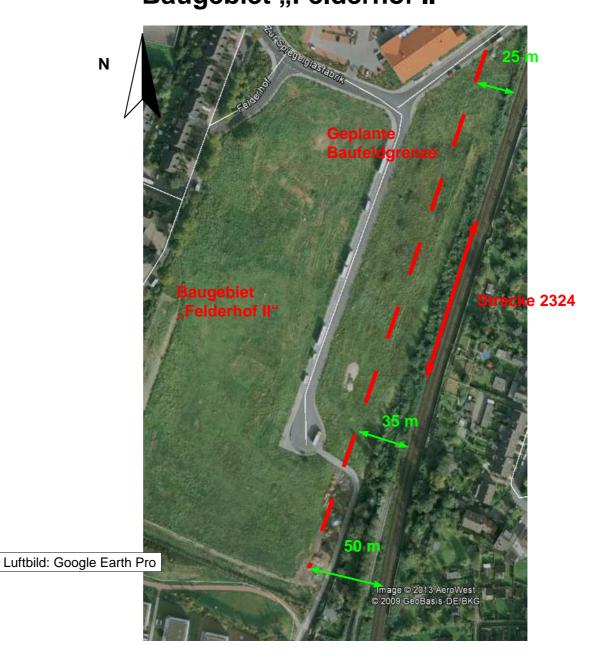
Es ist den Messungen und den dokumentierten Prognoseberechnungen zufolge prinzipiell nicht auszuschließen, dass die Anhaltswerte für Erschütterungsimmissionen nach DIN 4150-2 für Wohngebiete sowie die Anforderungen an die sekundären Luftschallimmissionen nach der 24. BlmSchV in der ersten Baureihe (Baugebiete WA 6, WA 10, WA 18 und WA 22) überschritten werden.

Es ist jedoch auch den auf den weitergehenden Messungen basierenden Prognoseberechnungen zufolge möglich, durch die Ergreifung geeigneter Maßnahmen (wie z. B. einer Bauweise ähnlich des Musterhauses "Meygner Busch 94" und der Einbringung eines besonders schweren schwimmenden Estrichs), auch in der geplanten ersten Reihe der Wohnbebauung eine Einhaltung der o.a. Anforderungen zu erreichen. Der in [20] empfohlenen textlichen Festsetzung im Bebauungsplan bzgl. der erschütterungstechnischen Vorbelastung und entsprechend zu ergreifenden Maßnahmen ist demnach nichts hinzuzufügen.

Die weitergehenden Messungen in über 50 m Entfernung zu Gleis 1 sowie jenseits der Straße "Zur Spiegelglasfabrik" bestätigen, dass hier den dokumentierten Prognoseberechnungen zufolge mit einer Einhaltung der Anhaltswerte für Erschütterungsimmissionen nach DIN 4150-2 für Wohngebiete sowie der Anforderungen an die sekundären Luftschallimmissionen nach der 24. BlmSchV gerechnet werden kann.

Es ist somit zusammenfassend festzuhalten, dass bei der Errichtung von Gebäuden in der ersten Baureihe (Baugebiete WA 6, WA 10, WA 18 und WA 22) eine spezielle auf die zu errichtenden Gebäude angepasste Immissionsprognose, eventuell unter Berücksichtigung schwingungsmindernder Maßnahmen durchzuführen ist. Für die dahinter liegenden Baureihen ist diese nicht mehr erforderlich.

Dieser Bericht besteht aus 26 Seiten und 24 Anlagen.


Peutz Consult GmbH

i.V. Dipl.-Ing. Mark Bless

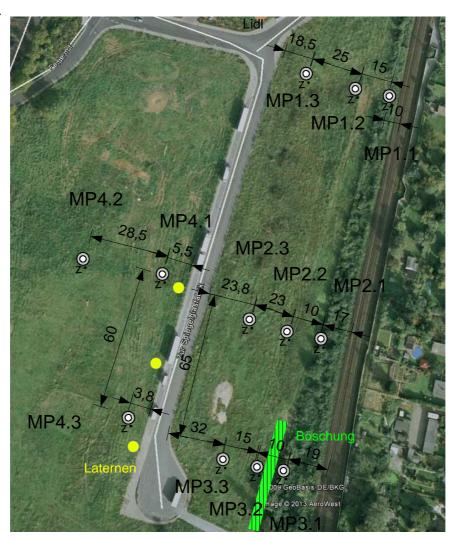
Erschütterungsmessung

Am 06.11.2013 Baugebiet "Felderhof II"

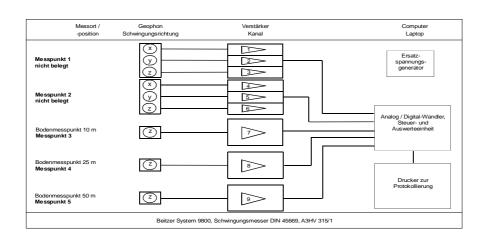
Dokumentation

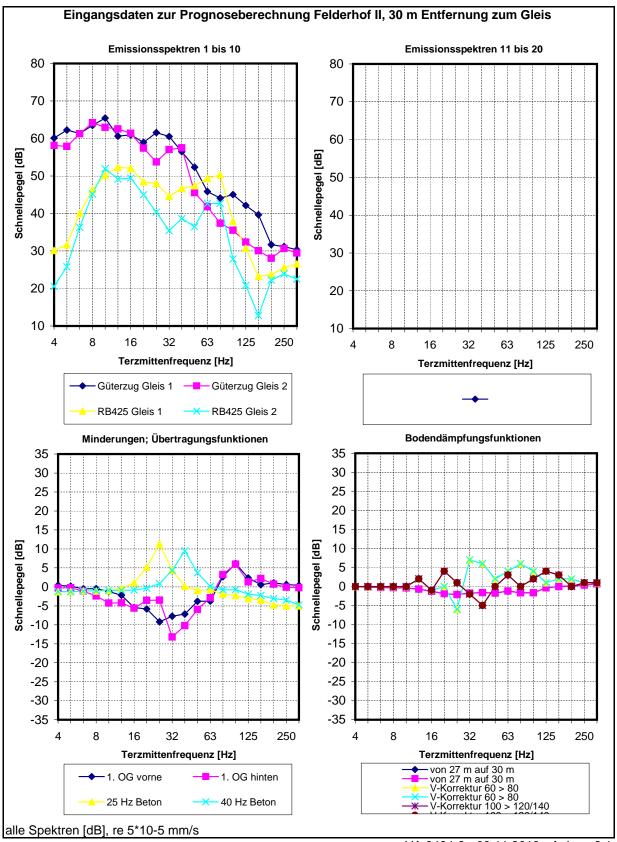
Straße / Nr.	Zur Spiegelglasfabrik
Ort	Ratingen
Gebiet (BauNVO)	WA
Gebäudeart	Reihenhäuser
Nutzung	Wohnen
Geschosszahl	3
Bauart	Massiv
Keller	wahlweise
Deckenart	Beton
Sonstiges	Geplantes Baugebiet

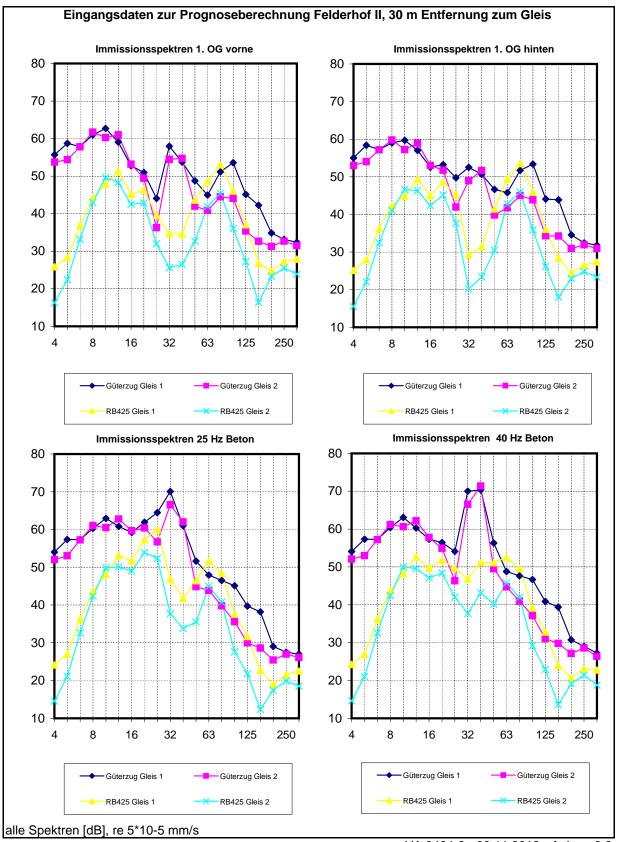
<u>Gleislage</u>

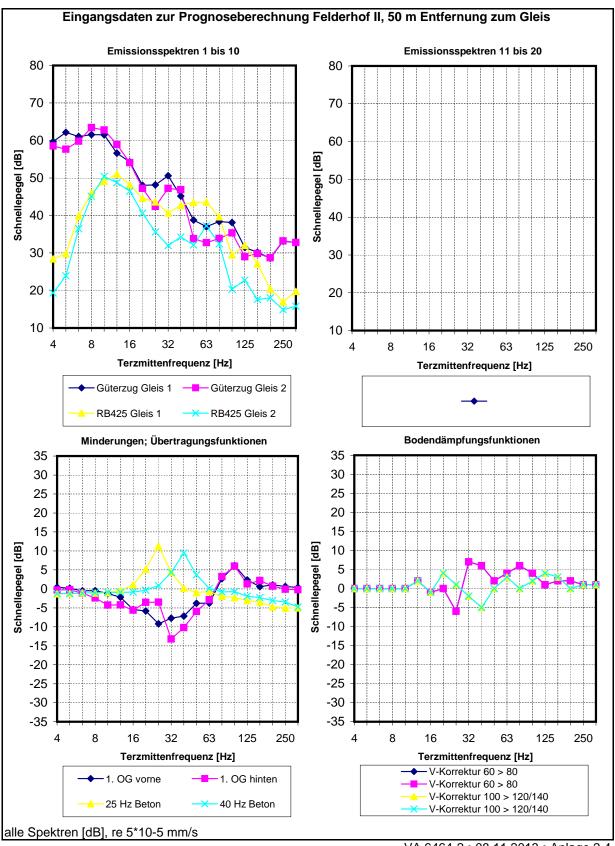

Gleis 1	Entferi	nung [m]	04	Diskton			
Gleis	IST	PLAN	Strecke	Richtung	Lage		
1	> 25	> 25	2324	Düsseldorf	ebenerdig		
2	> 29	> 29	2324	Duisburg	ebenerdig		

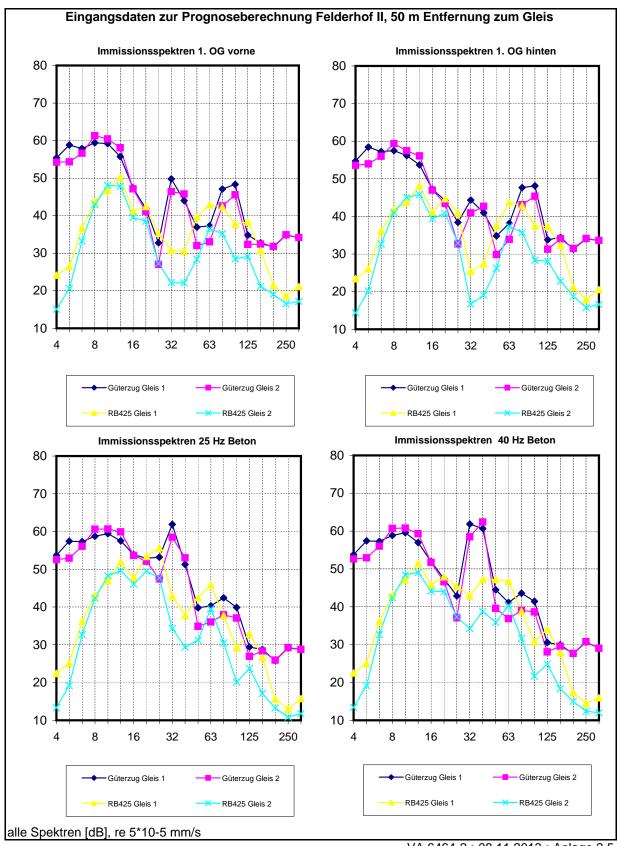
Übersicht über die Messorte


Mess- punkt Nr.	Kanäle Messsystem:	Messort	Entfernung zum Gleis	Ankopplung	Bemerkung				
MP1.1	7	Boden	10	Erdspieß					
MP2.1	8	Boden	25	Erdspieß	Messort wie in 1. Messung am 18.02.2013				
MP3.1	9	Boden	50	Erdspieß	10.02.2010				
MP2.1	8	Boden	17	Erdspieß					
MP2.2	7	Boden	27	Erdspieß	Über Sanierungsbereich (Pollerot-Linse); Bauschutt				
MP2.3	9	Boden	(Pollerot-						
MP3.1	7	Boden	19	Erdspieß					
MP3.2	8	Boden	29	Erdspieß	Bauschutt				
MP3.3	9	Boden	44	Erdspieß					
MP4.1	7	Boden	90	Erdspieß					
MP4.2	8	Boden	119	Erdspieß	Gelände der ehemaligen Spiegelglasfabrik				
MP4.3	9	Boden	94	Erdspieß	Opiogoigiaoiabiik				

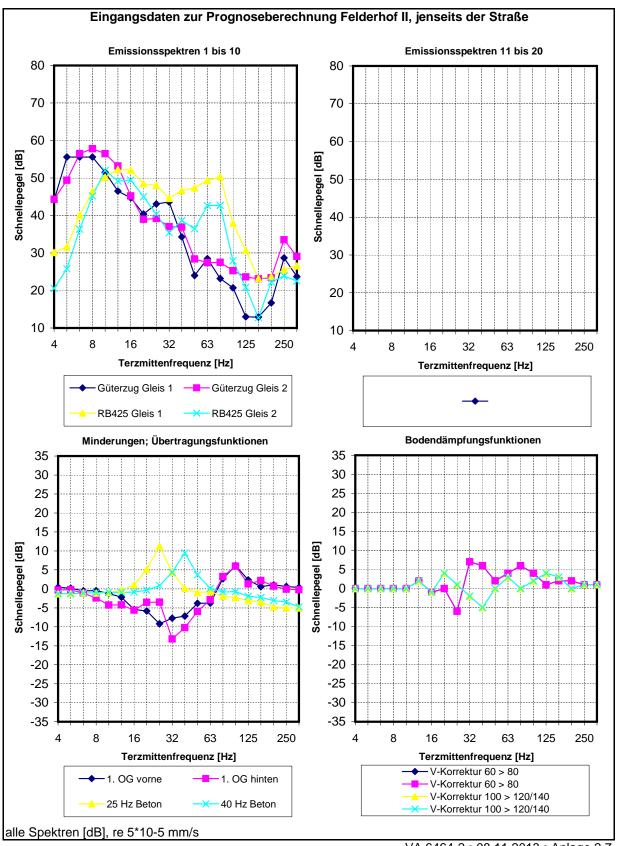

<u>Lageplan</u>

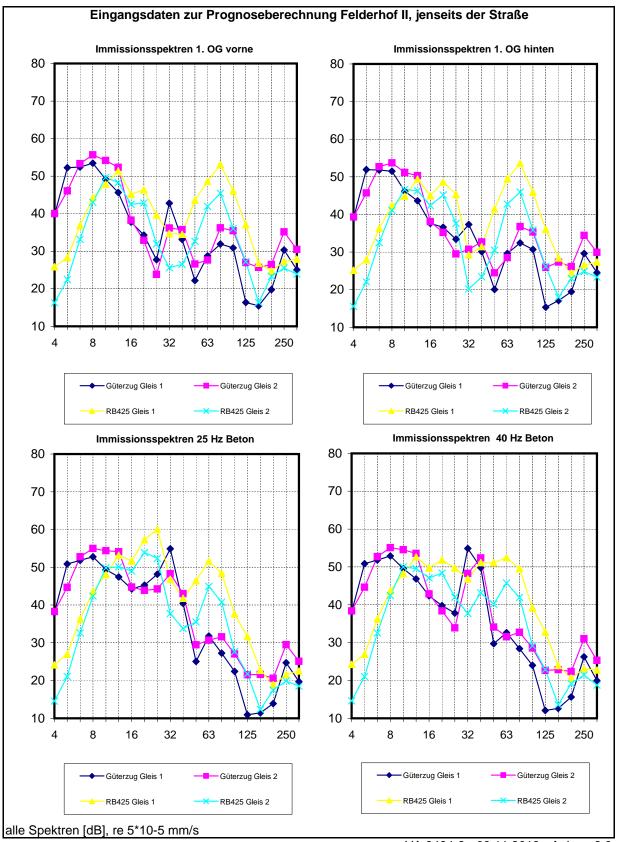

Messkette beispielhaft für Messlanze MP1.1 – MP1.3





		Р	rogno	se d	er Im	missi	onen	Feld	erhof	II, 30	m Er	ntfern	ung z	zum C	eleis							 I	
Frequenz [Hz]		4			8			16			32			63			125			250			Ereignisse Nacht
Emissionsspektren		00.4	00.0	04.4	00.5	OF 4	00.0	04.0	F0.0	04.5	00.5	F0 F	F0.0	45.0	11.1	45.0	40.0	20.7	24.7	24.0	20.0		07
Güterzug Gleis 1	54,7	60,1	62,2	61,4	63,5	65,4	60,6	61,0	59,0	61,5	60,5	56,5	52,3	45,9	44,1	45,0	42,2	39,7	31,7	31,2	30,3	82	
Güterzug Gleis 2	57,0	58,1	57,9	61,3	64,2	63,0	62,5	61,4		53,8	57,0	57,5			37,4	35,5	32,4	30,1	28,1	30,7	29,4	82	
RB425 Gleis 1	30,5		31,6	40,1	46,4	50,2	52,3	52,1	48,5	48,0	44,6	46,7	47,4		50,3	37,9	30,7		23,7	25,6	26,6	32	
RB425 Gleis 2	27,9	20,5	25,8	36,3	45,2	52,0	49,2	49,4	45,0	40,3	35,4	38,6	36,5	42,7	42,7	27,9	20,9	12,8	22,2	23,9	22,5	32	4
Berücksichtigte Geschwindigkeitskorrektur																							
V-Korrektur 60 > 80	0,0	0,0	0,0	0,0	0,0	0,0	2,0	-1,0	0,0	-6,0	7,0	6,0	2,0	4,0	6,0	4,0	1,0	2,0	2,0	1,0	1,0		
V-Korrektur 60 > 80	0,0	0,0	0,0	0,0	0,0	0,0	2,0	-1,0	0,0	-6,0	7,0	6,0	2,0	4,0	6,0	4,0	1,0	2,0	2,0	1,0	1,0		
V-Korrektur 100 > 120/140	0,0	0,0	0,0	0,0	0,0	0,0	2,0	-1,0	4,0	1,0	-2,0	-5,0	0,0	3,0	0,0	2,0	4,0	3,0	0,0	1,0	1,0		
V-Korrektur 100 > 120/140	0,0	0,0	0,0	0,0	0,0	0,0	2,0	-1,0	4,0	1,0	-2,0	-5,0	0,0	3,0	0,0	2,0	4,0	3,0	0,0	1,0	1,0		
Übertragungsfunktionen																							
1. OG vorne	0,6	0,4	0,2	-0,5	-0,5	-1,2	-2,2	-5,4	-5,8	-9,2	-7,7	-7,1	-3,8	-3,7	2,7	6,2	2,4	0,6	1,1	0,6	0,4		
1. OG hinten	0,1	-0,3	-0,2	-1,1	-2,4	-4,2	-4,2	-5,6	-3,5	-3,5	-13,2	-10,2	-6,0	-2,9	3,2	6,0	1,3	2,2	0,7	-0,1	-0,2		
25 Hz Beton	-1,5	-1,3	-1,2	-1,0	-1,1	-1,0	-0,4	1,1	5,2	11,3	4,4	0,1	-1,0	-0,7	-1,9	-2,3	-3,1	-3,5	-4,8	-5,0	-5,0		
40 Hz Beton	-1,6	-1,2	-1,3	-1,1	-1,0	-0,9	-0,9	-0,9	-0,3	0,9	4,4	9,5	3,7	0,1	-0,8	-0,7	-1,9	-2,3	-3,1	-3,5	-4,8		
Angesetzte Bodendämpfungen																							
von 27 m auf 30 m	-0,1	-0,1	-0,2	-0,3	-0,3	-0,4	-0,7	-1,3	-1,9	-2,1	-1,8	-1,6	-1,7	-1,2	-1,6	-1,6	-0,4	0,0	0,1	0,4	0,7		
von 27 m auf 30 m	-0,1	-0,1	-0,2	-0,3	-0,3	-0,4	-0,7	-1,3	-1,9	-2,1	-1,8	,		-1,2		-1,6	-0,4	0,0	0,1	0,4	0,7		
Immissionsspektren																						KB _{FTm} :	Lmax (dB(
Güterzug Gleis 1																							
1. OG vorne	55,2	60,4	62,2	60,6	62,7	63,8	59,8	53.2	51,3	44,2	58.0	53,7	48,8	44,9	51,2	53.6	45,1	42,2	34,9	33,2	32.4	0,13	40,0
1. OG hinten	54,7	59,7	61,9	59.9	60,7	60,8	57,7	53,1	53,6	49,9	52,6	50,7	,		51,7	53,4	44,1	43,9	- , -	32,4	31,8	0,11	40.0
25 Hz Beton	53,1	58,7	60,9	60,0	62,0	64,0	61,6		62,2			,	,	,	46,5	45,1	39,7		29,0		27,0	0,24	38,8
40 Hz Beton	,	,	60,8	60,0	62,1	, ,			,				,	48,8			,	,	30,7	,	27,2	0,27	40,3
Güterzug Gleis 2																							
1. OG vorne	57,4	58.4	57,9	60.5	63.4	61,4	61,7	53,7	49,7	36.5	54,5	54,7	42,0	40.9	44,5	44 O	35.4	32,6	31,3	32,7	31,5	0,12	37,1
1. OG hinten	56.9	57,7	,	59,9	61.5	- /	59,7	53,5		42,1	,	51,7	,	,	45,0	43,9	/	34,3	,	31.9	30.9	0,10	36,9
25 Hz Beton	55,4	56,7	,	59,9	62,8	61,6	63,5	60,2	,	56,9	,	62,0	,	,	39,8	35,6	,	,	25,4	27,0	26.1	0,10	37,2
40 Hz Beton	,	,	/ -	,	,	,	,	,	,	,	,	,	,	43,9 44,7	,	,	,	,	,	,	- /	0,19	39,9
RB425 Gleis 1																							
1. OG vorne	24.4	30 E	21 0	30 G	4F 0	40.0	52 1	1F 7	46.7	30.0	2/10	21 E	12 6	10 6	52 1	1G 1	27 1	26.0	2/10	27.0	27.0	0.04	22.4
	31,1	30,6	,	39,6	45,9	49,0	52,1	45,7	46,7	39,8	34,8	34,5	43,6	48,6	53,1	46,1	37,1	26,8		27,2	,	0,04	33,4
1. OG hinten	/ -	- / -	31,4	,	44,0	46,0	50,1	45,5	,	45,5	,	31,4	,	,	53,6	45,9		28,4		26,5	27,4	0,04	33,5
25 Hz Beton 40 Hz Beton			30,4 30,4	39,0 39,0	45,3 45,4	49,2 49,3	53,9 53,3		57,6 52,1	60,3 49,9	47,0 46,9	41,8 51,2		51,6 52,4	48,4 49,5	37,6 39,2	31,7 32,8	22,7 23,9		21,6 23,1	22,6 22,8	0,08 0,05	31,3 32,0
RB425 Gleis 2	•					•	•	•	,			•					•		•	•	•	,	
	20.5	21.0	2F.0	25.0	440	E0.7	40.0	42.0	42.0	20.4	2F 7	26 5	20.6	44.0	15 1	26.4	27.2	16.4	22.2	25.5	22.0	0.02	20.0
1. OG vorne														41,9								0,03	28,9
1. OG hinten														42,8								0,02	29,0
25 Hz Beton														44,9								0,04	26,9
40 Hz Beton	26,3	19,3	24,5	35,2	44,2	51,1	50,2	47,6	48,7	42,2	37,8	43,1	40,2	45,8	41,9	29,2	22,9	13,5	19,2	21,4	18,7	0,03	27,6
					1	OG			40) Hz]						1. (OG			40	Hz	
(Max-Hold, Fast)			1 00	vorne		iten	25 Hz	Reton		ton					1 00	vorne		ten	25 Hz	Reton		ton	
, ,	KB .			Nacht							1		Lr (AD	(Δ))-							Tag		
alle Spektren [dB], re 5*10-5 mm/s	KB _{FTr} :		_		_		_		_				Lr (dB	(^)).									
	7			0,050					0,100	0,101	J		Delists	a base of							32,5		
		-	yon KB				die Spe	ktren						n berechi		,						aeit	
	iaut DIN	4150 bi	is maxim	ai 80 Hz	nerange	ezogen.							es sich	um den i	onvsikali	scnen P	edei OHl	ν⊨ 5 dB	Schiene	enbonus			

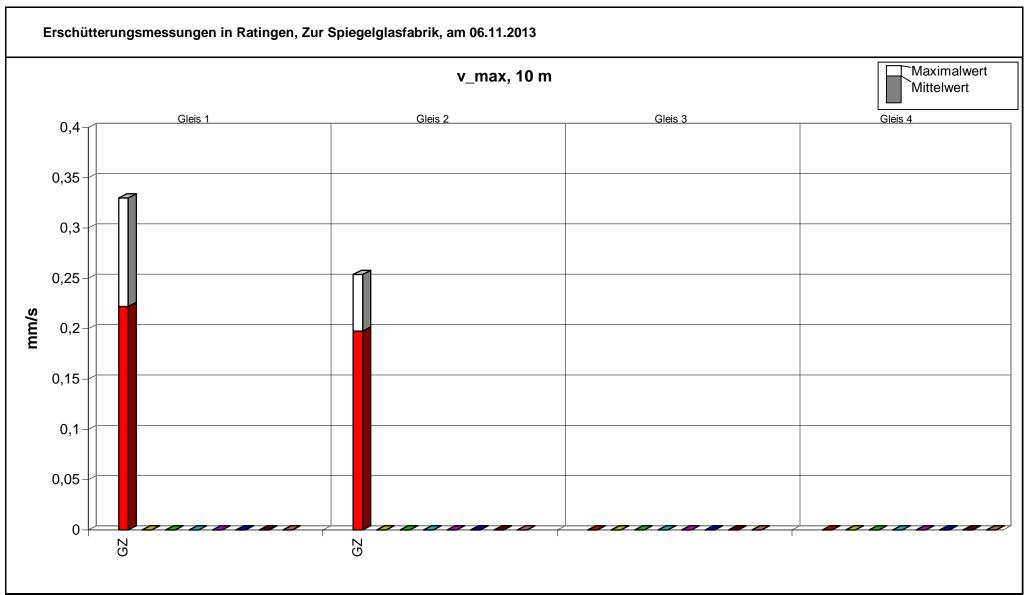



	4			8			16			32			63			125			250			Ereignisse Nacht
																					9	
54,2	59,7	62,2	61,1	61,6	61,5	56,6	54,3	48,0	48,1	50,6	45,2	38,8	37,0	38,4	38,1	31,5	30,2	28,6	33,2	32,8	82	37
57,6	58,5	57,7	59,8	63,4	62,8	59,0	54,1	47,2	42,4	47,2	46,9	33,8	32,8	33,9	35,4	29,0	29,8	28,7	33,2	32,8	82	37
29,1	28,4	29,8	39,9	45,9	49,1	51,1	48,2	44,6	43,7			43,5	43,6	39,7	29,5	32,0	27,1	20,4	17,0	19,8	32	4
25,7	19,4	23,9	36,5	45,1	50,4	48,7	46,5	40,6	35,6	32,0	34,3	32,2	37,3	32,5	20,3	22,8	17,6	18,0	14,9	15,8	32	4
0,0	0,0	0,0	0,0	0,0	0,0	2,0	-1,0	0,0	-6,0	7,0	6,0	2,0	4,0	6,0	4,0	1,0	2,0	2,0	1,0	1,0		
0,0	0,0	0,0	0,0	0,0	0,0	2,0	-1,0	0,0	-6,0	7,0	6,0	2,0	4,0	6,0	4,0	1,0	2,0	2,0	1,0	1,0		
0.0	0,0	0.0	0.0	0.0	0.0	2.0	-1,0	4.0	1,0	-2.0	-5.0	0.0	3.0	0.0	2.0	4,0	3.0	0,0	1,0	1.0		
0,0	0,0	0,0	0,0	0,0	0,0	2,0	-1,0	4,0	1,0	-2,0	-5,0	0,0	3,0	0,0	2,0	4,0	3,0	0,0	1,0	1,0		
0,6	0,4	0,2	-0.5	-0,5	-1,2	-2,2	-5,4	-5.8	-9,2	-7,7	-7,1	-3,8	-3,7	2,7	6,2	2,4	0,6	1,1	0,6	0,4		
	- /			,	•				,		,		,						,			
			,		•	,			,	,									,			
-1,6	-1,2	-1,3	-1,1	-1,0	-0,9	-0,9	-0,9	-0,3	0,9	4,4	9,5	3,7	0,1	-0,8	-0,7	-1,9	-2,3	-3,1	-3,5	-4,8		
																					KB _{FTm} :	Lmax (dB(A))
54.8	60.1	62.3	60.6	61 1	60.3	56.4	47 9	42 2	33.0	49 9	44 0	37.0	37.3	47 1	48.3	34.8	32.8	31.7	34.8	34.2	0.10	38,1
- , -	/	, ,	/	,	/	/	,	,	/	- / -	, -		- /-	,	- / -	, -	,	,	,	-	-,-	38,0
- , -	,		/ -	,	,	,	,	,			,	,		,	,	,	,	,	,		-,	36,0
- ,	,		/ -	/	, ,												- /	- / -	,	- / -	0,12	37,0
58.2	50 N	57.8	50.3	63.0	61.6	58.8	47.7	11 1	27.2	46.5	15.8	32 N	33 U	126	15.5	32.3	32 /	31.8	3/1 0	3/1.2	0.11	37,5
,	/ -	- , -	/ -	/	- , -	/ -	,	,	,	,	,			,		,	,	,	- , -	,	,	37,3
- ,	,	,	,	- /	/	,			,	,	,			,		,	,	,	,	/ -	- ,	
,	,	,	,	,	,	/ -									,			,		-	0,12	35,4 36,8
20.7	20.0	20.0	20.4	AF F	47.0	E0.0	44.0	40.0	2F F	20.0	20 F	20.7	40.0	40.4	27.7	20.4	20.7	24 E	10.6	24.4	0.03	20.4
- ,	- , -	/ -	,	,		,	,	,	,	,					,			,			,	29,4
-,-	,	,	,	- / -	,	,	,	,	,						,					-	,	29,4
,	,	,	/ -	, -														,	,	-		27,6
27,5	27,2	28,6	38,8	44,9	48,3	52,2	46,3	48,2	45,6	43,0	47,2	47,2	46,7	38,9	30,8	34,1	27,9	17,3	14,5	16,0	0,04	28,4
																				ļ		
26,2	19,8	24,1	36,0	44,7	49,2	48,6	40,1	38,8	27,4	22,2	22,1	28,4	36,5	35,2	28,5	29,1	21,2	19,1	16,5	17,2	0,02	24,7
25,8	19,1	23,7	35,3	42,7	46,2	46,5	39,9	41,1	33,1	16,8	19,0	26,2	37,4	35,7	28,3	28,1	22,8	18,8	15,8	16,6	0,02	24,7
24,2	18,1	22,7	35,4	44,0	49,4	50,4	46,6	49,8	47,9	34,4	29,4	31,2	39,5	30,5	20,1	23,7	17,1	13,3	10,9	11,8	0,03	23,1
24,0	18,1	22,7	35,4	44,1	49,5	49,8	44,6	44,3	37,5	34,3									12,4	12,0	0,03	23,8
		T						1 -		1				T								1
		1 00	vorse			25 🗵-	Roton							1 00	Vorne			25 🗵-	Roton	_		
145				nin						l		1 /	/A\\-									
KB _{FTr} :						_		_				Lr (dB	(A)):	_		_		_		_		
						,		0,054	0,051													
Zur Bere	echnung	von KB	FTm bzv	v. KBFT	r werden	die Spe	ktren					Bei den	berech	neten Be	eurteilung	gspegel l	Lr für de	n Sekun	därluftsc	hall hand	elt	
	57,6 29,1 25,7 0,0 0,0 0,0 0,0 0,0 0,0 1-1,5 -1,6 54,8 54,3 52,7 52,6 58,2 57,7 56,1 56,0 29,7 29,3 27,7 27,5 26,2 25,8 24,2 24,0 KB _{FTr} :	54,2 59,7 57,6 58,5 29,1 28,4 25,7 19,4 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0	54,2 59,7 62,2 57,6 58,5 57,7 29,1 28,4 29,8 25,7 19,4 23,9 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0	54,2 59,7 62,2 61,1 57,6 58,5 57,7 59,8 29,1 28,4 29,8 39,9 25,7 19,4 23,9 36,5 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0	54,2 59,7 62,2 61,1 61,6 57,6 58,5 57,7 59,8 63,4 29,1 28,4 29,8 39,9 45,9 25,7 19,4 23,9 36,5 45,1 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0	54,2 59,7 62,2 61,1 61,6 61,5 57,6 58,5 57,7 59,8 63,4 62,8 29,1 28,4 29,8 39,9 45,9 49,1 25,7 19,4 23,9 36,5 45,1 50,4 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0	54,2 59,7 62,2 61,1 61,6 61,5 56,6 57,6 58,5 57,7 59,8 63,4 62,8 59,0 29,1 28,4 29,8 39,9 45,9 49,1 51,1 25,7 19,4 23,9 36,5 45,1 50,4 48,7 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 2,0 0,0 0	54,2 59,7 62,2 61,1 61,6 61,5 56,6 54,3 57,6 58,5 57,7 59,8 63,4 62,8 59,0 54,1 29,1 28,4 29,8 39,9 45,9 49,1 51,1 48,2 25,7 19,4 23,9 36,5 45,1 50,4 48,7 46,5 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 2,0 -1,0 0,0 0,0 0,0 0,0 0,0 0,0 2,0 -1,0 0,0 0,0 0,0 0,0 0,0 0,0 2,0 -1,0 0,0 0,0 0,0 0,0 0,0 0,0 2,0 -1,0 0,0 0,0 0,0 0,0 0,0 0,0 2,0 -1,0 0,0 0,0 0,0 0,0 0,0 0,0 2,0 -1,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0	54,2 59,7 62,2 61,1 61,6 61,5 56,6 54,3 48,0 57,6 58,5 57,7 59,8 63,4 62,8 59,0 54,1 47,2 29,1 28,4 29,8 39,9 45,9 49,1 51,1 48,2 44,6 25,7 19,4 23,9 36,5 45,1 50,4 48,7 46,5 40,6 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0	54,2 59,7 62,2 61,1 61,6 61,5 56,6 54,3 48,0 48,1 57,6 58,5 57,7 59,8 63,4 62,8 59,0 54,1 47,2 42,4 29,1 28,4 29,8 39,9 45,9 49,1 51,1 48,2 44,6 43,7 25,7 19,4 23,9 36,5 45,1 50,4 48,7 46,5 40,6 35,6 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0	54,2 59,7 62,2 61,1 61,6 61,5 56,6 54,3 48,0 48,1 50,6 57,6 58,5 57,7 59,8 63,4 62,8 59,0 54,1 47,2 42,4 47,2 29,1 28,4 29,8 39,9 45,9 49,1 51,1 48,2 44,6 43,7 40,6 25,7 19,4 23,9 36,5 45,1 50,4 48,7 46,5 40,6 35,6 32,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0	54,2 59,7 62,2 61,1 61,6 61,5 56,6 54,3 48,0 48,1 50,6 45,2 57,6 58,5 57,7 59,8 63,4 62,8 59,0 54,1 47,2 42,4 47,2 46,9 29,1 28,4 29,8 39,9 45,9 49,1 51,1 48,2 44,6 43,7 40,6 42,7 25,7 19,4 23,9 36,5 45,1 50,4 48,7 46,5 40,6 35,6 32,0 34,3 4,3 4,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0	54,2 59,7 62,2 61,1 61,6 61,5 56,6 54,3 48,0 48,1 50,6 45,2 38,8 57,6 58,5 57,7 59,8 63,4 62,8 59,0 54,1 47,2 42,4 47,2 46,9 33,8 29,1 28,4 29,8 39,9 45,9 49,1 51,1 48,2 44,6 43,7 40,6 42,7 43,5 25,7 19,4 23,9 36,5 45,1 50,4 48,7 46,5 40,6 35,6 32,0 34,3 32,2 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 2,0 -1,0 0,0 -6,0 7,0 6,0 2,0 0,0 0,0 0,0 0,0 0,0 0,0 2,0 -1,0 0,0 -6,0 7,0 6,0 2,0 0,0 0,0 0,0 0,0 0,0 0,0 2,0 -1,0 4,0 1,0 -2,0 -5,0 0,0 0,0 0,0 0,0 0,0 0,0 2,0 -1,0 4,0 1,0 -2,0 -5,0 0,0 0,0 0,0 0,0 0,0 0,0 2,0 -1,0 4,0 1,0 -2,0 -5,0 0,0 0,0 0,0 0,0 0,0 0,0 2,0 -1,0 4,0 1,0 -2,0 -5,0 0,0 0,1 -1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,1 1,1	54.2 59,7 62,2 61,1 61,6 61,5 56,6 54,3 48,0 48,1 50,6 45,2 38,8 37,0 57,6 58,5 57,7 59,8 63,4 62,8 59,0 54,1 47,2 42,4 47,2 46,9 33,8 32,8 29,1 28,4 29,8 39,9 45,9 49,1 51,1 48,2 44,6 43,7 40,6 42,7 43,5 43,6 43,2 57,7 19,4 23,9 36,5 45,1 50,4 48,7 46,5 40,6 35,6 32,0 34,3 32,2 37,3 4,2 1,2 1,2 1,2 1,2 1,2 1,2 1,2 1,2 1,2 1	54,2 59,7 62,2 61,1 61,6 61,5 56,6 54,3 48,0 48,1 50,6 45,2 38,8 37,0 38,4 57,6 58,5 57,7 59,8 63,4 62,8 59,0 54,1 47,2 42,4 47,2 46,9 33,8 32,8 33,9 25,7 19,4 23,9 36,5 45,1 50,4 48,7 46,5 40,6 35,6 32,0 34,3 32,2 37,3 32,5 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0	54,2 59,7 62,2 61,1 61,6 61,5 56,6 54,3 48,0 48,1 50,6 45,2 38,8 37,0 38,4 38,1 57,6 58,5 57,7 59,8 63,5 62,2 61,1 61,6 61,5 56,6 54,3 48,0 48,1 50,6 45,2 38,8 37,0 38,4 38,1 57,6 58,5 57,7 59,8 63,5 62,2 61,1 61,1 84,2 44,6 43,7 44,6 42,7 44,6 42,7 43,5 43,6 39,7 29,5 25,7 19,4 23,9 36,5 45,1 50,4 48,7 46,5 40,6 35,6 32,0 34,3 32,2 37,3 32,5 20,3 40,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,	54.2 59.7 62.2 61.1 61.6 61.5 56.6 54.3 48.0 48.1 50.6 45.2 38.8 37.0 38.4 38.1 31.5 57.6 58.5 57.7 59.8 63.4 62.8 59.0 54.1 47.2 42.4 47.2 46.9 33.8 32.8 33.9 35.4 29.2 25.7 19.4 23.9 36.5 45.1 50.4 48.7 46.5 40.6 35.6 32.0 34.3 32.2 37.3 32.5 20.3 22.8 39.9 43.9 40.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	54,2 59,7 62,2 61,1 61,6 61,5 56,6 54,3 48,0 48,1 50,6 45,2 38,8 37,0 38,4 38,1 31,5 30,2 57,6 58,5 57,7 59,8 63,4 62,8 59,0 54,1 47,2 42,4 47,2 42,4 47,2 43,5 43,5 43,6 39,7 29,5 32,0 29,8 29,7 12,5 12,8 4 29,8 39,9 45,9 49,1 51,1 48,2 44,6 43,7 40,6 42,7 43,5 43,6 39,7 29,5 32,0 27,1 25,7 19,4 23,9 36,5 45,1 50,4 48,7 46,5 40,6 35,6 32,0 34,3 32,2 37,3 32,5 20,3 22,8 17,6 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0	54.2 59.7 62.2 61.1 61.6 61.5 56.6 54.3 48.0 48.1 50.6 45.2 38.8 37.0 38.4 38.1 31.5 30.2 28.6 57.6 58.5 57.7 59.8 63.4 62.8 59.0 54.1 47.2 42.4 47.2 46.9 33.8 32.8 33.9 35.4 29.0 29.8 28.7 29.1 28.4 29.8 39.9 45.9 49.1 51.1 48.2 44.6 43.7 40.6 42.7 43.5 43.6 39.7 29.5 32.0 27.1 20.4 25.7 19.4 23.9 36.5 45.1 50.4 48.7 46.5 40.6 35.6 32.0 34.3 32.2 37.3 32.5 20.3 22.8 17.6 18.0 40.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	54.2 59.7 62.2 61.1 61.6 61.5 56.6 54.3 48.0 48.1 50.6 45.2 38.8 37.0 38.4 38.1 31.5 30.2 28.6 33.2 29.1 28.4 29.8 39.9 45.9 49.1 51.1 48.2 44.6 43.7 40.6 42.7 45.5 43.6 39.7 29.5 32.0 27.1 20.4 17.0 25.7 19.4 23.9 36.5 45.1 50.4 48.7 46.5 40.6 35.6 32.0 34.3 32.2 37.3 32.5 20.3 22.8 17.6 18.0 14.9 25.7 19.4 23.9 36.5 45.1 50.4 48.7 46.5 40.6 35.6 32.0 34.3 32.2 37.3 32.5 20.3 22.8 17.6 18.0 14.9 20.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	54.2 59.7 62.2 61.1 61.6 61.5 56.6 54.3 48.0 48.1 50.6 45.2 38.8 37.0 38.4 38.1 31.5 30.2 28.6 33.2 32.8 27.6 58.5 57.7 59.8 63.4 62.8 59.0 54.1 47.2 42.4 47.2 46.9 33.8 32.8 33.9 35.4 29.0 29.8 28.7 33.2 32.8 29.1 28.4 29.8 39.9 45.9 49.1 51.1 48.2 44.6 43.7 40.6 42.7 43.5 43.6 39.7 29.5 32.0 27.1 20.4 17.0 19.8 25.7 19.4 23.9 36.5 45.1 50.4 48.7 46.5 40.6 35.6 32.0 34.3 32.2 37.3 32.5 20.3 22.8 17.6 18.0 14.9 15.8 19.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	Tag S42 59,7 62,2 61,1 61,6 61,5 56,6 54,3 48,0 48,1 50,6 45,2 38,8 37,0 38,4 38,1 31,5 30,2 28,6 33,2 32,8 82 29,1 28,4 29,8 29,9 29,8 28,7 32,2 22,8 82 29,1 28,4 29,8 29,9 29,8 28,7 32,2 22,8 82 29,1 28,4 29,8 29,9 29,8 28,7 32,2 22,8 82 29,1 28,4 29,8 29,9 29,8 28,7 32,2 22,8 82 29,1 28,4 29,8 29,9 29,8 28,7 33,2 32,8 82 22,7 32,9 32,8

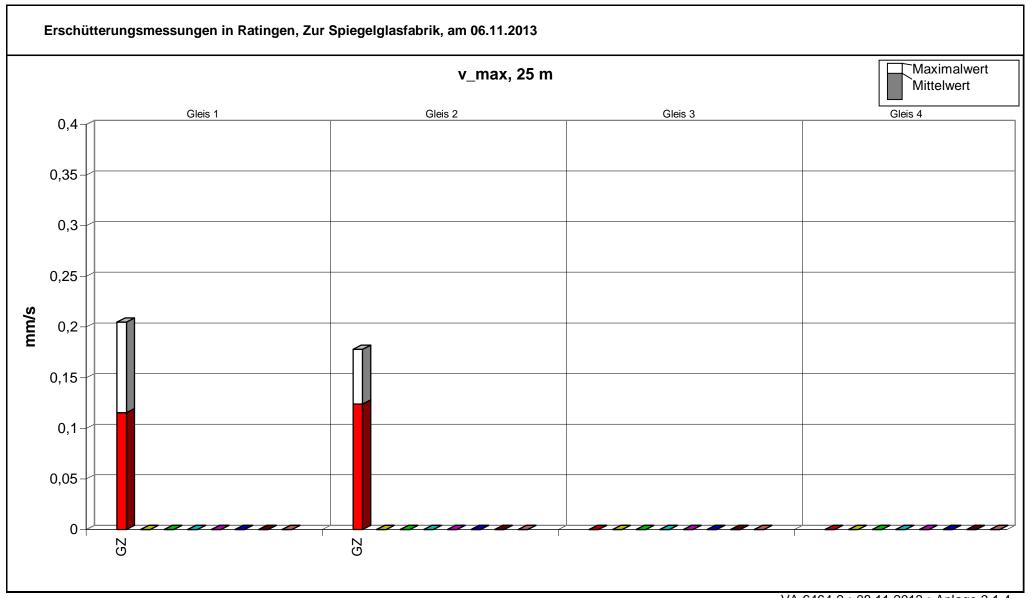
VA 6464-2 • 08.11.2013 • Anlage 2.

			Pr	ogno	se de	er Imr	nissi	onen	Felde	rhof	II, jen	seits	der S	Straße	9							1	
Frequenz [Hz]		4			8			16			32			63			125			250			Ereignisse Nacht
Emissionsspektren																							,
Güterzug Gleis 1	45,7	44,0	55,6	55,6	55,6	51,5	46,5	44,7	40,4	43,1	43,6	34,3	24,0	28,5	23,2	20,7	13,0	12,9	16,7	28,7	23,7	82	37
Güterzug Gleis 2	48,7	44,3	49,4	56,5	57,8	56,5	53,2	45,2	39,0	39,2	37,0	36,9	28,4	27,4	27,5	25,3	23,6	23,1	23,4	33,5	29,1	82	37
RB425 Gleis 1	30,5	30.2	31,6	40,1	46,4	50,2	52,3	52,1	48,5	48,0	44,6	46,7	47,4	49,3	50,3	37,9	30,7	23,2	23,7	25,6	26,6	32	4
RB425 Gleis 2	27,9	20,5	25,8	36,3	45,2	52,0	49,2	49,4	45,0	40,3	35,4	38,6		42,7	42,7	27,9	20,9	12,8			22,5	32	4
Berücksichtigte Geschwindigkeitskorrektur																							
V-Korrektur 60 > 80	0,0	0,0	0,0	0,0	0,0	0,0	2,0	-1,0	0,0	-6,0	7,0	6,0	2,0	4,0	6,0	4,0	1,0	2,0	2,0	1,0	1,0		
V-Korrektur 60 > 80	0,0	0,0	0,0	0,0	0,0	0,0	2,0	-1,0	0,0	-6,0	7,0	6,0	2,0	4,0	6,0	4,0	1,0	2,0	2,0	1,0	1,0		
V-Korrektur 100 > 120/140	0,0	0,0	0,0	0,0	0,0	0,0	2,0	-1,0	4,0	1,0	-2,0	-5,0	0,0	3,0	0,0	2,0	4,0	3,0	0,0	1,0	1.0		
V-Korrektur 100 > 120/140	0,0	0,0	0,0	0,0	0,0	0,0	2,0	-1,0	4,0	1,0	-2,0	-5,0	0,0	3,0	0,0	2,0	4,0	3,0	0,0	1,0	1,0		
Übertragungsfunktionen																							
1. OG vorne	0,6	0,4	0,2	-0,5	-0,5	-1,2	-2,2	-5,4	-5,8	-9,2	-7,7	-7,1	-3,8	-3,7	2,7	6,2	2,4	0,6	1,1	0,6	0,4		
1. OG hinten	0,1	-0,3	-0,2	-1,1	-2,4	-4,2	-4,2	-5,6	-3,5	-3,5	-13,2	-10,2	-6,0	-2,9	3,2	6,0	1,3	2,2	0,7	-0,1	-0,2		
25 Hz Beton	-1,5	-1,3	-1,2	-1,0	-1,1	-1,0	-0,4	1,1	5,2	11,3	4,4	0,1	-1,0	-0,7	-1,9	-2,3	-3,1	-3,5	-4,8	-5,0	-5,0		
40 Hz Beton	-1,6	-1,2	-1,3	-1,1	-1,0	-0,9	-0,9	-0,9	-0,3	0,9	4,4	9,5	3,7	0,1	-0,8	-0,7	-1,9	-2,3		-3,5	-4,8		
Immissionsspektren																						KB _{FTm} :	Lmax (dB(A))
Güterzug Gleis 1																							
1. OG vorne	46.3	44,4	55,8	55,1	55,1	50.3	46.3	38,3	34,6	27,9	42,9	33,2	22.2	28.8	31,9	30.9	16,4	15,5	19,8	30.3	25,1	0,04	33,6
1. OG hinten	45.8	43,7	,	54,5	53,2	/	44,3	38,1	36,9	33,6		30,1	,	29,6		/ -	15,3	17,1	,	/	- /	0,04	33,3
25 Hz Beton	44,2	42,7	,	54,6	54,5	50,5	48,1	44,8	,	48,4	55,0			31,8			10,9	,	13,9	,	,	0,05	32,0
40 Hz Beton	44,1		,	54,5	54,6	,	47,6			38,0							,	12,6		,	19,9	0,05	32,7
Güterzug Gleis 2																							
1. OG vorne	49,3	44,7	49,6	56,0	57,3	55,3	53,0	38,8	33,2	24,0	36,3	35,8	26,6	27,7	36,2	35,5	27,0	25,7	26,5	35,1	30,5	0,05	35,9
1. OG hinten	48.8	44,0	49,2	55,4	55,4	52,3	51,0	38,6	35,5	29,7	30,8	32,7	24,4	28,5	36,7	35,3	25,9	27,3	26.1	34,4	29,9	0,04	35,7
25 Hz Beton	47,2	43.0	48,2	55,5	56,7	55,5	54,8	45.3	44.2	44,5	48,4	43,0		30,7	31.6	27.0	21.5	21,6	20,6	29,5	25,1	0,06	33,5
40 Hz Beton	47,1	,	48,2	,	,	,	,			34,1	,	,	,				22,7	22,8		,	25,3	0,06	34,3
RB425 Gleis 1																							
1. OG vorne	31,1	30,6	31,8	39,6	45,9	49,0	52,1	45,7	46,7	39,8	34,8	34,5	43,6	48,6	53,1	46,1	37,1	26,8	24,8	27,2	27,9	0,04	33,4
1. OG hinten	30,6	29,9	31,4	38,9	44,0	46,0	50,1	45,5	48,9	45,5	29,4	31,4	41,4	49,5	53,6	45,9	36,0	28,4	24,4	26,5	27,4	0,04	33,5
25 Hz Beton	29,0	28,9	30,4	39,0	45,3	49,2	53,9	52,2	57,6	60,3	47,0	41,8	46,4	51,6	48,4	37,6	31,7	22,7	18,9	21,6	22,6	0,08	31,3
40 Hz Beton	28,9	28,9		39,0	45,4	49,3	,	50,2		49,9	,	,	,	52,4	,	,	,	,	20,6	,	22,8	0,05	32,0
RB425 Gleis 2																							
1. OG vorne	28,5	21,0	25,9	35,8	44,8	50,7	49,0	43,0	43,2	32,1	25,7	26,5	32,6	41,9	45,4	36,1	27,2	16,4	23,3	25,5	23,9	0,03	28,9
1. OG hinten	28,0	20,3	25,6	35,2	42,8	47,7	47,0	42,8	45,5	37,8	20,3	23,4	30,5	42,8	46,0	35,9	26,2	18,0	23,0	24,8	23,3	0,02	29,0
25 Hz Beton	26,4	19,2	,	35,3	44,1	51,0	50,8	49,5	54,2	52,6	37,8	33,8		44,9	40,8	,	21,8	12,3	,	,	,	0,04	26,9
40 Hz Beton	,	,	,	,			,	,	,	42,2	,	,			,	,	,	,	,	,	,	0,03	27,6
			1						ı		1						1					l .	I
(Max-Hold, Fast)			1. OG	vorne		OG iten	25 Hz	Beton		Hz ton					1. OG	vorne		OG iten	25 Hz	. Beton		Hz ton	
alle Spektren [dB], re 5*10-5 mm/s	KB _{FTr} :									Nacht	1		Lr (dB	B(A)):							Tag		
and openited [db], te 5 10-5 mm/s	· CFTr.		_		_		_		_	0,022			(46	(~)).	_		_		_		26,3		
	7 5								0,024	0,022	J		Dalidee										
				FTm bzv			die Spe	KITEN													hall hand	Jiet	
	laut DIN	i 4150 b	is maxim	al 80 Hz	nerange	ezogen.							es sich	um den	physikal	ischen P	egel OH	NE 5 dB	Schien			• 08 11 20	13 • Anlage 2.9

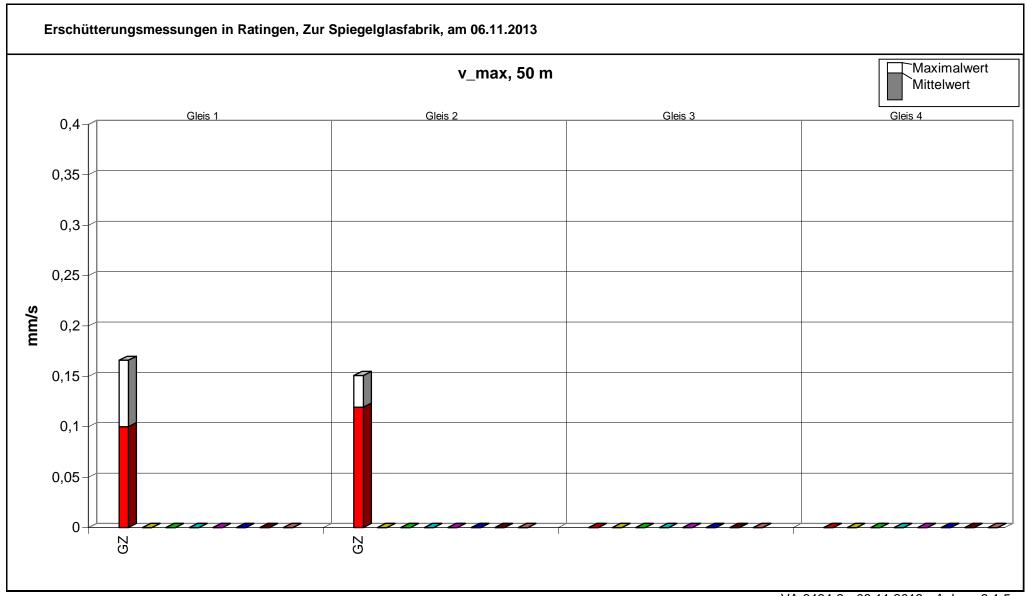
VA 6464-2 • 08.11.2013 • Anlage 2.9

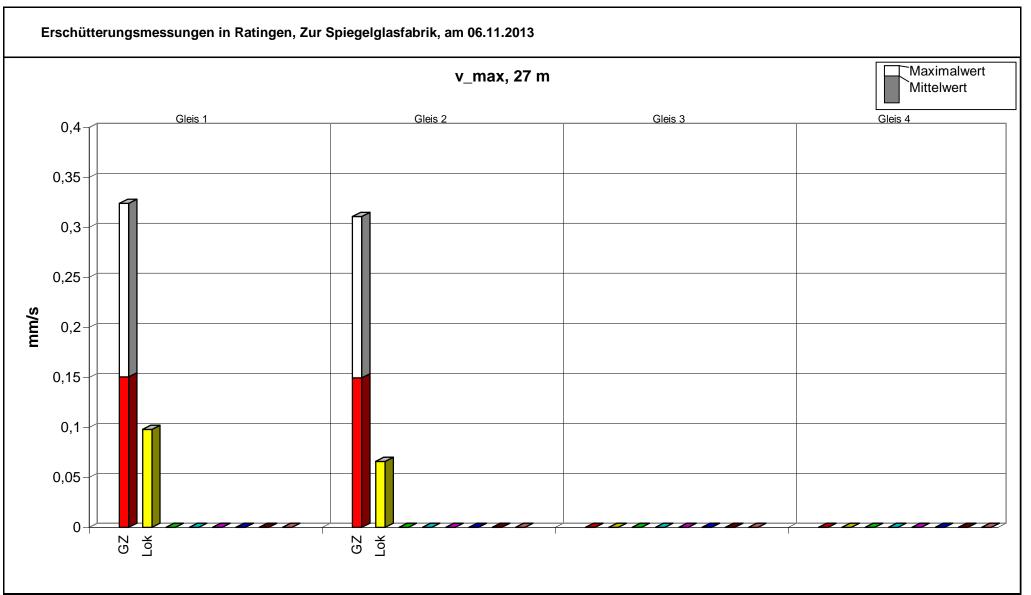


				Messwerte
				v_max v_max v_max
Mess-	Kate-	Lok	Gleis	10 m 25 m 50 m
Nr.	gorie	Nr.		mm/s mm/s mm/s
1	GZ		2	0,194 0,083 0,097
2	GΖ		2	0,202 0,146 0,138
3	GZ		1	0,330 0,168 0,131
4	GZ		2	0,171 0,121 0,132
5	GZ		1	0,251 0,108 0,111
6	GZ		1	0,118 0,064 0,056
7	GZ		1	0,086 0,032 0,036
8	GZ		2	0,254 0,178 0,151
9	GZ		1	0,326 0,205 0,166
10	GZ		2	0,167 0,092 0,079

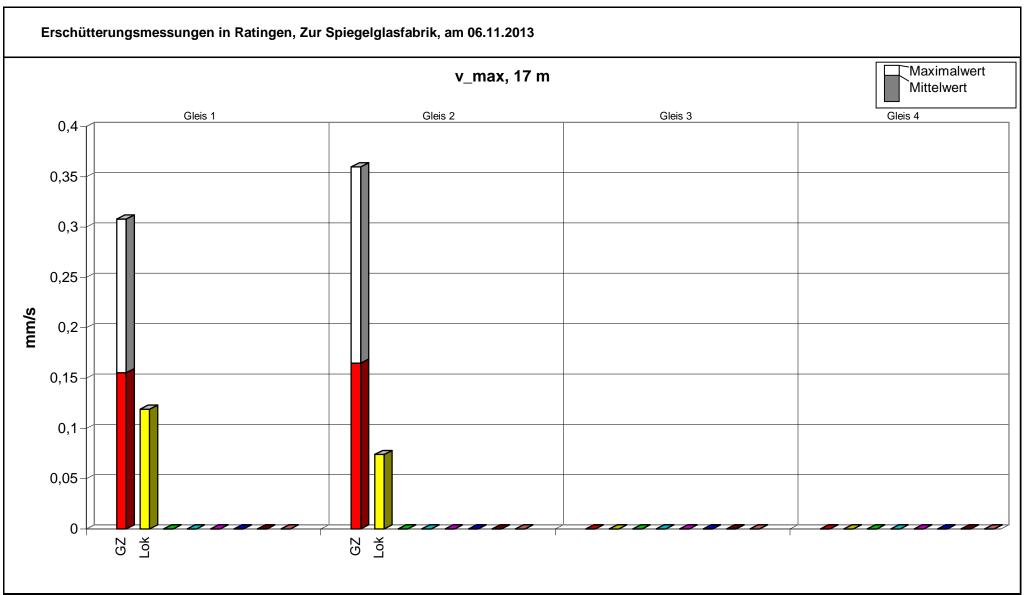


Erschü	itterunç	gsmess	sung	en in l	Ratin	gen, Z	Zur Sp	iegel	glasfak	orik, an	n 06.1	11.201	13						
Gleis / Abst. Gebäude		Gleis 1								Gleis 2									
Fahrtrichtung																			
Kategorie	GZ	Lok							GZ	Lok									
Anzahl ausgewert. Züge	5	0	0	0	0	0	0	0	5	0	0	0	0	0	0	0			
v_max [mm/s]																			
10 m																			
Maximalwert	0,330								0,254										
arithmet. Mittelwert	0,222								0,198										
Standardabweichung	52%								18%										
v_max [mm/s]																			
25 m																			
Maximalwert	0,205								0,178										
arithmet. Mittelwert	0,115								0,124										
Standardabweichung	62%								32%										
v_max [mm/s]																			
50 m																			
Maximalwert	0,166								0,151										
arithmet. Mittelwert	0,100								0,119										
Standardabweichung	54%								25%										

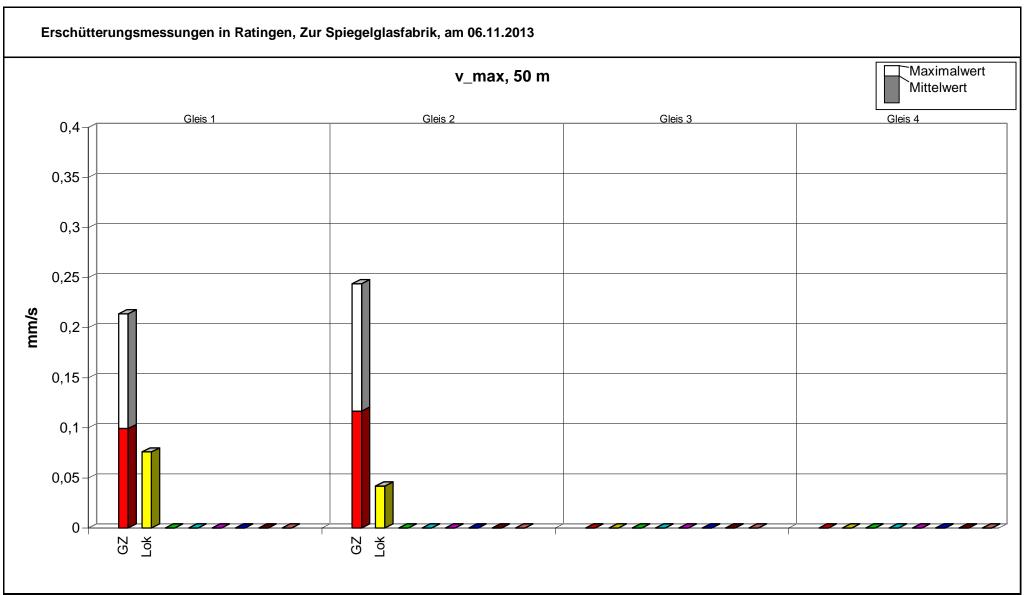


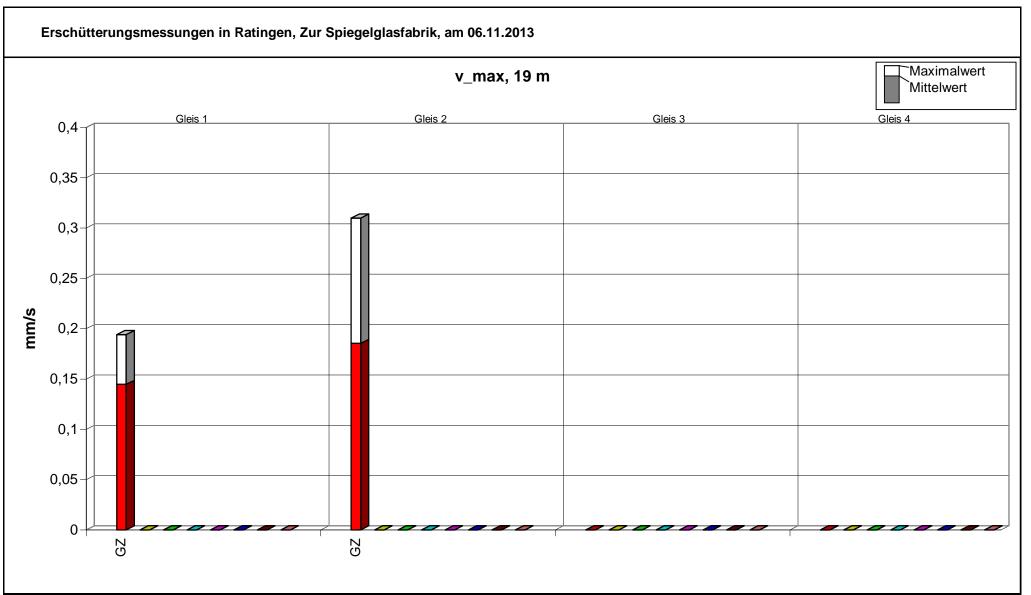


				Messwerte
				v_max v_max v_max
Mess-	Kate-	Lok	Gleis	27 m 17 m 50 m
Nr.	gorie	Nr.		mm/s mm/s mm/s
1	GZ		2	0,104 0,103 0,078
2	GZ		2	0,311 0,360 0,244
3	GZ		2	0,116 0,148 0,096
4	GZ		2	0,143 0,144 0,098
5	GZ		1	0,185 0,189 0,133
6	GZ		2	0,143 0,162 0,124
7	GZ		1	0,159 0,168 0,099
8	GZ		1	0,103 0,168 0,068
9	GZ		1	0,051 0,061 0,028
10	GZ		2	0,115 0,178 0,129
11	GZ		1	0,261 0,308 0,211
12	GZ		2	0,119 0,115 0,100
13	GZ		2	0,092 0,074 0,075
14	Lok		2	0,066 0,074 0,042
15	GZ		1	0,324 0,282 0,214
16	GZ		2	0,137 0,130 0,107
17	Lok		1	0,098 0,119 0,076
18	GZ		1	0,153 0,144 0,085
19	GZ		1	0,122 0,091 0,067
20	GZ		2	0,154 0,174 0,095
21	GZ		2	0,139 0,135 0,111
22	GZ		2	0,172 0,213 0,101
23	GZ		1	0,148 0,125 0,083
24	GZ		2	0,208 0,186 0,142
25	GZ		1	0,064 0,065 0,053
26	GZ		2	0,156 0,158 0,110
27	GZ		1	0,141 0,150 0,083
28	GZ		2	0,146 0,174 0,135
29	GZ		2	0,183 0,243 0,143
30	GZ		2	0,113 0,114 0,105
31	GZ		1	0,095 0,112 0,068
32	GZ		2	0,143 0,157 0,107
33				0,059 0,048 0,025

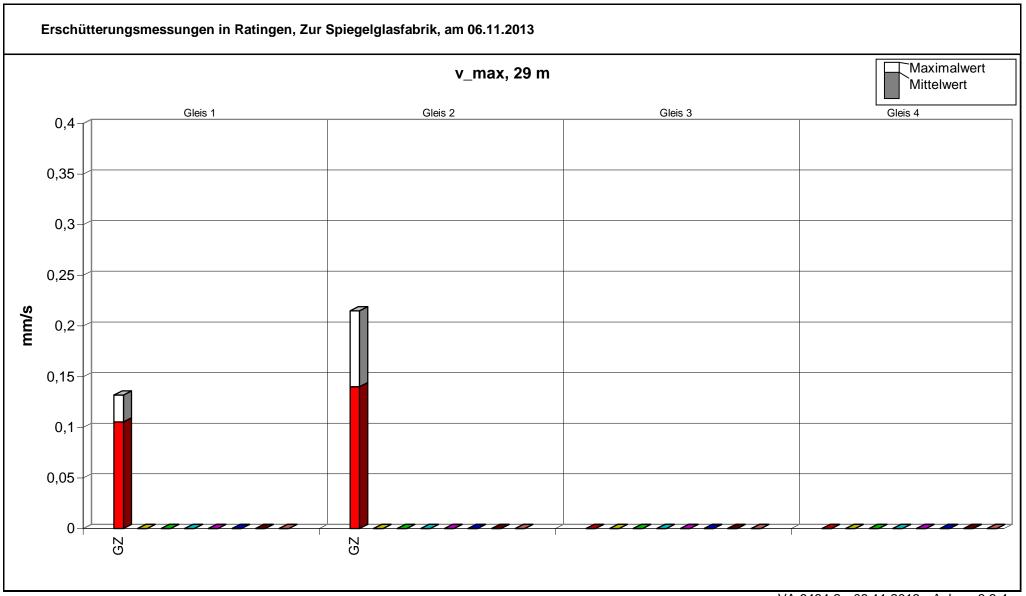


Erschütterungsmessungen in Ratingen, Zur Spiegelglasfabrik, am 06.11.2013																			
Gleis / Abst. Gebäude		Gleis 1								Gleis 2									
Fahrtrichtung																			
Kategorie	GZ	Lok							GZ	Lok									
Anzahl ausgewert. Züge	12	1	0	0	0	0	0	0	18	1	0	0	0	0	0	0			
v_max [mm/s]																			
27 m																			
Maximalwert	0,324	0,098							0,311	0,066									
arithmet. Mittelwert	0,151	0,098							0,150	0,066									
Standardabweichung	52%	0%							33%	0%									
v_max [mm/s]																			
17 m																			
Maximalwert	0,308	0,119							0,360	0,074									
arithmet. Mittelwert	0,155	0,119							0,165	0,074									
Standardabweichung	49%	0%							38%	0%									
v_max [mm/s]																			
50 m																			
Maximalwert	0,214	0,076							0,244	0,042									
arithmet. Mittelwert	0,099	0,076							0,117	0,042									
Standardabweichung	59%	0%							32%	0%									

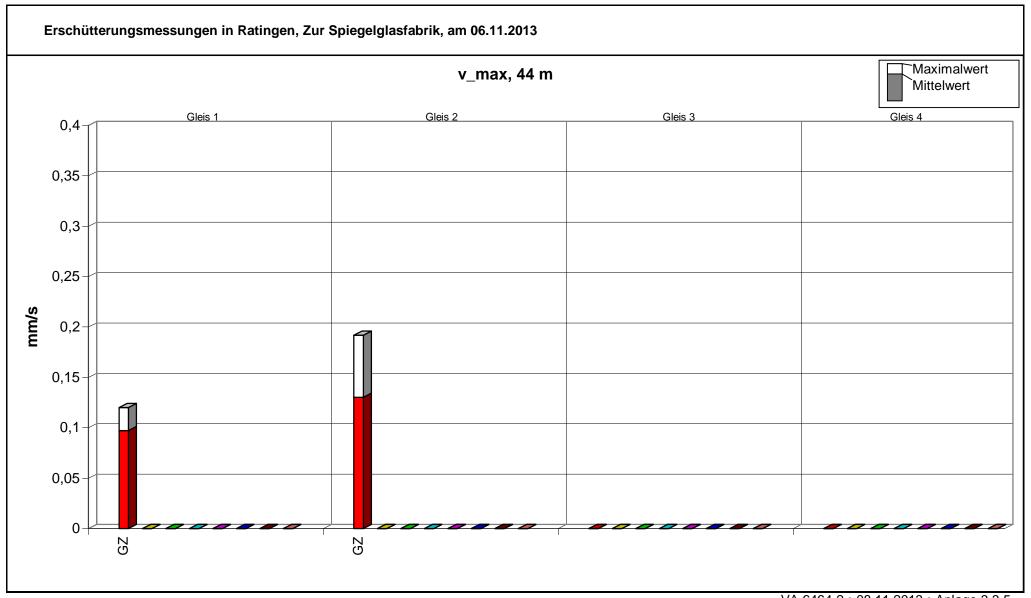


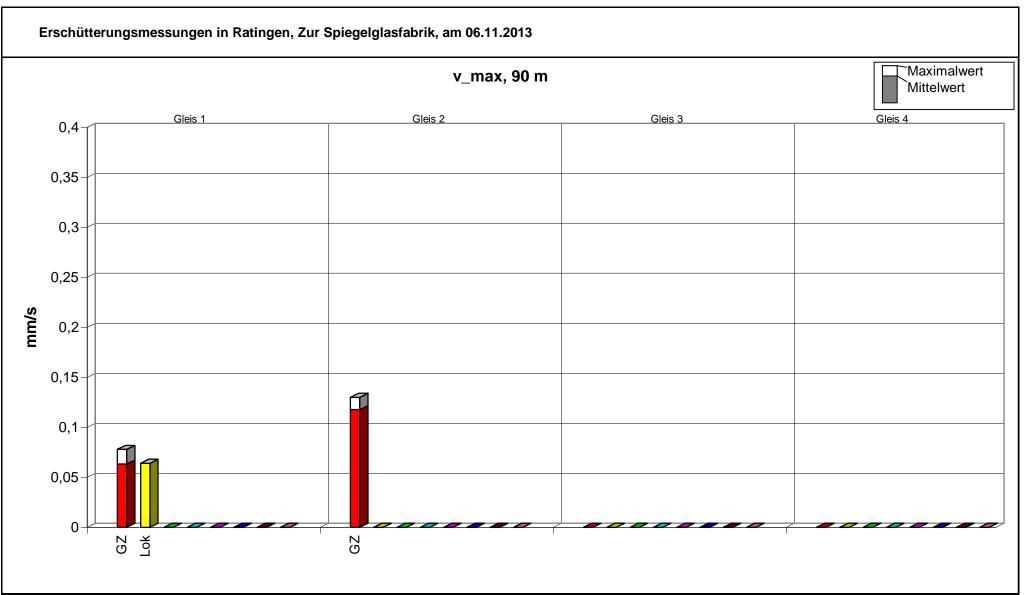


				Messwerte
				v_max v_max v_m
Mess-	Kate-	Lok	Gleis	19 m 29 m 44
Nr.	gorie	Nr.		mm/s mm/s mm
1	GZ		2	0,162 0,148 0,13
2	GΖ		1	0,121 0,091 0,08
3	GZ		2	0,179 0,130 0,10
4	GZ		1	0,119 0,093 0,09
5	GZ		1	0,194 0,132 0,13
6	GZ		2	0,310 0,215 0,19
7	GZ		2	0,104 0,083 0,07
8	GZ		2	0,172 0,124 0,14

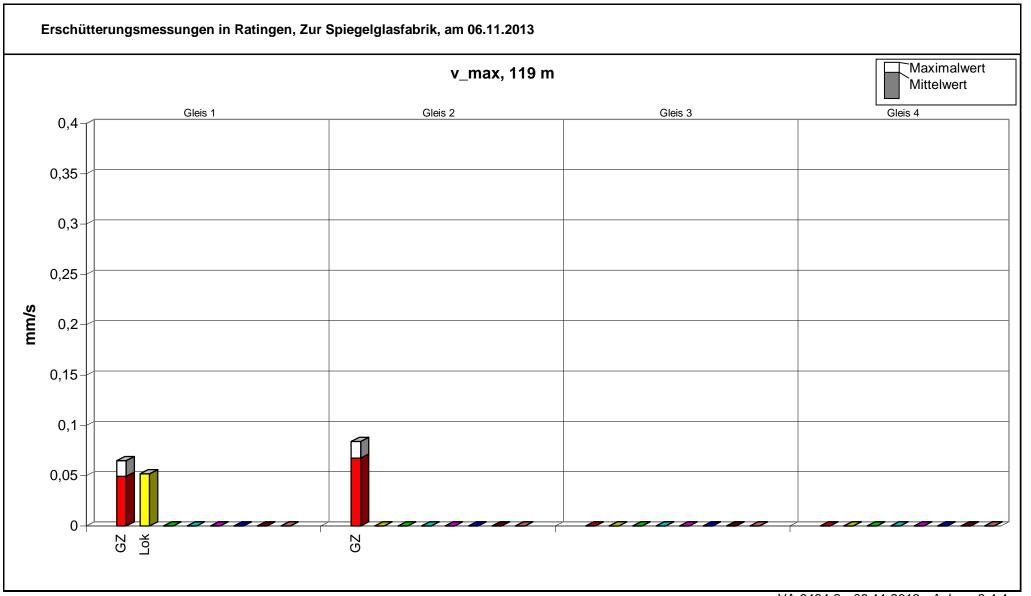


Erschütterungsmessungen in Ratingen, Zur Spiegelglasfabrik, am 06.11.2013																	
Gleis / Abst. Gebäude)			Gleis	s 1			Gleis 2									
Fahrtrichtung																	
Kategorie	GZ	Lok							GZ	Lok							
Anzahl ausgewert. Zü	ge 3	0	0	0	0	0	0	0	5	0	0	0	0	0	0	0	
v_max [mm/s																	
19 m																	
Maximalwert	0,194								0,310								
arithmet. Mittelwert	0,145								0,185								
Standardabweichung	30%								41%								
v_max [mm/s	s]																
29 m																	
Maximalwert	0,132								0,215								
arithmet. Mittelwert	0,105								0,140								
Standardabweichung	22%								34%								
v_max [mm/s	s]																
44 m																	
Maximalwert	0,120								0,192								
arithmet. Mittelwert	0,097								0,130								
Standardabweichung	21%								34%								

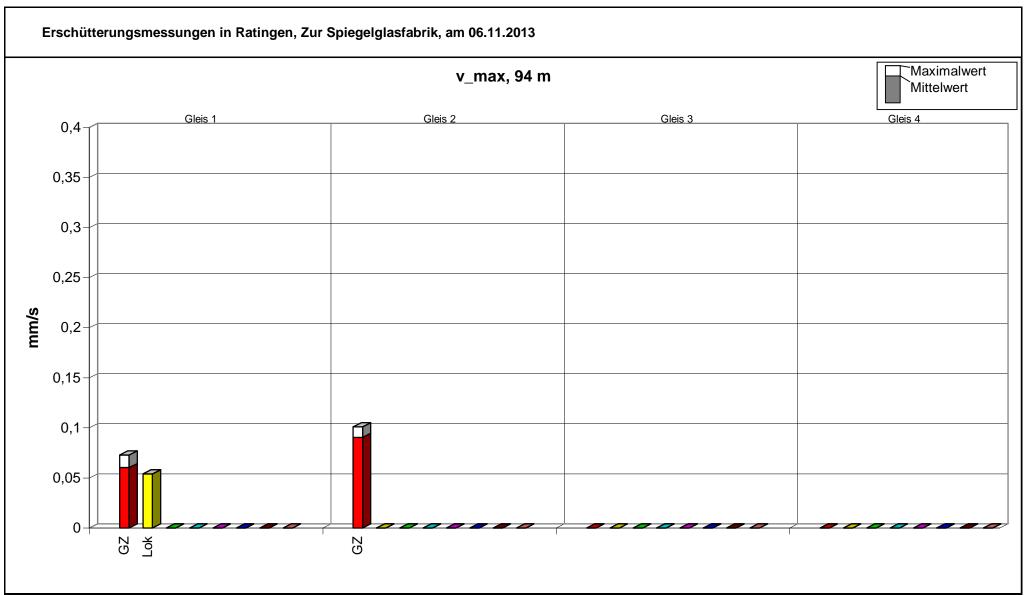


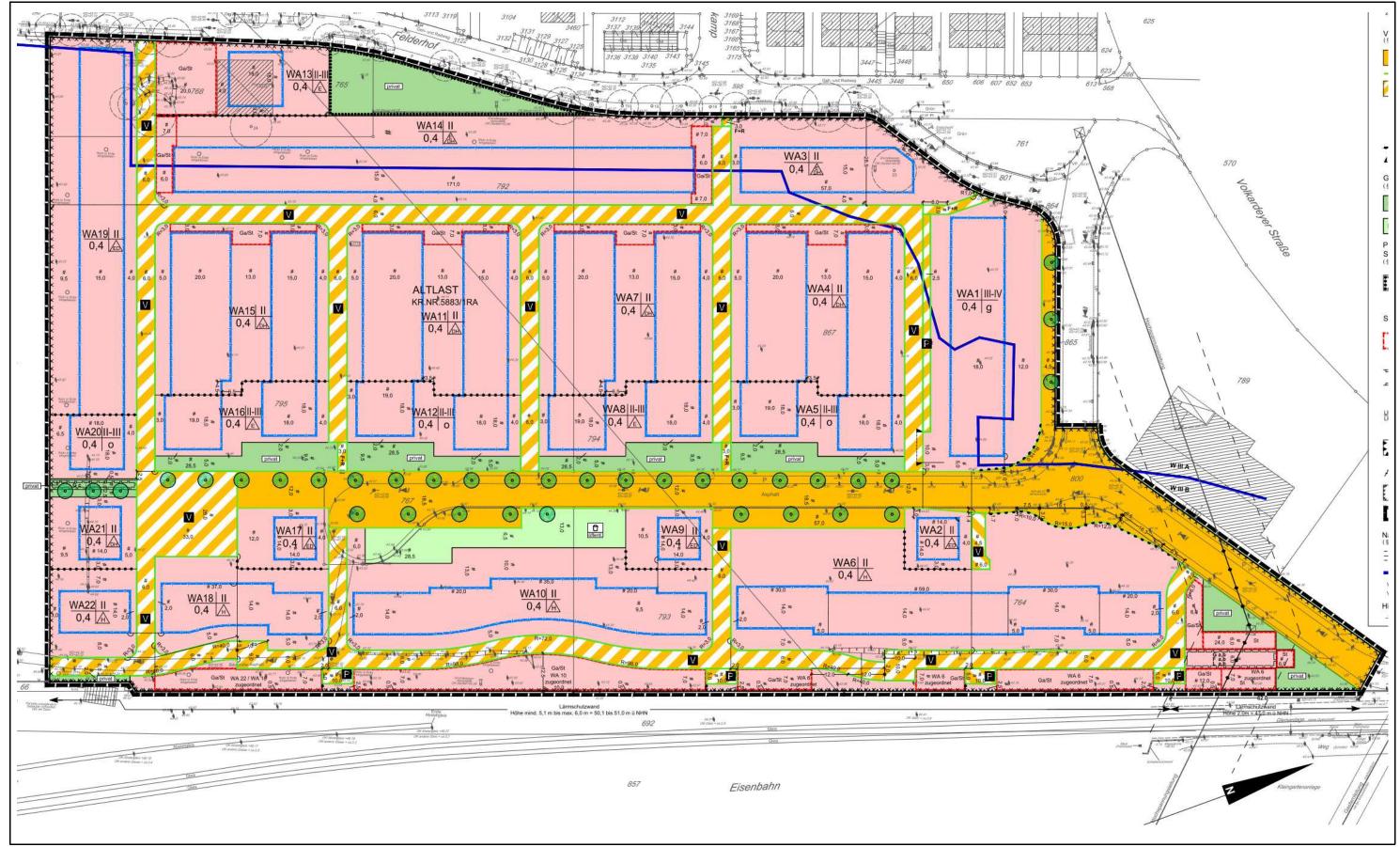


				Messwerte
				v_max v_max v_max
Mess-	Kate-	Lok	Gleis	90 m 119 m 94 m
Nr.	gorie	Nr.		mm/s mm/s mm/s
1	Lok		1	0,064 0,052 0,054
2	GZ		1	0,078 0,045 0,073
3	GZ		1	0,048 0,038 0,046
4	GZ		2	0,107 0,055 0,093
5	GZ		2	0,120 0,068 0,074
6	GZ		2	0,130 0,084 0,101
7	GZ		1	0,064 0,065 0,062
8	GZ		2	0,114 0,063 0,094
				I



Erschütterungsmessungen in Ratingen, Zur Spiegelglasfabrik, am 06.11.2013																				
Gleis / Abst. Gebäude		Gleis 1									Gleis 2									
Fahrtrichtung																				
Kategorie	GZ	Lok							GZ	Lok										
Anzahl ausgewert. Züge	3	1	0	0	0	0	0	0	4	0	0	0	0	0	0	0				
v_max [mm/s]																				
90 m																				
Maximalwert	0,078	0,064							0,130											
arithmet. Mittelwert	0,063	0,064							0,118											
Standardabweichung	24%	0%							8%											
v_max [mm/s]																				
119 m																				
Maximalwert	0,065	0,052							0,084											
arithmet. Mittelwert	0,049	0,052							0,068											
Standardabweichung	28%	0%							18%											
v_max [mm/s]		_							_											
94 m																				
Maximalwert	0,073	0,054							0,101											
arithmet. Mittelwert	0,060	0,054							0,091											
Standardabweichung	23%	0%							13%											





Luftbild: Google Earth Pro