
SACK + TEMME GBR

BÜRO FÜR ALTLASTEN UND INGENIEURGEOLOGIE

- HISTORISCHE ERKUNDUNGEN 🔸 GEFÄHRDUNGSABSCHÄTZUNGEN 🔸 SANIERUNGSPLANUNG UND -BEGLEITUNG
- ALTLASTENKATASTER * BAUGRUNDERKUNDUNG * ABBRUCHKONZEPTE * GRUNDWASSERMONITORING

Stadt Osnabrück

B - Plan Nr. 578 - "Limberg Nord-Ost" (Teil 2)

- Bodenfunktionsbewertung -

Bearbeitungs - Nr. 1011.1571

Datum: 02.12.2010

Auftraggeber: Stadt Osnabrück

Fachbereich Städtebau

Fachdienst Bauleitplanung

Hasemauer 1 49074 Osnabrück Auftragnehmer: Sack + Temme GbR

> Neulandstraße 6 49084 Osnabrück

Inhaltsverzeichnis

1 Veranlassung	3
2 Standortbeschreibung	3
2.1 Allgemeine Angaben	3
2.2 Aktuelle Nutzung der Untersuchungsfläche	3
2.3 Geologie	4
3 Durchgeführte Maßnahmen	4
4 Bodenkartierung	5
5 Bodenfunktionsbewertung	7
7 Bewertung der Ergebnisse	12
9 Quallan	12

Anlagen

Anlage 1	Karten und Pläne
Anlage 1.1	Übersichtsplan, Maßstab 1:10.000
Anlage 1.2	Teilflächeneinteilung und Lage der Bohrstocksondierungen, Maßstab 1:4.000
Anlage 1.3	Einstufung der Bodenfunktionsbewertung, Maßstab 1:4.000
Anlage 2	Protokolle und Tabellen
Anlage 2.1	Protokolle und Aufnahmebögen (Profile, Bohrstock-Kartierung) gem.
	Kartierbogen A16 "Bodenfunktionsbewertung in Osnabrück"
Anlage 2.2	Bewertungsbögen der Bodenfunktionsbewertung

1 Veranlassung

Im Rahmen der Bauleitplanung für das Gebiet des Bebauungsplans Nr. 578 "Limberg Nord-Ost" in Osnabrück – Dodesheide ist auf der Fläche der ehemaligen britischen Kaserne am Limberg (Mercer and Imphal Barracks) eine Nutzungsänderung geplant.

Zur Erlangung von Grundlagendaten im Vorfeld der geplanten Baumaßnahmen wurde die Sack + Temme GbR, Neulandstr. 6, 49084 Osnabrück, vom Fachbereich Städtebau der Stadt Osnabrück am 28.10.2010 mit der Durchführung einer Bodenfunktionsbewertung, auf Basis des Angebots vom 18.10.2010 beauftragt. Vom Auftraggeber wurde zur Bearbeitung des Projektes eine Plangrundlage zur Verfügung gestellt.

Die Leistungen wurden entsprechend dem Angebot vom 18.10.2010 durchgeführt und umfassten die Durchführung einer Bodenkartierung mittels Bohrstock sowie eine anschließende Bodenfunktionsbewertung.

Bei der vorliegenden Bodenfunktionsbewertung handelt es sich um eine Erweiterung auf das gesamte Gebiet des B-Plans 578 (Teil 1 siehe Bericht Sack+Temme GbR 1009.1508 vom 10.09.2010).

2 Standortbeschreibung

2.1 Aligemeine Angaben

Das Untersuchungsgebiet befindet sich im nordöstlichen Stadtgebiet von Osnabrück im Stadtteil Dodesheide. Die eingrenzenden Koordinaten des Untersuchungsgebiets sind R 3437500 und 3438400 sowie H 5796600 und 5797900.

Topographisch wird das Untersuchungsgebiet folgendermaßen begrenzt:

- im Norden von der "Vehrter Landstraße"
- im Westen von der Straße "Am Limberg"
- im Süden von der Straße "Am Zuschlag"
- im Osten von angrenzenden Waldflächen

Naturräumlich ist das Untersuchungsgebiet dem Osnabrücker Berg- und Hügelland zwischen den Gebirgszügen des Teutoburger Waldes und des Wiehengebirges zuzuordnen. Die Geländeoberfläche fällt von ca. 116 m ü. NN im Norden um etwa 25 m auf ca. 91 m ü. NN nach Süden hin ab.

2.2 Aktuelle Nutzung der Untersuchungsfläche

Auf der Untersuchungsfläche befand sich während des Zweiten Weltkrieges eine Munitionsfabrik. Von 1945 bis 2009 wurde das Gelände von den britischen Streitkräften als Kaserne genutzt. Zum Zeitpunkt der Feldarbeiten im November 2010 liegt das Untersuchungsgelände in großen Teilen brach. Vereinzelt werden einige Gebäude durch

Schulen genutzt. Die Grünflächen werden nicht mehr gepflegt. In dem Bereich des B-Plans befinden sich überwiegend ehemalige Unterkunftsgebäude mit dazwischen liegenden Grünflächen sowie älteren Baumbeständen. Der südliche Teilbereich ist z.T. großflächig versiegelt (Beton) und mit mehreren größeren Hallen bestanden. Im südlichsten Bereich befindet sich eine Grünfläche, welche von einer Hundeschule genutzt wird. Im östlichen Teil des Kasernengeländes hat sich eine Waldvegetation entwickelt (Laub- und Nadelwald).

2.3 Geologie

Das Untersuchungsgebiet befindet sich regional betrachtet zwischen den in südostnordwestlicher Richtung verlaufenden mesozoischen Gebirgszügen des Wiehengebirges
(nördlich) und des Teutoburger Waldes (südlich). Im näheren Umfeld stehen überwiegend
saalezeitlicher Geschiebelehm/-mergel sowie Ton-, Schluff- und Sandsteine des Mittleren und
Oberen Keupers an. Die natürliche Erhebung des Limberges wird im nördlichen Teil des
Untersuchungsgebietes an der Vehrter Landstraße überwiegend aus Gesteinen des
Steinmergelkeupers aufgebaut (Schluff- und Mergelstein). Nach Süden hin finden sich
zunächst quarzitische Sandsteine sowie dunkelgrau-schwarze Tonsteine des Oberen Keuper,
welche weiter südlich von saalezeitlichem Geschiebelehm bzw. Geschiebedecksand
überlagert werden (Geologische Karte, Blatt 3614 Wallenhorst).

Die Hauptfließrichtung des Grundwassers kann entsprechend der Geländeoberfläche mit Südwesten in Richtung des Sandbachtals angegeben werden.

3 Durchgeführte Maßnahmen

Bodenkartierung

Im Rahmen der Untersuchung ist das Untersuchungsgebiet in insgesamt 17 Teilflächen unterteilt worden und am 15.11., 16.11. und 18.11.2010 mittels Pürckhauer-Bohrstock einer Bodentypenkartierung bis in eine maximale Tiefe von 1m unter GOK unterzogen worden. Die Bodenansprache ist gemäß Bodenkundlicher Kartieranleitung (KA 5) vorgenommen worden. Die Aufnahmebögen (gem. Anhang A16, "Bodenfunktionsbewertung in Osnabrück") sind in Anlage 2.1 aufgeführt

Bodenfunktionsbewertung

Aus den Ergebnissen der Profilaufnahmen sowie der Bodenkartierung ist unter Zuhilfenahme des Kartier- und Bewertungsschlüssels "Bodenfunktionsbewertung in Osnabrück, Teil A und B" (Stadt Osnabrück, 2009) eine Bodenfunktionsbewertung durchgeführt worden. Die Bodenfunktionsbewertung hat das Ziel das Umweltmedium Boden im Rahmen der Bauleitplanung angemessen zu berücksichtigen und besonders schützenswerte Böden zu extrahieren. Die Bewertungsbögen sind Anlage 2.2 zu entnehmen.

4 Bodenkartierung

Nachfolgend werden die Ergebnisse der Bodenkartierung anhand der durchgeführten Profilaufnahmen und Bohrstocksondierungen dargestellt. Die Lagepunkte der Profilgruben und Bohrstocksondierungen sind in Anlage 1.2 und die Formblätter zur Bodenansprache in Anlage 2.1 aufgeführt.

Im Rahmen der feldbodenkundlichen Aufnahme ist das Untersuchungsgebiet des B-Plans Nr. 578 entsprechend der Nutzung und Größe in mehrere Teilflächen unterteilt worden (s. Anl. 1.2). Tabelle 1 zeigt einen Überblick über die Nutzung, Flächengröße und den Versiegelungsgrad der Teilflächen. Bei der Teilflächenbezeichnung wurde in Anlehnung an die Bodenfunktionsbewertung für den 1. Teil des B-Plans 578 (s. Sack+Temme GbR Bericht Nr. 1009.1508) eine fortlaufende Nummerierung gewählt.

Tab. 1: Einteilung des Untersuchungsgebietes

Teilfläche	Nutzung	Flächengröße,	Flächengröße
		gesamt (m²)	unversiegelt ca. (m²)
TF 10	Wald, Parkanlage, Gebäude	40.100	16.900
TF 11	Parkanlage (Grünland, Bäume), Unterkunftsgebäude	43.400	13.500
TF 12	Parkanlage, Unterkunftsgebäude	19.300	12.600
TF 13	Unterkunftsgebäude, Parkanlage	17.100	9.600
TF 14	Sportplatz (Rasen)	17.800	17.800
TF 15	Versorgungs-/Unterkunftsgebäude, Parkanlage	34.000	10.100
TF 16	Versorgungs-/Unterkunftsgebäude, Parkanlage	9.400	8.100
TF 17	Versorgungs-/Unterkunftsgebäude, Grünflächen	25.900	3.300
TF 18	Parkplatz, Parkanlage, Grünflächen, Versorgungs-/Unterkunftsgebäude	39.700	12.500
TF 19	Gebäude, Parkanlage	22.900	6.800
TF 20	Gebäude (Hallen, Werkstätten), Grünflächen	34.800	12.500
TF 21	Grünfläche (Rasen), Hundeschule	27.100	22.000
TF 22	Wald (ehem. Munitionslager)	51.600	51.600
TF 23	Wald	17.800	17.800
TF 24	Wald	11.000	11.000
TF 25	Wald	5.900	5.900
TF 26	Wald (ehem. Schießanlage)	1.600	1.600

Die Gesamtfläche des Bebauungsplans Nr. 578 "Limberg Nord-Ost" beträgt ca. 500.000 m². Das Untersuchungsgebiet ist in insgesamt 17 Teilflächen aufgeteilt worden. Die Flächengröße der untersuchten Teilflächen beträgt insgesamt ca. 235.000 m², versiegelte Flächen wurden nicht berücksichtigt. Des Weiteren waren teilweise einzelne Bereiche nicht zugänglich (z.B. östlich TF 21), bzw. konnten aufgrund von Baumaßnahmen nicht beprobt werden (z.B. östlich TF 14).

Die Kartierung erfolgte mittels Pürckhauer-Bohrstock. Die Anzahl der Bohrstöcke wurde der entsprechenden Größe der Teilfläche angepasst und rasterartig verteilt. Nach einer ersten bodenkundlichen Ansprache im Bohrstock wurden pro Teilfläche aus den Einzeleinstichen horizontbezogene Mischproben erstellt. Die Formblätter zur Bodenkartierung sind in Anlage 2.1 aufgeführt.

5 Bodenfunktionsbewertung

Die Bodenfunktionsbewertung erfolgt anhand der Daten der Bohrstocksondierungen. Die Daten der Profilaufnahmen aus der Übersichtskartierung wurden teilweise mit berücksichtigt.

Die Grundlage für die Bodenfunktionsbewertung stellt der "Kartier- und Bewertungsschlüssel für die Bodenfunktionen in Osnabrück", Teil A der "Bodenfunktionsbewertung in Osnabrück" (STADT OSNABRÜCK, 2009) sowie die "Bodenkundliche Kartieranleitung" (AG BODEN, 2005) dar. Die einzelnen zu bewertenden Teilfunktionen sind unter Zuhilfenahme von Gewichtungsstufen (Hierarchisierung) ausgewählt worden. Die Gewichtungsstufen sind für die Stadt Osnabrück im Teil B "Berücksichtigung der Bodenfunktionsbewertung im Rahmen der Bauleitplanung" (STADT OSNABRÜCK, 2009) ermittelt worden. Darin werden die insgesamt 23 Bodenteilfunktionen in die drei Stufen A, B und C eingeteilt. Die Bodenfunktionen der Stufe A haben dabei eine hohe Relevanz für den Bodenschutz in Osnabrück. Eine funktionale Bewertung im Rahmen der Bauleitplanung sollte in jedem Fall erfolgen. Für die Bodenfunktionen der Stufe B (mittlere Relevanz) ist eine Einbeziehung sinnvoll. In der Gesamtbewertung können diese jedoch nur untergeordnet Einfluss nehmen. Die Teilfunktionen der Stufe C (geringe Relevanz) sollten nur einzelfallbezogen nach gutachterlicher Begründung mit berücksichtigt werden. In der folgenden Tabelle sind die einzelnen Bodenteilfunktionen entsprechend ihrer Einstufung aufgeführt.

Tab. 2: Einstufung der Bodenteilfunktionen

Stufe A	 Lebensgrundlage für Pflanzen und Tiere Bestandteil des Naturhaushalts (Ausgleichskörper im Wasserhaushalt) Land- und forstwirtschaftliche Ertragsfähigkeit Seltenheit, Naturnähe und Regenerierbarkeit von Böden
Stufe B	 Lebensgrundlage für Bodenorganismen Filtereigenschaften für grobdisperse Stoffe (Stäube) Filter- und Puffereigenschaften für Schwermetalle Rückhaltevermögen für nicht sorbierbare Stoffe Eignungsfähigkeit für die Niederschlagswasserversickerung
Stufe C	 Lebensgrundlage für den Menschen Bestandteil des Naturhaushalts (Nährstoffkreislauf) Filter- und Puffereigenschaften für organische Schadstoffe Puffereigenschaften gegenüber Säuren Stoffumwandlungseigenschaften organischer Schadstoffe Kulturgeschichtliche Bedeutung Eignung als Rohstofflagerstätte Empfindlichkeit gegenüber Wassererosion, Verschlämmung, Deflation und Verdichtung Baugrundeignung Wiederverwertbarkeit von Aushubmaterial

Die Bewertungsmatrix gliedert sich dabei in 5 Stufen (von 5 = sehr hoch bis 1= sehr gering). Stufe 5 bedeutet somit, dass der Standort sehr schützenswerte Eigenschaften aufweist und damit für die Bebauung als ungeeignet zu bewerten ist.

Die Auswertung für die abschließende Bodenfunktionsbewertung erfolgt anhand des erarbeiteten Bewertungsmodells, welches in der folgenden Tabelle dargestellt ist.

Tab. 3: Bewertungsmodell für die abschließende Bodenfunktionsbewertung in Osnabrück (STADT OSNABRÜCK, 2009)

(STADT OSNABRÜCK, 200	9)								
Verbindliche	Bewertung folgender Teilfunktionen:								
1.Leber	nsgrundlage für Pflanzen und Tiere								
2. Aus	gleichskörper im Wasserhaushalt								
3. Land- u	nd forstwirtschaftliche Ertragsfähigkeit								
	4. Seltenheit des Bodens								
5. Naturnähe / Rege	enerierbarkeit des Bodens (Verknüpfungsma	trix)							
Wenn die Gesamtbewertung der Bodenfunktion die Bewertungsstufe 4 oder 5 erreicht, ist eine Kompensation von 1 : 1 erforderlich									
	npensation von 1 : 1 erforderlich.	04.5							
Bedingung	Bewertung	Stufe							
mindestens 1x Bewertungsklasse 5	sehr hoch	5							
mindestens 2x Bewertungsklasse 4	hoch	4							
1x Bewertungsklasse 4									
oder mindestens 2x Bewertungsklasse 3	mittel	3							
1x Bewertungsklasse 3									
oder mindestens 2x Bewertungsklasse 2	gering	2							
maximal 1x Bewertungsklasse 2									
Zusätzli	che Bewertung der Teilfunktionen								
1. Lebe	nsgrundlage für Bodenorganismen								
2. Filtereigens	Essen leg dri dege tal bede leg gallerner. Filtereigenschaften für grobdisperse Stoffe (Stäube)								
3. Filter- und	3. Filter- und Puffereigenschaften für Schwermetalle								
4. Rückhal	Rückhaltevermögen für nicht sorbierbare Stoffe								
5. Eignungsfähig	keit für die Niederschlagswasserversickerun	g							
mindestens 2x Bewertungsklasse 5	Erhöhung der Gesamtbev	-							
	ählter Teilfunktionen der übrigen 12 Teilf	unktionen nach							
	utachterlicher Begründung								
mindestens 2x Bewertungsklasse 5	Erhöhung der Gesamtbev	vertung um eine Stufe							

Das Untersuchungsgebiet ist in insgesamt 17 Teilflächen unterteilt worden. Für die folgende Bewertung der entsprechenden Teilfunktionen unter Berücksichtigung des obigen Bewertungsmodells befinden sich in Anlage 2.2 die jeweiligen Bewertungsbögen der einzelnen Teilflächen. Neben den verbindlich zu bewertenden Teilfunktionen der Stufe A sind auch die zusätzlich zu berücksichtigenden Funktionen der Stufe B aufgeführt. In Ergänzung dazu wäre eine mögliche Bodenfunktion der Stufe C die Baugrundeignung des Bodens. Aus Sicht des Bodenschutzes muss diese Teilfunktion allerdings nicht berücksichtigt werden (STADT OSNABRÜCK, 2009).

Die folgenden Tabellen 4a bis 4c zeigen eine zusammenfassende Übersicht der bewerteten Bodenteilfunktionen für die Stufen A und B mit den entsprechenden Bewertungsstufen (vgl. Anlage 2.2).

Tab. 4a: Bewertungsstufen der einzelnen Bodenteilfunktionen für die Teilflächen TF 10 bis 15

	Teilfunktion								Be	wert	tung	sstuf	en			
					TF	10	TF	11	TF	12	TF	- 13	TF	- 14	TF	15
	Lebensgrundlage für P	flanzen un	d Tier	е	3	3	2	2	:	2		2		3	,	1
	Bestandteil des Naturh (Ausgleichskörper im V		shalt)		1		1 1		1	1			1	,	1	
Stufe A	Land- und forstwirtscha Ertragsfähigkeit	aftliche			,	1	1			1		1		1	,	1
Ś	Seltenheit				4	4	4	1		4		4		3	3	3
	Naturnähe	Verknüpf	ıınasn	natriy	4	3	4	3	4	3	4	3	1	1	1	1
	Regenerierbarkeit	VCINIUpii	ungan	IICUIX	3		3	Ŭ	3		3		2	•	2	
	Lebensgrundlage für Bodenorganismen				1	2	2	:	2		2		1	3	3	
	Filtereigenschaften für grobdisperse Stoffe (Stäube)		(3 3		4 3		2		3						
m	Filter- und Puffereigens	schaften	Cu		5		3		5		5		5		5	
	für Schwermetalle		Pb	Stufe	5	5	5	4	5	5	5	5	5	5	5	5
Stufe			Zn		3		2		4		5		5		4	
	Rückhaltevermögen für nicht sorbierbare			2	2	(3	:	2	2		2		3		
	Stoffe															
	Eignungsfähigkeit für d Niederschlagswasserv		g		į	5	į	5	!	5		5		5	Ę	5

Tab. 4b: Bewertungsstufen der einzelnen Bodenteilfunktionen für die Teilflächen TF 16 bis 21

	Teilfunktion					Bewertungsstufen										
					TF	16	TF	17	TF	18	TF	- 19	TF	20	TF	21
	Lebensgrundlage für P	flanzen un	d Tier	e	1		·	1		1		2		2	2	2
	Bestandteil des Naturh (Ausgleichskörper im V		shalt)		,	1	1	1		1		1		1		1
Stufe A	Land- und forstwirtscha	aftliche			,	1	,	1	,	1		1		1		1
ဟ	Seltenheit				3		3		;	3		4		3	(3
	Naturnähe	.,,,,,,,			1	1	1	1	1	1	4	3	1	1	1	4
	Regenerierbarkeit	Verknüpf	ungsn	natrix	2	I	2	ı	2	ı	3	3	2	ı	2	ı
	Lebensgrundlage für B	odenorgan	ismer	1	2	2	2	2	:	2		2		2	(3
	Filtereigenschaften für grobdisperse Stoffe (Stäube)			3		3		3		2		3		(3	
a	Filter- und Puffereigens	schaften	Cu		5		5		5		5		5		5	
	für Schwermetalle		Pb	Stufe	5	5	5	5	5	5	5	5	5	5	5	5
Stufe			Zn		5		5		4		4		5		5	
	Rückhaltevermögen für nicht sorbierbare Stoffe			2	2	2	2	:	2	1		3		3		
	Eignungsfähigkeit für o Niederschlagswasserv		g		Ę	5	Ę	5		5		5		5	į	5

Tab. 4c: Bewertungsstufen der einzelnen Bodenteilfunktionen für die Teilflächen TF 22 bis 26

	Teilfunktion								Be	wert	tung	sstuf	en		
					TF	22	TF	23	TF	24	TF	- 25	TI	- 26	
	Lebensgrundlage für P	flanzen un	d Tier	е	;	3	2	2	:	2		2		2	
	Bestandteil des Naturh (Ausgleichskörper im V		shalt)			1	,	1		1		1		1	
Stufe A	Land- und forstwirtscha				2		2	2	:	2		2		2	
St	Ertragsfähigkeit Seltenheit				3		3		3			4		3	
	Naturnähe				5		5		5		4	_	5	_	
	Regenerierbarkeit	Verknüpf	ungsn	natrix	3	4	3	4	3	4	3	3	3	4	
	Lebensgrundlage für B	odenorgan	ismer	1	2	2		1		1		1		1	
	Filtereigenschaften für grobdisperse Stoffe (Stäube)		4	4	į	5	!	5		3	4				
B	Filter- und Puffereigens	schaften	Cu		4		4		5		4		4		
	für Schwermetalle		Pb	Stufe	5	4	5	4	5	5	5	4	5	4	
Stufe			Zn		3		3		4		3		3		
	Rückhaltevermögen für nicht sorbierbare			(3	4	1		4	2		3			
	Stoffe														
	Eignungsfähigkeit für d Niederschlagswasserv		9		į	5	į	5	,	5		5		5	

Unter Berücksichtigung der Vorgaben des Bewertungsmodells (s. Tab. 3) ergibt sich die in Tab. 5 dargestellte Gesamtbewertung. Zunächst sind die Funktionen der Stufe A bewertet worden und anschließend ggf. Zuschläge für die Funktionen der Stufe B hinzugerechnet worden.

Tab. 5: Auswertung der Gesamtbodenfunktionsbewertung

Standort	Ausweπung de Teilfläche		der Bewe				Bewertung	Zuschlag	Gesamt-
		1	2	3	4	5	(Stufe A)	(Stufe B)	bewertung
	TF 10	2	1	2	1	-	3	+1	4
	TF 11	2	1	1	1	-	3	-	3
	TF 12	2	1	1	1	-	3	+1	4
	TF 13	2	1	1	1	-	3	+1	4
	TF 14	3	1	2	-	-	3	+1	4
Ost"	TF 15	4	ı	1	-	-	2	+1	3
"B-Plan Nr. 578 – Limberg Nord-Ost"	TF 16	4	ı	1	ı	ı	2	+1	3
berg	TF 17	4	-	1	-	-	2	+1	3
– Lim	TF 18	4	1	1	-	-	2	+1	3
lr. 578	TF 19	2	1	1	1	-	3	+1	4
lan N	TF 20	3	1	1	-	-	2	+1	3
뤅	TF 21	3	1	1	-	-	2	+1	3
	TF 22	1	1	2	1	-	3	-	3
	TF 23	1	2	1	1	-	3	+1	4
	TF 24	1	2	1	1	-	3	+1	4
	TF 25	1	2	1	1	_	3	-	3
	TF 26	1	2	1	1	-	3	-	3

7 Bewertung der Ergebnisse

Insgesamt betrachtet sind auf den 17 bewerteten Teilflächen des Untersuchungsgebietes Bewertungsstufen zwischen 3 und 4 ermittelt worden (s. Anl. 1.3). Auf der fünfstufigen Skala (1-5) der Bewertungsmatrix werden somit überwiegend mittlere (3) bis hohe (4) Bewertungen erreicht. Die Stufe 5 bedeutet, dass der Standort sehr schützenswerte Eigenschaften aufweist und damit für die Bebauung als ungeeignet zu bewerten ist (STADT OSNABRÜCK, 2009).

Die untersuchten Teilflächen auf dem ehemaligen Kasernengelände erreichen in der Gewichtungsstufe A nur geringe bis mittlere Bewertungsstufen.

Für insgesamt dreizehn Teilflächen ergibt sich in der Gesamtbewertung eine Erhöhung um eine Wertstufe (+1), aufgrund von z.T. sehr hohen Bewertungen der Bodenfunktionen "Filterund Puffereigenschaften für Schwermetalle" sowie "Eignungsfähigkeit für die Niederschlagswasserversickerung" aus der Gewichtungsstufe B.

Bodenfunktionsbewertung Kompensationsgrundsätze Auf Basis der können entsprechenden Beeinträchtigungen der Bodenfunktionen entwickelt werden. Bei Böden mit besonderer Bedeutung sollte das numerische Verhältnis von versiegelter Fläche zur Kompensationsfläche 1: 1 betragen, andernfalls 1:0,5. Als Böden mit besonderer Bedeutung werden Böden mit besonderen Standorteigenschaften (Extremstandorte), naturnahe Böden und Böden mit naturhistorischer Bedeutung, sowie seltene Böden bezeichnet. Im Rahmen der Bodenfunktionsbewertung wird dieses über die drei Teilfunktionen "Lebensgrundlage für Pflanzen und Tiere", "Naturnähe/Regenerierbarkeit" und " Seltenheit" bewertet, welche allesamt in der Gewichtungsstufe A bewertet werden. Des Weiteren ist es notwendig, dass, wenn die Gesamtbewertung der Bodenfunktion die Bewertungsstufe 4 (hoch) oder 5 (sehr hoch) erreicht, die numerische Kompensation 1:1 beträgt, andernfalls stets 1:0,5.

Unter Berücksichtigung der Ergebnisse der Bodenfunktionsbewertung des 1. Teils (s. Sack+Temme GbR, Bericht Nr. 1009.1508, vom 10.09.2010) bleibt festzuhalten, dass bei angrenzenden Teilflächen teilweise unterschiedliche Bewertungsstufen ermittelt wurden (s. z.B. TF 11 zu TF 1-3 und 2-2 oder auch TF 15 zu TF 6, bzw. TF 25 zu TF 3). Dabei muss berücksichtigt werden, dass es sich bei der Abgrenzung der einzelnen Teilflächen um fließende Übergänge handelt, bedingt durch die Anzahl (Rasterweite) und Lage der einzelnen Bohrstocksondierungen.

8 Quellen

Staut Oshabi uck (2009) - Douel iluliktion spewertunu ili Oshabi uc	Stadt Osnabrück (2009)	Bodenfunktionsbewertung in Osnabrück
---	------------------------	--------------------------------------

Teil A - Kartier- und Bewertungsschlüssel für die Bodenfunktionen in

Osnabrück

Teil B – Berücksichtigung der Bodenfunktionsbewertung im Rahmen der

Bauleitplanung

AG Boden (2005) Bodenkundliche Kartieranleitung, 5. Auflage, Hannover

NLfB (1979) Geologische Karte von Niedersachsen 1:25.000, Blatt 3614 Wallenhorst

NLfB (2002) Geofakten 11: Schutzwürdige Böden in Niedersachsen – Hinweise zur

Umsetzung der Archivfunktion im Bodenschutz, Hannover

LBEG (2008) GeoBerichte 8: Schutzwürdige Böden in Niedersachsen – Arbeitshilfe zur

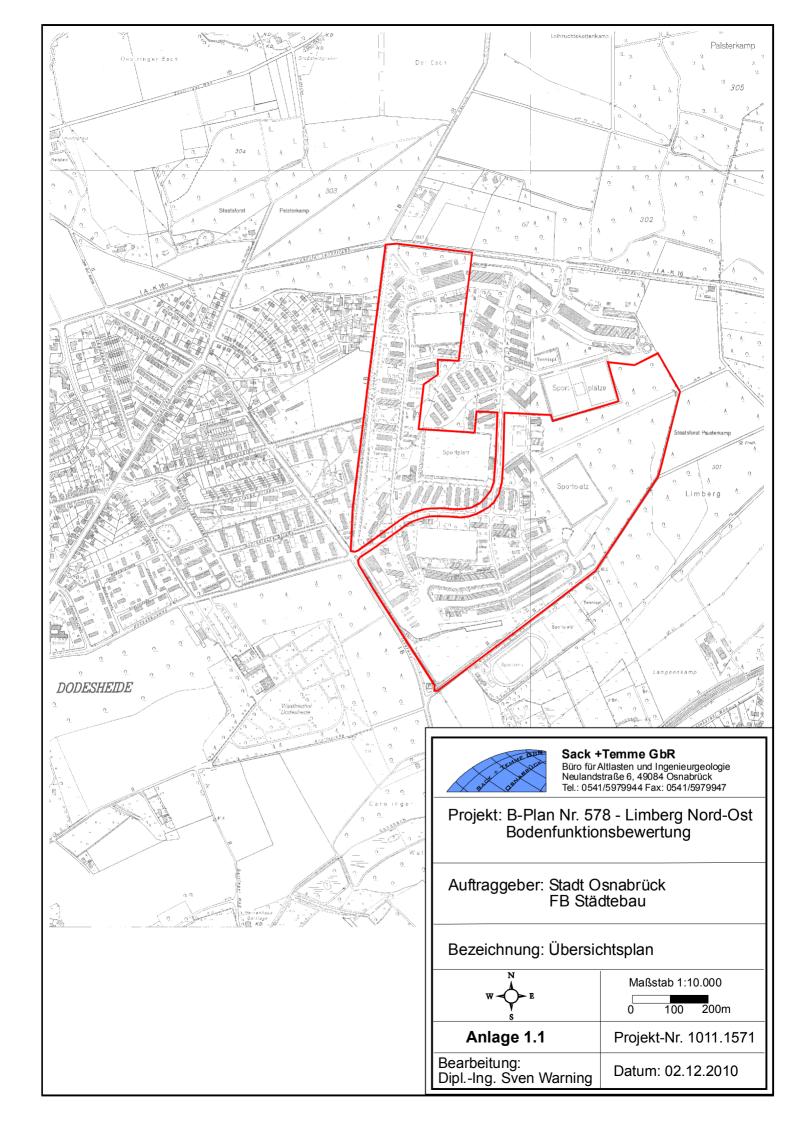
Berücksichtigung des Bodenschutzes Boden in Planungs- und

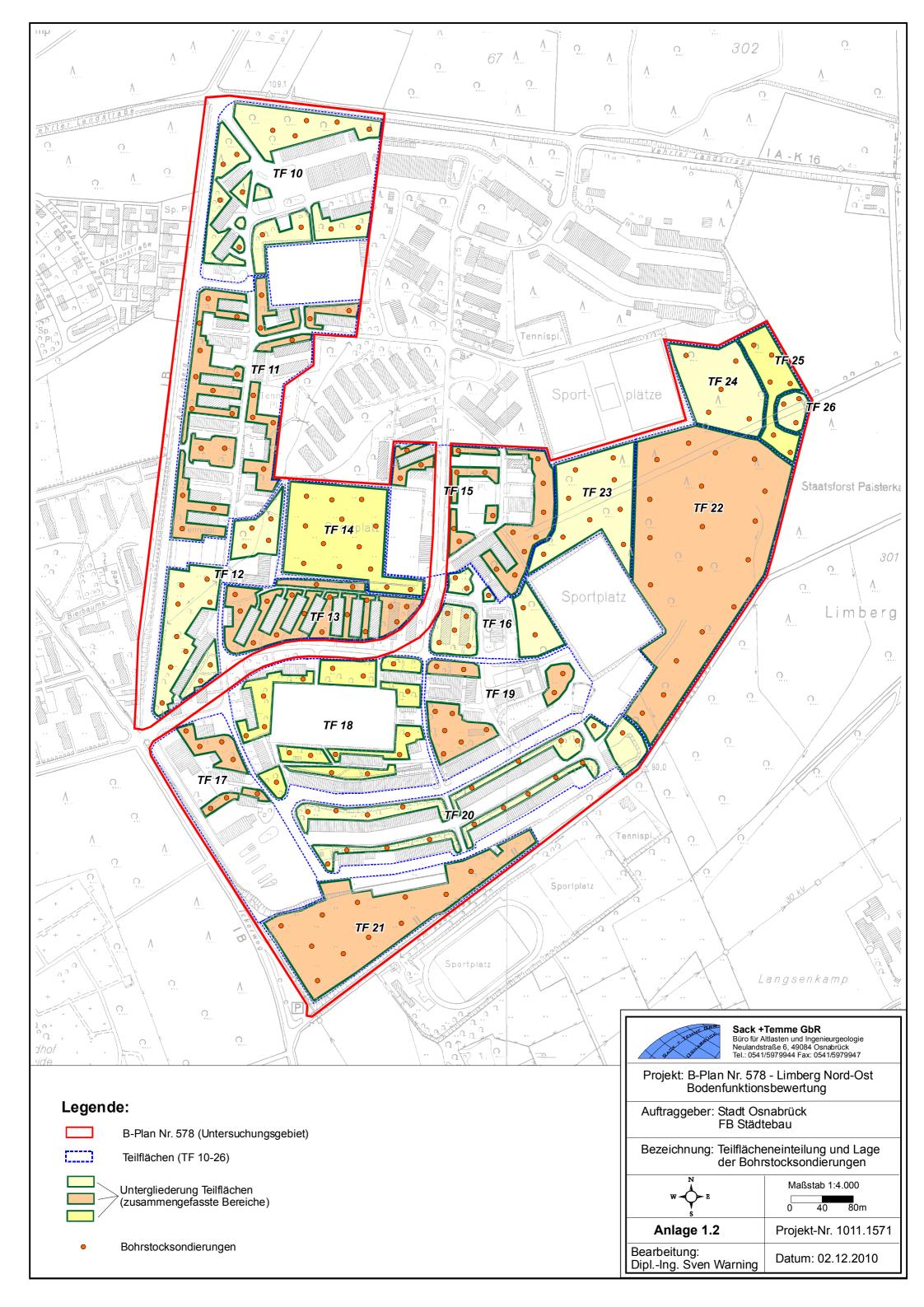
Genehmigungsverfahren, Hannover

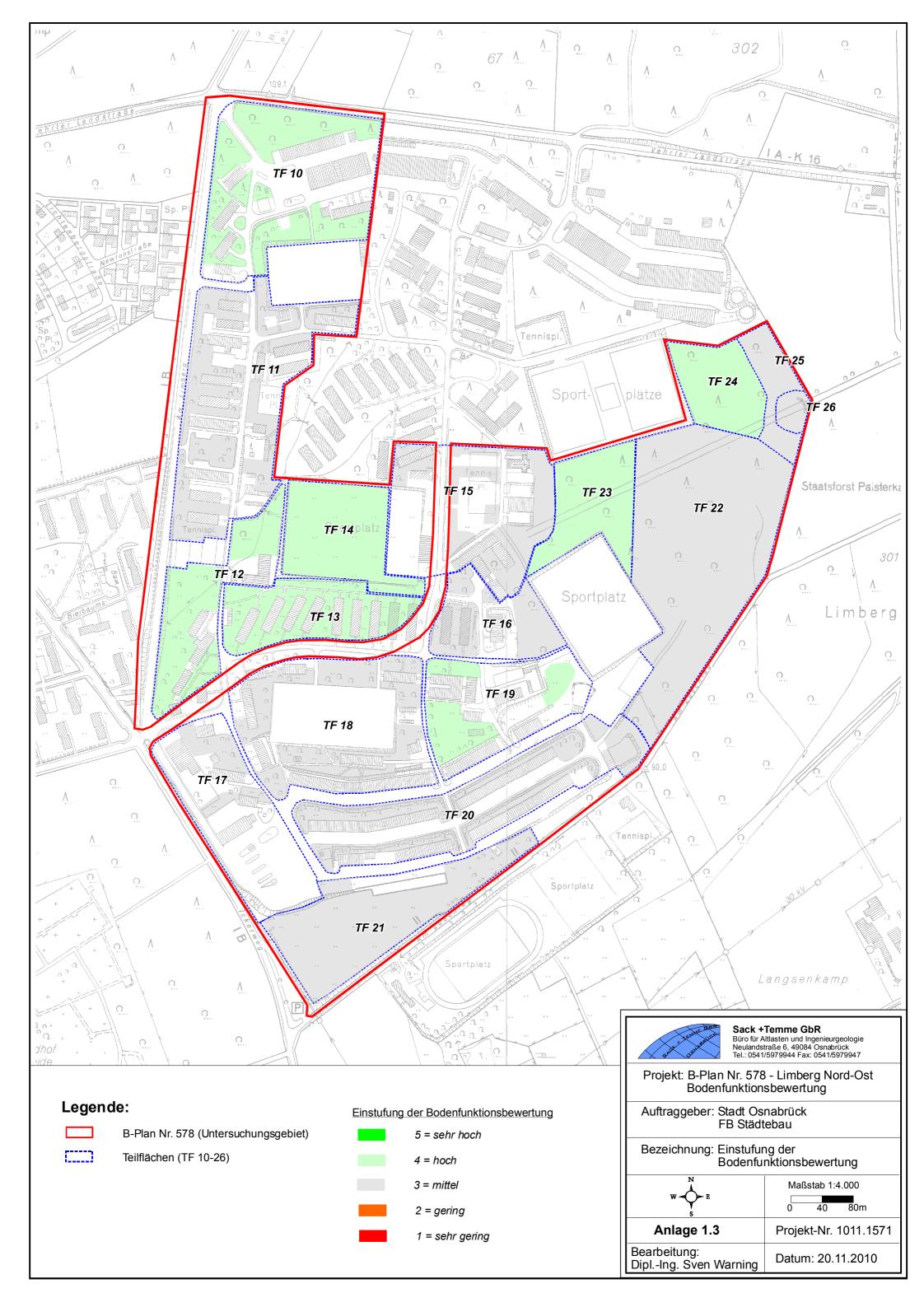
LBEG (2010) Karten und Daten der Niedersächsischen Bodeninformationssystems NIBIS

(http://nibis.lbeg.de/cardomap3/), 10.11.2010

Osnabrück, 01.12.2010


Dipl.-Ing. Sven Warning


Dipl.-Geol. Michael Sack


Anlagen

Anlage 1

Karten und Pläne

Anlage 2

Protokolle und Tabellen

Anlage 2.1

Protokolle und Aufnahmebögen (Bohrstock-Kartierung) gem. Kartierbogen A16, "Bodenfunktionsbewertung in Osnabrück"

Standort B-	B-Plan Nr.	Teilflächen Nr.	Nutzung	%	Vegetation		Baumarten (Alter)	ر)	Humusform
Osnabrück, B-F ehemaliges Liir Kasernengelände Am Limberg	B-Plan Nr. 578 Limberg Nord-Ost		Grünfläche, Bäume, Wohngebäude (Unterkünfte)		Bäume, Rasenflächen		Eiche (ca. 20-60 Jahre)		Rohhumus
Hang- Ha exposition	Hangneigung	Hanglänge		Ausgangsgestein			Steingehalt (Oberfläche)	Versiegelungsgrad	Versiegelungs- belag
1,1	1,1% (N0.2)	180 m		Tonstein/Schluffstein (Steinmergel-Keuper)	Steinmergel-Ke	· (Jedni		Straße (70 %), Wohnflächen (20 %)	Gebäude, Betonsteinpflaster, Asphalt
Melioration		sonstige anthropogene Einflüsse	ropogene	Bodentyp			Bemerkungen		
1				Ranker			teilweise umgelagertes	teilweise umgelagertes Material, Metallreste in 40cm	
Tiefe (cm) Ho	Horizont	Textur	Grobboden	Technogene Substrate		Dichte	Gefügeform	pH-Wert	EC (µS/cm)
0-15	Ah	FS	gr1, x1	-		Ld3		4,7	•
15-40	Cv	sN	gr4, x3	vereinzelt Metal	Metalireste	Ld4		5,1	•
40+	mC	Tonstein	-	-		Td5		4,9	-
								Ø 4,9	
Tiefe (cm) Bc	Bodenfeuchte	Bodenfarbe		Humus		Pedogene Oxide		Substanzvolumen / Zersetzungsgrad (Torf)	Carbonat
0-15	feu2	10	10YR 2/1	54		•		-	C0
15-40	feu3	10	10YR 5/4	РО		-		-	C0
40+	feu3	10	10YR 6/3	04		•		•	C0
We (dm) nF	nFK (We) (Vol%)	nFK (We) (mm)	FK (We) (Vo!%)	LK (Oberboden) (Vol%)		KAKpot We / Oberboden (cmol _c /kg)		KAKeff 0-60 Oberboden (cmol _c /kg)	BKF (Stufe)
4	33	58,5	64	21,1	3 (10-<40 cm/d)	17		11,4	2
					1				

Standort:	Teilflächen-Nr.:	Nutzung:	Bodentyp:
Osnabrück B-Plan Nr. 578 Limberg Nord-Ost	10	Wald, Grünstreifen	Ranker

0 cm	
15 cm	Ah
	Cv
40	
40 cm	
	mC
45+ cm	

Standort	B-Plan Nr.	Teilflächen Nr.	Nutzung	>	Vegetation		Baumarten (Alter)		Humusform
Osnabrück, ehemaliges Kasernengelände Am Limberg	B-Plan Nr. 578 Limberg Nord-Ost	11	Grünfläche, Bäume, Wohngebäude (Unterkünfle)		Bäume, Rasenflächen		Birke, Eiche, Kiefer (ca. 20-60 Jahre)		Rohhumusartiger Moder
Hang- exposition	Hangneigung	Hanglänge		Ausgangsgestein	L		Steingehalt (Oberfläche)	Versiegelungsgrad	Versiegelungs- belag
ഗ	5,6% (N2.2)	320 m		Tonstein (Oberer Keuper)	er)		-	Straße (70 %), Wohnflächen (20 %)	Gebäude, Betonsteinpflaster, Asphalt
Melioration		sonstige anthropogene Einflüsse	ıropogene	Bodentyp			Bemerkungen		
ı		1		Ranker			teilweise umgelagertes Material	Material	
Tiefe (cm)	Horizont	Textur	Grobboden	Technogene Substrate		Dichte	Gefügeform	pH-Wert	EC (µS/cm)
050	Ah	Ts2	gr2	(Einzelfund)	(pun	Ld3		4,5	1
30-60	Cv	Γt	gr4, x4	-		Ld4-5		4,1	-
+09	mC	Tonstein	-	•		Ld5		n.b.	•
								Ø 4,3	
Tiefe (cm)	Bodenfeuchte	Bodenfarbe		snunH		Pedogene Oxide		Substanzvolumen / Zersetzungsgrad (Torf)	Carbonat
05-0	feu2	11	10YR 4/3	74		•		-	00
30-60	feu3	11	10YR 6/4	04		-		-	00
+09	-		n.b.	04		•			
We (dm)	nFK (We) (Vol%)	nFK (We) (mm)	FK (We) (Vo!%)	LK (Oberboden) (Vol%)		KAKpot We / Oberboden (cmol _c /kg)		KAKeff 0-60 Oberboden (cmol ₋ /kg)	BKF (Stufe)
9	24	72	62	15,5	2 (1-<10 cm/d)	26,5		25,4	2

Standort:	Teilflächen-Nr.:	Nutzung:	Bodentyp:
Osnabrück B-Plan Nr. 578 Limberg Nord-Ost	11	Grünanlage, Parkanlage, Unterkunftsgebäude	Ranker

0 cm	
	Ah
20	
30 cm	
	Cv
00	
60 cm	
	mC
	mC
65+ cm	
OOT CIII	

Osnabrück, B-Plan Nr. 578 ehemaliges Kasernengelände Am Limberg Hang- exposition SO 1% (N0.2) Melioration SO Tiefe (cm) Horizont O-10 Ah 10-60 Cv 60+ mC	12	Grünfläche. Bäume. Wohngebäude					
### Hangneigung ### 1% (N0.2) ####################################		(Unterkünfte), Niederung (Vernässung)	(Bu	Bäume, Rasenflächen	Birke, Buche (ca. 20-60 Jahre)		Rohhumusartiger Moder
1% (N0.2) hlauf (Betonrinne) o-10 60+ mC	Hanglänge		Ausgangsgestein		Steingehalt (Oberfläche)	Versiegelungsgrad	Versiegelungs- belag
Ah CV	200 m		Tonstein (Oberer Keuper)			Straße (70 %), Wohnflächen (20 %)	Gebäude, Betonsteinpflaster, Asphalt
dorizont Ah Cv	sonstige anthropogene Einflüsse	ropogene	Bodentyp		Bemerkungen		
Horizont Ah Cv	Wassereinstau		Ranker		teilweise umgelagertes	teilweise umgelagertes Material, 1 Bohrstock Braunerde	
	Textur	Grobboden	Technogene Substrate	Dichte	Gefügeform	pH-Wert	EC (hS/cm)
	Us	gr2	Ziegel (Einzelfund)	Ld3		5,0	-
	Ct3	gr5, x4	•	Ld4-5		4,8	-
	Tonstein	-	•	Ld5		4,5	ı
						Ø4,8	
Tiefe (cm) Bodenfeuchte	Bodenfarbe		Humus	Pedogene Oxide		Substanzvolumen / Zersetzungsgrad (Torf)	Carbonat
0-10 feu3	10	10YR 3/3	h4	-		•	00
10-60 feu3	10	10YR 5/3	0Ч	-		•	00
60+ feu3	10	10YR 4/4	04			•	00
				17 A 17 - 4 187 - 1 O 1 - 14 1 - 1 - 1			ייים איזים
We (dm)	nrk (we) (mm)	FK (We) (Vol%)	LK (Oberboden) (Vol%)	KAKpot We / Oberboden (cmol _c /kg)		KAKeff 0-60 Oberboden (cmol₀/kg)	BKF (Sture)
6 37	73	59	4,8 (1-<10 cm/d)	21,7 21,7		20,2	2

Standort:	Teilflächen-Nr.:	Nutzung:	Bodentyp:
Osnabrück B-Plan Nr. 578 Limberg Nord-Ost	12	Grünanlage, Parkanlage, Unterkunftsgebäude	Ranker

0 cm	
10. om	Ah
10 cm	
	Cv
60 cm	
	mC
65+ cm	
1	

Standort	B-Plan Nr.	Teilflächen Nr.	Nutzung	<u> </u>	Vegetation		Baumarten (Alter)	(Humusform
Osnabrück, ehemaliges Kasernengelände Am Limberg	B-Plan Nr. 578 Limberg Nord-Ost	13	Grünfläche, Bäume, Wohngebäude (Unterkünfle)		Bäume, Rasenflächen	zhen	Birke (ca. 20-60 Jahre)		Rohhumusartiger Moder
Hang- exposition	Hangneigung	Hanglänge		Ausgangsgestein	u		Steingehalt (Oberfläche)	Versiegelungsgrad	Versiegelungs- belag
MS	2,5% (N1)	m 06		Tonstein (Oberer Keuper)	oer)		-	Straße (70 %), Wohnflächen (20 %)	Gebäude, Betonsteinpflaster, Asphalt
Melioration		sonstige anthropogene Einflüsse	ropogene	Bodentyp			Bemerkungen		
Bachlauf (Betonrinne)	(әі	Wassereinstau		Ranker			teilweise umgelagertes	teilweise umgelagertes Material, im NO der TF in 30 cm Schlacke	lacke
Tiefe (cm)	Horizont	Textur	Grobboden	Technogene Substrate		Dichte	Gefügeform	pH-Wert	EC (µS/cm)
0-10	Ah	۲۶	gr2	el (Ei	nzelfund)	Ld3-4		5,4	1
10-60	CV	Ts3	gr5, x3	1		Ld4-5		5,3	1
									1
								£'5Ø	
Tiefe (cm)	Bodenfeuchte	Bodenfarbe		Humus		Pedogene Oxide		Substanzvolumen / Zersetzungsgrad (Torf)	Carbonat
0-10	feu3	10	10YR 2/2	h5				•	00
10-60	feu3	10	10YR 3/3	ОЧ				•	00
We (dm)	nFK (We) (Vol%)	nFK (We) (mm)	FK (We) (Vol%)	LK (Oberboden) (Vol%)	Į.	KAKpot We / Oberboden (cmol _o /kg)		KAKeff 0-60 Oberboden (cmol _c /kg)	BKF (Stufe)
9	33	69	64	23,8	2 (1-<10 cm/d)	22,8		20,3	2

Standort:	Teilflächen-Nr.:	Nutzung:	Bodentyp:
Osnabrück B-Plan Nr. 578 Limberg Nord-Ost	13	Grünanlage, Parkanlage, Unterkunftsgebäude	Ranker

0 cm	
	Ah
10 cm	
	Cv
60 cm	
65+ cm	mC

Humusform		Versiegelungs- belag	-			EC (µS/cm)	1		-			Carbonat	C2	C3			BKF (Stufe)	2
(Versiegelungsgrad	%0			pH-Wert	6,4	9'2			Z'LØ	Substanzvolumen / Zersetzungsgrad (Torf)	•	-			KAKeff 0-60 Oberboden (cmol√kg)	8,8
Baumarten (Alter)		Steingehalt (Oberfläche)	-	Bemerkungen	umgelagertes Material	Gefügeform												
						Dichte	Ld3-4	Ld5				Pedogene Oxide	•	-			KAKpot We / Oberboden (cmol _o /kg)	10,3
Vegetation	Rasenflächen	tein	Keuper)					(Schwefelgeruch)									kf	3 (10-<40 cm/d)
		Ausgangsgestein	Tonstein (Oberer K	Bodentyp	Depo-Regosol	Technogene Substrate	'	Beton, Schlacke (SnwnH	94	04			LK (Oberboden) (Vol%)	23,7
Nutzung	Grünfläche, Sportplatz			ropogene		Grobboden	gr2	gr4, x4					10YR 2/1	10YR 2/2			FK (We) (Vol%)	56
Teilflächen Nr.	14	Hanglänge	m 0	sonstige anthropogene Einflüsse	Bodenauftrag	Textur	SI	sN				Bodenfarbe))			nFK (We) (mm)	84
	B-Plan Nr. 578 Limberg Nord-Ost	Hangneigung	<1% (N0.1)			Horizont	JAh	jCv				Bodenfeuchte	feu3	feu3			nFK (We) (Vol%)	33
Standort	ck, es ngelände erg	Hang- exposition	MS	Melioration	Begradigung der Oberfläche	Tiefe (cm)	0-20	20-60				Tiefe (cm)	0-20	20-60			We (dm)	Ø

Standort:	Teilflächen-Nr.:	Nutzung:	Bodentyp:
Osnabrück B-Plan Nr. 578 Limberg Nord-Ost	14	Sportplatz (Rasenfläche)	Depo-Regosol

0 cm	
10 cm	j A h
10 cm	
	jCv
60 cm	

Standort	B-Plan Nr.	Teilflächen Nr.	Nutzung	Λe	Vegetation		Baumarten (Alter)	(Humusform
Osnabrück, ehemaliges Kasernengelände Am Limberg	B-Plan Nr. 578 Limberg Nord-Ost	15	Grünfläche, Bäume, Wohngebäude (Unterkünfle)		Bäume, Rasenflächen		Birke (ca. 20-60 Jahre)		Rohhumusartiger Moder
Hang- exposition	Hangneigung	Hanglänge		Ausgangsgestein			Steingehalt (Oberfläche)	Versiegelungsgrad	Versiegelungs- belag
ဟ	2,3% (N1)	130 m		Tonstein (Oberer Keuper)	(-	Straße (70 %), Wohnflächen (20 %)	Gebäude, Betonsteinpflaster, Asphalt
Melioration		sonstige anthropogene Einflüsse	ıropogene	Bodentyp			Bemerkungen		
ı		Bodenauffrag (Umlagerung)	nlagerung)	Depo-Regosol			teilweise umgelagertes Material	Material	
Tiefe (cm)	Horizont	Textur	Grobboden	Technogene Substrate	Dichte		Gefügeform	pH-Wert	EC (µS/cm)
0-20	ΑĄ	rs F	gr2	-		грз		5,2	•
20-70	jCv	Lt3	gr4, x4	wenig Bauschutt, Ziegel	Ziegel	Ld4		7	•
									•
								Ø6,5	
Tiefe (cm)	Bodenfeuchte	Bodenfarbe		Humus	Pedogel	Pedogene Oxide		Substanzvolumen / Zersetzungsgrad (Torf)	Carbonat
0-20	feu3	10	10YR 3/2	£4		•			00
20-70	feu3	10	10YR 3/3	04		-		-	C1
We (dm)	nFK (We) (Vol%)	nFK (We) (mm)	FK (We) (Vol%)	LK (Oberboden) (Vol%)	KAKpot W (cmol√kg)	KAKpot We / Oberboden (cmol _o /kg)		KAKeff 0-60 Oberboden (cmol,/kg)	BKF (Stufe)
7	28	83	56	20,9	2 (1-<10 cm/d)	21,1		19,9	2

Standort:	Teilflächen-Nr.:	Nutzung:	Bodentyp:
Osnabrück B-Plan Nr. 578 Limberg Nord-Ost	15	Grünanlage, Gebäude	Depo-Regosol

0 cm		
	j A h	
	JAII	
20 cm		
	jCv	
70 cm		

Standort	B-Plan Nr.	Teilflächen Nr.	Nutzung	M	Vegetation		Baumarten (Alter))	Humusform
Osnabrück, ehemaliges Kasernengelände Am Limberg	B-Plan Nr. 578 Limberg Nord-Ost	16	Grünfläche, Bäume, Wohngebäude (Unterkünfle teilweise abgerissen)		Bäume, Rasenflächen		Birke (ca. 20-60 Jahre)		Rohhumusartiger Moder
Hang- exposition	Hangneigung	Hanglänge		Ausgangsgestein			Steingehalt (Oberfläche)	Versiegelungsgrad	Versiegelungs- belag
ဟ	2,9% (N1)	140 m		Tonstein (Oberer Keuper)	er)			Straße (70 %), Wohnflächen (20 %)	Gebäude, Betonsteinpflaster, Asphalt
Melioration		sonstige anthropogene Einflüsse	ıropogene	Bodentyp			Bemerkungen		
ı		Bodenauftrag		Depo-Regosol			reilweise umgelagertes	teilweise umgelagertes Material, Stauwasser, Oberflächenverdichtung	rdichtung
Tiefe (cm)	Horizont	Textur	Grobboden	Technogene Substrate		Dichte	Gefügeform	pH-Wert	EC (µS/cm)
0-5	hAi,	£s.1	gr2	1		Ld4		4,6	ı
2-60	jCv	Ls3	gr2, x2	vereinzelt Ziegel	igel	Ld4		6,0	•
08-09	Cv	T	gr2	-		Ld4		6'9	1
								Ø6,1	
Tiefe (cm)	Bodenfeuchte	Bodenfarbe		SnunH		Pedogene Oxide		Substanzvolumen / Zersetzungsgrad (Torf)	Carbonat
0-5	feu3-4	10	10YR 4/2	h1		•		•	00
2-60	feu3	10	10YR 4/3	0Ч		•		•	00
08-09	feu3	10	10YR 7/4	0Ч		•		•	00
We (dm)	nFK (We) (Vol%)	nFK (We) (mm)	FK (We) (Vol%)	LK (Oberboden) (Vol%)		KAKpot We / Oberboden (cmol _c /kg)		KAKeff 0-60 Oberboden (cmol.⁄kg)	BKF (Stufe)
ω	32	75	64	24,8	3 (10-<40 cm/d)	18,8		18,8	2

Standort:	Teilflächen-Nr.:	Nutzung:	Bodentyp:
Osnabrück B-Plan Nr. 578 Limberg Nord-Ost	16	Grünanlage, Gebäude	Depo-Regosol

0 cm	
5 cm	jAh
	jCv
60 cm	
	Cv
80 cm	

Standort	B-Plan Nr.	Teilflächen Nr.	Nutzung	^	Vegetation		Baumarten (Alter)	.)	Humusform
Osnabrück, ehemaliges Kasernengelände Am Limberg	B-Plan Nr. 578 Limberg Nord-Ost	17	Grünfläche, Bäume, Wohngebäude (Unterkünfle)		Bäume, Rasenflächen		Birke (ca. 20-60 Jahre)		Rohhumusartiger Moder
Hang- exposition	Hangneigung	Hanglänge		Ausgangsgestein	u		Steingehalt (Oberfläche)	Versiegelungsgrad	Versiegelungs- belag
ω	0,4% (N0.1)	250 m		Tonstein (Oberer Keuper)	er)			Straße (70 %), Wohrflächen (20 %)	Gebäude, Betonsteinpflaster, Asphalt
Melioration		sonstige anthropogene Einflüsse	ıropogene	Bodentyp			Bemerkungen		
1		Bodenauftrag		Depo-Regosol			teilweise umgelagertes Material (Sandeinlage südlichen Abschnitt Schotter auf den Wällen	teilweise umgelagertes Material (Sandeinlagerugen zwischen 10 und 30 cm), im südlichen Abschnitt Schotter auf den Wällen	n 10 und 30 cm), im
Tiefe (cm)	Horizont	Textur	Grobboden	Technogene Substrate		Dichte	Gefügeform	pH-Wert	EC (µS/cm)
0-5	АĄ	r)	gr2	•		Ld3		5,1	-
2-60	jCv	SI	gr4, x3	vereinzelt Ziegel	egel	Ld4		6,3	•
08-09	CV	Ts2	gr4, x3	•		Td5		5,9	-
								Ø6,1	
Tiefe (cm)	Bodenfeuchte	Bodenfarbe		Humus		Pedogene Oxide		Substanzvolumen / Zersetzungsgrad (Torf)	Carbonat
0-5	feu3	10	10YR 2/2	54		•		•	00
2-60	feu3	10	10YR 3/2	0Ч		•		-	C2
08-09	feu3	10	10YR 3/2	ОЧ		•		•	00
We (dm)	nFK (We) (Vol%)	nFK (We) (mm)	FK (We) (Vol%)	LK (Oberboden) (Vol%)	Ļ	KAKpot We / Oberboden (cmol _o /kg)		KAKeff 0-60 Oberboden (cmol√kg)	BKF (Stufe)
ω	42	80	81	25,2	3 (10-<40 cm/d)	13,4		12,5	2
							•		1

Standort:	Teilflächen-Nr.:	Nutzung:	Bodentyp:
Osnabrück B-Plan Nr. 578 Limberg Nord-Ost	17	Grünanlage, Gebäude	Depo-Regosol

0 cm	
	iAh
5 cm	jAh
	••
	jCv
60 cm	
	Cv
80 cm	

Standort	B-Plan Nr.	Teilflächen Nr.	Nutzung		Vegetation		Baumarten (Alter)	۲)	Humusform
Osnabrück, ehemaliges Kasernengelände Am Limberg	B-Plan Nr. 578 Limberg Nord-Ost	18	Grünfläche, Bäume, Wohngebäude (Unterkünfte), versiegelter Sportplatz (Parkplatz)		Bäume, Rasenflächen		Birke (ca. 20-60 Jahre)		Rohhumusartiger Moder
Hang- exposition	Hangneigung	Hanglänge		Ausgangsgestein	u		Steingehalt (Oberfläche)	Versiegelungsgrad	Versiegelungs- belag
ග	3,3% (N1)	30 m		Tonstein (Oberer Keuper)	per)			Straße (70 %), Wohrflächen (20 %)	Gebäude, Betonsteinpflaster, Asphalt
Melioration		sonstige anthropogene Einflüsse	ıropogene	Bodentyp			Bemerkungen		
		Bodenauftrag		Depo-Regosol			teilweise umgelagertes Material	. Material	
Tiefe (cm)	Horizont	Textur	Grobboden	Technogene Substrate		Dichte	Gefügeform	pH-Wert	EC (µS/cm)
0-5	JAh	Ls	gr2	,		ЕРП		5,3	-
2-50	jCv	Slu	gr3, x	vereinzelt Beton	eton	Ld4		5,5	-
20-60	CV	Ts2	gr4, x3	•		SPT		4,6	-
								Ø5,3	
Tiefe (cm)	Bodenfeuchte	Bodenfarbe		Humus		Pedogene Oxide		Substanzvolumen / Zersetzungsgrad (Torf)	Carbonat
0-5	feu3	1(10YR 3/2	h3		•		•	C0
5-50	feu3	1(10YR 5/3	04		-		•	သ
20-60	feu4	dunkel: 10YR	dunkel: 10YR 2/1, hell: 10YR 7/3	ОЧ		•		•	C1
We (dm)	nFK (We) (Vol%)	nFK (We) (mm)	FK (We) (Vol%)	LK (Oberboden) (Vol%)	kf	KAKpot We / Oberboden (cmol _o /kg)		KAKeff 0-60 Oberboden (cmol _o /kg)	BKF (Stufe)
ဖ	37	59	73	24,8	3 (10-<40 cm/d)	13		12,7	2

Standort:	Teilflächen-Nr.:	Nutzung:	Bodentyp:
Osnabrück B-Plan Nr. 578 Limberg Nord-Ost	18	Grünanlage, Gebäude	Depo-Regosol

0 cm	
5 cm	jAh
	jCv
50 cm	<u> </u>
	Cv
60+ cm	

Standort	B-Plan Nr.	Teilflächen Nr.	Nutzung	^	Vegetation		Baumarten (Alter))	Humusform
Osnabrück, ehemaliges Kasernengelände Am Limberg	B-Plan Nr. 578 Limberg Nord-Ost		Grünfläche, Bäume, Wohngebäude (Unterkünfle)		Bäume, Rasenflächen		Birke (ca. 20-60 Jahre)		Rohhumusartiger Moder
Hang- exposition	Hangneigung	Hanglänge		Ausgangsgestein	u		Steingehalt (Oberfläche)	Versiegelungsgrad	Versiegelungs- belag
ဟ	4,2% (N2.1)	120 m		Tonstein (Oberer Keuper)	oer)		-	Straße (70 %), Wohnflächen (20 %)	Gebäude, Betonsteinpflaster, Asphalt
Melioration		sonstige anthropogene Einflüsse	ropogene	Bodentyp			Bemerkungen		
ı		-		Ranker			teilweise umgelagertes	teilweise umgelagertes Material (u.a. Sandeinlagerungen ca. 10 cm Tiefe)	.10 cm Tiefe)
Tiefe (cm)	Horizont	Textur	Grobboden	Technogene Substrate		Dichte	Gefügeform	pH-Wert	EC (µS/cm)
0-5	Ah	IS	gr2	-		Ld3		6,2	-
2-50	CV	Ls	gr2	-		Ld4		5,0	•
20-60	mC	Tonstein	-	-		Ld5		4,8	-
								Ø5,1	
Tiefe (cm)	Bodenfeuchte	Bodenfarbe		Humus		Pedogene Oxide		Substanzvolumen / Zersetzungsgrad (Torf)	Carbonat
0-5	feu3	10	10YR 3/2	£4		•		-	C1
5-50	feu3	10	10YR 3/2	0Ч		•		-	C1
20-60	feu4	10	10YR 5/4	РО		•		•	C0
We (dm)	nFK (We) (Vol%)	nFK (We) (mm)	FK (We) (Vol%)	LK (Oberboden) (Vol%)	kf	KAKpot We / Oberboden (cmol _o /kg)		KAKeff 0-60 Oberboden (cmol√kg)	BKF (Stufe)
ĸ	30	51	49	25,1	3 (10 - <40 cm/d)	12,1		11,8	2

Standort:	Teilflächen-Nr.:	Nutzung:	Bodentyp:
Osnabrück B-Plan Nr. 578 Limberg Nord-Ost	19	Grünanlage, Gebäude	Ranker

0 cm	
5 cm	Ah
	Cv
50 om	
50 cm	
	mC
60+ cm	

Grünfflache, Blume, Cebaude (Lagerhallen), Blume, Rasenflachen Werkstätten)	Standort	B-Plan Nr.	Teilflächen Nr.	Nutzung	/	Vegetation		Baumarten (Alter)	r)	Humusform
Hanglange Hang	Osnabrück, ehemaliges Kasernengelände Am Limberg	B-Plan Nr. 578 Limberg Nord-Ost	20	Grümfläche, Bäume, Gel Werkstätten)	bäude (Lagerhallen, E	äume, Rasenflä		Birke (ca. 20-60 Jahre)		Rohhumusartiger Moder
4,3% (N2.1) 11.5 m Tonstein (Oberer Kouper) Tonstein (Oberboden) Tonstein (Oorloom) Tonstei	Hang- exposition	Hangneigung	Hanglänge		Ausgangsgestei	u		Steingehalt (Oberfläche)	Versiegelungsgrad	Versiegelungs- belag
Find Sonstige anthropogene Bodentyp	ഗ	4,3% (N2.1)	115 m		Tonstein (Oberer Keul	per)		-	Straße (70 %), Wohnflächen (20 %)	Gebäude, Betonsteinpflaster, Asphalt
Horizont Textur Grobboden Technogene Substrate Substr	Melioration		sonstige anth Einflüsse	ıropogene	Bodentyp			Bemerkungen		
n) Horizont Horizont Textur Textur Substrate Technogene Substrate Technogene Substrate Dichte 5 jcv SI gr4.x4 vereinzelt Ziegel Ld3 50 Cv T gr5.x4 Ld4 50 Cv T gr5.x4 Ld4 6 Feu3 Humus Pedogene Oxide 5 feu3 10/R 4/3 h0 Redoximorphie 5 feu3 10/R 4/3 h0 Redoximorphie 6 feu4 10/R 4/3 h0 Redoximorphie 7 feu4 10/R 4/3 h0 Redoximorphie 8 feu4 10/R 4/3 h0 Redoximorphie 9 feu4 10/R 4/3 h0 Redoximorphie 1 (vol%) (mm) (mm) (mol-l/kg) (mol-l/kg) 1 12.12 (1<10 cm/d)	1		Bodenauftrag		Depo-Regosol			teilweise umgelagertes	teilweise umgelagertes Material (sandigeres Material in den Wällen)	Wällen)
5 jAh Ls gr1 - 50 jOv SI gr4,x4 vereinzelt Ziegel 50 Cv T gr5,x4 vereinzelt Ziegel 60 Cv T gr5,x4 - 7 Feu3 Humus + 8 feu3 10YR 3/2 h3 90 feu4 10YR 3/2 h0 + 1 feu4 10YR 3/2 h0 + 1 nFK (We) FK (We) (Vol%) LK + 1 nFK (We) (mm) (Oberboden) Kf 1 Nol%) (mm) (Oberboden) (1-<10 cm/d)	Tiefe (cm)	Horizont	Textur	Grobboden	Technogene Substrate			Gefügeform	pH-Wert	EC (µS/cm)
15 15 vot SI gr4, x4 vereinzelt Ziegel 20 Cv T gr5, x4 - 30 Cv T Gr5, x4 - 30 Feu3 T ∩ YR 3/2 h3 5 Feu4 T ∩ YR 3/2 h0 h0 5 Feu4 T ∩ YR 3/2 h0 h0 6 Feu4 T ∩ YR 3/2 h0 h0 7 Feu4 T ∩ YR 3/2 h0 h0 8 Feu4 T ∩ YR 3/2 h0 H 9 FK (We) (Vol%) LK (Vol%) Kf 1 Mmh (Vol%) Kf (Vol%) Kf 1 36 95 73 21,2 (1-<10 cm/d)	0-15	JAh	s٦	gr1	-		Ld3		5,8	-
n) Cv T gr5,x4 - n) Bodenfeuchte leuchte Bodenfarbe Humus 5 feu3 10YR 3/2 h3 50 feu4 10YR 3/2 h0 50 feu4 10YR 3/2 h0 6 feu4 10YR 3/2 h0 7 mFK (We) h0 7 mmh Kf (We) (Vol%) 7 (Oberboden) Kf 8 95 73 21,2 (1-<10 cm/d)	15-65	jCv	IS	gr4, x4	vereinzelt Z	iegel	Ld4		6,9	-
n) Bodenfeuchte leu3 10YR 3/2 Humus 5 feu3 10YR 3/2 h3 50 feu4 10YR 3/2 h0 50 feu4 10YR 3/2 h0 5 feu4 10YR 3/2 h0 6 feu4 10YR 3/2 h0 7 feu4 10YR 3/2 h0 8 feu4 10YR 3/2 h0 10 feu4 10YR 3/2 h0 10 feu4 10YR 3/2 h0 10 feu4 feu4 feu4 <	65-100	CV	1	gr5, x4	-		Tq5		5,8	-
n) Bodenfeuchte Bodenfarbe Humus 5 feu3 10YR 3/2 h3 50 feu4 10YR 3/2 h0 50 feu4 10YR 3/2 h0 6 feu4 10YR 3/2 h0 7 feu4 10YR 3/2 h0 6 feu4 10YR 3/2 h0 7 feu4 h0 h0 8 feu4 10YR 3/2 H0 1 h6 h0 h0 1 h7 h0 h0 1 h7 h0 h0 1 h7 h0 h0 1 h6 h0										
n) Bodenfeuchte Bodenfarbe Humus 5 feu.3 10YR 3/2 h3 50 feu.4 10YR 3/2 h0 50 feu.4 10YR 3/2 h0 6 feu.4 10YR 3/2 h0 7 feu.4 h0 1 feu.4 fee.4 1 fee.4 fee.4										
n) Bodenfeuchte Bodenfarbe Humus 5 feu3 10YR 3/2 h3 50 feu4 10YR 3/2 h0 50 feu4 10YR 3/2 h0 6 feu4 FK (We) H0 7 FK (We) H0 7 COberboden) Kf 7 COberboden) Kf 7 COberboden) COberboden) 7 COberboden) COberboden) 7 COberboden) COberboden) 8 95 73 21,2 7 C1-<10 cm/d)									Ø5,7	
5 feu3 10YR 3/2 h3 55 feu4 10YR 3/2 h0 50 feu4 10YR 3/2 h0 6 feu4 10YR 3/2 h0 7 feu4 h0 7 feu4 h0 8 feu4 feu4 10 feu4 feu4	Tiefe (cm)	Bodenfeuchte	Bodenfarbe		SnwnH		Pedogene Oxide		Substanzvolumen / Zersetzungsgrad (Torf)	Carbonat
Feu 3	0-15	feu3)	JYR 3/2	£Ч		•		•	C1
200 feu4 10/R 3/2 h0 n FK (We) FK (We) FK (We) (Vol%) LK (We) (Vol%) Kf (Vol%) (mm) (Oberboden) (Vol%) (1-<10 cm/d)	15-65	feu3)	YR 4/3	04		Redoximorphie		-	C2
nFK (We) nFK (We) FK (We) (Vol%) LK	65-100	feu4)	JYR 3/2	04				•	C1
nFK (We) nFK (We) FK (We) (Vol%) LK kf (Vol%) (Mm) (Oberboden) (Vol%) (Vol%) (1-<10 cm/d)										
nFK (We) nFK (We) FK (We) (Vol%) LK kf (Vol%) (Mm) (Oberboden) (Vol%) (Vol%) (1-<10 cm/d)										
nFK (We) nFK (We) (Vol%) LK kf										
36 95 73 21,2 ² (1-<10 cm/d)	We (dm)	nFK (We) (Vol%)	nFK (We) (mm)	FK (We) (Vol%)	perboden)	4 .	KAKpot We / Oberboden (cmol _o /kg)		KAKeff 0-60 Oberboden (cmol _c /kg)	BKF (Stufe)
	10	36	95	73		2 (1-<10 cm/d)	18,9		18,5	4

Standort:	Teilflächen-Nr.:	Nutzung:	Bodentyp:
Osnabrück B-Plan Nr. 578 Limberg Nord-Ost	20	Grünanlage, Gebäude	Depo-Regosol

0 cm	
	jAh
15 cm	
	:O:-
	jCv
65 cm	
	_
	Cv

Steingehalt Versiegelungsgrad	Teilflächen Nr.	flächen	Nut Grün	Nutzung Grijmfäche (Hundeschi		Vegetation Rasenflächen		Baumarten (Alter)	(Humusform
Stein Steinghalt Steingelungsgrad Coberrlache) Coberrlache Comol.//(Comol.//(Coberrlache) Comol.//(Coberrlache) Comol.//(Coberrlache) Comol.//(Coberrlache) Comol.//(Coberrlache) Comol.//(Coberrlache) Comol.//(Coberrlache) Comol.//(Coberrlache) Coberrlache Coberrlach	B-Fran Nr. 370 Z1 Grunidache (Tundeschule) Limberg Nord-Ost		סוטוווומסופטווווומסופטוווווומסופטטוווווווווו	<u> </u>		ase macre				I-Mini
Pedogene Oxide Camolo/kg) Camolo/kg) Camolo/kg) Camolo	igung Hanglänge	glänge	Aus	Aus	Ausgangsgestei	u		Steingehalt (Oberfläche)	Versiegelungsgrad	Versiegelungs- belag
	2,9% (N1) 70 m Tonstei		Tonstei	Tonstei	n (Oberer Keup	ver)		_	0%	-
Tellweise umgelagertes Material (Schotter)	sonstige anthropogene Bod Einflüsse	anthropogene		Bod	Bodentyp			Bemerkungen		
ne (Schotter) Dichte Gefügeform pH-Wert e (Schotter) Ld3 6.5 e (Schotter) Ld4 5.4 e (Schotter) Ld5 6.4 e (Schotter) Ld5 7 e (Schotter) Ld5 1 e (Schotter) Ld5 1 e (Schotter) Ld5 1 e (Schotter) Rd5 1 e (Schotter) Rd5 1 e (Schotter) Rd5 1 e (Scho	Begradigung Oberfläche Bodenauftrag Depo-		-odeO	Depo-	Depo-Regosol			teilweise umgelagertes	Material (Schotter)	
Steine (Schotter) Ld3 6.5 Steine (Schotter) Ld4 5.4 Steine (Schotter) Ld5 6.4 Steine (Schotter) Ld5 6.4 Steine (Schotter) Bedogene Oxide Ø5.1 Schotter) Substanzvolumen / Zersetzungsgrad (Torf) Schotter Schotter Schott	Horizont Textur Grobboden Tech	Grobboden		Tect Sub	Technogene Substrate		Dichte	Gefügeform	pH-Wert	EC (µS/cm)
Steine (Schotter) Ld4 5,4 Steine (Schotter) Ld5 6,4 Steine (Schotter) Ld5 6,4 1	jAh Ls gr1		gr1		•		Ld3		5'9	-
Steine (Schotter) Ld5 6,4 Steine (Schotter) Ld5 6,4 Steine (Schotter) Substanzvolumen / Zersetzungsgrad (Torf) 2 16 - - 100 - - <t< td=""><td>jCv SI gr4, x4</td><td></td><td>gr4, x4</td><td></td><td>Steine (Schot</td><td>ter)</td><td>Ld4</td><td></td><td>5,4</td><td>•</td></t<>	jCv SI gr4, x4		gr4, x4		Steine (Schot	ter)	Ld4		5,4	•
Pedogene Oxide Substanzvolumen / Zersetzungsgrad (Torf)	Cv Ts3 gr2,x3		gr2, x3		Steine (Schot	ter)	Ld5		6,4	•
Pedogene Oxide Substanzvolumen / Zersetzungsgrad (Torf)										
Pedogene Oxide Substanzvolumen / Zersetzungsgrad (Torf)										
Pedogene Oxide Substanzvolumen / Zersetzungsgrad (Torf) 15									Ø5,1	
	Bodenfeuchte Bodenfarbe Humus		Hun	표	snu		Pedogene Oxide		Substanzvolumen / Zersetzungsgrad (Torf)	Carbonat
O	feu5 10YR 2/1	10YR 2/1	0YR 2/1		h5		•		-	00
O	feu5 10YR 2/2	10YR 2/2	0YR 2/2		hO		•		•	C1
kf KAKpot We / Oberboden KAkeff 0-60 Oberboden oden) (cmol_d/kg) (cmol_d/kg) 3,3 (1-<10 cm/d)	feu4 10YR 2/2	10YR 2/2	0YR 2/2		h0		•		•	ငဒ
kf KAKpot We / Oberboden KAKeff 0-60 Oberboden oden) (cmol _o /kg) (cmol _o /kg) 0,3 (1-<10 cm/d)										
kf KAKpot We / Oberboden KAKeff 0-60 Oberboden oden) (cmol _c /kg) (cmol _c /kg) 3,3 (1-<10 cm/d)										
kf KAKpot We / Oberboden KAKeff 0-60 Oberboden oden) (cmol _o /kg) (cmol _o /kg) 0,3 (1-<10 cm/d)										
2 (1-<10 cm/d) 13,7 11,8	nFK (We) FK (We) (Vol%) LK (Vol%) (mm) (Oberb (Vol%)	We) FK (We) (Vol%)		C C C C C C C C C C	oden)		KAKpot We / Oberboden (cmol _c /kg)		KAKeff 0-60 Oberboden (cmol _o /kg)	BKF (Stufe)
	38 80 81		81		20,3	2 1-<10 cm/d)	13,7		11,8	2

Standort:	Teilflächen-Nr.:	Nutzung:	Bodentyp:
Osnabrück B-Plan Nr. 578 Limberg Nord-Ost	21	Grünanlage, Rasenfläche, (Hundeschule)	Depo-Regosol

0 cm
jAh 15 cm
j Cv
Cv
80 cm

Humusform	Rohhumusartiger Moder	Versiegelungs- belag	Gebäude, Betonsteinpflaster, Asphalt			EC (hS/cm)	-	-	-			Carbonat	CO	C0	00	CO		BKF (Stufe)	6
(,		Versiegelungsgrad	Straße, Gebäude (15%)		Sd che im Sd	pH-Wert	3,8	4,3	4,4	n.b.	Ø 4,3	Substanzvolumen / Zersetzungsgrad (Torf)	•	•	•	-		KAKeff 0-60 Oberboden (cmol√kg)	29,3
Baumarten (Alter)	Südspizze: Buchen (ca. 60 Jahre), sonst: Eichen, Birken	Steingehalt (Oberfläche)		Bemerkungen	- Haufwerke - Eisenkonkretionen im Sd - grau-gebleichte Bereiche im Sd	Gefügeform													
	eren		n (Oberer Keuper)			Dichte	Ld3	Ld4	Cd5	Ld5		Pedogene Oxide	•	-	•			KAKpot We / Oberboden (cmol _c /kg)	30
Vegetation	Bäume, Brombeeren	stein	Saale) über Tonstein (Oberer Keuper)															kf	2 (1-<10 cm/d)
	tionslager	Ausgangsges	Geschiebelehm (S	Bodentyp	Pseudogley	Technogene Substrate	-	•	•	-		snwnH	£4	04	04	04		LK (Oberboden) (Vol%)	11,9
Nutzung	Wald, ehemaliges Munitionslager			ıropogene		Grobboden	-	х3	-	-			10YR 3/2	10YR 5/6	10YR 7/3	n.b.		FK (We) (Vol%)	89
Teilflächen Nr.		Hanglänge	375 m	sonstige anthropogene Einflüsse		Textur	ГП	Ts2	Т	Tonstein		Bodenfarbe	10	10	10			nFK (We) (mm)	84
B-Plan Nr.	B-Plan Nr. 578 Limberg Nord-Ost	Hangneigung	2,7% (N1)		hüttungen	Horizont	Ah	Sw	PS	mC		Bodenfeuchte	feu4	feu4	feu3	n.b.		nFK (We) (Vol%)	34
Standort	Osnabrück, ehemaliges Kasernengelände Am Limberg	Hang- exposition	တ	Melioration	teilweise Wallaufschüttungen	Tiefe (cm)	0-10	10-60	08-09	80+		Tiefe (cm)	0-10	10-60	08-09	80+		We (dm)	ω

Standort:	Teilflächen-Nr.:	Nutzung:	Bodentyp:
Osnabrück B-Plan Nr. 578 Limberg Nord-Ost	22	Wald, (ehem. Munitionslager)	Pseudogley

0 cm	
10 cm	Ah
	Sw
60 cm	
	Sd
80 cm	
85+ cm	mC

Humusform	Rohhumus	Versiegelungs- belag				EC (µS/cm)	•	-	-			Carbonat f)	8	8	8		en BKF (Stufe)	·
•	ca. 20-60 Jahre)	Versiegelungsgrad	%0		sungen Sd she im Sd	pH-Wert	8'8	4,4	4,3		6,48	Substanzvolumen / Zersetzungsgrad (Torf)	-	-	-		KAKeff 0-60 Oberboden (cmol. ^J kg)	
Baumarten (Alter)	Birke, Eichen, Buchen (ca. 20-60 Jahre)	Steingehalt (Oberfläche)		Bemerkungen	- Flintsteine, Findlinge - oberflächliche Vernässungen - Eisenkonkretionen im Sd - grau-gebleichte Bereiche im Sd	Gefügeform												
			in (Oberer Keuper)			Dichte	Ld3	Ld4	Cd5			Pedogene Oxide		•			KAKpot We / Oberboden (cmol√kg)	
Vegetation	Bäume	Ausgangsgestein	Geschiebelehm (Saale) über Tonstein (Oberer Keuper)	Bodentyp	Pseudogley	Technogene Substrate	•	-				Humus	h5	hO	hO		LK (Oberboden) (Vol%)	۲
Nutzung	Wald	A	<u>0</u>		- teilweise Aufschüttungen (Haufwerke), Pr.	Grobboden T	-	£X	-			<u> </u>	10YR 2/2	10YR 5/6	10YR 6/4)) (אפא) (אפא) ד	
Teilflächen Nr.	23	Hanglänge	160 m	sonstige anthropogene Einflüsse	- teilweise Aufscht' - ehem. Feldweg	Textur	η	Ts2	1			Bodenfarbe)	10	10		nFK (We) (mm)	
B-Plan Nr.	B-Plan Nr. 578 Limberg Nord-Ost	Hangneigung	4,4% (N2.1)			Horizont	Ah	Sw	PS			Bodenfeuchte	feu5	feu4	feu3		nFK (We) (Vol%)	
Standort	Osnabrück, ehemaliges Kasernengelände Am Limberg	Hang- exposition	ဟ	Melioration		Tiefe (cm)	0-5	5-50	20-80			Tiefe (cm)	0-5	5-50	50-80		We (dm)	

Standort:	Teilflächen-Nr.:	Nutzung:	Bodentyp:
Osnabrück B-Plan Nr. 578 Limberg Nord-Ost	23	Wald	Pseudogley

0 cm	
0 0111	
	Ah
5 cm	
	Sw
	SW
50 cm	
	Sd
	- Ou
80 cm	

Standort	B-Plan Nr.	Teilflächen Nr.	Nutzung	PΛ	Vegetation		Baumarten (Alter)	(.	Humusform
Osnabrück, ehemaliges Kasernengelände Am Limberg	B-Plan Nr. 578 Limberg Nord-Ost	24	Wald	<u> </u>	Bäume		Birke, Eichen, Buchen (ca. 20-60 Jahre)	(ca. 20-60 Jahre)	Rohhumus
Hang- exposition	Hangneigung	Hanglänge		Ausgangsgestein			Steingehalt (Oberfläche)	Versiegelungsgrad	Versiegelungs- belag
ဟ	5,8% (N2.2)	120 m		Geschiebelehm (Saale) über Tonstein (Oberer Keuper)	über Tonstei	n (Oberer Keuper)	1	%0	1
Melioration		sonstige anthropogene Einflüsse	ıropogene	Bodentyp			Bemerkungen		
				Pseudogley			- Eisenkonkretionen im Sd - grau-gebleichte Bereiche im Sd	Sd che im Sd	
Tiefe (cm)	Horizont	Textur	Grobboden	Technogene Substrate		Dichte	Gefügeform	pH-Wert	EC (hS/cm)
0-5	Ah	ηŢ	-	•		Ld3		4,8	•
2-50	Sw	Ts2	х3	-		Ld4		4,3	-
20-80	PS	Т	-	-		Ld5		4,4	-
								Ø 4,4	
Tiefe (cm)	Bodenfeuchte	Bodenfarbe		Humus		Pedogene Oxide		Substanzvolumen / Zersetzungsgrad (Torf)	Carbonat
0-5	feu4	10	10YR 3/3	h3		•		-	CO
5-50	feu4	1(10YR 5/6	hO		-		-	CO
20-80	feu3	10	10YR 6/4	hO				-	CO
We (dm)	nFK (We) (Vol%)	nFK (We) (mm)	FK (We) (Vol%)	LK (Oberboden) (Vol%)		KAKpot We / Oberboden (cmol _c /kg)		KAKeff 0-60 Oberboden (cmol _c /kg)	BKF (Stufe)
ω	46	101	112	3,06	2 (1-<10 cm/d)	31,8		31,5	6
				•			1		

Standort:	Teilflächen-Nr.:	Nutzung:	Bodentyp:
Osnabrück B-Plan Nr. 578 Limberg Nord-Ost	24	Wald	Pseudogley

	0 cm	
		Ah
	5	
	5 cm	
70- 10-		
120		
- N-		
N		Sw
20 S		Sw Sw
8		
de la companya de la		
9 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -		
	50 cm	
		Sd
	90	
	80 cm	

Standort	B-Plan Nr.	Teilflächen Nr.	Nutzung	MAN NEW	Vegetation		Baumarten (Alter))	Humusform
Osnabrück, ehemaliges Kasernengelände Am Limberg	B-Plan Nr. 578 Limberg Nord-Ost		Wald	Bäume	ıme		Birke, Eichen, Buchen (ca. 20-60 Jahre)	ca. 20-60 Jahre)	Rohhumus
Hang- exposition	Hangneigung	Hanglänge		Ausgangsgestein			Steingehalt (Oberfläche)	rsiegelungsgrad	Versiegelungs- belag
	6,2% (N2.2)	130 m		Tonstein (Oberer Keuper)	í		-	%0	1
Melioration		sonstige anthropogene Einflüsse	ropogene	Bodentyp			Bemerkungen		
		ı		Ranker			1		
Tiefe (cm)	Horizont	Textur	Grobboden	Technogene Substrate		Dichte	Gefügeform	pH-Wert	EC (µS/cm)
	Ah	Γn	gr1	ı		Ld3		3,6	•
	Λ	Ts2	gr3, x3	•		Ld4		4,0	
	mC	Tonstein	•	•		Ld5		4,0	•
								Ø 4,0	
Fiefe (cm)	Bodenfeuchte	Bodenfarbe		Humus	<u> </u>	Pedogene Oxide		Substanzvolumen / Zersetzungsgrad (Torf)	Carbonat
	feu3	10	10YR 3/2	h3		•			C0
5-50	feu4	10	10YR 5/2	hO		•		-	00
	feu3	10	10YR 3/4	hO		•			CO
	nFK (We) (Vol%)	nFK (We) (mm)	FK (We) (Vol%)	LK (Oberboden) (Vol%)	<u> </u>	KAKpot We / Oberboden (cmol _c /kg)		KAKeff 0-60 Oberboden (cmol _c /kg)	BKF (Stufe)
	31	52	09	1,4	1 (<1 cm/d)	27,4		26,9	2

Standort:	Teilflächen-Nr.:	Nutzung:	Bodentyp:
Osnabrück B-Plan Nr. 578 Limberg Nord-Ost	25	Wald	Ranker

0 cm	
	Ah
5 cm	
	0
	Cv
50 cm	
	mC
	1110
80+ cm	
OUT CITI	

B-Plan Nr. 578 26 Wald, (eh 1 20 20 20 20 20 20 20	Ŋ.	leimachen r Nr.	Nutzung		Vegetation		Baumarten (Alter)	(.	Humusform
tion 6,6% (N2.2) ation 6,6% (N2.2) 30 m cm) Horizont Soustige anthropogene Einflüsse -10 Ah Lu10 Sw Su10 Sw Su10 Feu4 10YR 3/2 -10 feu4 10YR 6/3 -10 feu4 10YR 6/3 -10 feu3 10YR 7/6 n) nFK (We) (mm) tion 6,6% (N2.2) 10 Ah 1		<u>> </u>	Vald, (ehem.Schießanla		äume		Birke, Eichen, Buchen (ca. 20-60 Jahre)	(ca. 20-60 Jahre)	Rohhumus
6,6% (N2.2) 30 m	gung	länge		Ausgangsgestei	u		Steingehalt (Oberfläche)	Versiegelungsgrad	Versiegelungs- belag
Note Sequential S				Geschiebelehm (Saalk) über Tonstein		%5	-	Gebäude, Betonsteinpflaster
n) Horizont Textur Grobboden Technogene Sw Su Sw Su Sw Su T Sw Su T Sw Su T Sw Su Humus by denfeuchte Bodenfarbe	sonsti Einflü	ige anthr isse		Bodentyp			Bemerkungen		
n) Horizont Textur Grobboden Technogene 0 Sw Su - - 0 Sw Su - - 0 Sd T - - n) Bodenfeuchte Bodenfarbe Humus 0 feu4 10YR 6/3 h0 0 feu4 10YR 6/3 h0 0 feu3 10YR 7/6 h0 0 feu4 10YR 7/6 h0 0 feu4 10YR 7/6 h0 0 feu3 10YR 7/6 h0 0 feu4 10YR 7/6 h0			_	Pseudogley			- Flintsteine, Findlinge - Eisenkonkretionen im Sd - grau-gebleichte Bereiche im Sd	Sd che im Sd	
D Ah Lu - - 0 Sw Su - - 0 Sd T - - n Sd T - - n Feu4 TOYR 3/2 Humus n feu4 TOYR 6/3 h0 n feu3 TOYR 7/6 h0 n feu3 TOYR 7/6 h0 n feu4 TOYR 7/6 h0 n feu3 FK (We) (Vol%) LK n mFK (We) mFK (We) (Vol%) COberboden)				Technogene Substrate		Dichte	Gefügeform	pH-Wert	EC (µS/cm)
0 Sw Su		Lu		-		ГРЗ		3,6	-
0 Sd T		Su	-	•		Ld4		4,0	•
n) Bodenfeuchte Bodenfarbe Humus D feu4 10YR 3/2 h3 0 feu4 10YR 6/3 h0 0 feu3 10YR 7/6 h0 1 10YR 7/6 10 1 10 10 1 10 10 1 10 10 1 10 10 1 10 10 1 10 10 1 10 10 1 10		Т	-	•		SPT		4,2	-
n) Bodenfeuchte Bodenfarbe Humus 0 feu4 10YR 3/2 h3 0 feu4 10YR 6/3 h0 0 feu3 10YR 7/6 h0 0 feu3 10YR 7/6 h0 1 feu3 feu4 h0 0 feu3 feu7 h0 0 feu3 feu7 h0 1 feu4 feu4 feu4 feu4									
n) Bodenfeuchte Bodenfarbe Humus D feu4 10YR 3/2 h3 0 feu4 10YR 6/3 h0 0 feu3 10YR 7/6 h0 n feu3 fr(We) h0 n feu3 fr(We) h0 n feu4 fr(We) fr(We) n fwm) fwol%) fwol%)									
n) Bodenfeuchte Bodenfarbe Humus 0 feu4 10YR 3/2 h3 0 feu4 10YR 6/3 h0 0 feu3 10YR 7/6 h0 1 nFK (We) h0 h0 1 nFK (We) nFK (We) nFK (We) (Vol%) (mm) (Oberboden)								Ø 4,0	
10YR 3/2 h3 feu4 10YR 6/3 h0 feu4 10YR 6/3 h0 feu3 10YR 7/6 h0 nFK (We) nFK (We) (We) (Vol%) (Mm) (Mm) (Wol%) (mm) (Mol%)		nfarbe		Humus		Pedogene Oxide		Substanzvolumen / Zersetzungsgrad (Torf)	Carbonat
0 feu4 10YR 6/3 h0 10YR 7/6 h0	feu4	10)	/R 3/2	h3		-		•	00
0 feu3 10YR 7/6 h0 nFK (We) nFK (We) (We) (Vol%) LK (Mm) (Mm) (Nol%)	feu4	10)	/R 6/3	hO		-		-	00
nFK (We) FK (We) (Vol%) LK (Vol%) (Mm) (Vol%) (feu3	10)	/R 7/6	РО		-		•	00
nFK (We) nFK (We) (Vol%) LK (Mm) (Oberboden) (Vol%)									
(Vol%) NFK (We) FK (We) (Vol%) LK (Mm) (Oberboden) (Vol%) (Vol%									
(Vol%) (mm) (Nol%) LK (We) (Vol%) LK (mm) (Oberboden) (Vol%)									
	(e)	We)		perboden)	Ť.	KAKpot We / Oberboden (cmol√kg)		KAKeff 0-60 Oberboden (cmol√kg)	BKF (Stufe)
7 54 118 104 6,6 (10-<40		118	104		3 (10-<40 cm/d)	21,6		20,8	თ

Standort:	Teilflächen-Nr.:	Nutzung:	Bodentyp:
Osnabrück B-Plan Nr. 578 Limberg Nord-Ost	26	Wald	Pseudogley

The state of the s
25 m

0 cm	
10 cm	Ah
	Sw
40 cm	Sd
80 cm	

Anlage 2.2

Bewertungsbögen der Bodenfunktionsbewertung

Bodenfunktionsbewertung für die Teilfunktionen der Stufe A

	Lebensgrundlage für Pflanzen und Tiere							
Hangneigung (%)	BKF	KAK _{eff}	pH-Wert	Zuschlag	Biotopentwicklungs- potential	Anthropogener Einfluss	Bewertungsstufe	
1%	2	11,4	4,9	-	3	4	3	

	Bestandteil des Naturhaushalts (Ausgleichskörper im Wasserhaushalt)								
	kf-Wert Stufe	nFKWe (mm)	nFKWe Stufe	Bewertungsstufe	Zu- / Abschläge Neigung Nutzung Versiegelung Hydromorphie			Bewertungsstufe	
Ī	3	58,5	2	2	-	-2	-	-	1

	Erfassung der Archivfunktion (Naturgeschichtliche Bedeutung)							
Selte	enheit	Naturnähe	Regeneri	erbarkeit				
Bodentyp	Bewertungsstufe	Bodenverhältnisse	Bewertungsstufe	Bodentyp (Jahre)	Bewertungsstufe			
Ranker	4	Natürliche Böden (Meliorationsm.)	4	Ranker (>50-200 Jahre)	3			
		Verknüpfungsmatrix (Naturnähe/Regenerierbarkeit)		3				

	Land- und forstwirtschaftliche Ertragsfähigkeit								
Acker					Grünlan	d		Forst	
Textur	RBS	geol. Entstehung	Zustands- stufe	Bewertungsstufe	Zustands- stufe	Wasser- verhältnisse	Bewertungsstufe	SFZ	Bewertungsstufe
Ls	Ls sL Vg 4 44							44	2
	V	<u>'orgabe</u> : All	e nicht lan	d- oder forstwirt	schaftlich	genutzte Böd	en = Stufe 1		1

Teilfläche: 10

Lebensg	Lebensgrundlage für Bodenorganismen						
Einstufung	Humusform	Bewertungsstufe					
Natürlicher Boden (Wald) (W)	Rohhumus	1					

Filtereigenscha	Filtereigenschaften für grobdisperse Stoffe (Stäube)						
Luftkapazität	KAK _{POT}	Bewertungsstufe					
21,1	17	3					

	Filter- und Puffereigenschaften für Schwermetalle																		
Parameter	pH-Wert			Bindungsstärke		Zuschlag Humusgehalt		Zuschlag Bodenart		Bewertungs- stufen			i-	Bewertungsstufe (Mittelwert)					
	Ah	Cv			Ah	Cv			Ah	Cv		Ah	Cv		Ah	Cv			
Cu					3,5	4,5			1,5	0		0,5	0		5,5	4,5			5
Pb	4,7	5,1			5	5			1,5	0		0,5	0,5		7	5,5			5
Zn					2,5	3			0,5	0		0,5	0		3,5	3			3
	Bewertungsstufe (gesamt)									5									

Rückhaltevermögen für nicht sorbierbare Stoffe										
Sickerwasserrate nFKWe (mm) FKWe (mm) Austauschhäufigkeit / a Bewertungsstufe										
240 mm/a	58,5	113	2,1	2						

ı	Eignungsfähigke	it für die Niede	rschlagswas	serversickerung	
kf-Wert (m/s)	kf-Wert (Stufe)	LK (Vol %)	Bewertungsstufe	Berücksichtigung Vorgaben	Bewertungsstufe
10 ⁻⁵ -10 ⁻⁶	3	21,1	2	- Verdichtung (= 5)	5

Bodenfunktionsbewertung für die Teilfunktionen der Stufe A

	Lebensgrundlage für Pflanzen und Tiere										
Hangneigung (%)											
5,6%	2	25,4	4,3	-	2	4	2				

	Bestandteil des Naturhaushalts (Ausgleichskörper im Wasserhaushalt)											
kf-Wert Stufe	nFKWe (mm)	nFKWe Stufe	Bewertungsstufe	Neigung	Zu- Nutzung	Bewertungsstufe						
3	72	2	2	-1	-2	-	-	1				

	Erfassung der Archivfunktion (Naturgeschichtliche Bedeutung)										
Seltenheit Naturnähe Regenerierbarkeit											
Bodentyp	Bewertungsstufe	Bodenverhältnisse	Bewertungsstufe	Bodentyp (Jahre)	Bewertungsstufe						
Ranker	4	Natürliche Böden (Meliorationsm.)	4	Ranker (>50 - 200 Jahre)	3						
		Verknüpfungsmatrix (Naturnähe/Regenerierbarkeit)	eit) 3								

	Land- und forstwirtschaftliche Ertragsfähigkeit										
	Acker Grünland										
Textur	RBS	geol. Entstehung	Zustands- stufe	Bewertungsstufe	Zustands- stufe	Wasser- verhältnisse	Bewertungsstufe	SFZ	Bewertungsstufe		
Ts2	LT	Vg	4	3				55	3		
	Vorgabe: Alle nicht land- oder forstwirtschaftlich genutzte Böden = Stufe 1								1		

Teilfläche: 11

Lebensgrundlage für Bodenorganismen								
Einstufung	Humusform	Bewertungsstufe						
Natürlicher Boden (Ranker) Parkanlage mit altem Baumbestand (P)	Rohhumusartiger Moder	2						

Filtereigenscha	ften für grobdisperse Stoffe (Stäube)	
Luftkapazität	KAK _{POT}	Bewertungsstufe
15,5	26,5	3

	Filter- und Puffereigenschaften für Schwermetalle																	
Parameter	pH-Wert			Bindungsstärke			Zuschlag Humusgehalt		Zuschlag Bodenart			Bewer stu	tungs- fen	Bewertungsstufe (Mittelwert)				
	Ah	Cv			Ah	Cv			Ah	Cv		Ah	Cv		Ah	Cv		
Cu					3,5	3			0,5	0		-1	0,5		3	3,5		3
Pb	4,5	4,1			5	4			0,5	0		-1	1		4,5	5,5		5
Zn					2,5	2			0	0		-1	0,5		1,5	2,5		2
	Bewertungsstufe (gesamt)									4								

Rückhaltevermögen für nicht sorbierbare Stoffe											
Sickerwasserrate	Sickerwasserrate nFKWe (mm) FKWe (mm) Austauschhäufigkeit / a Bewertungsstufe										
240 mm/a	72	186	1,3	3							

1	Eignungsfähigkeit für die Niederschlagswasserversickerung										
kf-Wert (m/s)	kf-Wert (Stufe)	LK (Vol %)	Bewertungsstufe	Berücksichtigung Vorgaben	Bewertungsstufe						
< 10 ⁻⁶	2	15,5	3	-Neigung, Verdichtung (= 5)	5						

Bodenfunktionsbewertung für die Teilfunktionen der Stufe A

	Lebensgrundlage für Pflanzen und Tiere											
Hangneigung (%)												
1%	2	20,2	4,8	-	2	4	2					

	Bestandteil des Naturhaushalts (Ausgleichskörper im Wasserhaushalt)											
kf-Wert Stufe	nFKWe (mm)	nFKWe Stufe	Bewertungsstufe	Neigung	Zu- Nutzung	Bewertungsstufe						
2	73	2	3	-	-2	-	-	1				

	Erfassung der Archivfunktion (Naturgeschichtliche Bedeutung)											
Seltenheit Naturnähe Regenerierbarkeit												
Bodentyp	Bewertungsstufe	Bodenverhältnisse	Bewertungsstufe	Bodentyp (Jahre)	Bewertungsstufe							
Ranker	4	Natürliche Böden mit natürlicher Profilabfolge 4		Ranker (>50 - 200 Jahre)	3							
		Verknüpfungsmatrix (Naturnähe/Regenerierbarkeit)		3								

	Land- und forstwirtschaftliche Ertragsfähigkeit											
	Acker Grünland											
Textur	RBS	geol. Entstehung	Zustands- stufe	Bewertungsstufe	Zustands- stufe	Wasser- verhältnisse	Bewertungsstufe	SFZ	Bewertungsstufe			
Us	Us SL Vg 4 3 49,6											
	Vorgabe: Alle nicht land- oder forstwirtschaftlich genutzte Böden = Stufe 1											

Teilfläche: 12

Lebensgrundlage für Bodenorganismen									
Einstufung	Humusform	Bewertungsstufe							
Natürlicher Boden (Ranker) Parkanlage mit altem Baumbestand (P)	Rohhumusartiger Moder	2							

Filtereigenscha	Filtereigenschaften für grobdisperse Stoffe (Stäube)									
Luftkapazität	KAK _{POT}	Bewertungsstufe								
4,8	21,7	4								

	Filter- und Puffereigenschaften für Schwermetalle																			
Parameter	pH-Wert				Bindungsstärke		H		chlag sgeha	lt	Zuschlag Bodenart		Bewertungs- stufen		i-	Bewertungsstufe (Mittelwert)				
	Ah	Cv			Ah	Cv			Ah	Cv			Ah	Cv		Ah	Cv			
Cu					4,5	4,5			1	0			0	0,5		5,5	5			5
Pb	5,0	4,8			5	5			1	0			0,5	1		6,5	7			5
Zn					3	3			0	0			0	0,5		3	3,5			4
	Bewertungsstufe (gesamt)										5									

Rückhaltevermögen für nicht sorbierbare Stoffe										
Sickerwasserrate	nFKWe (mm)	FKWe (mm)	Austauschhäufigkeit / a	Bewertungsstufe						
240 mm/a	73	127	1,9	2						

	Eignungsfähigkeit für die Niederschlagswasserversickerung											
kf-Wert (m/s)	kf-Wert (Stufe)	LK (Vol %)	Bewertungsstufe	Berücksichtigung Vorgaben	Bewertungsstufe							
< 10 ⁻⁶	2	4,8	5	- Verdichtung (= 5)	5							

Bodenfunktionsbewertung für die Teilfunktionen der Stufe A

	Lebensgrundlage für Pflanzen und Tiere											
Hangneigung BKF KAK _{ef} pH-Wert Zuschlag Biotopentwicklungs- Anthropogener Bewertungsstufe (%)												
2,5%	2	20,3	5,3	-	2	4	2					

	Bestandteil des Naturhaushalts (Ausgleichskörper im Wasserhaushalt)											
kf-Wert Stufe	nFKWe (mm)	nFKWe Stufe	Bewertungsstufe	Neigung	Zu- Nutzung	Bewertungsstufe						
2	69	2	3	-1	-2	-	-	1				

	Erfassung der Archivfunktion (Naturgeschichtliche Bedeutung)											
Selt	enheit	Naturnähe	Regenerierbarkeit									
Bodentyp	Bewertungsstufe	Bodenverhältnisse	Bewertungsstufe	Bodentyp (Jahre)	Bewertungsstufe							
Ranker	4	Natürliche Böden mit natürlicher Profilabfolge	4	Ranker (> 50 – 200 Jahre)	3							
		Verknüpfungsmatrix (Naturnähe/Regenerierbarkeit)	3									

	Land- und forstwirtschaftliche Ertragsfähigkeit										
		Ad	ker			Grünlar	Forst				
Textur	RBS	geol. Entstehung	Zustands- stufe	Bewertungsstufe	Zustands- stufe	Wasser- verhältnisse	Bewertungsstufe	SFZ	Bewertungsstufe		
Ls	sL	Vg	4	3				53	3		
	Vorgabe: Alle nicht land- oder forstwirtschaftlich genutzte Böden = Stufe 1								1		

Teilfläche: 13

Lebensgrundlage für Bodenorganismen								
	Einstufung	Humusform	Bewertungsstufe					
	Natürlicher Boden (Ranker) Parkanlage mit altem Baumbestand (P)	Rohhumusartiger Moder	2					

Filtereigenschaften für grobdisperse Stoffe (Stäube)								
Luftkapazität	KAK _{POT}	Bewertungsstufe						
23,8	22,8	3						

	Filter- und Puffereigenschaften für Schwermetalle																		
Parameter	pH-Wert			Bindungsstärke			Zuschlag Humusgehalt		Zuschlag Bodenart			Bewertungs- stufen		-	Bewertungsstufe (Mittelwert)				
	Ah	Cv			Ah	Cv		Ah	Cv			Ah	Cv		Ah	Cv			
Cu					5	4,5		1,5	0			0,5	0,5		7	5			5
Pb	5,4	5,3			5	5		1,5	0			0,5	1		7	6			5
Zn					3	4		0,5	0			0,5	0,5		4	4,5			5
	Bewertungsstufe (gesamt)										5								

Rückhaltevermögen für nicht sorbierbare Stoffe										
Sickerwasserrate	nFKWe (mm)	FKWe (mm)	Austauschhäufigkeit / a	Bewertungsstufe						
240 mm/a	69	132	1,8	2						

Eignungsfähigkeit für die Niederschlagswasserversickerung									
kf-Wert (m/s)	kf-Wert (Stufe)	LK (Vol %)	Bewertungsstufe	Berücksichtigung Vorgaben	Bewertungsstufe				
< 10 ⁻⁶	2	23,8	3	- Verdichtung (= 5)	5				

Bodenfunktionsbewertung für die Teilfunktionen der Stufe A

	Lebensgrundlage für Pflanzen und Tiere										
Hangneigung (%)	BKF	KAK _{ef}	pH-Wert	Zuschlag	Biotopentwicklungs- potential	Anthropogener Einfluss	Bewertungsstufe				
<1%	2	8,3	7,2	-	4	2	3				

Bestandteil des Naturhaushalts (Ausgleichskörper im Wasserhaushalt)											
kf-Wert Stufe	nFKWe (mm)	nFKWe Stufe	Bewertungsstufe	Zu- / Abschläge Neigung Nutzung Versiegelung Hydromorphie				Bewertungsstufe			
3	84	2	2	-	-2	-	-	1			

	Erfassung der Archivfunktion (Naturgeschichtliche Bedeutung)									
Selt	enheit	Naturnähe	Regenerierbarkeit							
Bodentyp	Bewertungsstufe	Bodenverhältnisse	Bewertungsstufe	Bodentyp (Jahre)	Bewertungsstufe					
Depo-Regosol	3	Deposol (Auftrag > 50 cm)	1	Depo-Regosol (10 – 50 Jahre)	2					
		Verknüpfungsmatrix (Naturnähe/Regenerierbarkeit)		1						

	Land- und forstwirtschaftliche Ertragsfähigkeit										
Acker Grünland								Forst			
Textur	RBS	geol. Entstehung	Zustands- stufe	Bewertungsstufe	Zustands- stufe	Wasser- verhältnisse	Bewertungsstufe	SFZ	Bewertungsstufe		
SI	IS	Vg	4	2				45	2		
	<u>Vorgabe</u> : Alle nicht land- oder forstwirtschaftlich genutzte Böden = Stufe 1								1		

Teilfläche: 14

Lebensgrundlage für Bodenorganismen								
Einstufung	Humusform	Bewertungsstufe						
Anthropogene Böden aus umgelagerten natürlichem Substrat	Rasenmagerhumus	1						

Filtereigenschaften für grobdisperse Stoffe (Stäube)								
Luftkapazität	KAK _{POT}	Bewertungsstufe						
23,7	10,3	2						

	Filter- und Puffereigenschaften für Schwermetalle																			
Parameter	pH-Wert			Bindungsstärke		Zuschlag Humusgehalt		Zuschlag Bodenart		Bewertungs- stufen			i-	Bewertungsstufe (Mittelwert)						
	jAh	jCv			jAh	jCv			jAh	jCv			jAh	jCv		jAh	jCv			
Cu					5	5			1,5	0			0	0		6,5	5			5
Pb	6,4	7,6			5	5			1,5	0			0,5	0,5		7	5,5			5
Zn					5	5			0,5	0			0	0		5,5	5			5
	Bewertungsstufe (gesamt)									5										

Rückhaltevermögen für nicht sorbierbare Stoffe										
Sickerwasserrate nFKWe (mm) FKWe (mm) Austauschhäufigkeit / a Bewertungsstufe										
240 mm/a	84	146	1,6	2						

	Eignungsfähigkeit für die Niederschlagswasserversickerung										
kf-Wert (m/s)	kf-Wert (m/s) kf-Wert (Stufe) LK (Vol %) Bewertungsstufe Berücksichtigung Vorgaben Bewertungs										
10 ⁻⁵ – 10 ⁻⁶	3	23,7	2	- Unterbodenverdichtung (= Stufe 5)	5						

Bodenfunktionsbewertung für die Teilfunktionen der Stufe A

	Lebensgrundlage für Pflanzen und Tiere											
Hangneigung (%)												
2,3%	2	19,9	6,5	-	2	2	1					

	Bestandteil des Naturhaushalts (Ausgleichskörper im Wasserhaushalt)											
kf-Wert Stufe	nFKWe (mm)	nFKWe Stufe	Bewertungsstufe	Neigung	Zu- Nutzung	/ Abschläge Versiegelung	Bewertungsstufe					
2	83	2	3	-1	-2	-	-	1				

	Erfassung der Archivfunktion (Naturgeschichtliche Bedeutung)										
Seltenheit Naturnähe Regenerie											
Bodentyp	Bewertungsstufe	Bodenverhältnisse	Bewertungsstufe	Bodentyp (Jahre)	Bewertungsstufe						
Depo-Regosol	3	Deposole (Auftrag > 50 cm)	Depo-Regosol	2							
		Verknüpfungsmatrix (Naturnähe/Regenerierbarkeit)	1								

	Land- und forstwirtschaftliche Ertragsfähigkeit										
		Ac	ker			Grünlan		Forst			
Textur	RBS	geol. Entstehung	Zustands- stufe	Bewertungsstufe	Zustands- stufe	Wasser- verhältnisse	Bewertungsstufe	SFZ	Bewertungsstufe		
Ls	sL	Vg	5	3				48	3		
	Vorgabe: Alle nicht land- oder forstwirtschaftlich genutzte Böden = Stufe 1								1		

Teilfläche: 15

Lebensgrundlage für Bodenorganismen								
Einstufung	Humusform	Bewertungsstufe						
Anthropogene Böden (unter Parkanlage mit Altbaumbestand)	Rohhumusartiger Moder	3						

Filtereigenscha	ften für grobdisperse Stoffe (Stäube)	
Luftkapazität	KAK _{POT}	Bewertungsstufe
20,9	21,1	3

	Filter- und Puffereigenschaften für Schwermetalle																			
Parameter	pH-Wert				Bindungsstärke			H	Zuschlag Humusgehalt		Zuschlag Bodenart		Bewertungs- stufen			-	Bewertungsstufe (Mittelwert)			
	jAh	jCv			jAh	jCv			jAh	jCv			jAh	jCv		jAh	jCv			
Cu					4,5	5			1	0			0,5	0,5		6	5,5			5
Pb	5,2	7			5	5			1	0			0,5	1		6,5	6			5
Zn					3	5			0	0			0,5	0,5		3,5	5,5			4
	Bewertungsstufe (gesamt)									5										

	Rückhaltevermögen für nicht sorbierbare Stoffe									
Sickerwasserrate nFKWe (mm) FKWe (mm) Austauschhäufigkeit / a Bewertungsstufe										
240 mm/a	83	163	1,47	3						

	Eignungsfähigkeit für die Niederschlagswasserversickerung										
kf-Wert (m/s)	kf-Wert (m/s) kf-Wert (Stufe) LK (Vol %) Bewertungsstufe Berücksichtigung Vorgaben Bewertungss										
<10 ⁻⁶	2	20,9	3	- Verdichtung (= 5)	5						

Bodenfunktionsbewertung für die Teilfunktionen der Stufe A

	Lebensgrundlage für Pflanzen und Tiere											
Hangneigung BKF KAK _{et} pH-Wert Zuschlag Biotopentwicklungs- Anthropogener Bewertungsstufe (%)												
2,9%	2	18,8	6,1	-	2	2	1					

Bestandteil des Naturhaushalts (Ausgleichskörper im Wasserhaushalt)												
kf-Wert Stufe	nFKWe (mm)	nFKWe Stufe	Bewertungsstufe	Neigung	Zu- Nutzung	/ Abschläge Versiegelung	Bewertungsstufe					
3	75	2	2	-1	-2	-	-	1				

	Erfassung der Archivfunktion (Naturgeschichtliche Bedeutung)											
Selte	nheit	Naturnähe	Regenerierbarkeit									
Bodentyp	Bewertungsstufe	Bodenverhältnisse	Bewertungsstufe	Bodentyp (Jahre)	Bewertungsstufe							
Depo-Regosol	3	Deposol (Auftrag > 50 cm)	1	Depo-Regosol (10 – 50 Jahre)	2							
		Verknüpfungsmatrix (Naturnähe/Regenerierbarkeit)		1								

	Land- und forstwirtschaftliche Ertragsfähigkeit											
	Acker Grünland											
Textur	RBS	geol. Entstehung	Zustands- stufe	Bewertungsstufe	Zustands- stufe	Wasser- verhältnisse	Bewertungsstufe	SFZ	Bewertungsstufe			
Ls3	sL	Vg	4	3				54	3			
	Vorgabe: Alle nicht land- oder forstwirtschaftlich genutzte Böden = Stufe 1											

Teilfläche: 16

Lebensgrundlage für Bodenorganismen									
Einstufung	Humusform	Bewertungsstufe							
Anthropogene Böden aus umgelagertem Material	Rohhumusartiger Moder	2							

Filtereigenscha	Filtereigenschaften für grobdisperse Stoffe (Stäube)									
Luftkapazität	KAK _{POT}	Bewertungsstufe								
24,8	18,8	3								

	Filter- und Puffereigenschaften für Schwermetalle																				
Parameter			Bindungsstärke		H	Zusc	chlag sgeha	lt		Zuschlag Bodenart		E		tungs fen	-	Bewertungsstufe (Mittelwert)					
	jAh	jCv	Cv		jAh	jCv	Cv		jAh	jCv	Cv		jAh	jCv	Cv		jAh	jCv	Cv		
Cu					3,5	5	5		0	0	0		0,5	0,5	1		4	5,5	6		5
Pb	4,6	6,0	6,9		5	5	5		0	0	0		0,5	0,5	1,5		5,5	5,5	6,5		5
Zn					2,5	4,5	5		0	0	0		0,5	0,5	1		3	5	6		5
	Bewertungsstufe (gesamt)											5									

	Rückhaltevermögen für nicht sorbierbare Stoffe										
Sickerwasserrate	nFKWe (mm)	FKWe (mm)	Austauschhäufigkeit / a	Bewertungsstufe							
240 mm/a	75	143	1,7	2							

Eignungsfähigkeit für die Niederschlagswasserversickerung											
kf-Wert (m/s)	kf-Wert (Stufe)	LK (Vol %)	Bewertungsstufe	Berücksichtigung Vorgaben	Bewertungsstufe						
10 ⁻⁵ -10 ⁻⁶	3	18,8	2	- Verdichtung (= 5)	5						

Bodenfunktionsbewertung für die Teilfunktionen der Stufe A

	Lebensgrundlage für Pflanzen und Tiere											
Hangneigung (%)												
0,4%	2	12,5	6,1	-	2	2	1					

	Bestandteil des Naturhaushalts (Ausgleichskörper im Wasserhaushalt)											
kf-Wert Stufe	nFKWe (mm)	nFKWe Stufe	Bewertungsstufe	Neigung	Zu- Nutzung	/ Abschläge Versiegelung	Bewertungsstufe					
3	80	2	2	-	-2	-	-	1				

	Erfassung der Archivfunktion (Naturgeschichtliche Bedeutung)											
Selt	enheit	Naturnähe	Regenerierbarkeit									
Bodentyp	Bewertungsstufe	Bodenverhältnisse	Bewertungsstufe	Bodentyp (Jahre)	Bewertungsstufe							
Depo-Regosol	3	Deposole (Auftrag > 50 cm)	1	Depo-Regosol (10 – 50 Jahre)	2							
		Verknüpfungsmatrix (Naturnähe/Regenerierbarkeit)		1								

	Land- und forstwirtschaftliche Ertragsfähigkeit										
Acker						Grünlan	Forst				
Textur	RBS	geol. Entstehung	Zustands- stufe	Bewertungsstufe	Zustands- stufe	Wasser- verhältnisse	Bewertungsstufe	SFZ	Bewertungsstufe		
Ls	sL	Vg	4	3				54	3		
	Vorgabe: Alle nicht land- oder forstwirtschaftlich genutzte Böden = Stufe 1								1		

Teilfläche: 17

Lebensgrundlage für Bodenorganismen							
Einstufung	Humusform	Bewertungsstufe					
Anthropogene Böden aus umgelagertem Material	Rohhumusartiger Moder	2					

Filtereigenschaften für grobdisperse Stoffe (Stäube)								
Luftkapazität	KAK _{POT}	Bewertungsstufe						
25,2	13,4	3						

	Filter- und Puffereigenschaften für Schwermetalle																			
Parameter	pH-Wert			Bii	ndung	jsstär	ke	H	Zusc		lt			chlag enart	E		tungs fen	-	Bewertungsstufe (Mittelwert)	
	jAh	jCv	Cv		jAh	jCv	Cv		jAh	jCv	Cv		jAh	jCv	Cv	jAh	jCv	Cv		
Cu					4,5	5	5		1,5	0	0		0,5	0	0,5	6,5	5	5,5		5
Pb	5,1	6,3	5,9		5	5	5		1,5	0	0		0,5	0,5	1	7	5,5	6		5
Zn					3	4,5	4,5		0,5	0	0		0,5	0	0,5	4	4,5	5		5
	Bewertungsstufe (gesamt)										5									

Rückhaltevermögen für nicht sorbierbare Stoffe									
Sickerwasserrate	nFKWe (mm)	FKWe (mm)	Austauschhäufigkeit / a	Bewertungsstufe					
240 mm/a	80	151	1,6	2					

	Eignungsfähigkeit für die Niederschlagswasserversickerung									
kf-Wert (m/s)	kf-Wert (Stufe)	LK (Vol %)	Bewertungsstufe	Berücksichtigung Vorgaben	Bewertungsstufe					
10 ⁻⁵ -10 ⁻⁶	3	25,2	2	- Verdichtung (= 5)	5					

Bodenfunktionsbewertung für die Teilfunktionen der Stufe A

	Lebensgrundlage für Pflanzen und Tiere										
Hangneigung (%)	BKF	KAK _{ef}	pH-Wert	Zuschlag	Biotopentwicklungs- potential	Anthropogener Einfluss	Bewertungsstufe				
3,3%	2	12,7	5,3	-	2	2	1				

Bestandteil des Naturhaushalts (Ausgleichskörper im Wasserhaushalt)										
kf-Wert Stufe	nFKWe (mm)	nFKWe Stufe	Bewertungsstufe	Zu- / Abschläge Neigung Nutzung Versiegelung Hydromorphie				Bewertungsstufe		
3	59	2	2	-1	-2	-	-	1		

	Erfassung der Archivfunktion (Naturgeschichtliche Bedeutung)									
Selt	enheit	Naturnähe	Regenerierbarkeit							
Bodentyp	Bewertungsstufe	Bodenverhältnisse	Bewertungsstufe	Bodentyp (Jahre)	Bewertungsstufe					
Depo-Regosol	3	Deposole (Auftrag > 50 cm)	1	Depo-Regosol (10 – 50 Jahre)	2					
		Verknüpfungsmatrix (Naturnähe/Regenerierbarkeit)								

	Land- und forstwirtschaftliche Ertragsfähigkeit										
Acker						Grünlan	Forst				
Textur	RBS	geol. Entstehung	Zustands- stufe	Bewertungsstufe	Zustands- stufe	Wasser- verhältnisse	Bewertungsstufe	SFZ	Bewertungsstufe		
Ls	sL	Vg	4	3				54	3		
	Vorgabe: Alle nicht land- oder forstwirtschaftlich genutzte Böden = Stufe 1								1		

Teilfläche: 18

Lebensgrundlage für Bodenorganismen								
Einstufung	Humusform	Bewertungsstufe						
Anthropogene Böden aus umgelagertem Material	Rohhumusartiger Moder	2						

Filtereigenschaften für grobdisperse Stoffe (Stäube)								
Luftkapazität	KAK _{POT}	Bewertungsstufe						
24,8	13	3						

	Filter- und Puffereigenschaften für Schwermetalle																				
Parameter	pH-Wert				Bindungsstärke			Zuschlag Humusgehalt			Zuschlag Bodenart			Bewertungs- stufen				Bewertungsstufe (Mittelwert)			
	jAh	jCv	Cv		jAh	jCv	Cv		jAh	jCv	Cv		jAh	jCv	Cv		jAh	jCv	Cv		
Cu					4,5	5	3,5		1	0	0		0,5	0	0,5		6	5	4		5
Pb	5,3	5,5	4,6		5	5	5		1	0	0		0,5	0,5	1		6,5	5,5	6		5
Zn					3	4	2,5		0	0	0		0,5	0	0,5		3,5	4	3		4
	Bewertungsstufe (gesamt)										5										

	Rückhaltevermögen für nicht sorbierbare Stoffe										
Sickerwasserrate nFKWe (mm) FKWe (mm) Austauschhäufigkeit / a Bewertungsstufe											
240 mm/a	59	113	2,1	2							

Eignungsfähigkeit für die Niederschlagswasserversickerung											
kf-Wert (m/s)	kf-Wert (Stufe) LK (Vol %) Bewertungsstufe Berücksichtigung Vorgaben Bewertungss										
$10^{-5} - 10^{-6}$	3	24,8	2	- Verdichtung (= 5)	5						

Bodenfunktionsbewertung für die Teilfunktionen der Stufe A

	Lebensgrundlage für Pflanzen und Tiere											
Hangneigung (%)												
4,2%	2	12,1	5,1	-	3	2	2					

	Bestandteil des Naturhaushalts (Ausgleichskörper im Wasserhaushalt)											
kf-Wert Stufe	nFKWe (mm)	nFKWe Stufe	Bewertungsstufe	Neigung	Zu- Nutzung	Bewertungsstufe						
3	51	2	2	-1	-2	-	-	1				

	Erfassung o	ler Archivfunktion (Natur	geschichtliche	Bedeutung)						
Seltenheit Naturnähe Regenerierbarkeit										
Bodentyp	Bewertungsstufe	Bodenverhältnisse	Bewertungsstufe	Bodentyp (Jahre)	Bewertungsstufe					
Ranker	4	Natürliche Böden (Meliorationsm.)	4	Ranker (>50 - 200 Jahre) 3						
	Verknüpfungsmatrix (Naturnähe/Regenerierbarkeit)									

	Land- und forstwirtschaftliche Ertragsfähigkeit											
		Ad	ker			Grünlan		Forst				
Textur	RBS	geol. Entstehung	Zustands- stufe	Bewertungsstufe	Zustands- stufe	Wasser- verhältnisse	Bewertungsstufe	SFZ	Bewertungsstufe			
SI	SI IS Vg 4 2 45											
	Vorgabe: Alle nicht land- oder forstwirtschaftlich genutzte Böden = Stufe 1								1			

Teilfläche: 19

Lebensgrundlage für Bodenorganismen									
Einstufung	Humusform	Bewertungsstufe							
Natürlicher Boden (Ranker) Parkanlage mit altem Baumbestand (P)	Rohhumusartiger Moder	2							

Filtereigenscha	ften für grobdisperse Stoffe (Stäube)	
Luftkapazität	KAK _{POT}	Bewertungsstufe
25,1	12,1	2

	Filter- und Puffereigenschaften für Schwermetalle																			
Parameter	pH-Wert			Bindungsstärke		Zuschlag Humusgehalt		Zuschlag Bodenart		Bewertungs- stufen			-	Bewertungsstufe (Mittelwert)						
	Ah	Cv			Ah	Cv			Ah	Cv			Ah	Cv		Ah	Cv			
Cu					5	4,5			1	0			0	0,5		6	5			5
Pb	6,2	5,0			5	5			1	0			0,5	0,5		6,5	5,5			5
Zn					4,5	3			0	0			0	0,5		4,5	3,5			4
	Bewertungsstufe (gesamt)									5										

	Rückhaltevermögen für nicht sorbierbare Stoffe										
Sickerwasserrate nFKWe (mm) FKWe (mm) Austauschhäufigkeit / a Bewertungsstufe											
240 mm/a	51	93	2,6	1							

	Eignungsfähigkeit für die Niederschlagswasserversickerung											
kf-Wert (m/s)	kf-Wert (Stufe)	LK (Vol %)	Bewertungsstufe	Berücksichtigung Vorgaben	Bewertungsstufe							
10 ⁻⁵ – 10 ⁻⁶	3	25,1	2	- Neigung, Verdichtung (= 5)	5							

Bodenfunktionsbewertung für die Teilfunktionen der Stufe A

	Lebensgrundlage für Pflanzen und Tiere											
Hangneigung (%)												
4,3%												

	Bestandteil des Naturhaushalts (Ausgleichskörper im Wasserhaushalt)											
kf-Wert Stufe	nFKWe (mm)	nFKWe Stufe	Bewertungsstufe	Neigung	Zu- Nutzung	/ Abschläge Versiegelung	Bewertungsstufe					
2	95	3	4	-1	-2	-	-	1				

	Erfassung der Archivfunktion (Naturgeschichtliche Bedeutung)											
Selte	enheit	Naturnähe	Regenerierbarkeit									
Bodentyp	Bewertungsstufe	Bodenverhältnisse	Bewertungsstufe	Bodentyp (Jahre)	Bewertungsstufe							
Depo-Regosol	3	Deposole (Auftrag > 50 cm)	1	Depo-Regosol (10 – 50 Jahre)	2							
		Verknüpfungsmatrix (Naturnähe/Regenerierbarkeit)		1								

	Land- und forstwirtschaftliche Ertragsfähigkeit											
	Acker Grünland											
Textur	RBS	geol. Entstehung	Zustands- stufe	Bewertungsstufe	Zustands- stufe	Wasser- verhältnisse	Bewertungsstufe	SFZ	Bewertungsstufe			
Ls	sL	Vg	4	3				54	3			
	Vorgabe: Alle nicht land- oder forstwirtschaftlich genutzte Böden = Stufe 1											

Teilfläche: 20

Lebensgrundlage für Bodenorganismen									
Einstufung	Humusform	Bewertungsstufe							
Anthropogene Böden (unter Parkanlage mit Altbaumbestand)	Rohhumusartiger Moder	2							

Filtereigenscha	Filtereigenschaften für grobdisperse Stoffe (Stäube)									
Luftkapazität KAK _{POT} Bewertungsstufe										
21,2	18,9	3								

	Filter- und Puffereigenschaften für Schwermetalle																			
Parameter	pH-Wert Bindungsstärke						ke	Zuschlag Humusgehalt		lt			chlag enart	E		tungs fen	-	Bewertungsstufe (Mittelwert)		
	jAh	jCv	Cv		jAh	jCv	Cv		jAh	jCv	Cv		jAh	jCv	Cv	jAh	jCv	Cv		
Cu					5	5	5		1	0	0		0,5	0	1	6,5	5	6		5
Pb	5,8	6,9	5,8		5	5	5		1	0	0		0,5	0,5	1,5	6,5	5,5	6,5		5
Zn					4,5	4,5	4,5		0	0	0		0,5	0	1	5	4,5	5,5		5
	Bewertungsstufe (gesamt)										5									

Rückhaltevermögen für nicht sorbierbare Stoffe										
Sickerwasserrate	nFKWe (mm)	FKWe (mm)	Austauschhäufigkeit / a	Bewertungsstufe						
240 mm/a	3									

E	Eignungsfähigkeit für die Niederschlagswasserversickerung											
kf-Wert (m/s)	kf-Wert (Stufe)	LK (Vol %)	Bewertungsstufe	Berücksichtigung Vorgaben	Bewertungsstufe							
< 10 ⁻⁶	2	21,2	3	- Neigung, Verdichtung (= 5)	5							

Bodenfunktionsbewertung für die Teilfunktionen der Stufe A

	Lebensgrundlage für Pflanzen und Tiere											
Hangneigung (%)												
2,9%												

	Bestandteil des Naturhaushalts (Ausgleichskörper im Wasserhaushalt)											
kf-Wert Stufe	nFKWe (mm)	nFKWe Stufe	Bewertungsstufe	Zu- / Abschläge Bewertungsstufe Neigung Nutzung Versiegelung Hydromorphie								
2	80	2	3	-1	-2	-	-	1				

	Erfassung der Archivfunktion (Naturgeschichtliche Bedeutung)											
Selte	enheit	Naturnähe	Regenerierbarkeit									
Bodentyp	Bewertungsstufe	Bodenverhältnisse	Bewertungsstufe	Bodentyp (Jahre)	Bewertungsstufe							
Depo-Regosol	3	Deposole (Auftrag > 50 cm)		Depo-Regosol (10 – 50 Jahre)	2							
		Verknüpfungsmatrix (Naturnähe/Regenerierbarkeit)		1								

	Land- und forstwirtschaftliche Ertragsfähigkeit										
Acker Grünland									Forst		
Textur	RBS	geol. Entstehung	Zustands- stufe	Bewertungsstufe	Zustands- stufe	Wasser- verhältnisse	Bewertungsstufe	SFZ	Bewertungsstufe		
Ls	sL	Vg	4	3				54	3		
	Vorgabe: Alle nicht land- oder forstwirtschaftlich genutzte Böden = Stufe 1								1		

Teilfläche: 21

Lebensgrundlage für Bodenorganismen							
Einstufung	Humusform	Bewertungsstufe					
Anthropogene Böden aus umgelagertem Material	L-Mull	3					

Filtereigenschaften für grobdisperse Stoffe (Stäube)							
Luftkapazität	KAK _{POT}	Bewertungsstufe					
20,3	13,7	3					

	Filter- und Puffereigenschaften für Schwermetalle																				
Parameter	pH-Wert			Bindungsstärke		H	Zuschlag Humusgehalt		Zuschlag Bodenart		Bewertungs- stufen		-	Bewertungsstufe (Mittelwert)							
	jAh	jCv	Cv		jAh	jCv	Cv		jAh	jCv	Cv		jAh	jCv	Cv		jAh	jCv	Cv		
Cu					5	5	5		1,5	0	0		0,5	0	0,5		7	5	5,5		5
Pb	6,5	5,4	6,4		5	5	5		1,5	0	0		0,5	0,5	1		7	5,5	6		5
Zn					4,5	4	4,5		0,5	0	0		0,5	0	0,5		5,5	4	5		5
	Bewertungsstufe (gesamt)										5										

	Rückhaltevermögen für nicht sorbierbare Stoffe									
Sickerwasserrate	nFKWe (mm)	FKWe (mm)	Austauschhäufigkeit / a	Bewertungsstufe						
240 mm/a	80	164	1,5	3						

Eignungsfähigkeit für die Niederschlagswasserversickerung										
kf-Wert (m/s)	kf-Wert (Stufe)	LK (Vol %)	Bewertungsstufe	Berücksichtigung Vorgaben	Bewertungsstufe					
< 10 ⁻⁶	2	20,3	3	- Verdichtung (= 5)	5					

Bodenfunktionsbewertung für die Teilfunktionen der Stufe A

	Lebensgrundlage für Pflanzen und Tiere										
Hangneigung (%)	BKF	KAK _{ef}	pH-Wert	Zuschlag	Biotopentwicklungs- potential	Anthropogener Einfluss	Bewertungsstufe				
2,7%	9	29,3	4,3	+1	2	4	3				

	Bestandteil des Naturhaushalts (Ausgleichskörper im Wasserhaushalt)										
kf-Wert Stufe	nFKWe (mm)	nFKWe Stufe	Bewertungsstufe	Neigung	Zu- Nutzung	/ Abschläge Versiegelung	Hydromorphie	Bewertungsstufe			
2	84	2	3	-1	-2	-	-	1			

	Erfassung der Archivfunktion (Naturgeschichtliche Bedeutung)									
Selt	enheit	Naturnähe	Regenerierbarkeit							
Bodentyp	Bewertungsstufe	Bodenverhältnisse	Bewertungsstufe	Bodentyp (Jahre)	Bewertungsstufe					
Pseudogley 3		Natürliche Böden mit natürlicher Profilabfolge 5		Pseudogley (>50 - 200 Jahre)	3					
		Verknüpfungsmatrix (Naturnähe/Regenerierbarkeit)	4							

	Land- und forstwirtschaftliche Ertragsfähigkeit										
Acker						Grünlan	ıd	Forst			
Textur	RBS	geol. Entstehung	Zustands- stufe	Bewertungsstufe	Zustands- stufe	Wasser- verhältnisse	Bewertungsstufe	SFZ	Bewertungsstufe		
Lu	sL	Vg	7	2				28	2		

Teilfläche: 22

Lebensgrundlage für Bodenorganismen								
Einstufung	Humusform	Bewertungsstufe						
Natürliche Böden (Wald) (W)	Rohumusartiger Moder	2						

Filtereigenscha	Filtereigenschaften für grobdisperse Stoffe (Stäube)								
Luftkapazität	KAK _{POT}	Bewertungsstufe							
11,9	30	4							

	Filter- und Puffereigenschaften für Schwermetalle																				
Parameter	pH-Wert			Bindungsstärke		ke	Zuschlag Humusgehalt		Zuschlag Bodenart			Bewertungs- stufen			-	Bewertungsstufe (Mittelwert)					
	Ah	Sw	Sd		Ah	Sw	Sd		Ah	Sw	Sd		Ah	Sw	Sd		Ah	Sw	Sd		
Cu					3	3	3,5		1	0	0		0,5	0,5	1		4,5	3,5	4,5		4
Pb	3,8	4,3	4,4		4	4	5		1	0	0		0,5	1	1,5		5,5	5	6,5		5
Zn					2	2	2,5		0	0	0		0,5	0,5	1		2,5	2,5	3,5		3
	Bewertungsstufe (gesamt)									4											

Rückhaltevermögen für nicht sorbierbare Stoffe											
Sickerwasserrate	nFKWe (mm)	FKWe (mm)	Austauschhäufigkeit / a	Bewertungsstufe							
240 mm/a	84	237	1,0	3							

Eignungsfähigkeit für die Niederschlagswasserversickerung											
kf-Wert (m/s)	kf-Wert (Stufe)	LK (Vol %)	Bewertungsstufe	Berücksichtigung Vorgaben	Bewertungsstufe						
< 10 ⁻⁶	2	11,9	4	- Verdichtung (= 5)	5						

Bodenfunktionsbewertung für die Teilfunktionen der Stufe A

	Lebensgrundlage für Pflanzen und Tiere											
Hangneigung (%)	BKF	KAK _{ef}	pH-Wert	Zuschlag	Biotopentwicklungs- potential	Anthropogener Einfluss	Bewertungsstufe					
4,4%	9	31,7	4,3	+1	2	4	2					

	Bestandteil des Naturhaushalts (Ausgleichskörper im Wasserhaushalt)											
kf-Wert Stufe	nFKWe (mm)	nFKWe Stufe	Bewertungsstufe	Neigung	Zu- Nutzung	Bewertungsstufe						
2	49	1	2	-1	-2	-	-	1				

	Erfassung der Archivfunktion (Naturgeschichtliche Bedeutung)											
Selt	enheit	Naturnähe	Regenerierbarkeit									
Bodentyp	Bewertungsstufe	Bodenverhältnisse	Bewertungsstufe	Bodentyp (Jahre)	Bewertungsstufe							
Pseudogley	3	Natürliche Böden mit natürlicher Profilabfolge	5	Pseudogley (>50 - 200 Jahre)								
		Verknüpfungsmatrix (Naturnähe/Regenerierbarkeit)	4									

	Land- und forstwirtschaftliche Ertragsfähigkeit											
		Ad	ker			Grünland						
Textur	RBS	geol. Entstehung	Zustands- stufe	Bewertungsstufe	Zustands- stufe	Wasser- verhältnisse	Bewertungsstufe	SFZ	Bewertungsstufe			
Lu	sL	Vg	7	2				28	2			

Teilfläche: 23

Lebensgrundlage für Bodenorganismen									
Einstufung	Humusform	Bewertungsstufe							
Natürlicher Boden (Wald) (W)	Rohhumus	1							

Filtereigenschaften für grobdisperse Stoffe (Stäube)									
Luftkapazität	КАК _{РОТ}	Bewertungsstufe							
3,3	32,9	5							

	Filter- und Puffereigenschaften für Schwermetalle																				
Parameter	pH-Wert			Bindungsstärke			Zuschlag Humusgehalt		Zuschlag Bodenart			Bewertungs- stufen			i-	Bewertungsstufe (Mittelwert)					
	Ah	Sw	Sd		Ah	Sw	Sd		Ah	Sw	Sd		Ah	Sw	Sd		Ah	Sw	Sd		
Cu					3	3,5	3		1,5	0	0		0,5	0,5	1		5	4	4		4
Pb	3,8	4,4	4,3		4	5	4		1,5	0	0		0,5	1	1,5		6	6	5,5		5
Zn					2	2,5	2		0,5	0	0		0,5	0,5	1		3	3	3		3
	Bewertungsstufe (gesamt)									4											

	Rückhaltevermögen für nicht sorbierbare Stoffe											
Sickerwasserrate	nFKWe (mm)	FKWe (mm)	Austauschhäufigkeit / a	Bewertungsstufe								
240 mm/a	103	283	0,8	4								

Eignungsfähigkeit für die Niederschlagswasserversickerung										
kf-Wert (m/s)	kf-Wert (Stufe)	LK (Vol %)	Bewertungsstufe	Berücksichtigung Vorgaben	Bewertungsstufe					
< 10 ⁻⁶	2	3,3	5	- Neigung, Verdichtung (= 5)	5					

Bodenfunktionsbewertung für die Teilfunktionen der Stufe A

	Lebensgrundlage für Pflanzen und Tiere											
Hangneigung (%)												
5,8%												

	Bestandteil des Naturhaushalts (Ausgleichskörper im Wasserhaushalt)										
kf-Wert Stufe	nFKWe (mm)	nFKWe Stufe	Bewertungsstufe	Zu- / Abschläge Bewertungsstufe Neigung Nutzung Versiegelung Hydromorphie							
2	101	3	4	-1	-2	-	-	1			

	Erfassung der Archivfunktion (Naturgeschichtliche Bedeutung)											
Selt	enheit	Naturnähe	Regenerierbarkeit									
Bodentyp	Bewertungsstufe	Bodenverhältnisse	Bewertungsstufe	Bodentyp (Jahre)	Bewertungsstufe							
Pseudogley	3	Natürliche Böden mit natürlicher Profilabfolge	5	Pseudogley (>50 - 200 Jahre)	3							
		Verknüpfungsmatrix (Naturnähe/Regenerierbarkeit)		4								

	Land- und forstwirtschaftliche Ertragsfähigkeit											
	Acker Grünland											
Textur	RBS	geol. Entstehung	Zustands- stufe	Bewertungsstufe	Zustands- stufe	Wasser- verhältnisse	Bewertungsstufe	SFZ	Bewertungsstufe			
Lu	sL	Vg	7	2				28	2			

Teilfläche: 24

Lebensg	Lebensgrundlage für Bodenorganismen										
Einstufung	Humusform	Bewertungsstufe									
Natürlicher Boden (Wald) (W)	Rohhumus	1									

Filtereigenscha	Filtereigenschaften für grobdisperse Stoffe (Stäube)									
Luftkapazität	KAK _{POT}	Bewertungsstufe								
3,1	31,8	5								

	Filter- und Puffereigenschaften für Schwermetalle																				
Parameter	ter pH-Wert Bindu				Bindungsstärke		ŀ	Zusc	chlag sgeha	lt	Zuschlag Bodenart		Bewertungs- stufen		-	Bewertungsstufe (Mittelwert)					
	Ah	Sw	Sd		Ah	Sw	Sd		Ah	Sw	Sd		Ah	Sw	Sd		Ah	Sw	Sd		
Cu					4,5	3,5	3,5		1	0	0		0,5	0,5	1		6	4	4,5		5
Pb	4,8	4,3	4,4		5	5	5		1	0	0		0,5	1	1,5		6,5	6	6,5		5
Zn					3	2,5	2,5		0	0	0		0,5	0,5	1		3,5	3	3,5		4
	Bewertungsstufe (gesamt)										5										

	Rückhaltevermögen für nicht sorbierbare Stoffe											
Sickerwasserrate nFKWe (mm) FKWe (mm) Austauschhäufigkeit / a Bewertungsstufe												
240 mm/a	101	280	0,9	4								

	Eignungsfähigkeit für die Niederschlagswasserversickerung											
kf-Wert (ı	n/s)	kf-Wert (Stufe)	LK (Vol %)	Bewertungsstufe	Berücksichtigung Vorgaben	Bewertungsstufe						
< 10	6	2	3,1	5	- Neigung, Verdichtung (= 5)	5						

Bodenfunktionsbewertung für die Teilfunktionen der Stufe A

	Lebensgrundlage für Pflanzen und Tiere											
Hangneigung (%)												
6,2%	2	26,9	4	-	2	4	2					

	Bestandteil des Naturhaushalts (Ausgleichskörper im Wasserhaushalt)										
kf-Wert Stufe	nFKWe (mm)	nFKWe Stufe	Bewertungsstufe	Zu- / Abschläge Bewertungsstufe Neigung Nutzung Versiegelung Hydromorphie							
1	52	2	4	-1	-2	-	-	1			

	Erfassung der Archivfunktion (Naturgeschichtliche Bedeutung)											
Selte	enheit	Naturnähe	Regenerierbarkeit									
Bodentyp	Bewertungsstufe	Bodenverhältnisse	Bewertungsstufe	Bodentyp (Jahre)	Bewertungsstufe							
Ranker	4	Natürliche Böden (Meliorationsm.)	4	Ranker (>50 - 200 Jahre)	3							
		Verknüpfungsmatrix (Naturnähe/Regenerierbarkeit)		3								

	Land- und forstwirtschaftliche Ertragsfähigkeit										
Acker						Grünlan	Forst				
Textur	RBS	geol. Entstehung	Zustands- stufe	Bewertungsstufe	Zustands- stufe	Wasser- verhältnisse	Bewertungsstufe	SFZ	Bewertungsstufe		
Lu	sL	Vg	7	2				28	2		

Teilfläche: 25

Lebensgrundlage für Bodenorganismen								
Einstufung	Humusform	Bewertungsstufe						
Natürlicher Boden (Ranker) Parkanlage mit altem Baumbestand (P)	Rohhumus	1						

Filtereigenschaften für grobdisperse Stoffe (Stäube)								
Luftkapazität	KAK _{POT}	Bewertungsstufe						
24,4	27,4	3						

	Filter- und Puffereigenschaften für Schwermetalle																			
Parameter	pH-Wert			Bindungsstärke		H	Zuschlag Humusgehalt		Zuschlag Bodenart		Bewertungs- stufen		-	Bewertungsstufe (Mittelwert)						
	Ah	Cv			Ah	Cv			Ah	Cv			Ah	Cv		Ah	Cv			
Cu					2	3			1	0			0,5	0,5		3,5	3,5			4
Pb	3,6	4,0			3	4			1	0			0,5	1		4,5	5			5
Zn					1,5	2			0	0			0,5	0,5		2	2,5			3
	Bewertungsstufe (gesamt)										4									

Rückhaltevermögen für nicht sorbierbare Stoffe									
Sickerwasserrate	nFKWe (mm)	FKWe (mm)	Austauschhäufigkeit / a	Bewertungsstufe					
240 mm/a	52	98	2,5	2					

Eignungsfähigkeit für die Niederschlagswasserversickerung									
kf-Wert (m/s)	kf-Wert (Stufe)	LK (Vol %)	Bewertungsstufe	Berücksichtigung Vorgaben	Bewertungsstufe				
< 10 ⁻⁶	1	24,4	3	- Neigung, Verdichtung (= 5)	5				

Bodenfunktionsbewertung für die Teilfunktionen der Stufe A

	Lebensgrundlage für Pflanzen und Tiere										
Hangneigung (%)	BKF	KAK _{ef}	pH-Wert	Zuschlag	Biotopentwicklungs- potential	Anthropogener Einfluss	Bewertungsstufe				
6,6%	9	20,8	4,0	+1	2	4	2				

	Bestandteil des Naturhaushalts (Ausgleichskörper im Wasserhaushalt)										
kf-Wert Stufe	nFKWe (mm)	nFKWe Stufe	Bewertungsstufe	Neigung	Zu- Nutzung	/ Abschläge Versiegelung	Hydromorphie	Bewertungsstufe			
3	118	3	3	-1	-2	-	-	1			

	Erfassung der Archivfunktion (Naturgeschichtliche Bedeutung)									
Selt	enheit	Naturnähe	Regenerierbarkeit							
Bodentyp	Bewertungsstufe	Bodenverhältnisse	Bewertungsstufe	Bodentyp (Jahre)	Bewertungsstufe					
Pseudogley	3	Natürliche Böden mit natürlicher Profilabfolge	5	Pseudogley (>50 - 200 Jahre)	3					
		Verknüpfungsmatrix (Naturnähe/Regenerierbarkeit)		4						

	Land- und forstwirtschaftliche Ertragsfähigkeit										
Acker						Grünlan	Forst				
Textur	RBS	geol. Entstehung	Zustands- stufe	Bewertungsstufe	Zustands- stufe	Wasser- verhältnisse	Bewertungsstufe	SFZ	Bewertungsstufe		
Lu	sL	Vg	7	2				28	2		

Teilfläche: 26

Lebensgrundlage für Bodenorganismen								
Einstufung	Humusform	Bewertungsstufe						
Natürlicher Boden (Wald) (W)	Rohhumus	1						

Filtereigenschaften für grobdisperse Stoffe (Stäube)								
Luftkapazität	KAK _{POT}	Bewertungsstufe						
6,6	21,6	4						

	Filter- und Puffereigenschaften für Schwermetalle																				
Parameter pH-Wert			Bindungsstärke			Zuschlag Humusgehalt			Zuschlag Bodenart			Bewertungs- stufen			Bewertungsstufe (Mittelwert)						
	Ah	Sw	Sd		Ah	Sw	Sd		Ah	Sw	Sd		Ah	Sw	Sd		Ah	Sw	Sd		
Cu					2	3	3		1	0	0		0,5	0	1		3,5	3	4		4
Pb	3,6	4,0	4,2		3	4	4		1	0	0		0,5	0,5	1,5		4,5	4,5	5,5		5
Zn					1,5	2	2		0	0	0		0,5	0	1		2	2	3		3
	Bewertungsstufe (gesamt)								4												

	Rückhaltevern	ückhaltevermögen für nicht sorbierbare Stoffe							
Sickerwasserrate	nFKWe (mm)	FKWe (mm)	Austauschhäufigkeit / a	Bewertungsstufe					
240 mm/a	118	226	1,1	3					

	Eignungsfähigkeit für die Niederschlagswasserversickerung										
ſ	kf-Wert (m/s)	kf-Wert (Stufe)	LK (Vol %)	Bewertungsstufe	Berücksichtigung Vorgaben	Bewertungsstufe					
	10 ⁻⁵ – 10 ⁻⁶	3	6,6	3	- Neigung, Verdichtung (= 5)	5					