

Birosemplar

Gefährdungsabschätzung

Altlastenverdachtsfläche

Firma Emhart

(Städt. Nr. 266)

in Neuss

Köln, im Juni 1994 Wi/sk/6926 1.15.1950.2

A E W P L A N G M B H Abfall - Energie - Wasser Graeffstraße 5 50823 Köln

Gefährdungsabschätzung

Altlastenverdachtsfläche

Firma Emhart

(Städt. Nr. 266)

in Neuss

Köln, im Juni 1994 Wi/sk/6926 1.15.1950.2

A E W P L A N G M B H Abfall - Energie - Wasser Graeffstraße 5 50823 Köln

INHALT		Seite
1.	Einleitung	1
1.1	Veranlassung	1
1.2	Lage des Untersuchungsgebietes	1
2.	Nutzung des Untersuchungsgebietes	4
2.1	Auswertung der Bauakten	4
2.2	Ortsbegehung	7
2.3	Zusammenfassung	7
3.	Durchgeführte Untersuchungen	9
3.1	Untersuchungskonzept	9
3.2	Rammkernsondierungen	9
3.3	Bodenluftmeßstellen	10
3.4	Analytikumfang	10
3.5	Bewertungskriterien	11
4.	Ergebnisse	13
4.1	Geländebefunde	13
4.2	Probenauswahl	15
4.3	Analytik	16
4.3.1 4.3.2	Bodenproben Bodenluft	16

5.	Gefährdungsabschätzung	27
5.1	Boden	27
5.2	Ausgasung und Migration	29
5.3	Grundwasser	30
6.	Aushubklassifizierung	31
7.	Zusammenfassung und Empfehlung	33

Anlagen

Tabellen

Tabelle 1: Ansatzpunkte der Sondierungen

Tabelle 2: Übersicht der durchgeführten Sondierungen

Tabelle 3: Übersicht der durchgeführten Analysen

Tabelle 4: Schwermetall- und Arsengehalte im Feststoff

Tabelle 5: PAK-Gehalte im Feststoff

Tabelle 6: KW_{ges}-Gehalte im Feststoff

Tabelle 7: EOX- und Cyanidgehalte im Feststoff

Tabelle 8: pH-Wert und elektrische Leitfähigkeit

Tabelle 9: Eluatanalysen zur Deponieklassenzuordnung

Tabelle 10: LCKW-Konzentrationen in der Bodenluft

Abbildungen

Abbildung 1: Lage des Untersuchungsgebietes

Anlagen

Anlage 1: Lageplan

Anlage 2: Schichtenverzeichnisse (DIN 4022/4023) und Nivellierprotokoll

Anlage 3: Analysenergebnisse

1. EINLEITUNG

1.1 Veranlassung

Das am Ortsrand der Stadt Neuss gelegene Untersuchungsgebiet befindet sich innerhalb eines B-Plangebietes der Stadt Neuss. Da aufgrund der derzeitigen sowie der früheren Nutzung eine anthropogene Überprägung des Gebietes anzunehmen ist, wurde das Grundstück als Altlastenverdachtsfläche (städtische Nr. 266) eingestuft.

Mit Schreiben vom 21.12.1993 wurde die AEW PLAN GmbH von der Stadt Neuss, Amt für Umweltschutz, beauftragt, eine Gefährdungsabschätzung im Hinblick auf die zukünftige Nutzung durchzuführen.

1.2 Lage des Untersuchungsgebietes

Das zu untersuchende Grundstück befindet sich südlich des Derendorfwegs, ca. 1,5 km und östlich des Stadtzentrums am Rande des Hafengebietes.

Es umfaßt eine Fläche von etwa 8 500 m². Die mittleren Gauss-Krüger-Koordinaten lauten:

$$R = {}^{25}49700 \qquad H = {}^{56}74150$$

(TK 25 Nr. 4706, Blatt Düsseldorf)

Die genaue Lage kann Abbildung 1 entnommen werden.

Geologisch befindet sich das Untersuchungsgebiet im Bereich der Niederterrassenverebnung des Rheins. Die 5 - 10 m mächtigen Sande und Kiese der Niederterrasse lagern oligozänen Meeressanden auf, deren Oberkante bei ca. 20 m ü. NN ansteht. Dies entspricht einem Flurabstand von etwa 15 m.

Überlagert werden die Terrassensedimente von ebenfalls 5 - 10 m mächtigen Hochflutsedimenten.

Der mittlere Grundwasserstand liegt bei etwa 28 m ü. NN (6 - 7 m unter Geländeoberkante). Der Grundwasserhöchststand aus dem Jahr 1966 lag mit ca. 31 m ü. NN etwa 3 m höher.

Die generelle Grundwasserfließrichtung im Raum Neuss ist nach Westen bzw. Nordwesten auf den Rhein hin gerichtet.

Im unmittelbaren Untersuchungsgebiet biegt die Fließrichtung aufgrund der geringen Distanz zum Neusser Hafen nach Norden um. Darüber hinaus ist, je nach Wasserstand des Rheins, auch mit anderen Fließrichtungen zu rechnen.

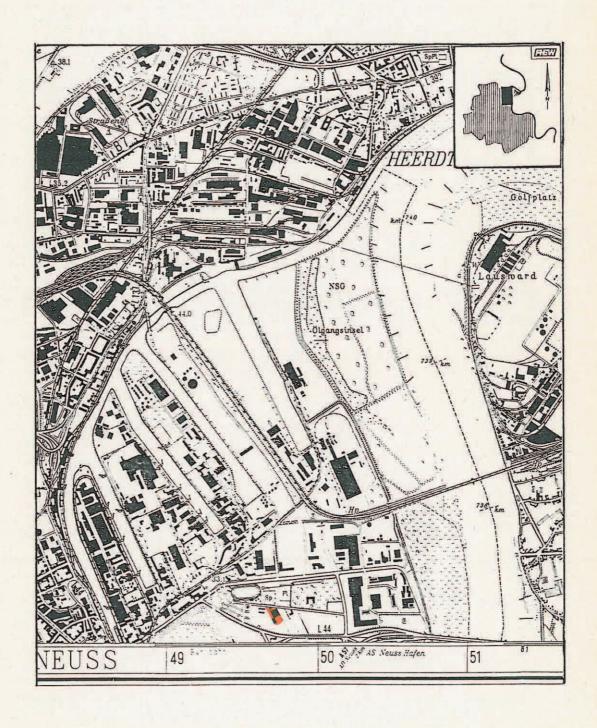


Abbildung 1:

Lage des Untersuchungsgebietes

(Ausschnitt aus TK 25 Nr. 4706 Blatt Düsseldorf)

2. Nutzung des Untersuchungsgebietes

Zur sinnvollen Auswahl der Sondieransatzpunkte und des Analysenumfangs wurden die Bauakten des relevanten Grundstücks Derendorfweg 8 - 10 ausgewertet sowie eine Ortsbegehung mit dem Auftraggeber durchgeführt.

2.1 Auswertung der Bauakten

Aus den vom Auftraggeber zur Verfügung gestellten Unterlagen kann eine gewerbliche Nutzung des Gebietes bis in das Jahr 1955 zurückverfolgt werden. Im folgenden sind die wichtigsten Punkte chronologisch aufgelistet.

10.03.1955	Bauantrag zum Einbau von 3 Sauerkrautbehältern aus Beton (Firma Heinrich Herm. Fastrich)
16.05.1960	Antrag auf Einbau eines unterirdischen Heizöltanks (15 000 I)
17.05.1960	Bauantrag Firma H. H. Fastrich für Hallenanbau an ein bestehendes Fabrikgebäude incl. eines Kesselhauses mit Dampfgenerator zur Erweiterung der Sauerkrautfabrik
20.02.1961	Bauantrag der Firma H. H. Fastrich zur Errichtung einer Fabrikhalle (Einschneidehalle)
1962	Bauantrag der Firma H. H. Fastrich zur Errichtung eines Kamins (32 m Höhe) sowie eines Kesselhauses
1962	Bauantrag der Firma H. H. Fastrich für den Neubau eines Kesselhauses mit Anbau für Salzlager und Schweröltank
24.01.1963	Bauantrag der Firma H. H. Fastrich für den Bau einer Fabrik- und Lagerhalle
1965	Verkauf des Grundstückes an Herrn J. P. Klimek (Düsseldorf, Volmerswerter Straße 136). Die Firma Essig Kühne übernimmt Warenbestand und Maschinen für ihr Werk in Niederdorf.

23.07.1965	Abbruchgenehmigung für J. P. Klimek für die Gebäude Nr. 5 und 7
09/1965	Antrag von Herrn J. Pl. Klimek auf Gebäudeumbau
1971	Diverse Bauanträge auf Erweiterungen durch Herrn J. P. Klimek, die alle im Oktober 1971 zurückgezogen werden.
1972	Bauantrag durch Herrn J. P. Klimek zum Bau eines Büro- und Lagergebäudes sowie einer Kranbahnhalle
07.02.1972	Bauantrag durch Herrn J. P. Klimek für Lagerhalle und Bürogebäude
17.04.1972	Bauantrag durch Herrn J. P. Klimek für den Bau einer Lagerhalle an der südlichen Grundstücksecke
19.10.1981	Erweiterung einer Lagerhalle um eine Waschhalle und einen Technikraum
27.04.1983	Bauantrag der Firma Emhart zur Errichtung eines Ausstellungspavillons in Fertigbauweise
1989	Einleitung stark kohlenwasserstoffbelasteten Abwassers in die Kanalisation durch die Firma Emhart.
	Ursache ist höchstwahrscheinlich die als Lagerplatz für stark ölverschmutzte Maschinen genutzte Hoffläche, deren Kanaleinläufe nicht über einen Ölabscheider geführt werden. Bei einer Ortsbegehung durch die Stadt Neuss wird darüber hinaus der fehlerhafte Betonboden der überdachten Lagerhalle auf der Hoffläche bemängelt.
	Schlamm- und Ölabscheider werden daraufhin neu eingebaut.

Die Besitzrechte und Nutzungen lassen sich wie folgt zusammenfassen:

Bis 1965

Besitzer:

Firma H. H. Fastrich, Konserven-,

Essig- und Sauerkrautfabrik

1965 - 1986

Besitzer:

Herr J. P. Klimek

Vermietet an folgende Firmen:

- Firma Goldstar (Lagerung von Hifi-Geräten)

Firma Rostanit GmbH (Feinstahlimport und -export;

Lagerung)

- Firma Artur Naumann (Eisen- und Stahlhandelsge-

sellschaft; Lagerung)

- Firma Kunert-Feinstrumpffabrik (Lagerung)

- Firma Catco GmbH (Stoffdruck) kurzfristig

Firma Emhart (Maschinenfabrik für Glashütten) seit

1966

ab 1985

Eigentümer: Dr. R. Versen, Duisburg, seit 1985 einziger

Mieter Firma Emhart

Basierend auf der Aktenauswertung ergeben sich mehrere Bereiche, bei denen eine Verunreinigung des Bodens nicht auzuschließen ist. Hierbei sind vor allem die gesamte Hoffläche, die ehemalige Klärgrube, der alte und neue Öltank sowie die Salzlager zu nennen.

6

2.2 Ortsbegehung

Zur Gewinnung eines aktuellen Überblicks und zur Festlegung der Sondieransatzpunkte fand am 26.01.1994 eine Ortsbegehung mit dem Auftraggeber statt. Hierbei wurden die in Abschnitt 2.1 beschriebenen Punkte überprüft und zusätzlich eine Sondierung neben dem Trafogebäude und einem Ölabscheider im Einfahrtsbereich festgelegt. Auf der Hoffläche wurden 5 Sondierungen angesetzt. Die dort lagernden Maschinen sind weitgehend abgedeckt, damit das Abwaschen von Öl und Schmierstoffen durch Niederschlagwasser verhindert wird. Der 1989 neu installierte Ölabscheider ist in Betrieb. Auch hat die gesamte Hoffläche nach Angaben der Firma Emhart eine neue Oberflächenversiegelung erhalten.

Die Reinigung der Maschinenteile findet mittels Dampfstrahls in einer Waschhalle statt. Lösungsmittel werden hierbei nicht verwendet. Das verbrauchte Wasser wird über einen Ölabscheider im Einfahrtsbereich geführt.

Die begutachteten Hallenböden sind durchweg sauber und zeigen keine schadhaften Stellen. Auf Sondierungen innerhalb der Hallen wurde daher verzichtet.

2.3 Zusammenfassung

Basierend auf der Auswertung der Bauakten und der Ortsbegehung wurden 13 Sondieransatzpunkte festgelegt. In Tabelle 1 sind diese schematisch mit den jeweils relevanten Nutzungen aufgelistet. Die genaue Position kann dem Lageplan in Anlage 1 entnommen werden.

Tabelle 1: Ansatzpunkte der Sondierungen

Sondierung	Ansatzpunkt			
RKS 1	Parkplatz vor der Einfahrt			
RKS 2	Ehemaliges Salzlager			
RKS 3	Neben Ölabscheider im Einfahrtsbereich			
RKS 4	Neben altem Tank im Einfahrtsbereich			
RKS 5	Östlich des neuen Öltanks			
RKS 6	Ehem. Salzlager, Trafostattion			
RKS 7	Neben Trafogebäude			
RKS 8	Ehemaliges Klärbecken im Hof			
RKS 9	Überdachte Lagerhalle im Hof			
RKS 10	Neben Ölabscheider im Hof			
RKS 11	Neben Kanaleinlauf im Hof			
RKS 12	Neben gelagerten Maschinen im Hof			
RKS 13	Neben altem Tank im Einfahrtsbereich			

3. DURCHGEFÜHRTE UNTERSUCHUNGEN

3.1 Untersuchungskonzept

Für die Altlastenverdachtsfläche Firma Emhart wurde von der Stadt Neuss ein zweistufiges Untersuchungskonzept erstellt.

Phase 1 stellt hierbei ein auf Basis der Bauaktenauswertung und des Ortstermins durchzuführendes Untersuchungsminimum dar, das bei Negativbefunden repräsentative Aussagen über das Gelände zuläßt. Sollten bei Phase 1 signifikante Belastungen angetroffen werden, käme es zur Durchführung der Phase 2 mit verdichtenden und weiterführenden Untersuchungen auf Basis der in Phase 1 angetroffenen Belastungen.

3.2 Rammkernsondierungen

Basierend auf den in Abschnitt 2 beschriebenen Erkenntnissen wurden auf dem Untersuchungsgebiet 13 Sondierungen bis in das natürlich anstehende, nicht nachteilig veränderte Gestein abgeteuft. Der Durchmesser der Sondierungen betrug 60 mm (0 - 1 m) bzw. 50 mm (ab 1 m bis Endteufe). Die Oberflächenversiegelung wurde, wenn vorhanden, aufgebohrt oder gestemmt. Die Ansatzpunkte der Sondierungen wurden nach Lage und Höhe eingemessen. Die genauen Positionen können dem Lageplan in Anlage 1 entnommen werden. Das Nivellierprotokoll findet sich in Anlage 2.

Die vor Ort erstellten Schichtenverzeichnisse (DIN 4022) und deren graphische Darstellung (DIN 4023) sind ebenfalls in Anlage 2 beigefügt.

Die Probennahme erfolgte schichtweise bzw. je Sondiermeter in gasdichten 720-ml-Glasgefäßen mit Schraubdeckel. Die genauen Entnahmetiefen können den Schichtenverzeichnissen entnommen werden.

3.3 Bodenluftmeßstellen

8 Sondierungen wurden zu provisorischen Bodenluftmeßstellen ausgebaut. Hierzu wurde ein 1 m langes Aufsatzrohr (Ø 2") in das Bohrloch eingehängt. Zur Abdichtung der Meßstellen gegen atmosphärische Luft und zur Fixierung im Bohrloch wurde im oberen Teil des Ringraums eine Dichtung aus quellfähigem Ton eingebracht. Das Rohr selbst wurde mittels Schraubdeckels verschlossen.

3.4 Analytikumfang

Von den entnommenen Proben wurden einige für die chemische Analyse ausgewählt. Der Parameterumfang orientierte sich hierbei an den Geländebefunden, an den Erkenntnissen der Ortsbegehung sowie an der Auswertung der Bauakten und wurde mit dem Auftraggeber abgesprochen.

Im einzelnen wurden die folgenden Substanzen im Feststoff analysiert:

- Schwermetalle und Arsen
- KW_{ges}
- PAK (EPA)
- Cyanide
- · PCB
- EOX

Darüber hinaus wurden pH-Wert und elektrische Leitfähigkeiten im Eluat bestimmt sowie 2 Proben für eine Deponieklassenzuordnung (Klasse 2) untersucht.

In der Bodenluft wurden an zwei Terminen BTEX- und LCKW-Gehalte untersucht. Die Analytikprotokolle sind in Anlage 3 beigefügt.

3.5 Bewertungskriterien

Zur Bewertung der ermittelten Schadstoffkonzentrationen in den Bodenproben bezüglich einer möglichen Gefährdung der menschlichen Gesundheit und anderer Schutzgüter (Pflanzenwuchs, Grundwasser) wurden die vorliegenden Analysenergebnisse mit entsprechenden Richt- und Prüfwerten verglichen.

Hierbei kamen die Orientierungswerte nach EICKMANN & KLOKE (1993) sowie die Prüfwerte der Holland-Liste zum Tragen.

Aufgrund der bekannten Unzulänglichkeiten und Verallgemeinerungen der Holland-Liste dient der Vergleich mit deren Prüfwerten für nähere Untersuchungen (B-Wert) und den Prüfwerten für Sanierungsuntersuchungen (C-Wert) einer ersten groben Einschätzung.

Besser geeignet zur Abschätzung einer möglichen Gefährdung sind die Bodenwerte (BW) nach EIKMANN & KLOKE, da diese zwischen verschiedenen Nutzungsformen unterscheiden (z.B. Sportplatz, Haus- und Kleingärten, gewerbliche genutzte Flächen). Hierbei gilt der Bodenwert II (BW II) als Toleranzwert, bei dem auch bei dauernder Einwirkung die Lebens- und Leistungsfähigkeit nicht negativ beeinträchtigt werden. BW III wird als Toxizitätswert bezeichnet, bei dessen Erreichen Schäden an Schutzgütern erkennbar werden können.

Für das Untersuchungsgebiet ist als vorrangige Neunutzung die Errichtung von Büro- und Verwaltungsgebäuden geplant. Da für eine derartige Nutzungsart keine expliziten Bodenwerte vorliegen, wurden die etwas sensibleren Richtwerte für Haus- und Kleingärten herangezogen.

Auf das Heranziehen weiterer Prüfwerte, wie z.B. die von der Länderarbeitsgemeinschaft Altlasten (LAGA, 1990) vorgeschlagenen Prüfwerte für eine Gefährdung der menschlichen Gesundheit wurde verzichtet, da diese Werte mit den Bodenwerten für Haus- und Kleingärten bis auf einzelne Ausnahmen übereinstimmen.

Neben der Gefährdungsabschätzung wurden die Analysenergebnisse bezüglich einer möglichen Entsorgung des Materials mit entsprechenden Richtwerten verglichen. Hierbei kamen zunächst die zulässigen Schadstoffkonzentrationen für die Deponien 1 und 2 entsprechend dem Richtlinienentwurf des Landesamtes für Wasser und Abfall zur "Untersuchung und Beurteilung von Abfällen - Teil 2" zur Anwendung. Darüber hinaus wurden die erlaubten Schadstoffkonzentrationen für den Wiedereinbau von Aushubmaterial entsprechend dem Verwertungskonzept der Stadt Düsseldorf (1991) herangezogen, da aufgrund des beschränkten Deponieraumes eine Wiederverwertung anzustreben ist. Hierin wird zwischen verschiedenen Materialzusammensetzungen unterschieden, die bei Einhaltung der zulässigen Schadstoffgehalte unter verschiedenen Auflagen wiedereingebaut werden können.

Da für Bodenluft keine allgemein gültigen Grenz- oder Richtwerte existieren, wurden die Analysenergebnisse mit den sog. MIK-Werten (Maximale Immissions-Konzentrationen) verglichen. Unterhalb dieser Werte ist auch bei dauerhafter Einwirkung eine Schädigung von Mensch und Umwelt nicht zu erwarten.

4. ERGEBNISSE

4.1 Geländebefunde

Die auf dem Untersuchungsgebiet niedergebrachten Sondierungen zeigten durchweg eine vergleichbare Schichtenabfolge.

Alle Sondierungen, mit Ausnahme der RKS 13, erreichten die natürlich anstehenden Hochflutsedimente. Die braun gefärbten, meist schluffigsandigen Sedimente wiesen keinerlei Besonderheiten auf. Die Schwankungen in der Feuchtigkeit sind wahrscheinlich in lokal erhöhten Tonanteilen begründet, die zu Staunässe führen. Die Oberkante der Hochflutsedimente liegt bei 0,8 - 2,2 m u. GOK, was einer Höhenlage von ca. 32 - 34 m ü. NN entspricht. Sondierung 13 erreichte die natürlichen Sedimente nicht, da sie bei 2,60 m u. GOK wahrsheinlich auf dem alten Tank aufsitzt.

Oberhalb des Hochflutsediments liegt eine Auffüllungsschicht, deren Mächtigkeit westlich und nördlich der Haupthalle zwischen 0,6 und 1,3 m schwankt. Eine Ausnahme stellt Sondierung 13 dar mit einer Mächtigkeit von 2,3 m). Im Hofbereich südlich der Haupthalle erreicht die Auffüllung Mächtigkeiten bis ca. 2 m. Das Auffüllungsmaterial setzt sich überwiegend aus Erdaushub mit meist nur geringen Anteilen Bauschutt und Ziegelbruch zusammen. Selten treten einzelne Schlacken, kohlige Partikel oder Holzstücke sowie Teile einer Schwarzdecke auf. In einigen Sondierungen finden sich erhöhte Bauschuttanteile, bei denen es sich aber wohl nur um lokale Bereiche handelt. Nach Angaben der Firma Emhart finden sich vor allem im Bereich der Hoffläche auch bis über 1 m große Betonteile im Boden, bei denen es sich

wahrscheinlich um alte Fundamentreste handelt. Größere Betonteile wurden auch in den Sondierungen 1 und 4 erbohrt, die keinen weiteren Bohrfortschritt zuließen, so daß die beiden Sondierungen umgesetzt werden mußten.

Insgesamt ist die Auffüllung meist sandig-kiesig und ihre Farbe schwankt, je nach Zusammensetzung, zwischen braun und grau bzw. rot-grau. Organoleptische Auffälligkeiten wurden nur in Sondierung 16 beobachtet, bei der ein nicht exakt zu definierender "seifiger" Geruch auftrat.

Als Besonderheit wurden in Sondierung 11 Reste einer Schwarzdecke mit Erdaushub angetroffen (0,25 - 0,40 m) sowie ein mehrere cm großes Stück Teerpappe bei 1,8 m u. GOK innerhalb einer reinen Erdaushublage. Ursache ist wahrscheinlich der unmittelbar benachbarte Kanaleinlauf, bei dessen Einbau es zur Einlagerung der Teerpappe kam. Ein großräumiges Vorkommen kann wohl ausgeschlossen werden.

Oberhalb der Auffüllungsschicht bildet eine bis zu 0,3 m mächtigte Betondekke mit dünner Schwarzdeckenauflage den Abschluß. Bis auf die Sondierungen 2 und 6, die im Vorgarten bzw. im unbefestigten Randstreifen niedergebracht wurden, tritt diese Oberflächenversiegelung bei allen Sondierungen auf. Ingesamt macht die Versiegelung einen massiven und undurchlässigen Eindruck, so daß davon ausgegangen werden kann, daß die bei einer Ortsbegehung im Jahre 1986 beanstandeten Mängel im Bereich der Hoffläche durch die Firma Emhart beseitigt wurden. Nach Angaben von Firmenmitarbeitern wurde im Bereich des Hofes eine zusätzliche neue Versiegelung auf die alte Decke aufgebracht.

In Tabelle 2 sind die Sondierungen mit den jeweiligen Schichttiefen aufgelistet.

Tabelle 2: Übersicht der durchgeführten Sondierungen

Sondierung	Tiefe	Proben	BL-Pegel	Schichten	m u. GOK)	
	(m u. GOK)			Beton	Auffüllung	Hochflutsed
RKS 1a	0,8	1		0,0 - 0,1	0,1 - 0,8	
RKS 1b	3,0	4	×	0,0 - 0,2	0,2 - 1,2	1,2 - 3,0
RKS 2	3,0	3			8,0 - 0,0	0,8 - 3,0
RKS 3	3,0	4	×	0,0 - 0,2	0,2 - 0,9	0,9 - 3,0
RKS 4a	0,9	2		0,0 - 0,2	0,2 - 0,9	
RKS 4b	3,0	4		0,0 - 0,2	0,2 - 1,5	1,5 - 3,0
RKS 5	3,0	5		0,0 - 0,1	0,1 - 0,8	0,8 - 3,0
RKS 6	3,0	4			0,0 - 1,0	1,0 - 3,0
RKS 7	3,0	3		0,0 - 0,2	0,2 - 0,9	0,9 - 3,0
RKS 8	3,0	4	x	0,0 - 0,24	0,24 - 0,9	0,9 - 3,0
RKS 9	3,0	3	x	0,0 - 0,29	0,29 - 1,0	1,0 - 3,0
RKS 10	3,0	5	×	0,0 - 0,24	0,24 - 1,7	1,7 - 3,0
RKS 11	3,0	5	×	0,0 - 0,15	0,15 - 2,0	2,0 - 3,0
RKS 12	3,0	4	× ×	0,0 - 0,3	0,3 - 2,1	2,1 - 3,0
RKS 13	2,6	3	x	0,0 - 0,3	0,3 - 2,6	
13	40,3	54	8			

4.2 Probenauswahl

Insgesamt wurden aus den 13 Sondierungen 54 Bodenproben entnommen. Hiervon entstammen 3 der Oberflächenversiegelung, 28 der Auffüllung und 23 dem natürlichen Hochflutsediment. In Absprache mit dem Auftraggeber wurden auf Basis der Bauaktenauswertung und der Erkenntisse der Ortsbegehung sowie der Geländebefunde während der Sondierarbeiten insgesamt 22 Proben für die Analyse ausgewählt. Die zu analysierenden Parameter orientierten sich dabei an dem zu erwartenden Schadstoffinventar aufgrund der vorliegenden bzw. früheren Nutzung.

Darüber hinaus wurden zwei repräsentative Proben der Auffüllungsschicht ausgewählt und auf ihre Deponieklassenzuordnung hin untersucht. Hierzu wurde eine Probe der erdaushubdominierten Auffüllung (RKS 10/1) sowie eine Bauschuttprobe (RKS 13/1) ausgesucht.

Für den Ausbau zu provisorischen Bodenluftmeßstellen wurden insgesamt 8 Sondierungen ausgewählt. Da bis auf Sondierung 1 keine organoleptischen Befunde auftragen, wurden neben RKS 1 alle Sondierungen, bei denen Belastungen aufgrund der Nutzung möglich sind, zu Bodenluftmeßstellen ausgebaut. So wurden im Einfahrtsbereich die Sondierungen 3 (Ölabscheider) und 13 (alter Tank) ausgewählt sowie alle 5 Sondierungen auf der Hoffläche (RKS 8 - 12).

4.3 Analytik

4.3.1 Bodenproben

Die insgesamt 22 ausgewählten Bodenproben wurden entsprechend den vorliegenden Erkenntnissen auf die in Tabelle 3 aufgelisteten Parameter hin untersucht.

Tabelle 3: Übersicht der durchgeführten Analysen

Probe	Lage der RKS	Tiefe [m u. GOK]	SM + As	KW ges	PAK	Cyanide	EOX	PCB	pН	el.Leitf.	Deponie zuordnung
RKS 1b/1	Parkplatz	0,2 - 0,7	×	×	Х	X	X		X	×	
RKS 3/3	Ölabscheider/Einf.	0,9 - 2,1		X			X				
RKS 4b/2	Alter Tank	0,6 - 1,5	X	X	X	X	X	100	Х	X	
RKS 5/1	Neuer Tank	0,0 - 0,1			X				1111		
RKS 5/3	Neuer Tank	0,6 - 0,8		X							
RKS 5/5	Neuer Tank	2,0 - 3,0		X					22.		
RKS 6/2	Neuer Tank	0,3 - 1,0	X	X	X				X	X	6. 199
RKS 7/1	Trafogebäude	0,2 - 0,9						X			
RKS 8/2	Klärbecken	0,5 - 0,9	X	X	X	X	X		X	X	
RKS 8/3	Klärbecken	0,9 - 2,2		X			X				
RKS 9/1	Lagerfläche/Hof	0,29 - 1,0		X				- 5 - 4-			17
RKS 9/2	Lagerfläche/Hof	1,0 - 1,7	1125	X				15 7 11 1			
RKS 10/1	Ölabscheider/Hof	0,24 - 1,0	X	X	X		X		Х	X	X
RKS 10/3	Ölabscheider/Hof	1,7 - 2,2		X					11111		
RKS 10/4	Ölabscheider/Hof	2,2 - 2,8		X							
RKS 11/1	Kanaleinlauf/Hof	0,25 - 0,4	X	X	X		X		X	X	
RKS 11/2	Kanaleinlauf/Hof	0,4 - 1,4		X							
RKS 11/5	Kanaleinlauf/Hof	2,0 - 3,0		X							
RKS 12/2	Maschinen/Hof	0,6 - 0,9		X			X		X	Х	
RKS 12/3	Maschinen/Hof	0,9 - 2,1		X					127		
RKS 13/1	Alter Tank	0,3 - 1,2	X	X	X	X	X		X	X	X
RKS 13/3	Alter Tank	2,2 - 2,6		X							

Für die Bewertung wurden die in Abschnitt 3.5 beschriebenen Bewertungskriterien herangezogen.

Schwermetalle und Arsen

Alle untersuchten Proben sind der Auffüllungsschicht entnommen, wobei das gesamte Spektrum von nahezu reinem Erdaushub (RKS 6/2) bis zum Bauschutt (RKS 13/1) erfaßt wird. Darüber hinaus wurde auch die aus Erdaushub und Schwarzdecke bestehende Probe RKS 11/1 untersucht. Wie Tabelle 4 zu entnehmen ist, liegen die Ergebnisse aller Einzelsubstanzen bei allen Proben sowohl unterhalb des BW II für Haus- und Kleingärten, des B-Wertes der Holland-Liste wie auch unterhalb der Anforderungen der Wiedereinbauklasse III. Sie können daher alle als unbedenklich angesehen werden.

Tabelle 4: Schwermetall- und Arsengehalte im Feststoff

Probe	Lage der RKS	Tiefe [m u. GOK]	As [mg/kg]	Pb [mg/kg]	Cd [mg/kg]	Cr ges [mg/kg]	Cu [mg/kg]	Ni [mg/kg]	Hg [mg/kg]	Zn [mg/kg]
RKS 1b/1	Parkplatz	0,2 - 0,7	2,3	7,2	0,17	14,5	8,4	9,5	0,53	29,4
RKS 4b/2	Alter Tank	0,6 - 1,5	5,4	18,8	0,2	13,3	10,4	11,6	0,69	38,8
RKS 6/2	Neuer Tank	0,3 - 1,0	7,4	39,8	0,57	20,1	22	17,2	0,76	90,4
RKS 8/2	Klärbecken	0,5 - 0,9	4,5	87,1	0,36	17,1	46,5	19,7	0,62	198
RKS 10/1	Ólabscheider/Hof	0,24 - 1,0	5,3	24,9	0,22	18,7	21,1	17,8	0,47	53,6
RKS 11/1	Kanaleinlauf/Hof	0,25 - 0,4	2,4	6,4	0,18	12,7	12,3	12,2	0,39	22,1
RKS 13/1	Alter Tank	0,3 - 1,2	6,1	34,2	0,41	19,6	17,3	18,5	0,56	83,2
Eikm./Kloke	BW II		40	300	2	100	50	80	2	300
	BW III		80	1000	5	350	200	200	20	600
Holl, Liste	B-Wert		30	150	5	250	100	100	2	500
	C-Wert		50	600	20	800	500	500	10	3000
Wiedereinbauklasse	111		50	300	4	100	150	150	2	400
	IV		50	600	20	800	, 500	500	10	3000
	V		50	600	20	800	500	500	10	3000

Aufgrund der niedrigen Schadstoffkonzentrationen im Feststoff wurde auf zusätzliche Eluatanalysen verzichtet.

PAK

Für die Analyse auf polyzyklische aromatische Kohlenwasserstoffe wurden dieselben Proben ausgewählt wie für die Analyse auf Schwermetalle. Darüber hinaus wurde eine Probe der oberflächigen Beton-Schwarzdecke untersucht (RKS 5/1). Wie schon bei den Schwermetallen erreicht auch hier keine Probe den BW II bzw. die erlaubten Konzentrationen der Wiedereinbauklassen. Einzig bei Probe RSK 8/2 liegt der Benz(a)pyren-Gehalt mit 1,1 mg/kg knapp oberhalb des B-Wertes der Holland-Liste (Tabelle 5). Dies sollte jedoch nicht überbewertet werden, da auch hier die PAK-Summe mit 7,2 mg/kg den B-Wert von 20 mg/kg deutlich unterschreitet.

In der Probe der Beton-Schwarzdecke (RKS 5/1) konnten keine PAK-Gehalte oberhalb der Bestimmungsgrenze nachgewiesen werden.

Tabelle 5:

PAK-Gehalte im Feststoff

Probe	Lage der RKS	Tiefe [m u. GOK]	BaP [mg/kg]	Summe TVO [mg/kg]	Summe HL [mg/kg]	Summe EPA [mg/kg]
RKS 1b/1	Parkplatz	0,2 - 0,7	< 0,5	< 0,5	< 0,5	< 0,5
RKS 4b/2	Alter Tank	0,6 - 1,5	0,7	3,9	5,5	7,9
RKS 5/1	Neuer Tank	0,0 - 0,1	n.n.	< 0,5	< 0,5	< 0,5
RKS 6/2	Neuer Tank	0,3 - 1,0	n.n.	n.n.	n.n.	n.n.
RKS 8/2	Klärbecken	0,5 - 0,9	1,1	6,1	7,2	9,5
RKS 10/1	Ölabscheider/Hof	0,24 - 1,0	< 0,5	0,7	0,7	1,3
RKS 11/1	Kanaleinlauf/Hof	0,25 - 0,4	n.n.	< 0,5	< 0,5	< 0,5
RKS 13/1	Alter Tank	0,3 - 1,2	0,6	3,9	4,4	6,8
Eikm./Kloke	BWII		2,0			
Linging	BW III		5,0			
Holl, Liste	B-Wert		1,0		20,0	
Holl, Listo	C-Wert		10,0		200,0	
Wiedereinbaukl	asse IV			10,0		
	V			20,0		

Insgesamt können die vorliegenden PAK-Konzentrationen als bedenkenlos angesehen werden. Dies gilt sowohl für die Auffüllungsschicht wie auch für die Oberflächenversiegelung. Auf Eluatanalysen wurde daher verzichtet.

KW_{qes} (IR)

Insgesamt wurden 20 Proben auf ihren KW_{ges}-Gehalt mittels Infrarot-Spektroskopie untersucht (Tabelle 6).

Hierbei wurde der B-Wert der Holland-Liste (1 000 mg/kg) von keiner Probe erreicht. Zwei Proben erreichen den Wert von 800 bzw. 810 mg/kg. Diese beiden (RKS 1b/1 und RKS 8/2) sowie zwei weitere Proben (RKS 4b/2: 510 mg/kg; RKS 11/1: 560 mg/kg) überschreiten die erlaubten Konzentrationen der Wiedereinbauklassen IV und V. Alle anderen Ergebnisse liegen mit Ausnahme der Probe RKS 13/1 (370 mg/kg) bei Werten unterhalb von 50 mg/kg.

Tabelle 6:

KW_{ges}-Gehalte im Feststoff

Probe	Lage der RKS	Tiefe [m u. GOK]	KW ges. [mg/kg]
RKS 1b/1	Parkplatz	0,2 - 0,7	800
RKS 3/3	Ölabscheider/Einf.	0,9 - 2,1	31
RKS 4b/2	Alter Tank	0,6 - 1,5	510
RKS 5/3	Neuer Tank	0,6 - 0,8	12
RKS 5/5	Neuer Tank	2,0 - 3,0	< 5
RKS 6/2	Neuer Tank	0,3 - 1,0	< 5
RKS 8/2	Klärbecken	0,5 - 0,9	810
RKS 8/3	Klärbecken	0,9 - 2,2	9
RKS 9/1	Lagerfläche/Hof	0,29 - 1,0	45
RKS 9/2	Lagerfläche/Hof	1,0 - 1,7	< 5
RKS 10/1	Ölabscheider/Hof	0,24 - 1,0	57
RKS 10/3	Ölabscheider/Hof	1,7 - 2,2	11
RKS 10/4	Ölabscheider/Hof	2,2 - 2,8	< 5
RKS 11/1	Kanaleinlauf/Hof	0,25 - 0,4	560
RKS 11/2	Kanaleinlauf/Hof	0,4 - 1,4	26
RKS 11/5	Kanaleinlauf/Hof	2,0 - 3,0	< 5
RKS 12/2	Maschinen/Hof	0,6 - 0,9	48
RKS 12/3	Maschinen/Hof	0,9 - 2,1	< 5
RKS 13/1	Alter Tank	0,3 - 1,2	370
RKS 13/3	Alter Tank	2,2 - 2,6	32
Holl. Liste	B-Wert		1000
	C-Wert		5000
Wiedereinbau	iklasse IV		500
	V		500

Die genaue Ursache der leicht erhöhten KW_{ges}-Gehalte bei einigen Proben läßt sich aus den Schichtenverzeichnissen nicht eindeutig ableiten. So sind bei Probe RKS 1b/1 und RKS 11/1 die Schwarzdeckenbeimengungen möglicherweise die Ursache. Bei den anderen Proben mit leicht erhöhten KW_{ges}-Gehalten handelt es sich eher um eine von der Oberfläche her eindringende Verunreinigung, da in allen Fällen, in denen mehrere Proben einer Sondierung untersucht wurden, die Gehalte zum Liegenden stark abnehmen. So weist die Probe RKS 8/3 mit 9 mg/kg unmittelbar unterhalb der Probe RKS 8/2 mit 810 mg/kg bereits einen zu vernachlässigenden KW_{ges}-Gehalt auf. Hierbei ist zu beachten, daß in den untersuchten Hochflutsedimenten in der Regel keine Belastung mehr nachgewiesen werden konnte.

EOX

Bei allen untersuchten Proben liegt der Gehalt an extrahierbaren organisch gebundenen Halogenen unterhalb der Bestimmungsgrenze (Tabelle 7).

Cyanide.

Auch bei den Cyanid -Gehalten liegen die nachgewiesenen Konzentrationen unterhalb der Bestimmungsgrenze oder erreichen diese gerade (Tabelle 7).

Tabelle 7: EOX- und Cyanidgehalte im Feststoff

Probe	Lage der RKS	Tiefe [m u. GOK]	EOX [mg/kg]	Cyanide [mg/kg]
RKS 1b/1	Parkplatz	0,2 - 0,7	< 1	< 0,1
RKS 3/3	Ölabscheider/Einf.	0,9 - 2,1	< 1	
RKS 4b/2	Alter Tank	0,6 - 1,5	< 1	< 0,1
RKS 8/2	Klärbecken	0,5 - 0,9	< 1	0,1
RKS 8/3	Klärbecken	0,9 - 2,2	< 1	137 1050
RKS 9/1	Lagerfläche/Hof	0,29 - 1,0	< 1	1 2
RKS 10/1	Ölabscheider/Hof	0,24 - 1,0	< 1	
RKS 11/1	Kanaleinlauf/Hof	0,25 - 0,4	< 1	
RKS 12/2	Maschinen/Hof	0,6 - 0,9	< 1	
RKS 13/1	Alter Tank	0,3 - 1,2	< 1	< 0,1
Holl, Liste	B-Wert		8	50
	C-Wert		80	500
Wiedereinbau	ıklasse IV	2		
	V		10	

PCB

Aus Sondierung 7 unmittelbar neben der Trafostation wurde in der Auffüllung (Probe RKS 7/1) der PCB-Gehalt untersucht. Hierbei konnten für 3 der 6 zu bestimmenden Kongenere (PCB 28, 52, 101) keine Gehalte nachgewiesen werden und bei den 3 übrigen (PCB 153, 138, 180) Konzentrationen unterhalb der Bestimmungsgrenze von 25 μ g/kg ermittelt werden. Das Ergebnis ist daher als bedenkenlos einzustufen.

pH-Wert und elektrische Leitfähigkeit

Neben den Feststoffanalysen wurden bei 8 Proben der pH-Wert und die elektrische Leitfähigkeit im Eluatansatz bestimmt (Tabelle 8). Die pH-Werte liegen im basischen Milieu und schwanken zwischen 8,7 und 10,9. Die Ursache dürfte in den wechselnden Bauschuttanteilen zu suchen sein. Bis auf den höchsten Wert von 10,9 liegen alle Werte innerhalb der Anforderungen der Deponieklasse 1 bzw. der Wiedereinbauklasse III.

Tabelle 8:

pH-Wert und elektrische Leitfähigkeit

Probe	Lage der RKS	Tiefe (m u. GOK)	pH-Wert	el. Leitf. [mS/m]
RKS 1b/1	Parkplatz	0,2 - 0,7	9,1	8
RKS 4b/2	Alter Tank	0,6 - 1,5	10,9	29
RKS 6/2	Neuer Tank	0,3 - 1,0	8,7	9,5
RKS 8/2	Klärbecken	0,5 - 0,9	9,2	11
RKS 10/1	Ölabscheider/Hof	0,24 - 1,0	9,1	12
RKS 11/1	Kanaleinlauf/Hof	0,25 - 0,4	9,4	5,9
RKS 12/2	Maschinen/Hof	0,6 - 0,9	9,6	8,4
RKS 13/1	Alter Tank	0,3 - 1,2	10	13
Deponie	Klasse 1*		5,5 - 10	100
Too Day seems	Klasse 2		5,5 - 12	300
Wiedereinbaul	6 - 10	100		
	IV		5,5 - 10	200
	V		5,5 - 12	300

^{* =} außerhalb von Wasserschutzgebieten

Die elektrischen Leitfähigkeiten schwanken zwischen 5,9 und 29 mS/m. Sie liegen damit deutlich unterhalb der Anforderungen der Deponieklasse 1 bzw. der Wiedereinbauklassen III- IV.

Insgesamt sind die nachgewiesenen pH-Werte und elektrischen Leitfähigkeiten bedenkenlos, auch wenn der pH-Wert in einem Fall die Anforderungen der Deponieklasse 1 bzw. der Wiedereinbauklassen III und IV überschreitet.

Untersuchung zur Deponieklassenzuordnung

Wie in Abschnitt 4.2 beschrieben, wurden zwei Proben auf ihre Deponieklassenzuordnung hin untersucht.

Hierbei wurden neben dem pH-Wert, der elektrischen Leitfähigkeit und dem chemischen Sauerstoffbedarf (CSB) 37 Einzelsubstanzen im Eluat untersucht. Nur in wenigen Einzelfällen wurden Konzentrationen oberhalb der Bestimmungsgrenze nachgewiesen. In Tabelle 9 sind diese quantifizierbaren

Konzentrationen den zulässigen Werten für die Deponieklassen 1 und 2 gegenübergestellt. Die vollständigen Analysenprotokolle können Anlage 3 entnommen werden.

Tabelle 9:

Eluatanalysen zur Deponieklassenzuordnung

		RKS 10/1	RKS 13/1 Bauschutt	Deponie Klasse 1 *	Deponie Klasse 2	
pH-Wert		9,1	10	5,5 - 10	5,5 - 12	
Elektr. Leitfähigkeit	[mS/m]	12	13	100	300	
CSB	[mg O2/I]	28	38	20	50	
PAK (Summe TVO)	[µg/l]	0,39	0,1	2	3	
KW ges	[mg/l]	< 0,1	0,9	0,2	1	
Barium	[mg/l]	0,11	< 0,1	0,5	1	
Eisen, gelöst	[mg/l]	1,3	0,43	1	2	
Nitrat-N	[mg/l]	8,9	7,6	11,3	22,6	
Phosphat-P	[mg/l]	0,11	0,24	1,6	3,3	

^{*} außerhalb von Trinkwasserschutzgebieten

Es zeigt sich, daß die Anforderungen der Deponieklasse 2 in allen Fällen eingehalten werden. Für die Deponieklasse 1 werden die zulässigen Werte bei der entsprechenden Probe RKS 10/1 (überwiegend Erdaushub) nur vom chemischen Sauerstoffbedarf (CSB) und dem gelösten Eisen leicht überschritten.

4.3.2 Bodenluft

Aus den in Abschnitt 4.2 beschriebenen Bodenluftmeßstellen wurden am 07.03.1994 und am 29.03.1994 Proben entnommen und auf die Gehalte an BTEX und LCKW untersucht. Die Untersuchungsberichte sind in Anlage 3 zu finden.

BTEX

Von den insgesamt 5 untersuchten Einzelstoffen konnten in keinem Pegel Konzentrationen oberhalb der Bestimmungsgrenze von 100 μ g/m³ nachgewiesen werden.

LCKW

Insgesamt wurden 7 Einzelsubstanzen untersucht, bei denen in 4 Fällen ebenfalls keine Gehalte oberhalb der entsprechenden Bestimmungsgrenze nachgewiesen wurden. Bei 3 Einzelsubstanzen (1.1.1-Trichlorethan, Trichlorethen und Tetrachlorethen) konnen Konzentrationen in der Bodenluft nachgewiesen werden (Tabelle 10). Hierbei stimmen die Werte der beiden Beprobungen bis auf einzelne Ausnahmen gut überein.

Tabelle 10: LCKW-Konzentrationen in der Bodenluft

		MIK-Wert	Datum	P 1b Parkplatz	P3 Ölabscheider Einfahrt	P 8 Klärbecken Hof	P 9 Lagerfläche Hof	P 10 Ölabscheider Hof	P 11 Kanaleinlauf Hof	P 12 Maschinen Hof	P 13 Alter Tank Einfahrt
Dichlor-	[µg/m³]		07.03.1994	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.
methan	[µg/m³]		29.03.1994	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.
cis-1,2-Di-	[µg/m³]		07.03.1994	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.
chlorethen	[µg/m³]		29.03.1994	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.
Trichlor-	[µg/m³]		07.03.1994	< 10	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.
methan	$[\mu g/m^3]$		29.03.1994	< 10	n.n.	< 10	< 10	n.n.	< 10	n.n.	n.n.
1,1,1-Tri-	[µg/m³]	30 000	07.03.1994	< 10	< 10	39	100	12	56	< 10	< 10
chlorethan	[µg/m³]	30 000	29.03.1994	< 10	< 10	52	110	14	89	20	< 10
Tetrachlor-	[µg/m³]	3 000	07.03.1994	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.
methan	[µg/m³]	3 000	29.03.1994	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.
Trichlor-	[µg/m³]	2 000	07.03.1994	17	130	43	270	38	59	n.n.	98
ethen	[µg/m³]	2 000	29.03.1994	23	370	87	250	31	170	n.n.	130
Tetrachlor-	[µg/m³]	35 000	07.03.1994	27	29	24	66	37	18	60	26
ethen	[µg/m³]		29.03.1994	30	52	39	86	44	77	97	39

Auch wenn, wie im Fall des Trichlorethens, die Bestimmungsgrenze von $10 \,\mu \mathrm{g/m^3}$ deutlich überschritten wird, liegen die Werte noch unterhalb kritischer Konzentrationen. Als Vergleich wurden die sog. MIK-Werte herangezogen, unterhalb derer auch bei dauerhafter Einwirkung keine Schädigung von Mensch und Umwelt zu erwarten ist. Diese Werte werden in keinem Fall auch nur annähernd erreicht.

Ob die Ursache der nachgewiesenen LCKW-Konzentrationen auf einem Eintrag der Schadstoffe im Untersuchungsgebiet zurückzuführen ist, kann nicht entschieden werden, da in den meisten Städten eine anthropogen verursachte Hintergrundbelastung existiert, die, ausgehend von einzelnen Verunreinigungsschwerpunkten, durch abströmendes Grundwasser über weite Areale verbreitet werden.

Der in Sondierung RKS 1b beobachtete "seifige" Geruch kann nicht mit erhöhten Schadstoffen in der Bodenluft korreliert werden.

5. GEFÄHRDUNGSABSCHÄTZUNG

5.1 Boden

Zur Abschätzung einer möglichen Gefährdung der menschlichen Gesundheit kann zwischen dem unmittelbaren Kontakt in Form oraler und/oder inhalativer Aufnahme sowie dem mittelbaren Weg Boden -> Pflanze -> Mensch unterschieden werden.

Zur Bewertung der vorliegenden Analysendaten wurden diese mit den in Abschnitt 3.5 beschriebenen Prüf- und Richtwerten verglichen. Hierbei dient der Vergleich mit den Prüfwerten der Holland-Liste einer ersten groben Einschätzung, während die darüber hinaus herangezogenen Bodenwerte nach EICKMANN & KLOKE die bei der jeweiligen Nutzungsform tatsächlich zu erwartenden Gefährdungspfade berücksichtigt.

Betrachtet man die in Abschnitt 4.3 dargestellten Ergebnisse, so zeigt sich, daß eine Gefährdung der menschlichen Gesundheit auszuschließen ist. So liegen alle nachgewiesenen Schwermetallgehalte unterhalb des B-Wertes der Holland-Liste bzw. des BW II nach EICKMANN & KLOKE.

Gleiches gilt, bis auf eine Ausnahme, auch für die Konzentrationen an polyzyklischen aromatischen Kohlenwasserstoffen. Einzige Ausnahme ist Probe RKS 8/2, bei der mit 1,1 mg/kg Benz(a)pyren den B-Wert der Holland-Liste von 1 mg/kg gerade erreicht wird. Dies sollte aber nicht überbewertet werden, da die PAK-Summe unterhalb des B-Wertes von 20 mg/kg liegt. Ebenso problemlos sind die untersuchten EOX-, Cyanid- und PCB-Gehalte, die, wenn überhaupt quantifizierbar, durchweg als bedenkenlos angesehen werden können.

Ein ähnliches Bild zeigen die nachgewiesenen KW_{ges}-Gehalte. Auch hier wurde bei keiner der insgesamt 20 untersuchten Proben eine Konzentration oberhalb des B-Wertes der Holland-Liste von 1 000 mg/kg gefunden. Die mit ca. 800 mg/kg höchsten Gehalte treten im Bereich der Auffüllungsschicht des Hofbereiches (RKS 8) und des Parkplatzes (RKS 1) auf. Während die Ursache im Falle des Parkplatzes möglicherweise in der überlagernden Versiegelung (Schwarzdecke/Beton) zu suchen ist, scheint es sich im Hofbereich um eine von oben in der Boden eingedrungene Belastung zu handeln. Diese Annahme wird durch die an mehreren Sondierungen zu beobachtende Abnahme des KW_{nes}-Gehaltes mit zunehmender Tiefe gestützt. Die untersuchten Proben der Hochflutsedimente aus dem Hofbereich zeigen keine KW_{oes}-Gehalte oberhalb der Bestimmungsgrenze. Eine Gefährdung der menschlichen Gesundheit kann daher auch hier ausgeschlossen werden. Auch eine Zunahme der Belastung für die Zukunft ist unwahrscheinlich, da aufgrund der mächtigen Oberflächenversiegelung von 0,2 - 0,3 m ein Eindringen von Schadstoffen weitestgehend unterbunden wird. Wann es zum möglichen Eintrag der Schadstoffe in den Boden kam, ist schwierig zu entscheiden, wobei dies wahrscheinlich bereits einige Jahre zurückliegt, als die Oberflächenversiegelung im Bereich der Hoffläche fehlerhaft war. Dieser Zustand wurde bei einer Ortsbegehung durch das Tiefbauamt der Stadt Neuss im Jahre 1989 bemängelt (s. Abschnitt 2). Nach Angaben der Firma Emhart wurde daraufhin im Zuge der Installation von Ölabscheidern eine zusätzliche Versiegelung aufgebracht.

Zusammenfassend läßt sich eine vom Boden ausgehende Gefährdung der menschlichen Gesundheit für das Untersuchungsgebiet ausschließen. Dies gilt für den Fall der derzeitigen Nutzung, wo zusätzlich zu den geringen nachgewiesenen Schadstoffkonzentrationen noch eine nahezu vollständige Oberflächenversiegelung den direkten Kontakt zum Bodenmaterial verhindert.

Auch für den geplanten Fall einer Neunutzung durch Büro- und Verwaltungsgebäude kann eine Gefährdung ausgeschlossen werden, da selbst die zur Beurteilung herangezogenen Prüf- und Richtwerte für eine deutlich sensiblere Nutzung als Haus- und Kleingärten nicht überschritten werden.

Einzige Unsicherheit ist der Bereich unmittelbar unterhalb des sich höchstwahrscheinlich noch in der Erde befindenden alten Tanks im Einfahrtsbereich. Die entsprechende Sondierung (RKS 13) sitzt bei ca. 2,60 m u. GOK anscheinend auf dem Tank auf. Eine größere Verunreinigung ist jedoch auch hier auszuschließen, da die benachbarten Sondierungen keine entsprechenden Befunde zeigen und auch die Untersuchung der Bodenluft negativ war.

5.2 Ausgasung und Migration

Wie im Falle des Bodens kann auch eine von der Bodenluft ausgehende Gefahr für die menschliche Gesundheit ausgeschlossen werden.

Bei allen 8 provisorischen Bodenluftmeßstellen lagen bei beiden Beprobungskampagnen die BTEX-Gehalte unterhalb der Nachweisgrenze. Dies unterstützt die in Abschnitt 5.1 beschriebenen Befunde, die eine signifikante Belastung des Bodens durch eingedrungene Mineralölkohlenwasserstoffe, auch im Bereich des alten Tanks, ausschließen.

Die ebenfalls untersuchten leichtflüchtigen chlorierten Kohlenwasserstoffe (LCKW) zeigen ein ähnliches Bild. Für 4 der insgesamt 7 untersuchten Einzelsubstanzen konnten keine Gehalte oberhalb der Bestimmungsgrenze nachgewiesen werden. Die Konzentrationen der übrigen Einzelstoffe 1.1.1-Trichlorethan, Trichlorethen und Tetrachlorethen liegen zwar teilweise deutlich oberhalb der Bestimmungsgrenze, jedoch immer noch weit unterhalb der MIK-Werte. Ob die Ursache der Verunreinigung vom Untersuchungsgebiet ausgeht, ist nicht eindeutig zu klären, da die nachgewiesenen Konzen-

trationen durchaus im Rahmen der üblicherweise in größeren Städten anzutreffenden anthropogen verursachten Hintergrundbelastung liegen.

Zusammenfassend kann eine Gefahr für die menschliche Gesundheit durch ausgasende oder migrierende leichtflüchtige Schadstoffe für das Untersuchungsgebiet ausgeschlossen werden.

5.3 Grundwasser

Eine Gefahr für das Grundwasser kann aufgrund der vorliegenden Daten ebenfalls ausgeschlossen werden. Die nachgewiesenen Schadstoffkonzentrationen sind durchweg so gering, daß die Gefahr einer negativen Beeinflussung durch Auswaschung zu vernachlässigen ist. Auch für den Fall der im obersten Auffüllungsbereich leicht erhöhten KW_{ges}-Gehalte kann eine Gefahr für das Grundwasser ausgeschlossen werden, da bereits im unmittelbar unterlagernden Hochflutsediment keine Belastung mehr nachweisbar ist.

Ein unmittelbarer Kontakt des Grundwassers zur Auffüllungsschicht kann ausgeschlossen werden, da der höchste zu erwartende Grundwasserstand aus dem Jahre 1966 mit ca. 31 m ü. NN noch etwa 1,5 - 2 m unterhalb der Auffüllungssohle liegt.

6. AUSHUBKLASSIFIZIERUNG

Zur Gewinnung eines ersten groben Überblicks wurden zwei Proben der Auffüllung auf ihre Deponieklassenzuordnung hin untersucht. Hierbei besteht Probe RKS 10/1 überwiegend aus Erdaushub, während sich Probe RKS 13/1 dominant aus Bauschutt zusammensetzt.

Beide Proben erfüllen die Anforderungen der Deponieklasse 2 problemlos. Die Anforderungen der Deponieklasse 1 (außerhalb von Trinkwasserschutzgebieten) werden von der Erdaushubauffüllungsprobe bis auf eine geringfügige Überschreitung im Falle des gelösten Eisens und des chemischen Sauerstoffbedarfs ebenfalls erfüllt. Prinzipiell kann daher das Material bei Bedarf gemäß seiner lithologischen Ausbildung (Erdaushub, Bauschutt) auf den entsprechenden Deponien entsorgt werden.

Neben der Deponieklassenzuordnung wurden die Schadstoffkonzentrationen mit den Anforderungen des Verwertungskonzepts der Stadt Düsseldorf verglichen. Hierbei wurden die Anforderungen der Wiedereinbauklasse III (Erdaushub mit < 45 % Bauschutt oder Schlacken) sowie die der Wiedereinbauklasse IV (Aushub mit > 45 % Bauschutt) bis auf wenige Ausnahmen (4 x KW_{ges}, 1 x pH-Wert) erfüllt. Da es sich hierbei aber nur um Einzelbefunde handelt, bei denen in 2 Fällen (RKS 4b/2; RKS 11/1) die KW_{ges}-Gehalte nur knapp oberhalb der erlaubten 500 mg/kg liegen und in einem weiteren Fall (RKS 1b/1) die Ursache wahrscheinlich in beigementen Bruchstücken der unmittelbar überlagernden Schwarzdecke zu suchen ist, wird die Einstufung in die Wiedereinbauklasse III bzw. IV je nach lithologischer Ausbildung befürwortet.

Für die Auffüllungsschicht läßt sich daher zusammenfassend sagen, daß das Material bei anstehenden Aushubmaßnahmen entsprechend seiner lithologischen Ausbildung auf entsprechenden Deponien der Klasse 1 (reiner Erdaushub) bzw. 2 (Bauschutt) entsorgt werden kann.

Für einen angestrebten Wiedereinbau wird die Einstufung des Materials, je nach Zusammensetzung, in die Wiedereinbauklassen III (Erdaushub mit < 45 % Bauschutt) bzw. IV (Erdaushub mit > 45 % Bauschutt) vorgeschlagen. Erdaushub mit nur sehr geringen Bauschuttbeimengungen kann auch der Wiedereinbauklasse II (Erdaushub mit < 15 % Bauschutt) zugeordnet werden. Die Anforderungen an den Ort des Wiedereinbaus sind im Vorfeld mit den zuständigen Stellen abzuklären.

7. ZUSAMMENFASSUNG UND EMPFEHLUNG

Auf der zu untersuchenden Altlastenverdachtsfläche der Firma Emhart wurden insgesamt 13 Rammkernsondierungen niedergebracht und daraus entnommene Bodenproben auf ihre Schadstoffgehalte hin untersucht. Die Ansatzpunkte wurden entsprechend der früheren und derzeitigen Nutzung ausgewählt. 8 Sondierungen wurden zu provisorischen Bodenluftpegeln ausgebaut und entnommene Bodenluft auf BTEX- sowie LCKW-Gehalte hin untersucht.

Weder in den analysierten Bodenproben noch in der Bodenluft konnten signifikante Schadstoffbelastungen festgestellt werden. Einzig im Bereich der Hoffläche sind leicht erhöhte, zum Liegenden abnehmende KW_{ges}-Gehalte zu beobachten. Eine Gefahr für die menschliche Gesundheit, ausgehend vom Bodenmaterial bzw. von der Bodenluft, kann aufgrund der vorliegenden Daten ausgeschlossen werden. Dies gilt sowohl für die derzeitige Nutzung als Gewerbestandort wie auch für die geplante Nutzung durch den Bau von Büround Verwaltungsgebäuden. Eine Gefährdung des Grundwassers kann ebenfalls ausgeschlossen werden.

Die Durchführung der Phase II des Untersuchungskonzepts kann entfallen.

Eine Kennzeichnung des Untersuchungsgebietes innerhalb des Bebauungsplans entsprechen § 9 Abs. 3 Nr. 3 des Baugesetzbuches kann entfallen.

Sollten bei der zukünftigen Nutzung Aushubmaßnahmen im Bereich des Untersuchungsgebietes anstehen, kann das Material entsprechend seiner lithologischen Ausbildung den Deponieklassen 1 bzw. 2 oder den Wiedereinbauklassen II - IV des Verwertungskonzepts der Stadt Düsseldorf zugeordnet

werden. Für die Aushubmaßnahmen wird eine gutachterliche Begleitung angeraten, damit die sachgerechte Separierung des Materials gewährleistet ist.

AEW PLAN GMBH Abfall - Energie - Wasser

Dr. Redecke

Willems

i.A Willeum

Anlage 1


Firma Emhart

Lageplan

Stadt Neuss Amt für Umweltschutz

AEW PLAN GmbH

AEW PLAN GMBH FÜR ABFALL ENERGIE WASSER Rammkernsondierung Bodenluftpegel Maßstab Datum 4 / 94 Ausstellungs Lageplan überdachte Lagerhalle Name Kranbanhalle Лесьпік Anlage 1: 8 Projekt-Nr. 1, 12, 1950, 2 Wasch-® R Werkstatt Lagerhalle Verwaltung 13 Kamin Sozialgebäude Verwaltungs -Derendoriweg

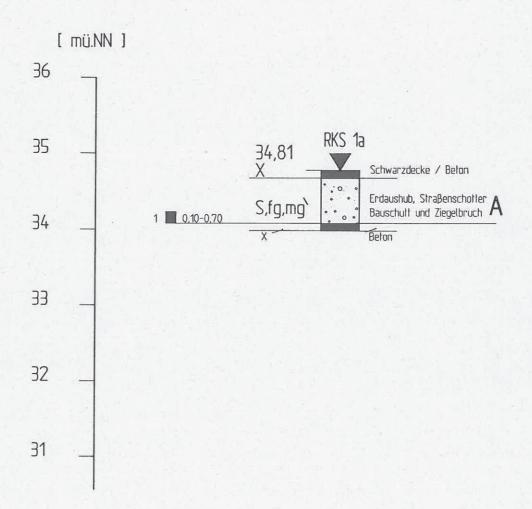
Anlage 2

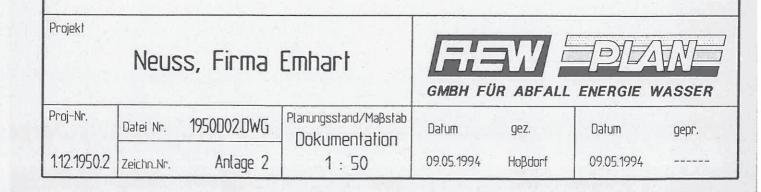
Firma Emhart

Schichtenverzeichnisse (DIN 4022/4023) und Nivellierprotokoll

> Stadt Neuss Amt für Umweltschutz

AEW PLAN GmbH

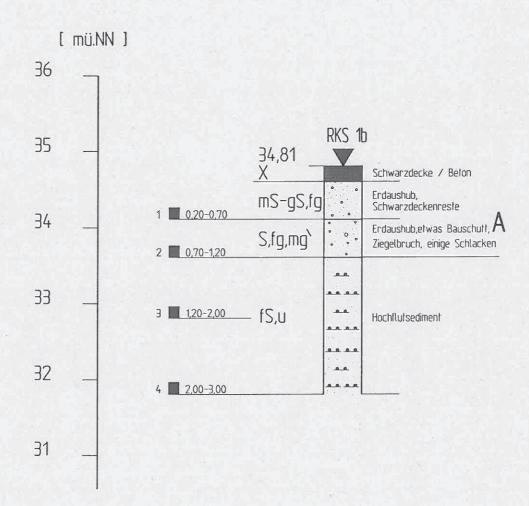



Schichtenverzeichnes MBH FÜR ABFALL ENERGIE WASSER

Auftrags-Nr.: 1.12.1950.2/6517 Ort: Neuss, Firma Emhart m üNN:

Rammkernsondierung: 1a

a) Bis	al) Benennung u	nd Beschreibung der Schi	cht			Feststellungen beim Bohren	Entnom	nene l	Proben
unter Ansatzp.	a2) Ergänzende 1	Bemerkungen				Wasserführung; Bohrwerkzeuge			Tiefe
b) Mächtig- keit	b)Beschaffenh.Bohrgut	c)Beschaffenh.Bohrung		'arbe		sonstiges	Art	Nr.	in m (Unter
in m	f)Ortsübl. Bez.	g)Geologische Bez.	h) 0	ruppe	K		1		Kante)
1		2			*****	3	4	5	6
a) 0,10	Schwarzdecke / Beton					aufgebohrt			
b) 0,10									
a) 0,70	Sand, feinkiesig, sch	wach mittelkiesig				erdfeucht	720 ml Glas	1	0,10 - 0,70
	Erdaushub, einige Straßenschotter, wenig Bauschutt und Ziegelbruch						*		0,70
ь) 0,60	stark verdichtet	schwer zu bohren	bra	un-gr	au				
		Auffüllung			0				
a) 0,80	Beton				•				
b)									
		Auffüllung	12						
a)	Kein weiterer Bohrfor	tschritt; versetzt nach	1b						
b)									
a)									
b)									
			•						



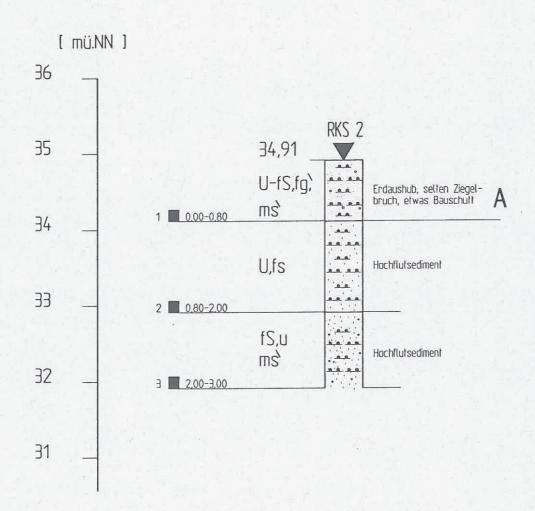
Schichtenverzeichn GMBH FÜR ABFALL ENERGIE WASSER

Auftrags-Nr.: 1.12.1950.2/6517 Ort: Neuss, Firma Emhart m üNN: 34,81

Rammkernsondierung: 1b Ausbau zu provisorischem Bodenluftpegel

a) Bis	a1) Benennung	und Beschreibung der Sc	hicht		Feststellungen beim Bohren	en Entnommene Proben			
unter Ansatzp. b) Mächtigkeit in m	- A	e Bemerkungen t c)Beschaffenh.Bohrun g)Geologische Bez.	g d) Farbe	4	Wasserführung; Bohrwerkzeuge	Art	Nr.	Tiefe in m (Unter- Kante)	
1		2		#-	3	4	5	6	
a) 0,20	Schwarzdecke / Betor				aufgebohrt				
b) 0,20									
a) 0,70	Mittel- bis Grobsand	l, feinkiesig			feucht,	720 ml	1	0,20 -	
	Erdaushub, Schwarzde	eckenreste			"seifiger" Geruch	Olds		0,10	
b) 0,50	verdichtet	schwer zu bohren	braun-gr	au	Geruch				
		Auffüllung		0					
a) 1,20	Sand, feinkiesig, so	hwach mittelkiesig			erdfeucht	720 ml Glas	2	0,70 -	
	Erdaushub, etwas Bau	schutt, Ziegelbruch, ei	nige Schlack	en		oras		1,20	
b) 0,50	stark verdichtet	schwer zu bohren	braun-ro	ţ					
		Auffüllung		+					
a) 3,00	Feinsand, schluffig				erdfeucht	720 ml Glas	3	1,20 - 2,00	
b)	fest	schwer zu bohren	hellbrau	p			4	2,00 - 3,00	
		Hochflutsediment		0					
a)				-					
b)									
ν)									

Projekt	Neus	s, Firma	Emhart	-		ENERGIE V	Alle Carlos Carlos
Proj-Nr.	Datei Nr.	1950D01.DWG	Planungsstand/Maßstab Dokumentation	Datum	gez.	Datum	gepr.
1.12.1950.2	ZeichnNr.	Anlage 2	1 : '50	09.05.1994	Hoβdorf	09.05.1994	



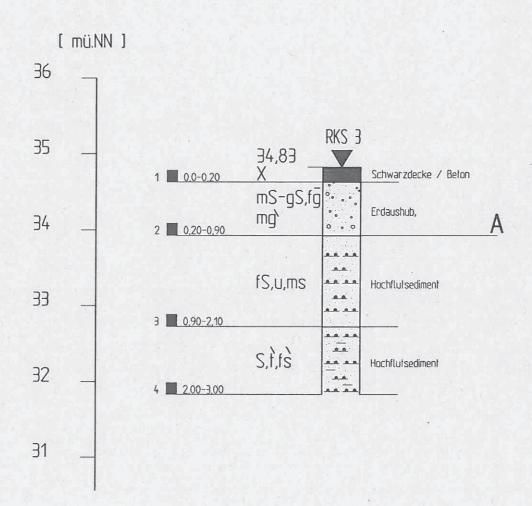
Schichtenverzeichnis MBH FÜR ABFALL ENERGIE WASSER

Auftrags-Nr.: 1.12.1950.2/6517 Ort: Neuss, Firma Emhart m üNN: 34,91

Rammkernsondierung: 2

a) Bis	al) Benennung u	nd Beschreibung der Schi	cht	5-1	Feststellungen beim Bohren	Entnom	nene I	Proben
unter	a2) Ergänzende	Bemerkungen			Wasserführung; Bohrwerkzeuge			Tiefe
Ansatzp. b) Mächtig- keit	b)Beschaffenh.Bohrgut	c)Beschaffenh.Bohrung	d) Farbe	le)	sonstiges	Art	Nr.	in m (Unter
in m	f)Ortsübl. Bez.	g)Geologische Bez.	h) Gruppe	K				Kante)
1		2		"	3	4	5	6
a) 0,80	Schluff bis Feinsand, schwach mittelsandig	schwach feinkiesig,			erdfeucht	720 ml Glas	1	0,00 -
	Erdaushub, selten Zie	gelbruch, etwas Bauschut	t			PV .v		
b) 0,80	locker bis halbfest	leicht zu bohren	braun			TÉ:		
		Boden / Auffüllung		+				
a) 2,00	Schluff, feinsandig		*	1	erdfeucht	720 ml Glas	2	0,80
	Zum Liegenden sukzessiv sandiger werdend					GIGS		2,00
b) 1,20°	halbfest	leicht zu bohren	braun					
		Hochflutlehm	i	0				
a) 3,00	Feinsand, schluffig,	schwach mittelsandig		1	erdfeucht	720 ml Glas	3	2,00 3,00
b)	halbfest/locker	leicht zu bohren	braun	1				
		Hochflutsediment		0				
a)								
b) *								
a)						T		147.
	No. of the second second		THE STATE					

Projekt	Neus	s, Firma	Emhart	Control of the Contro		. ENERGIE V	
Proj-Nr.	Datei Nr.	1950D01.DWG	Planungsstand/Maßstab Dokumentation	Datum	gez.	Datum [′]	gepr.
1.12.1950.2	ZeichnNr.	Anlage 2	1 : '50	09.05.1994	HoBdorf	09.05.1994	



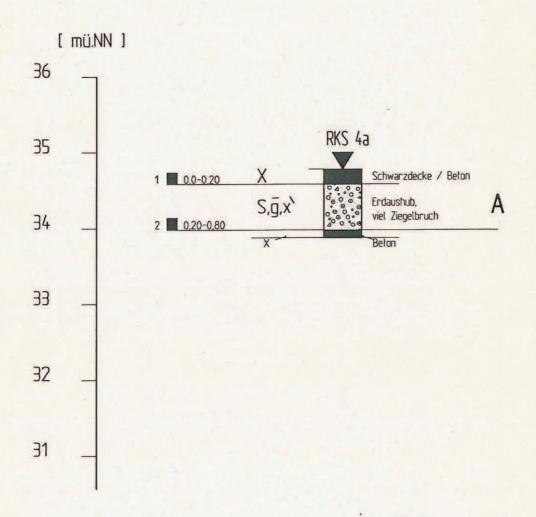
Schichtenverzeichnis GMBH FÜR ABFALL ENERGIE WASSER

Auftrags-Nr.: 1.12.1950.2/6517 Ort: Neuss, Firma Emhart m üNN: 34,83

Rammkernsondierung: 3 Ausbau zu provisorischem Bodenluftpegel

a2) Ergänzende E		a1) Benennung und Beschreibung der Schicht					
	Bemerkungen			beim Bohren Wasserführung; Bohrwerkzeuge			Tiefe
b)Beschaffenh.Bohrgut	c)Beschaffenh.Bohrung	d) Farbe	e)	sonstiges	Art	Nr.	in m (Unter
f)Ortsübl. Bez.	g)Geologische Bez.	h) Gruppe	K				Kante)
	2		"	3	4	5	6
Schwarzdecke / Beton				aufgebohrt	720 ml Glas	1	0,00 - 0,10
			\ 				
Mittel- bis Grobsand, schwach mittelkiesig	stark feinkiesig,			erdfeucht	720 ml Glas	2	0,20 -
Erdaushub (Sand und Ki	ies)						
leicht verdichtet	leicht zu bohren	gelb-bra	un				
	Auffüllung		0				
Feinsand, schluffig, m	nittelsandig			erdfeucht	720 ml Glas	3	0,90
locker bis halbfest	leicht zu bohren	braun	1				
	Hochflutsediment		0				
Schluff, schwach tonig	, schwach feinsandig			erdfeucht bis feucht	720 ml Glas	4	2,10 3,00
halbfest	leicht zu bohren	braun					
	Hochflutsediment		0				
	The state of the s						
	Schwarzdecke / Beton Mittel- bis Grobsand, schwach mittelkiesig Erdaushub (Sand und Kileicht verdichtet Feinsand, schluffig, manne der bis halbfest Schluff, schwach tonig	Schwarzdecke / Beton Mittel- bis Grobsand, stark feinkiesig, schwach mittelkiesig Erdaushub (Sand und Kies) leicht verdichtet leicht zu bohren	Schwarzdecke / Beton Mittel- bis Grobsand, stark feinkiesig, schwach mittelkiesig Erdaushub (Sand und Kies) leicht verdichtet leicht zu bohren gelb-bra Auffüllung Feinsand, schluffig, mittelsandig locker bis halbfest leicht zu bohren braun Hochflutsediment Schluff, schwach tonig, schwach feinsandig halbfest leicht zu bohren braun	Schwarzdecke / Beton Mittel- bis Grobsand, stark feinkiesig, schwach mittelkiesig Erdaushub (Sand und Kies) leicht verdichtet leicht zu bohren gelb-braun Auffüllung 0 Feinsand, schluffig, mittelsandig locker bis halbfest leicht zu bohren braun Hochflutsediment 0 Schluff, schwach tonig, schwach feinsandig halbfest leicht zu bohren braun	Schwarzdecke / Beton aufgebohrt Mittel- bis Grobsand, stark feinkiesig, schwach mittelkiesig Erdaushub (Sand und Kies) leicht verdichtet leicht zu bohren gelb-braun Auffüllung 0 Feinsand, schluffig, mittelsandig erdfeucht locker bis halbfest leicht zu bohren braun Hochflutsediment 0 Schluff, schwach tonig, schwach feinsandig erdfeucht bis feucht halbfest leicht zu bohren braun	Schwarzdecke / Beton Mittel- bis Grobsand, stark feinkiesig, schwach mittelkiesig Erdaushub (Sand und Kies) leicht verdichtet leicht zu bohren gelb-braun Auffüllung Feinsand, schluffig, mittelsandig locker bis halbfest leicht zu bohren braun Hochflutsediment Schluff, schwach tonig, schwach feinsandig halbfest leicht zu bohren braun Hochflutsediment braun erdfeucht 720 ml Glas gelb-braun Glas erdfeucht Glas 720 ml Glas	Schwarzdecke / Beton Mittel- bis Grobsand, stark feinkiesig, schwach mittelkiesig Erdaushub (Sand und Kies) leicht verdichtet leicht zu bohren gelb-braun Auffüllung Feinsand, schluffig, mittelsandig locker bis halbfest leicht zu bohren braun Hochflutsediment Derdfeucht Feinsand, schwach tonig, schwach feinsandig erdfeucht bis Grobsand, stark feinkiesig, aufgebohrt Glas 2 erdfeucht 720 ml Glas 3 derdfeucht bis 720 ml Glas 4 feucht Feinsand, schluffig, mittelsandig erdfeucht bis 720 ml Glas 4 feucht halbfest leicht zu bohren braun halbfest leicht zu bohren braun halbfest leicht zu bohren braun halbfest leicht zu bohren braun

Projekt	Neus	s, Firma	Emhart	E	T ABFALL		
Proj-Nr.	Datei Nr.	1950D01.DWG	Planungsstand/Maßstab Dokumentation	Datum	gez.	Datum	gepr.
1.12.1950.2	ZeichnNr.	Anlage 2	1 : '50	09.05.1994	HoBdorf	09.05.1994	

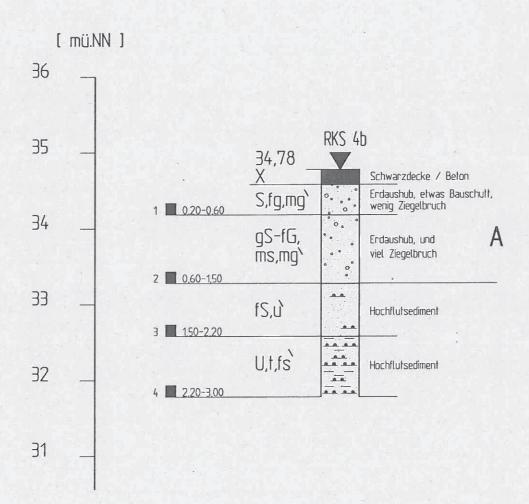


Schichtenverzeichnis MBH FÜR ABFALL ENERGIE WASSER

Auftrags-Nr.: 1.12.1950.2/6517 Ort: Neuss, Firma Emhart m üNN:

Rammkernsondierung: 4a

a) Bis	a1) Benennung	und Beschreibung der Sc	hicht		Feststellungen beim Bohren	Entnom	nene I	Proben
unter Ansatzp. b) Mächtig- keit		Bemerkungen t↓ c)Beschaffenh.Bohrun	g d) Farbe	le)	Wasserführung; Bohrwerkzeuge	Art	Nr.	Tiefe in m (Unter
in m	f)Ortsübl. Bez.	g)Geologische Bez.	h) Gruppe	K				Kante)
1		2			3	4	5	6
a) 0,20	Schwarzdecke / Beton				aufgebohrt	720 ml Glas	1	0,00 - 0,20
ь) 0,20								
a) 0,80	Sand, stark kiesig,	schwach steinig			erdfeucht	720 ml Glas	2	0,20 - 0,80
	Erdaushub, viel Zieg	elbruch						
0) 0,60	verdichtet	schwer zu bohren	rot-braw	a l				TX :
		Auffüllung		0				
a) 0,90	Beton							
b)								
a)	Kein weiterer Bohrfo	rtschritt; versetzt nac	h 4b					
b)								
a)								
b)				7				
His Marie		•						



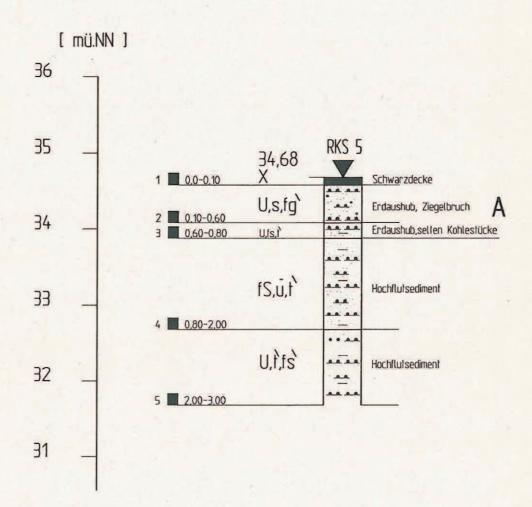
Schichtenverzeichnis MBH FÜR ABFALL ENERGIE WASSER

Auftrags-Nr.: 1.12.1950.2/6517 Ort: Neuss, Firma Emhart m üNN: 34,78

Rammkernsondierung: 4b

a) Bis	a1) Benennung u	nd Beschreibung der Sc	chicht		Feststellungen beim Bohren	Entnom	nene l	Proben
unter Ansatzp. b) Mächtigkeit in m		Bemerkungen c)Beschaffenh.Bohrun g)Geologische Bez.	ng d) Farbe	=	Wasserführung; Bohrwerkzeuge	Art	Nr.	Tiefe in m (Unter- Kante)
1	I)OrtSub1. Bez.	g g g g g g g g g g g g g g g g g g g	II) Gruppe		3	4	5	6
a) 0,20	Schwarzdecke / Beton				aufgebohrt			
Ъ) 0,20								
a) 0,60	Sand, feinkiesig, sch	wach mittelkiesig		1	erdfeucht	720 ml	1	0,20 -
	Erdaushub, etwas Baus Teile von Schwarzdeck	chutt, wenig Ziegelbru	ich,			Glas		0,60
b) 0,40	verdichtet	schwer zu bohren	gelb-bra	aun				
		Auffüllung		+				
a) 1,50	Grobsand bis Feinkies	, mittelsandig, schwad	ch mittelkies	sig	erdfeucht	720 ml Glas	2	0,60 - 1,50
	Erdaushub und viel Zi	egelbruch				0145		2,00
b) 0,90	verdichtet	schwer zu bohren	rot-brau	m				
		Auffüllung		0				
a) 2,20	Feinsand, schwach sch	luffig			erdfeucht	720 ml Glas	3	1,50 - 2,20
	Schluff in Linsen					0102		2,20
b) 0,70	locker bis halbfest	leicht zu bohren	hellbrau	ıp.				
		Hochflutsediment		0				
a) 3,00	Schluff, tonig, schwa	ch feinsandig			feucht	720 ml Glas	4	2,20 - 3,00
b)	weich	leicht zu bohren	braun					
		Hochflutsediment		0				T.

Projekt	Neus	s, Firma	Emhart			ENERGIE V	
Proj-Nr.	Datei Nr.	1950D01.DWG	Planungsstand/Maßstab Dokumentation	Datum	gez.	Datum	gepr.
1.12.1950.2	ZeichnNr.	Anlage 2	1 : 50	09.05.1994	Hoßdorf	09.05.1994	

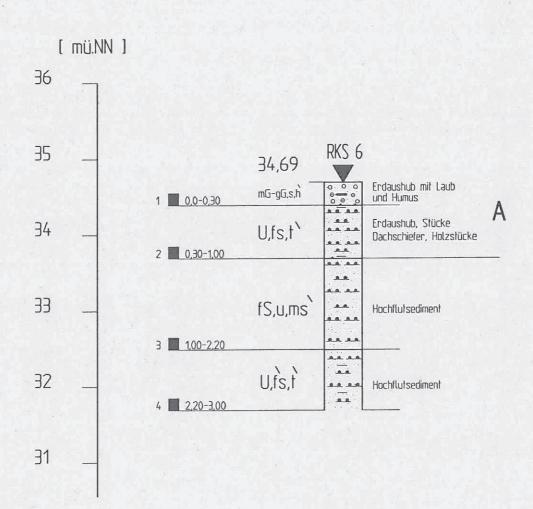


Schichtenverzeichnis GMBH FÜR ABFALL ENERGIE WASSER

Auftrags-Nr.: 1.12.1950.2/6517 Ort: Neuss, Firma Emhart m üNN: 34,68

Rammkernsondierung: 5

unter a2) Er		a1) Benennung und Beschreibung der Schicht						
Ansatzp.	gänzende Bemerkur	ngen	tool, x,		beim Bohren Wasserführung; Bohrwerkzeuge			Tiefe
b) Mächtig- b)Beschaffer keit	h.Bohrgut c)Beso	chaffenh.Bohrung	d) Farbe	e)	sonstiges	Art	Nr.	in m (Unter
in m f)Ortsübl. H	ez. g)Geol	logische Bez.	h) Gruppe	K				Kante)
1	* 2			**	3	4	5	6
a) 0,10 Schwarzdecke					aufgebohrt	720 ml Glas	1	0,00 - 0,10
b) 0,10								
a) 0,60 Schluff, sar	dig, schwach feir	nkiesig			erdfeucht	720 ml Glas	2	0,10 - 0,60
Erdaushub, 7	iegelbruch					Oldb		0,00
b) 0,50 fest	leicht	t zu bohren	grau-bra	un				
	Auffül	llung		0				
a) 0,80 Schluff, fei	nsandig, schwach	tonig			erdfeucht	720 ml Glas	3	0,60 -
Erdaushub, n	armoriert, selter	n Kohlestücke				ords		0,00
b) 0,20 halbfest	leich	t zu bohren	braun					
	Auffül	llung		0				
a) 2,00 Feinsand, st	ark schluffig, so	chwach tonig			feucht	720 ml Glas	4	0,80 - 2,00
b) 1,20 halbfest	leicht	t zu bohren	braun					
	Hochf!	lutsediment		0				
a) 3,00 Schluff, sch	wach tonig, schwa	ach feinsandig			feucht	720 ml Glas	5	2,00 - 3,00
b) halbfest / w	eich leicht	zu bohren	braun					
	Hochflutsediment							



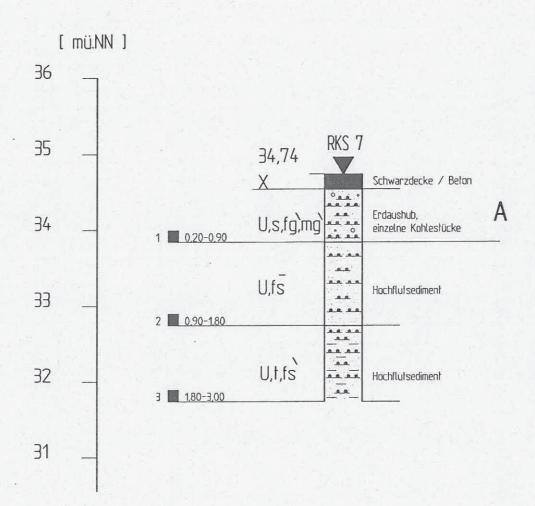
Schichtenverzeichnis MBH FÜR ABFALL ENERGIE WASSER

Auftrags-Nr.: 1.12.1950.2/6517 Ort: Neuss, Firma Emhart m üNN: 34,69

Rammkernsondierung: 6

a) Bis	al) Benennung u	nd Beschreibung der Sch	icht		Feststellungen beim Bohren	Entnom	mene 1	roben
unter Ansatzp.		Bemerkungen			Wasserführung; Bohrwerkzeuge			Tiefe
b) Mächtig- keit		c)Beschaffenh.Bohrung		4	sonstiges	Art	Nr.	in m (Unter-
in m	f)Ortsübl. Bez.	g)Geologische Bez.	h) Gruppe	K				Kante)
1		2			3	4	5	6
a) 0,30	Mittel- bis Grobkies,	sandig, schwach humos			feucht	720 ml Glas	1	0,00 - 0,30
	Erdaushub (Schotter)	mit Laub und Humus				0245		
b) 0,30	locker	leicht zu bohren	braun					
		Auffüllung		0				
a) 1,00	Schluff, feinsandig,	schwach tonig			erdfeucht	720 ml Glas	2	0,30 - 1,00
	Erdaushub, wenige Stücke Dachschiefer, einzelne Holzstücke			GldS		1,00		
b) 0,70	halbfest	leicht zu bohren	braun					
	L-CATE	Auffüllung		0				
a) 2,20	Feinsand, schluffig,	schwach mittelsandig		1	erdfeucht bis	720 ml	3	1,00 -
Titl					feucht	Glas		2,20
b) 1,20	locker bis halbfest	leicht zu bohren	hellbrau	īĎ.				
	at tyrer.	Hochflutsediment		0				
a) 3,00	Schluff, schwach feir	sandig, schwach tonig			erdfeucht	720 ml	4	2,20 -
						Glas		3,00
b)	halbfest	leicht zu bohren	braun	0				
		Hochflutsediment						
a)								
b)				I				
			154.51					
K. S. B.				H			-	

Projekt	Neus	s, Firma	Emhart	A STATE OF THE STA		ENERGIE V	
Proj-Nr.	Datei Nr.	1950D01.DWG	Planungsstand/Maßstab Dokumentation	Datum	gez.	Datum	gepr.
1.12.1950.2	ZeichnNr.	Anlage 2	1 : 50	09.05.1994	HoBdorf	09.05.1994	



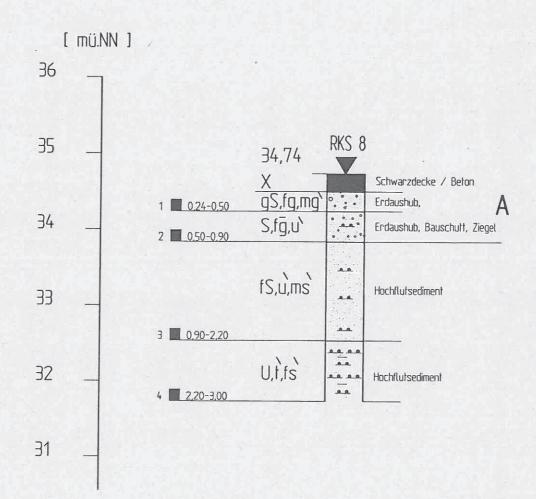
Schichtenverzeichnis GMBH FÜR ABFALL ENERGIE WASSER

Auftrags-Nr.: 1.12.1950.2/6517 Ort: Neuss, Firma Emhart m üNN: 34,74

Rammkernsondierung: 7

a) Bis	al) Benennung	und Beschreibung der Schi	lcht		Feststellungen beim Bohren	Entnom	nene l	Proben
unter Ansatzp.	a2) Ergänzende	Bemerkungen			Wasserführung; Bohrwerkzeuge			Tiefe
b) Mächtig- keit	b)Beschaffenh.Bohrgu	c)Beschaffenh.Bohrung	d) Farbe	e)	sonstiges	Art	Nr.	in m (Unter-
in m	f)Ortsübl. Bez.	g)Geologische Bez.	h) Gruppe	K				Kante)
1		* 2		**	3	4	5	6
a) 0,20	Schwarzdecke / Beton				aufgebohrt			
b) 0,20								
a) 0,90	Schluff, sandig, sch	wach feinkiesig, schwach	mittelkies	ig	erdfeucht	720 ml Glas	1	0,20 -
	Erdaushub, einzelne	Kohlestücke				ords		0,50
b) 0,70 [halbfest	leicht zu bohren	braun					
		Auffüllung	L	0				
a) 1,80	Schluff, stark feins	andig			feucht	720 ml Glas	2	0,90 - 1,80
b) 0,90	halbfest	leicht zu bohren	braun					
		Hochflutsediment		0				
a) 3,00	Schluff, tonig, schwa	ach feinsandig			feucht	720 ml Glas	3	1,80 - 3,00
b)	weich	leicht zu bohren	braun					
		Hochflutsediment		0				
a)								
b)								

Projekt	Neus	s, Firma	Emhart			. ENERGIE V	
Proj-Nr.	Datei Nr.	1950D01.DWG	Planungsstand/Maßstab Dokumentation	Datum	gez.	Datum	gepr.
1.12.1950.2	ZeichnNr.	Anlage 2	1 : 50	09.05.1994	HoBdorf	09.05.1994	



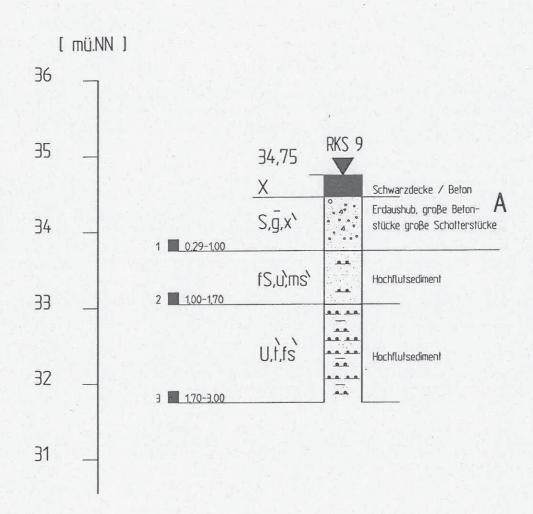
Schichtenverzeichnis GMBH FÜR ABFALL ENERGIE WASSER

Auftrags-Nr.: 1.12.1950.2/6517 Ort: Neuss, Firma Emhart m üNN: 34,74

Rammkernsondierung: 8
Ausbau zu provisorischem Bodenluftpegel

a) Bis	a1) Benennung t	ınd Beschreibung der Sc	hicht		Feststellungen beim Bohren	Entnom	nene l	Proben
unter Ansatzp. b) Mächtig-		Bemerkungen	g d) Farbe	le)	Wasserführung; Bohrwerkzeuge	Art	Nr.	Tiefe in m
keit in m	f)Ortsübl. Bez.	g)Geologische Bez.	h) Grupp	= 1	20.1202302			(Unter Kante)
1		2		#—	3	4	5	6
a) 0,24	Schwarzdecke / Beton				aufgebohrt		1	
b) 0,24								
a) 0,50	Grobsand, feinkiesig,	schwach mittelkiesig			feucht	720 ml Glas	1	0,24 - 0,50
	Erdaushub	12 77 47 17				Glas		0,50
b) 0,26	verdichtet	schwer zu bohren	braun					
		Auffüllung		0				
a) 0,90	Sand, stark feinkiesi	g, schwach schluffig		1	feucht	720 ml Glas	2	0,50 - 0,90
	Erdaushub, Bauschutt,	Ziegel				GIGS		0,30
b) 0,40	verdichtet	schwer zu bohren	grau-br	aun				
		Auffüllung		+				
a) 2,20	Feinsand, schwach sch	luffig, schwach mittel	sandig		erdfeucht	720 ml Glas	3	0,90 - 2,20
b) 1,30	locker bis halbfest	leicht zu bohren	braun					
		Hochflutsediment		0				7
a) 3,00	Schluff, schwach toni	g, schwach feinsandig			erdfeucht	720 ml Glas	4	2,20 - 3,00
b)	weich	leicht zu bohren	braun					
		Hochflutlehm		0				

Projekt	Neus	ss, Firma	Emhart	100		ENERGIE V	
Proj-Nr.	Datei Nr.	1950D01.DWG	Planungsstand/Maßstab Dokumentation	Datum	gez.	Datum	gepr.
1.12.1950.2	ZeichnNr.	Anlage 2	1 : 50	09.05.1994	HoBdorf	09.05.1994	



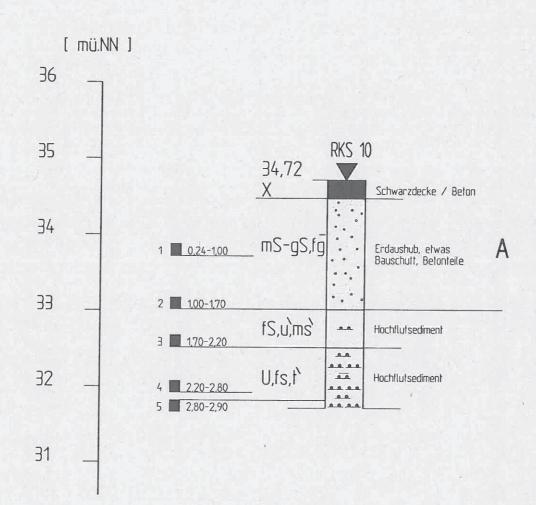
Schichtenverzeichnis GMBH FÜR ABFALL ENERGIE WASSER

Auftrags-Nr.: 1.12.1950.2/6517 Ort: Neuss, Firma Emhart m üNN: 34,75

Rammkernsondierung: 9 Ausbau zu provisorischem Bodenluftpegel

a1) Benennung u	Feststellungen beim Bohren	Entnommene Proben					
				Wasserführung; Bohrwerkzeuge			Tiefe
b)Beschaffenh.Bohrgut	c)Beschaffenh.Bohrun	g d) Farbe	le)	sonstiges	Art	Nr.	in m (Unter
f)Ortsübl. Bez.	g)Geologische Bez.	h) Gruppe	K				Kante)
	2		***	3	4	5	6
Schwarzdecke / Beton				aufgebohrt			
Sand, stark kiesig, s	chwach steinig			feucht	720 ml	1	0,29 -
		rstücke			Glas		1,00
stark verdichtet	schwer zu bohren	braun					
	Auffüllung		+				
Feinsand, schwach sch	luffig, schwach mittel	sandig		erdfeucht	720 ml Glas	2	1,00 - 1,70
locker bis halbfest	leicht zu bohren	braun					
	Hochflutsediment		0				
Schluff, schwach toni	g, schwach feinsandig		1	erdfeucht	720 ml Glas	3	1,70 - 3,00
weich	leicht zu bohren	braun					
	Hochflutsediment		0				- 1
	a2) Ergänzende b)Beschaffenh.Bohrgut f)Ortsübl. Bez. Schwarzdecke / Beton Sand, stark kiesig, s Erdaushub, große Beto stark verdichtet Feinsand, schwach sch locker bis halbfest Schluff, schwach toni	a2) Ergänzende Bemerkungen b)Beschaffenh.Bohrgut c)Beschaffenh.Bohrung f)Ortsübl. Bez. g)Geologische Bez. 2 Schwarzdecke / Beton Sand, stark kiesig, schwach steinig Erdaushub, große Betonstücke, große Schotte stark verdichtet schwer zu bohren Auffüllung Feinsand, schwach schluffig, schwach mittel locker bis halbfest leicht zu bohren Hochflutsediment Schluff, schwach tonig, schwach feinsandig weich leicht zu bohren	a2) Ergänzende Bemerkungen b)Beschaffenh.Bohrgut c)Beschaffenh.Bohrung d) Farbe f)Ortsübl. Bez. g)Geologische Bez. h) Gruppe 2 Schwarzdecke / Beton Sand, stark kiesig, schwach steinig Erdaushub, große Betonstücke, große Schotterstücke stark verdichtet schwer zu bohren braun Auffüllung Feinsand, schwach schluffig, schwach mittelsandig locker bis halbfest leicht zu bohren braun Hochflutsediment Schluff, schwach tonig, schwach feinsandig weich leicht zu bohren braun	b)Beschaffenh.Bohrgut c)Beschaffenh.Bohrung d) Farbe e) f)Ortsübl. Bez. g)Geologische Bez. h) Gruppe K 2 Schwarzdecke / Beton Sand, stark kiesig, schwach steinig Erdaushub, große Betonstücke, große Schotterstücke stark verdichtet schwer zu bohren braun Auffüllung + Feinsand, schwach schluffig, schwach mittelsandig locker bis halbfest leicht zu bohren braun Hochflutsediment 0 Schluff, schwach tonig, schwach feinsandig weich leicht zu bohren braun	Ergänzende Bemerkungen b)Beschaffenh.Bohrgut c)Beschaffenh.Bohrung d) Farbe e f)Ortsübl. Bez. g)Geologische Bez. h) Gruppe K 2 3 Schwarzdecke / Beton aufgebohrt Sand, stark kiesig, schwach steinig Erdaushub, große Betonstücke, große Schotterstücke stark verdichtet schwer zu bohren braun Auffüllung + Feinsand, schwach schluffig, schwach mittelsandig erdfeucht locker bis halbfest leicht zu bohren braun Hochflutsediment 0 Schluff, schwach tonig, schwach feinsandig erdfeucht weich leicht zu bohren braun Hochflutsediment o Schluff, schwach tonig, schwach feinsandig erdfeucht	a2) Ergänzende Bemerkungen b)Beschaffenh.Bohrgut c)Beschaffenh.Bohrung d) Farbe e) f)Ortsübl. Bez. g)Geologische Bez. h) Gruppe K 2 3 4 Schwarzdecke / Beton Sand, stark kiesig, schwach steinig Erdaushub, große Betonstücke, große Schotterstücke stark verdichtet schwer zu bohren braun Auffüllung Feinsand, schwach schluffig, schwach mittelsandig locker bis halbfest leicht zu bohren braun Hochflutsediment Schluff, schwach tonig, schwach feinsandig weich leicht zu bohren braun Hochflutsediment Deim Bohren Wasserführung; Bohrwerkzeuge sonstiges Art Feucht 720 ml Glas Glas Feucht 720 ml Glas Glas 720 ml Glas	a2) Ergänzende Bemerkungen b)Beschaffenh.Bohrgut c)Beschaffenh.Bohrung d) Farbe e) f)Ortsübl. Bez. g)Geologische Bez. h) Gruppe K 2 3 4 5 Schwarzdecke / Beton Sand, stark kiesig, schwach steinig Erdaushub, große Betonstücke, große Schotterstücke stark verdichtet schwer zu bohren braun Auffüllung + Feinsand, schwach schluffig, schwach mittelsandig locker bis halbfest leicht zu bohren braun Hochflutsediment 0 Schluff, schwach tonig, schwach feinsandig weich leicht zu bohren braun Schluff, schwach tonig, schwach feinsandig weich leicht zu bohren braun Beim Bohren wasserführung; Bohrwerkzeuge sonstiges Art Nr. Auf 5 Auf 5 Feucht Glas Feucht Glas Feucht Glas Feucht Glas Glas Feucht Glas Glas Feucht Glas Glas Feucht Glas Feucht Glas Feucht Glas Glas Feucht Glas Feucht Glas Feucht Glas Glas Feucht Glas

Projekt	Neus	s, Firma	Emhart			ENERGIE W	
Proj-Nr.	Datei Nr.	1950D01.DWG	Planungsstand/Maßstab Dokumentation	Datum	gez.	Datum	gepr.
1.12.1950.2	ZeichnNr.	Anlage 2	1: 50	09.05.1994	HoBdorf	09.05.1994	



Schichtenverzeichnis MBH FÜR ABFALL ENERGIE WASSER

Auftrags-Nr.: 1.12.1950.2/6517 Ort: Neuss, Firma Emhart m üNN: 34,72

Rammkernsondierung: 10 Ausbau zum provisorischen Bodenluftpegel

a) Bis	a1) Benennung u	nd Beschreibung der Sc	hicht		Feststellungen beim Bohren	Entnom	nene I	roben
unter Ansatzp. b) Mächtig- keit	b)Beschaffenh.Bohrgut	Bemerkungen c)Beschaffenh.Bohrun		4	Wasserführung; Bohrwerkzeuge sonstiges	Art	Nr.	Tiefe in m (Unter
in m	f)Ortsübl. Bez.	g)Geologische Bez.	h) Grupp	e K				Kante)
1	the Assessment of the State of	2			3	4	5	6
a) 0,24	Schwarzdecke / Beton				aufgebohrt			
b) 0,24								
a) 1,70	Mittel- bis Grobsand, schwach mittelkiesig	stark feinkiesig,			erdfeucht	720 ml Glas	1	0,24 -
	Erdaushub; etwas Baus mit Fäkaliengeruch; B	chutt; kleine, schwarz etonteile	e Steine			720 ml Glas	2	1,00 - 1,70
b) 1,46	verdichtet	schwer zu bohren	braun					
		Auffüllung		0				
a) 2,20	Feinsand, schwach sch	luffig, schwach mittel	sandig		erdfeucht	720 ml Glas	3	1,70 -
	marmoriert					GldS		2,20
b) 0,50	locker bis halbfest	leicht zu bohren	braun					
		Hochflutsediment		0				
a) 3,00	Schluff, feinsandig,	schwach tonig			erdfeucht	720 ml Glas	4	2,20 - 2,80
	Zum Liegenden toniger	werdend, 2,8 - 7,9 gr	au (Redukti	on)	ab 2,50 m naß	GIGS		2,00
b)	weich	leicht zu bohren	braun		2,8 - 2,9 muffiger	720 ml	5	2,80 -
		Hochflutsediment		0	Geruch (Re- duktion)	Glas		2,90
a)								
b)		e Flater at	A SEC	T				
				1			+	

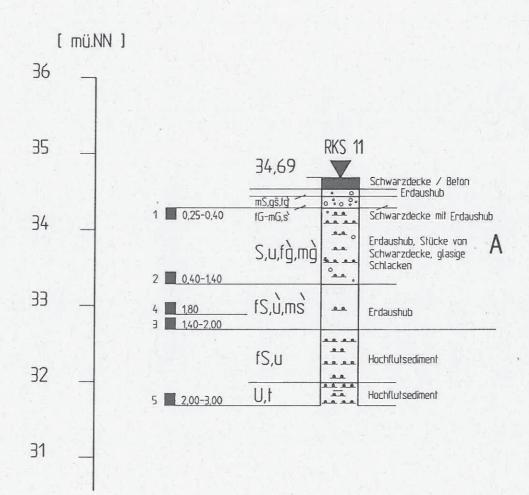
Schichtenverzeichnis GMBH FÜR ABFALL ENERGIE WASSER

Auftrags-Nr.: 1.12.1950.2/6517 Ort: Neuss, Firma Emhart m üNN: 34,69

Rammkernsondierung: 11 Ausbau zum provisorischen Bodenluftpegel

Blatt: 1/2 Datum: 03.03.1994

a) Bis	a1) Benennung u	nd Beschreibung der Schi	lcht		Feststellungen beim Bohren	Entnom	iene l	Proben
unter Ansatzp.	a2) Ergänzende	Bemerkungen			Wasserführung; Bohrwerkzeuge			Tiefe
b) Mächtig- keit	b)Beschaffenh.Bohrgut	c)Beschaffenh.Bohrung	d) Farbe	e)	sonstiges	Art	Nr.	in m
in m	f)Ortsübl. Bez.	g)Geologische Bez.	h) Gruppe	K				Kante)
1		2		**	3	4	5	6
a) 0,15	Schwarzdecke / Beton				aufgebohrt			
b) 0,15								
a) 0,25	Mittelsand, stark gro schwach mittelkiesig	bsandig, schwach feinkie	esig,		feucht			
	Erdaushub							
b) 0,10	locker	leicht zu bohren	braun					
		Auffüllung		0				
a) 0,40	Fein- bis Mittelkies,	stark sandig			feucht	720 ml Glas	1	0,25 - 0,40
	Schwarzdecke mit Erda	ushub				GIGS		0,40
b) 0,15	massiv	schwer zu bohren	schwarz					
		Schwarzdecke		0				
a) 1,40	Sand, schluffig, schw	ach feinkiesig, schwach	mittelkies	ig	erdfeucht	720 ml Glas	2	0,40 - 1,40
	Erdaushub, Stücke von	Schwarzdecke, glasige S	chlacken			Olds		1,10
b) 1,00	leicht verdichtet	schwer zu bohren	braun-gr	au				
		Auffüllung		0				
a) 2,00	Feinsand, schwach sch	luffig, schwach mittelsa	ndig		erdfeucht	720 ml Glas	3	1,40 2,00
	Bei ca. 1,80 m Teerpa	ppe (Probe 4); Erdaushub				720 ml	4	1,80
b) 0,60	locker bis halbfest	leicht zu bohren	braun			Glas	2	1,00
		Auffüllung		0				


Schichtenverzeichnis GMBH FÜR ABFALL ENERGIE WASSER

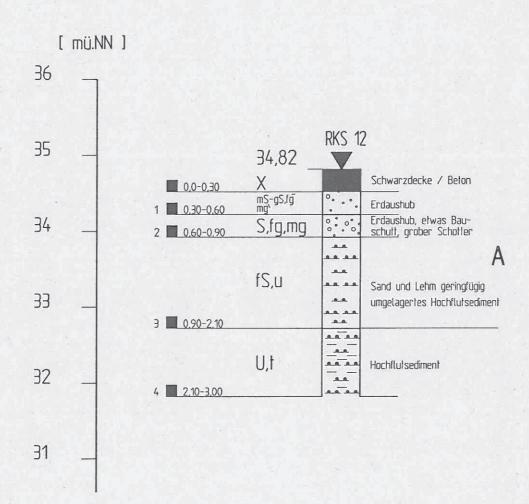
Auftrags-Nr.: 1.12.1950.2/6517 Ort: Neuss, Firma Emhart m üNN: 34,69

Rammkernsondierung: 11 Ausbau zum provisorischen Bodenluftpegel

Blatt: 2/2 Datum: 03.03.1994

a) Bis	al) Benennung ur	nd Beschreibung der Schi	cht		Feststellungen beim Bohren	Entnom	nene l	roben
unter Ansatzp.	a2) Ergänzende I	Bemerkungen			Wasserführung; Bohrwerkzeuge			Tiefe
b) Mächtig- keit	b)Beschaffenh.Bohrgut	c)Beschaffenh.Bohrung	d) Farbe	le)	sonstiges	Art	Nr.	in m (Unter
in m	f)Ortsübl. Bez.	g)Geologische Bez.	h) Gruppe	K	HORE			Kante)
1		2			3	4	5	6
a) 2,70	Feinsand, schluffig				feucht ab 2,50 m naß	720 ml Glas	5	2,00 - 3,00
					(Staunässe)	ords		3,00
b) 0,70	halbfest	leicht zu bohren	braun					
		Hochflutsediment		0				
a) 3,00	Schluff, tonig				feucht			1
								-3
b)	weich	leicht zu bohren	braun					
		Hochflutsediment		0				
a)								
b)								
a)								
b)								
			July 18 3.					
a)				'				
b)								
				18				

Projekt	Neus	ss, Firma	Emhart			ENERGIE W	
Proj-Nr.	Datei Nr.	1950D02.DWG	Planungsstand/Maßstab Dokumentation	Datum	gez.	Datum	gepr.
1.12.1950.2	ZeichnNr.	Anlage 2	1 : 50	09.05.1994	HoBdorf	09.05.1994	



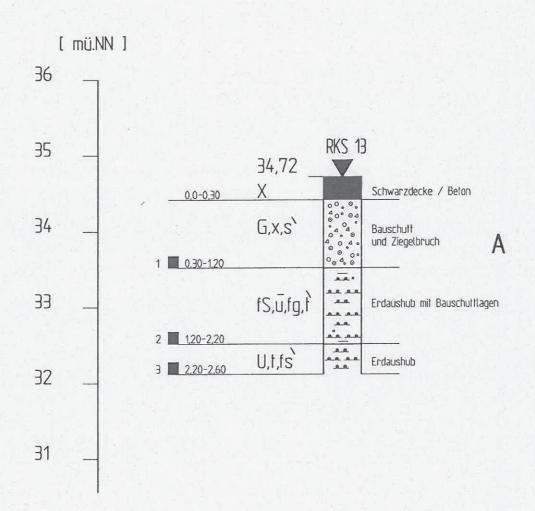
Schichtenverzeichnis MBH FÜR ABFALL ENERGIE WASSER

Auftrags-Nr.: 1.12.1950.2/6517 Ort: Neuss, Firma Emhart m üNN: 34,82

Rammkernsondierung: 12 Ausbau zu provisorischem Bodenluftpegel

a) Bis	a1) Benennung u	nd Beschreibung der Schi	cht		Feststellungen beim Bohren	Entnom	mene l	Proben
unter Ansatzp.		Bemerkungen	1	T .	Wasserführung; Bohrwerkzeuge	2010		Tiefe
b) Mächtig- keit	b)Beschaffenh.Bohrgut	c)Beschaffenh.Bohrung	d) Farbe	(e)	sonstiges	Art	Nr.	in m (Unter
in m	f)Ortsübl. Bez.	g)Geologische Bez.	h) Grupp	e K				Kante)
1		2		#	3	4	5	6
a) 0,30	Schwarzdecke / Beton				aufgebohrt			
ь) 0,30								
a) 0,60	Mittel- bis Grobsand, schwach mittelkiesig	stark feinkiesig,			erdfeucht	720 ml Glas	1	0,30 - 0,60
	Erdaushub (Sand und F	ies) als Unterschotterun	g	4				
b) 0,30	locker	leicht zu bohren	braun					
		Auffüllung		0				
a) 0,90	Sand, feinkiesig, mit	telkiesig			erdfeucht	720 ml Glas	2	0,60 -
	Erdaushub, etwas Baus	chutt, grober Schotter	Lind			0105		0,50
b) 0,30	stark verdichtet	schwer zu bohren	grau-bra	aun				
		Auffüllung		+				
a) 2,10	Feinsand, schluffig				erdfeucht	720 ml	3	0,90 -
	Wechsellagerung von S Brauntönen, geringfüg	and und Lehm in verschie ig umgelagertes Hochflut	denen sediment			Glas		2,10
b) 1,20	locker bis halbfest	leicht zu bohren	braun					
		Auffüllung		0				
a) 3,00	Schluff, tonig				feucht	720 ml	4	2,10 - 3,00
	rostfleckig					Glas		3,00
b)	weich	leicht zu bohren	rostbra	in T				
		Hochflutsediment		0				4

Projekt	Neus	s, Firma	Emhart	GMBH FÜR ABFALL ENERGIE WASSER				
Proj-Nr.	Datei Nr.	1950D02.DWG	Planungsstand/Maßstab Dokumentation	Datum	gez.	Datum	gepr.	
1.12.1950.2	ZeichnNr.	Anlage 2	1 : 50	09.05.1994	Hoßdorf	09.05.1994		



Schichtenverzeichnis MBH FÜR ABFALL ENERGIE WASSER

Auftrags-Nr.: 1.12.1950.2/6517 Ort: Neuss, Firma Emhart m üNN: 34,72

Rammkernsondierung: 13 Ausbau zum provisorischen Bodenluftpegel

a) Bis m unter Ansatzp. b) Mächtig- keit in m	a1) Benennung w	Feststellungen beim Bohren Wasserführung; Bohrwerkzeuge	Entnommene Proben					
	a2) Ergänzende 1		13		Tiefe			
	b)Beschaffenh.Bohrgut	c)Beschaffenh.Bohrung	d) Farbe	le)	sonstiges	Art	Nr.	in m (Unter- Kante)
	f)Ortsübl. Bez.	g)Geologische Bez.	h) Grupp	e K				
1		3	4	5	6			
a) 0,30	Schwarzdecke / Beton	aufgebohrt						
ь) 0,30								
a) 1,20	Kies, steinig, schwach	trocken	720 ml Glas	1	0,30 -			
	Bauschutt und Ziegelb							
b) 0,90	stark verdichtet	schwer zu bohren	rot-gra	u				
		Auffüllung		++				
a) 2,20	Feinsand, stark schluffig, schwach feinkiesig, schwach tonig				erdfeucht	720 ml Glas	2	1,20 - 2,20
	Erdaushub mit einzelne							
b) 1,00	halbfest	leicht zu bohren	braun			*		
		Auffüllung		0				
a) 2,60	Schluff, tonig, schwad	erdfeucht	720 ml Glas	3	2,20 - 2,60			
	Erdaushub							
b) 0,40	weich	leicht zu bohren	braun				L	
		Auffüllung		0				
a)	Bei 2,60 m kein weiter auf etwas auf. An der Teile (Tankisolation?)		•					
b)								
<i>u</i>)								

Signaturen gemäß DIN 4023

Neuss, Firma Emhart			GMBH FÜR ABFALL ENERGIE WASSER				
Proj-Nr.	Datei Nr.	1950D02.DWG	Planungsstand/Maßstab Dokumentation	Datum	gez.	Datum	gepr.
1.12.1950.2	ZeichnNr.	Anlage 2	1:,50	09.05.1994	HoBdorf	09.05.1994	

Ort:

Neuss, Firma Emhart

Projekt-Nr.: 1.12.1950.2/6517

Datum:

03.03.1994

Vermessungsprotokoll Nr. 1

Festpunktbeschreibung: Mauerbolzen Derendorfer Weg 10

35,775 m ü. NN

Steigen	Fallen	+ m ü.NN		Bemerkung	
0,660	1,527	34,908	RKS 2:	34,91 m ü. NN	
	1,627	34,808	RKS 1b:	34,81 m ü. NN	
	1,691	34,744	RKS 7:	34,74 m ü. NN	
	1,652	34,783	RKS 4b:	34,78 m ü. NN	
	1,652	34,783			
1,742	1,695	34,830	RKS 3:	34,83 m ü. NN	
	1,840	34,685	RKS 6:	34,69 m ü. NN	
	1,848	34,677	RKS 5:	34,68 m ü. NN	3
	1,801	34,724	RKS 13:	34,72 m ü. NN	
	1,513	35,012			
1,889	1,125	35,776	Zurück an Festpunkt		
	14		Differenz:	+ 0,001 m	
					0
7.50			4-1-3-44-		
				F. ALTERNATION OF THE	VIE
Mary Barry				MARKET TO	
			894 MA		
ay YELLE			P. H. H. W.		

Ort:

Neuss, Firma Emhart Projekt-Nr.: 1.12.1950.2/6517

Datum:

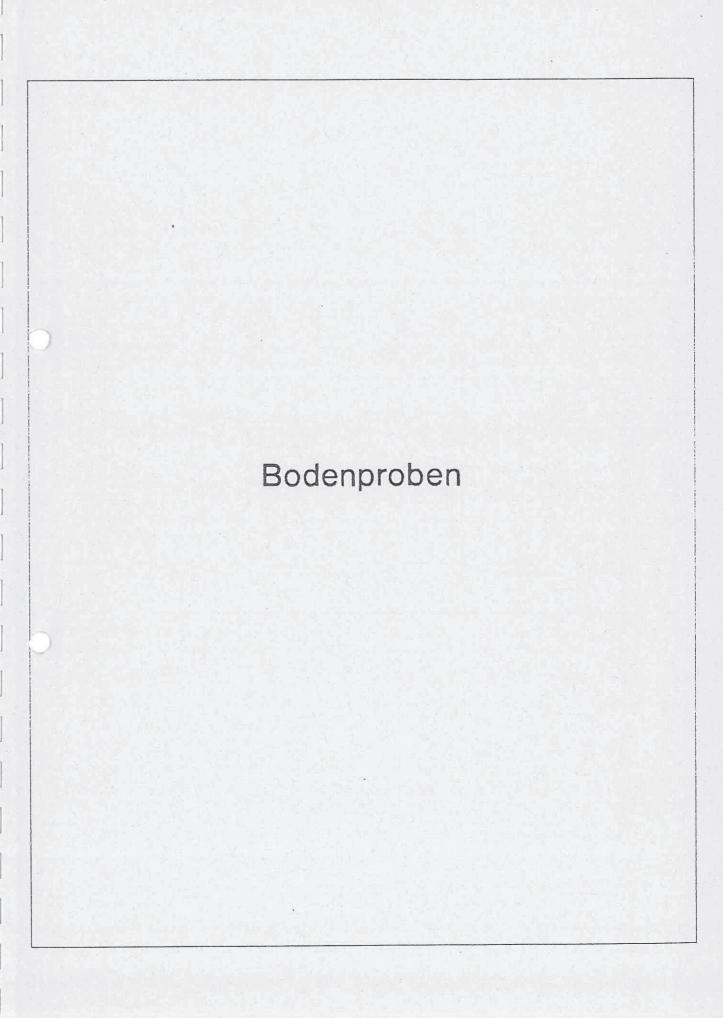
03.03.1994

Vermessungsprotokoll Nr. 2

Festpunktbeschreibung: Mauerbolzen Derendorfer Weg 10

35,775 m ü. NN

Steigen	Fallen	+ m ü.NN		Bemerkung
0,700	1,692	34,783	ria di Santa	
1,562	1,530	34,815	RKS 12:	34,82 m ü. NN
	1,651	34,694	RKS 11:	34,69 m ü. NN
6	1,628	34,717	RKS 10:	34,72 m ü. NN
	1,600	34,745	RKS 9:	34,75 m ü. NN
	1,603	34,742	RKS 8:	34,74 m ü. NN
	1,409	34,936		
1,801	0,962	35,775	Zurück an	Festpunkt
			Differenz:	0,00 m
	HATT			
ABOY-5				


Anlage 3

Firma Emhart

Analytikergebnisse

Stadt Neuss Amt für Umweltschutz

AEW PLAN GmbH

CHEMISCHE LABORATORIEN

HERRMANN - KUTSCHER - KOLLOCH PROBENAHME · ANALYTIK · BEWERTUNG

CHEMISCHE LABORATORIEN, EUPENER STR. 161, 50983 KÖLN

Stadt Neuss Der Stadtdirektor - Amt für Umweltschutz (19) -Postfach 10 14 52

41460 Neuss

Köln, den 12.4.1994 H/ha

UNTERSUCHUNGSBERICHT

Auftraggeber:

Stadt Neuss

Sachbearbeiter:

Herr Dipl.-Geol. Heumüller

Projekt:

Firma Emhart

Probenahme:

9.3.1994

Probenart:

Boden

Tgb.Nr. Labor:

2264 - 2285

Untersuchungsauftrag: Bestimmung von KW (IR), EOX, CN gesamt, PCB,

PAK (EPA), Metalle der KVO zzgl. As im Fest-

stoff sowie pH-Wert, el. Leitfähigkeit und

Parameter der Deponieklasse 2 im Eluat

LABORATORIEN, KÖLN

Blatt 2 vom 12.4.94

<u>Feststoffanalysen</u>

Probenbezeichnung	Tgb.Nr. La	abor KW (IR)	EOX	CN ges.	
RKS 1b/1	2264	800	< 1	< 0,1	
RKS 3/3	2265	31	< 1		
RKS 4b/2	2266	510	< 1	< 0,1	
RKS 5/3	2268	12			
RKS 5/5	2269	< 5			
RKS 6/2	2270	< 5			
RKS 8/2	2272	810	< 1	0,1	
RKS 8/3	2273	9	< 1		
RKS 9/1	2274	45	< 1		
RKS 9/2	2275	< 5			
RKS 10/1	2276	57	< 1	***	
RKS 10/3	2277	11			
RKS 10/4	2278	< 5			
RKS 11/1	2279	560	< 1		
RKS 11/2	2280	26			
RKS 11/5	2281	< 5			
RKS 12/2	2282	48	< 1		
RKS 12/3	2283	< 5			s I
RKS 13/1	2284	370	< 1	< 0,1	
RKS 13/3	2285	32			

Konzentrationsangaben mg/kg Originalsubstanz

Probenbezeichnung Tgb.Nr. Labor	RKS 7/1 2271	
PCB		
Ballschmiter PCB 28	n.n.	
Ballschmiter PCB 52	n.n.	
Ballschmiter PCB 101	n.n.	
Ballschmiter PCB 153	< 25	
Ballschmiter PCB 138	< 25	
Ballschmiter PCB 180	< 25	

Blatt 3 vom 12.4.94

Probenbezeichnung	RKS 1b/1	RKS 4b/2	RKS 5/1	RKS 6/2	
Tgb.Nr. Labor	2264	2266	2267	2270	
				TOTAL	
PAK (EPA)					
Naphthalin	n.n.	n.n.	n.n.	n.n.	
Acenaphthylen	n.n.	n.n.	n.n.	n.n	
Acenaphthen	n.n.	n.n.	n.n.	n.n	
Fluoren	n.n.	n.n.	n.n.	n.n	
Phenanthren	< 0,5	0,6	< 0,5	n.n	
Anthracen	n.n.	< 0,5	n.n.	n.n	
Fluoranthen	< 0,5	1,8	< 0,5	n.n	
Pyren	< 0,5	1,5	< 0,5	n.n	
Benz(a)anthracen	< 0,5	0,9	< 0,5	n.n	
Chrysen	< 0,5	1,0	< 0,5	n.n	
Benzo(b)fluoranthen	< 0,5	0,9	n.n.	n.n	
Benzo(k)fluoranthen	< 0,5	< 0,5	n.n.	n.n	
Benzo(a)pyren	< 0,5	0,7	n.n.	n.n	
Dibenz(a,h)anthracen	n.n.	n.n.	n.n.	n.n	
Benzo(g,h,i)perylen	< 0,5	0,5	n.n.	n.n	
Indeno(1,2,3-cd)pyren	< 0,5	< 0,5	n.n.	n.n	

Konzentrationsangaben mg/kg Originalsubstanz

Bestimmungsgrenze

Nachweisgrenze

0,5 mg/kg Originalsubstanz

je Einzelkomponente

ca. 1/2 Bestimmungsgrenze

Blatt 4 vom 12.4.94

Probenbezeichnung	RKS 8/2	RKS 10/1	RKS 11/1	RKS 13/1	
Tgb.Nr. Labor	2272	2276	2279	2284	
PAK (EPA)					
Naphthalin	n.n:	n.n.	n.n.	n.n.	
Acenaphthylen	n.n.	n.n.	n.n.	n.n.	
Acenaphthen	n.n.	n.n.	n.n.	n.n.	
Fluoren	n.n.	n.n.	n.n.	n.n.	
Phenanthren	0,5	< 0,5	< 0,5	0,5	
Anthracen	< 0,5	< 0,5	n.n.	< 0,5	
Fluoranthen	1,2	0,7	< 0,5	1,5	
Pyren	1,1	0,6	< 0,5	1,1	
Benz(a)anthracen	0,9	< 0,5	n.n.	0,6	
Chrysen	0,9	< 0,5	n.n.	0,7	
Benzo(b)fluoranthen	1,2	< 0,5	n.n.	1,3	
Benzo(k)fluoranthen	0,6	< 0,5	n.n.	< 0,5	
Benzo(a)pyren	1,1	< 0,5	n.n.	0,6	
Dibenz(a,h)anthracen	n.n.	n.n.	n.n.	n.n.	
Benzo(g,h,i)perylen	1,1	< 0,5	n.n.	0,5	
Indeno(1,2,3-cd)pyren	0,9	< 0,5	n.n.	< 0,5	

Konzentrationsangaben mg/kg Originalsubstanz <u>Bestimmungsgrenze</u>

0,5 mg/kg Originalsubstanz

je Einzelkomponente

Nachweisgrenze

ca. 1/2 Bestimmungsgrenze

Blatt 5 vom 12.4.94

RKS 1b/1	RKS 4b/2	RKS 6/2	RKS 8/2	
2264	2266	2270	2272	
29,4	38,8	90,4	198	
7,2	18,8	39,8	87,1	
0,17	0,20	0,57	0,36	
8,4	10,4	22,0	46,5	
14,5	13,3	20,1	17,1	
9,5	11,6	17,2	19,7	
0,53	0,69	0,76	0,62	
2,3	5,4	7,4	4,5	
RKS 10/1	RKS 11/1	RKS 13/1		
. 53,6	22,1	83,2		
24,9	6,4	34,2		
0,22	0,18	0,41		
21,1	12,3	17,3		
18,7		19,6		
17,8	12,2	18,5		
0,47	0,39	0,56		
5,3	2,4	6,1		
	29,4 7,2 0,17 8,4 14,5 9,5 0,53 2,3 RKS 10/1 2276 53,6 24,9 0,22 21,1 18,7 17,8 0,47	29,4 38,8 7,2 18,8 0,17 0,20 8,4 10,4 14,5 13,3 9,5 11,6 0,53 0,69 2,3 5,4 RKS 10/1 RKS 11/1 2276 2279 53,6 22,1 24,9 6,4 0,22 0,18 21,1 12,3 18,7 12,7 17,8 12,2 0,47 0,39	29,4 38,8 90,4 7,2 18,8 39,8 0,17 0,20 0,57 8,4 10,4 22,0 14,5 13,3 20,1 9,5 11,6 17,2 0,53 0,69 0,76 2,3 5,4 7,4 RKS 10/1 RKS 11/1 RKS 13/1 2276 2279 2284 53,6 22,1 83,2 24,9 6,4 34,2 0,22 0,18 0,41 21,1 12,3 17,3 18,7 12,7 19,6 17,8 12,2 18,5 0,47 0,39 0,56	

Konzentrationsangaben mg/kg Originalsubstanz

LABORATORIEN, KÕLN

Blatt 6 vom 12.4.94

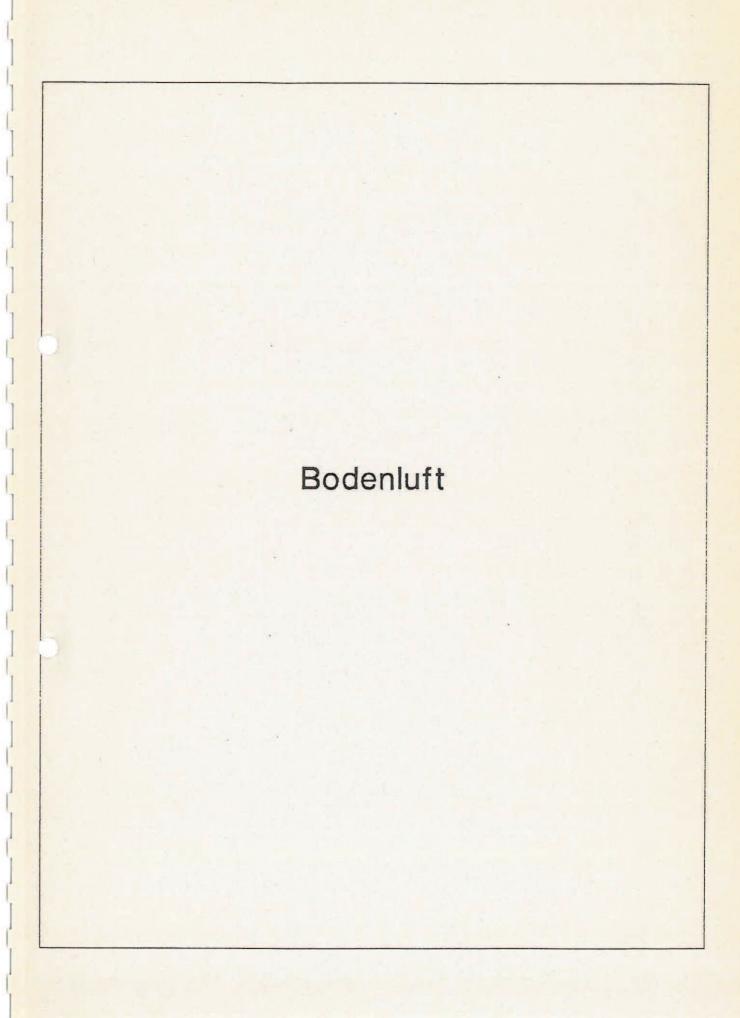
Deponieklasse 2

Probenbezeichnung Tgb.Nr. Labor		RKS 10/1 2276	RKS 13/1 2284	
pH-Wert		9,1	10,0	
Leitfähigkeit	(µS/cm)	120	130	
CSB	$(mg O_2/1)$	28,0	38,0	
PAK (TVO)	(μg/1)	siehe Tabelle Seite	≥ .7	
Phenolindex	(mg/l)	< 0,02	< 0,02	
Kohlenwasserstoffe	(mg/1)	< 0,1	0,9	
EOX (C1)	(mg/1)	< 0,02	< 0,02	
Antimon	(mg/1)	< 0,05	< 0,05	
Arsen	(mg/l)	< 0,05	< 0,05	
Barium	(mg/1)	0,11	< 0,1	
Beryllium	(mg/1)	< 0,005	< 0,005	
Blei	(mg/l)	< 0,1	< 0,1	
Bor	(mg/1)	< 0,1	< 0,1	
Cadmium	(mg/l)	< 0,01	< 0,01	
Chrom ges.	(mg/1)	< 0,1	< 0,1	
Chrom VI	(mg/l)	< 0,1	< 0,1	
Eisen gelöst	(mg/1)	1,3	0,43	
Kobalt	(mg/l)	< 0,1	< 0,1	
Kupfer	(mg/l)	< 0,1	< 0,1	
Mangan	(mg/l)	< 0,1	< 0,1	
Nickel	(mg/1)	< 0,1	< 0,1	
Quecksilber	(mg/l)	< 0,001	< 0,001	
Selen	(mg/l)	< 0,05	< 0,05	
Silber	(mg/l)	< 0,1	< 0,1	
Thallium	(mg/1)	< 0,1	< 0,1	
Vanadium	(mg/l)	< 0,2	< 0,2	
Zink	(mg/l)	< 0,1	< 0,1	
Zinn	(mg/l)	< 0,1	< 0,1	

Blatt 7 vom 12.4.94

Probenbezeichnung	J	RKS 10/1	RKS 13/1	
Tgb.Nr. Labor		2276	2284	
Fluorid	(mg/l)	< 1,0	< 1,0	
Ammonium-N	(mg/l)	< 0,3	< 0,3	
Cyanide ges.	(mg/l)	< 0,05	< 0,05	
Cyanide leicht freisetzbar	(mg/l)	< 0,05	< 0,05	
Nitrat-N	(mg/l)	8,9	7,6	
Nitrit-N	(mg/l)	< 0,2	< 0,2	
Phosphat-P	(mg/l)	0,11	0,24	
Eluatansatz Probenbezeichnung	gemäß DIN 38 4	RKS 10/1	RKS 13/1	
Tgb.Nr. Labor		2276	2284	
PAK (TVO) Fluoranthen Benzo(b)fluoranth Benzo(k)fluoranth Benzo(a)pyren Benzo(ghi)perylen Indeno(1,2,3-cd)	nen n	0,16 0,07 < 0,05 0,06 0,05 0,05	0,10 < 0,05 < 0,05 < 0,05 < 0,05 < 0,05	
Werte in µg/l Elu	ıat			
	e 0,05 μg/l Elu ca. 1/2 Besti	at je Einzelkompo .mmungsgrenze	nente	

Eluatansatz gemäß DIN 38 414, Teil 4


Blatt 8 vom 12.4.94

Eluatanalysen

Probenbezeichnung	Tgb.Nr. Labor	pH-Wert	el. Leitfähigkeit (µS/cm)
RKS 1b/1	2264	9,1	80
RKS 4b/2	2266	10,9	290
RKS 6/2	2270	8.,7	95
RKS 8/2	2272	9,2	110
RKS 11/1	2279	9,4	59
RKS 12/2	2282	9,6	84

Dipl.Chem.Ing. K. Herrmann

LM-Chem. U. Kutscher

CHEMISCHE LABORATORIEN, EUPENER STR. 161, 50933 KÖLN

Stadt Neuss Der Stadtdirektor - Amt für Umweltschutz (19) -Postfach 10 14 52

41460 Neuss

Köln, den 29.3.1994 H/ev

UNTERSUCHUNGSBERICHT

Auftraggeber:

Stadt Neuss

Sachbearbeiter:

Herr Dipl.-Geol. Heumüller

Projekt:

Fa. Emhart

Probenahme:

7.3.1994 durch Laborpersonal

Probenart:

Bodenluft auf A.-Kohle

Tgb.Nr. Labor:

2170 - 2177

Untersuchungsauftrag: Bestimmung von BTEX und LCKW

LABORATORIEN, KÖLN

Blatt 2 yom 29.3.94

Probenbezeichnung	P 3	P 8	P 9	P 10	P 11	P 12	P 13	P 1
Tgb.Nr. Labor	2170	2171	2172	2173	2174	2175	2176	217
BTEX								
Benzol	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.	n.n
Toluol	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.	< 100	n.n
Ethylbenzol	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.	n.n
p/m-Xylol	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.	n.n
o-Xylol	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.	n.n
LCKW					7			
Dichlormethan	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.	n.n
cis-1,2-Dichlorethen	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.	n.n
Trichlormethan	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.	< 10
1,1,1-Trichlorethan	< 10	39	100	12	56	< 10	< 10	< 10
Tetrachlormethan	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.	n.n
Trichlorethen	130	43	270	38	59	n.n.	98	17
Tetrachlorethen	29	24	66	37	18	60	26	27
Konzentrationsangaben	$\mu g/m^3$	Luft						
Bestimmungsgrenzen								
BTEX	100 μ	g/m ³ I	uft je	Einze	lkompo	onente		
LCKW	Dichle	ormeth	an und uft, a	cis-1	.2-Dic	chlore	then /m³ Lui	ŧ

ca. 1/2 Bestimmungsgrenze

Berechnungsgrundlage Anreicherungsmenge 2,5 Liter Luft

Dipl. Chem.Ing. K. Herrmann

Nachweisgrenze

LM-Chem. U. Kutscher

CHEMISCHE LABORATORIEN

HERRMANN - KUTSCHER - KOLLOCH PROBENAHME · ANALYTIK · BEWERTUNG

CHEMISCHE LABORATORIEN, EUPENER STR. 161, 50933 KÖLN

Stadt Neuss
Der Stadtdirektor
- Amt für Umweltschutz (19) Postfach 10 14 52

41460 Neuss

Köln, den 28.4.1994 H/ha - 23a/emha2804

UNTERSUCHUNGSBERICHT

Auftraggeber:

Stadt Neuss

Sachbearbeiter:

Herr Dipl.-Geol. Lins

Projekt:

Fa. Emhart

Probenahme:

29.3.1994 durch Laborpersonal

Probenart:

Bodenluft auf A.-Kohle

Tgb.Nr. Labor:

2979 - 2986

Untersuchungsauftrag: Bestimmung von BTEX und LCKW

LCKW

Nachweisgrenze

Berechnungsgrundlage

Blatt 2 vom 28.4.94

Probenbezeichnung	P 3	P 8	P 9	P 10	P 11	P 12	P 13	P 16
Tgb.Nr. Labor	2979	2980	2981	2982	2983	2984	2985	2986
						*		
BTEX								
Benzol	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.
Toluol	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.
Ethylbenzol	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.
p/m-Xylol	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.
o-Xylol	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.
LCKW								
Dichlormethan	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.
cis-1,2-Dichlorethen	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.
Trichlormethan	n.n.	< 10	< 10	n.n.	< 10	n.n.	n.n.	< 10
1,1,1-Trichlorethan	< 10	52	110	14	89	20	< 10	< 10
Tetrachlormethan	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.
Trichlorethen	370	87	250	31	170	n.n.	130	23
Tetrachlorethen	52	39	86	44	77	97	39	30
Konzentrationsangaben	μg/m	3 Luft						
Bestimmungsgrenzen								
BTEX	100	ug/m ³	Luft je	Einz	elkompo	nente		

ca. 1/2 Bestimmungsgrenze

Anreicherungsmenge 2,5 Liter Luft

Dichlormethan und cis-1,2-Dichlorethen 100 μ g/m³ Luft, alle anderen 10 μ g/m³ Luft

LABORATORIEN, KÖLN

Blatt 3 vom 28.4.94

BODENLUFTUNTERSUCHUNGEN STADT NEUSS, UMWELTAMT

* PROBENAHMEPROTOKOLL

Entnahmestelle		P 3	P 8	P 9	P 10
Tgb.Nr. Labor		2979	2980	2981	2982
Entnahmedatum		29.03.9	4		
Uhrzeit		15.40h	15.20h	14.30h	14.55h
Förderleistung Pumpe	(1/min)	2,5	2,5	2,5	2,5
Luftdruck/ Umgebung	(hPa/mbar)	1009	1009	1009	1010
Förderdruck	(hPa/mbar)	1004	1004	1004	1004
Umgebungstemperatur	(°C)	14	14	14	14
Temperatur Bodenluft	(°C)	10,9	10,8	11,3	11,5
Luftfeuchte/Umgebung	(% rel.F)	70	72	68	70
Entnahme nach	(min)	11,5	11	12	11,5

Pegelausbau

Bemerkungen

2" PVC temporär

Probenahme auf NIOSH-A.-Kohle mit einer Beladungsrate von 0,4 l/min

Entnahmestelle		P 11	P 12	P 13	P 16
Tgb.Nr. Labor		2983	2984	2985	2986
Entnahmedatum		29.03.94	1		
Uhrzeit		14.10h	13.45h	16.00h	14.55h
Förderleistung Pumpe	(1/min)	2,5	2,5	2,5	2,5
Luftdruck/ Umgebung	(hPa/mbar)	1010	1010	1009	1009
Förderdruck	(hPa/mbar)	1005	1005	1005	1005
Umgebungstemperatur	(°C)	14-15	14	14	13-14
Temperatur Bodenluft	(°C)	12,1	12,7	11,5	11,9
Luftfeuchte/Umgebung	(% rel.F)	68	70	71	70
Entnahme nach	(min)	11	12	11	11,5

Pegelausbau

Bemerkungen

2" PVC temporär

Probenahme auf NIOSH-A.-Kohle mit einer Beladungsrate von 0,4 l/min

Dipl.chem.Ing. K. Herrmann

M-Chem. U. Kutscher