

Bochum Dresden Osnabrück Höxter

Kurfürstenstraße 12 Kieler Straße 31 Sofie-Hammer-Str. 75a Brunnenweg 3

44791 Bochum 01109 Dresden 37671 Höxter

Tel 0234/58 38 38 Tel. 0351/89 02 603 49090 Osnabrück Tel. 0541/13 93 460 Tel. 0177/5470584

Fax 0234/58 38 39 Fax 0351/88 08 162 Fax 0541/13 93 461 agus.bochum@t-online.de

GUTACHTEN ZUR GEFÄHRDUNGSABSCHÄTZUNG FÜR DAS EHEMALIGE GELÄNDE DER **BRITISCHEN RHEINARMEE** REME (WESTLICHER TEILBEREICH) IN MÖNCHENGLADBACH-LÜRRIP

Auftraggeber:

Bearbeitung:

Stadt Mönchengladbach,

Dipl.-Geol., Dipl.-Geogr. Ekkehard Heitkemper

Fachbereich Umweltschutz und Entsorgung

Dipl.-Geogr. Manfred Dorsch

Inhalt

1	Zusammenfassung
2	Vorbemerkungen / Rechtliche Ausgangssituation
3	Aufgabenstellung
4	Unterlagen
5	Standortbeschreibung
5.1	Lage und Charakterisierung des Untersuchungsgebietes
5.2	Geologie / Böden
5.3	Hydrogeologie
6	Ergebnisse früherer Untersuchungen
7	Untersuchungsprogramm und -methoden / Tätigkeitsbericht
8	Untersuchungsergebnisse / Gutachterliche Empfehlungen
8.1	Darstellung der Untersuchungsergebnisse
8.2	Beurteilung der Untersuchungsergebnisse
8.2.1	Bewertungsgrundlagen
8.2.2	Wirkungspfade / Darstellung und Bewertung der Belastungssituation / Handlungsempfehlungen
8.2.2.1	Boden - Mensch (Direktkontakt)
8.2.2.2	Boden - Grundwasser
8.2.2.3	Boden - Bodenluft
8.2.2.4	Abfallrechtliche Kategorisierung
8.2.3	Handlungsempfehlungen
9	Schriften- und Kartenverzeichnis

Anlagen

Anhang 1: Abbildungen

Anhang 2: Tabellen

Anhang 3: Schichtenverzeichnisse der Rammkernsondierungen

Anhang 4: Analysenergebnisse: Prüfberichte SEWA (auf CD-ROM)

Anhang 5: Fotodokumentation

Abbildungs- und Tabellenverzeichnis

Abbildungen

Abb. 1:	Lage des Untersuchungsgebietes im Stadtgebiet von Mönchengladbach	Anhang 1
Abb. 2:	Kontaminationsverdachtsflächen (nach LZ 2004b, Grüning 2007) und Untersuchungsprogramm	Anhang 1
Abb. 3:	Lageplan der Rammkernsondierungen, temporären Bodenluftmessstellen und direct-push-Grundwasserentnahmen	Anhang 1
Abb. 4:	CKW- und BTEX-Gehalte in der Bodenluft	Anhang 1
Abb. 5:	CKW-Gehalte in direct-push-Grundwasserproben	Anhang 1
Abb. 6:	BTEX-Gehalte in direct-push-Grundwasserproben	Anhang 1
Abb. 7:	Belastungsschwerpunkte	Anhang 1
Abb. 8:	Überregionale Grundwassergleichen 1955 bis 2007	Anhang 1
Abb. 9:	Grundwassergleichenplan REME-Gelände (09.02.2010)	Anhang 1
Abb. 10:	Fotostandorte	Anhang 5
Tabellen		
		Seite
Tab. 1:	Bisherige Untersuchungsergebnisse und geplantes Untersuchungsprogramm	n
Tab. 2:	Aktuelle Untersuchungsergebnisse	
Tab. 3:	Grundwasserstände der Stichtagsmessung am 09.02.2010	Anhang 2
Tab. 4:	Feststoffanalysenergebnisse	Anhang 2
Tab. 5:	Analysenergebnisse Bodenluft	Anhang 2
Tab. 6:	Analysenergebnisse der direct-push-Grundwasseruntersuchungen	Anhang 2
Tab. 7:	Analysenergebnisse der Grundwassermessstellen im Umfeld der ehemaligen Entfettungsanlage (CKW-Schadensherd)	Anhang 2
Tab. 8:	Entwicklung der 1,1,1-Trichlorethangehalte im Grundwasser 1993 bis 2010	Anhang 2
Tab. 9:	Analysenergebnisse der Grundwassermessstellen des REME-Geländes (West und Ost) (ohne Umfeld der ehemaligen Entfettungsanlage: s. Tab. 7)	Anhang 2

1 Zusammenfassung

Der Fachbereich Umweltschutz und Entsorgung der Stadt Mönchengladbach beauftragte das Büro **agus**, Bochum, mit einer Gefährdungsabschätzung für den ehemaligen Militärstützpunkt der britischen Rheinarmee REME (Royal Electrical and Mechanical Engineers), Lürriper Straße 400 in Mönchengladbach-Lürrip.

Vorliegende Ergebnisse früherer Boden-, Bodenluft- und Grundwassersuchungen weisen für Teilbereiche des Areals REME-West mit A-Shop (inkl. ehem. Entfettungsanlage und Generatorenprüfstand), C-Shop, Paint-Shop etc. auf einen Eintrag von Schadstoffen in den Boden und das Grundwasser hin, der ein erhebliches Umweltgefährdungspotential darstellt.

Im Rahmen der vorliegenden Untersuchung wurden

- 53 Rammsondierungen (davon u.a. 3 im Bereich des CKW-Schadens, 9 in der "Pollrichhalle" und 6 im dazugehörenden Innenhof sowie 2 im Bereich des Generatorenprüfstandes) bis ca. 5 m Tiefe zur Erkundung des Bodenaufbau, bes. im Hinblick auf Auffüllungen und sensorisch auffällige Bodenhorizonte bzw. Schichten und Entnahme von Bodenproben,
- 20 direct-push-Grundwasseruntersuchungen zur Erkundung von Grundwasserbelastungen mit organischen Schadstoffen in Rammkernbohrlöchern
- Untersuchung des Grundwassers der vorhandenen Grundwassermessstellen sowie
- 40 Bodenluftuntersuchungen

durchgeführt.

Häufig wurden Auffüllungen bzw. Anschüttungen bis ca. 1 m, in Ausnahmen bis ca. 3 m Tiefe (Boden, oft mit etwas Bauschutt, lokal Aschen, Schlacken, Bauschutt), z.T. gewachsene Böden (feinsandiger Schluff) unter einer fast überall vorhandenen Versiegelung angetroffen.

Deutliche sensorische Auffälligkeiten (Benzingeruch u.a.) wurden vor allem im CKW-Schadensherd (ehem. Entfettungsanlage), neben dem Abscheider im Innenhof sowie im Bereich des Generatorenprüfstandes festgestellt.

Die in den 70 untersuchten Bodenproben festgestellten Gehalte an Arsen, Schwermetallen und PAK sind meist unauffällig; die zur Orientierung herangezogenen Prüfwerte der BBodSchV für Park- und Freizeitanlagen werden fast immer eingehalten.

Zur Erkundung der Schadstoffgehalte im Grundwasser wurden zum einen sog. direct-push-Proben, d.h. Proben frisch nachgeflossenen Grundwassers aus Rammkernbohrlöchern, entnommen, zum anderen die bestehenden Grundwassermessstellen beprobt.

Erwartungsgemäß wurden erhebliche LHKW-Gehalte (hauptsächlich 1,1,1-Trichlorethan) im Bereich der ehem. Entfettungsanlage sowie der dazugehörenden, nördlich im Innenhof gelegenen Abscheidevorrichtung in direct-push-Grundwasserproben gemessen mit z.T. mehr als 1000-facher Überschreitung des Geringfügigkeitsschwellenwertes (GFS) nach LAWA (2004) bzw. der Prüfwerte nach BBodSchV (1999).

Ein weiteres Schadenszentrum ist im Bereich des Genatorenprüfstandes festgestellt worden. Hier wurden in den direct-push-Proben sehr hohe Konzentrationen an BTEX (mehr als 1000-facher Überschreitung des Geringfügigkeitsschwellenwertes (GFS) nach LAWA 2004), Naphthalin und leichtflüchtigen aliphatischen Kohlenwasserstoffen gemessen.

Dagegen sind die Schadstoffkonzentrationen in den Grundwasserproben der Dauermessstellen weitgehend unauffällig (Ausnahme ist die Messstelle 780058 im Bereich der ehem. Entfettungsanlage mit einem erhöhten LHKW-Gehalt (ausschließlich 1,1,1-Trichlorethan, etwa doppelt so hoch wie der Geringfügigkeitsschwellenwert (GFS) nach LAWA 2004)).

Die Bodenluftuntersuchungen deuten ebenfalls auf die genannten Schadensherde. Die mit Abstand höchsten LHKW-Konzentrationen (ausschließlich 1,1,1-Trichlorethan) wurden im Bereich der ehemaligen Entfettungsanlage gemessen. Der Maßnahmenschwellenwert (LAWA 1994) wird hier zum Teil um mehr als das 700-fache überschritten.

In den anderen Bereichen sind die Ergebnisse sowohl für BTEX als auch für LHKW meist unauffällig und liegen weit unter den LAWA-Prüfwerten (1994). Vereinzelt wird hier der Prüfwertbereich erreicht, aber nicht überschritten.

Die festgestellten Schadstoffkonzentrationen, insbesondere der leichtflüchtigen organischen Schadstoffe, stellen ein hohes Gefährdungspotential für das Schutzgut Grundwasser dar, so dass in Teilbereichen eine Sanierung durchgeführt werden muss.

Als Sanierungsgebiete zeichnen sich nach den bisherigen Ergebnissen der bekannte LHKW-Schadensherd im Bereich der ehem. Entfettung und der Abscheider im nördlich benachbarten Innenhof (vgl. Karte im Anhang). Eine Sanierungsmöglichkeit ist der Austausch der belasteten Böden. Dabei ist ein Teilabriss der Halle unumgänglich.

Zur Abgrenzung der Kontaminationen und ggf. des Sanierungsbereiches sind insbesondere im Umfeld des ehem. Generatorenprüfstandes weitere Untersuchungen erforderlich. Im Falle eines evtl. erforderlichen Bodenaustausches ist auch hier mit einem Teilabriss der Gebäude zu rechnen.

Vor der Durchführung von Sanierungen muss in jedem Fall eine **Sanierungsuntersuchung** durchgeführt sowie ein **Sanierungsplan** nach §13 BBodSchG (inkl. Arbeits- und Sicherheitsplan) erstellt werden.

Für alle anderen Bereiche ist nach den vorliegenden Erkenntnissen keine Sanierung nötig, eine gewerbliche Nutzung problemlos möglich. Bei allen Entsiegelungs- und Baumaßnahmen auf dem Gelände ist jedoch eine fachgutachterliche Begleitung erforderlich, da weitere, bisher nicht erfasste Schadstoffnester nicht mit Sicherheit ausgeschlossen werden können.

Im Falle einer Umnutzung in ein Wohngebiet muss neben der erforderlichen vollständigen Entsiegelung von einem flächendeckenden Bodenaustausch bis mind. 60 cm Tiefe oder einer Bodenüberdeckung mit mind. 60 cm sauberem Boden (Z 0 nach LAGA) ausgegangen werden.

2 Vorbemerkungen / Rechtliche Ausgangssituation

Das REME-Areal an der Lürriper Straße in Mönchengladbach-Lürrip wurde Mitte der 50er Jahre von der britischen Rheinarmee bezogen und bis April 1992 von dieser als Panzerwerkstatt genutzt. Vor der Nutzung durch die britische Rheinarmee befand sich die Liegenschaft im Besitz der Fa. Heinrich Weller Stahlbau. Lt. Schreiben dieser Firma an das Bauverwaltungsamt der Stadt Mönchengladbach ging der gesamte Komplex am 28.02.1964 in das Eigentum der Bundesrepublik Deutschland, vertreten durch die OFD Düsseldorf, über.

Nach der britischen Rheinarmee erfolgte eine Nutzung diverser Gebäude und Gebäudeabschnitte durch die Fa. CFF Cellulose Füllstoff Fabrik und verschiedene Dienstleistungsunternehmen u.a. zu Lager- und Unterstellzwecken.

Die Stadt Mönchengladbach hat die Liegenschaft am 18.03.1994 von der Bundesrepublik Deutschland, vertreten durch das Bundesvermögensamt Düsseldorf, erworben.

Im Rahmen eines Tauschvertrags vom 09.03.1998 ging der Westteil des REME-Areals in den Besitz der Fa. CFF Cellulose Füllstoff Fabrik über.

Darin werden Regelungen zur "Gewährleistungen für bekannte Boden- und Gebäudebelastungen mit umweltgefährdenden Stoffen" getroffen, die vorsehen, daß sich die Stadt Mönchengladbach verpflichtet, den "jeweiligen Eigentümer des der Fa. CFF Cellulose Füllstoff Fabrik übertragenen Grundbesitzes jederzeit von den Pflichten einer Dekontamination freizustellen und die Arbeiten für die erforderliche Dekontaminierung auf eigene Kosten ausführen zu lassen." Desweiteren: "Die hierbei entstehenden Schäden an dem betroffenen Grundbesitz hat die Stadt Mönchengladbach auf ihre Kosten beseitigen zu lassen." Dese Regelung wurde durch ein rechtskräftiges Urteil des Oberlandesgerichts Düsseldorf vom 05.02.2007 bestätigt.

Mit Kaufvertrag vom 15.03.2007 wurde der sich im Besitz der Fa. Rettenmaier Herzog MG GbR (Rechtsnachfolger der Fa. CFF Cellulose Füllstoff Fabrik) befindliche Teilbereich des ehemaligen REME-Areals durch die dmp - Gesellschaft für Bauplanung mbH und H. & J. Jessen Baugesellschaft mbH & Co. KG mit der Absicht erworben, das Areal planerisch zu entwickeln und einer Nutzung zuzuführen.

Im Rahmen dieser Vorhaben wurde die Stadt Mönchengladbach von den Eigentümern aufgefordert, die auf der Liegenschaft befindlichen Bodenkontaminationen, laut des gegen die Stadt Mönchengladbach ergangenen rechtskräftigen Urteils, zu beseitigen.

3 Aufgabenstellung

Der Fachbereich Umweltschutz und Entsorgung der Stadt Mönchengladbach beauftragte das Büro **agus**, Bochum, am 23.10.2009 mit einer Gefährdungsabschätzung für den ehemaligen Militärstützpunkt der britischen Rheinarmee REME (Royal Electrical and Mechanical Engineers), Lürriper Straße 400 in Mönchengladbach-Lürrip.

Die bereits vorliegenden Ergebnisse vergangener Boden-, Bodenluft- und Grundwassersuchungen weisen für den westlichen Teilbereich des REME-Areals mit A-Shop und Paint-Shop auf einen Eintrag von Schadstoffen in den Boden und das Grundwasser hin, der ein erhebliches Umweltgefährdungspotential darstellt.

Ziel der Untersuchungen ist es, die vorhandenen vorliegenden Ergebnisse zusammenführend auszuwerten, um im Anschluss die "beschriebenen Kenntnislücken" für alle relevanten Wirkungspfade im Rahmen einer nach BBodSchV (1999) durchgeführten Gefährdungsabschätzung zu erfassen.

Nach Auswertung vorhandener Unterlagen (vgl. nachfolgendes Kap. 4) wurde in Abstimmung mit dem Fachbereich Umweltschutz und Entsorgung der Stadt Mönchengladbach ein Untersuchungskonzept erarbeitet.

4 Unterlagen

Für die Darstellung der Altlastensituation und zur Ausarbeitung des aktuellen Untersuchungsprogramms standen folgende Unterlagen zur Verfügung (chronologisch):

Stadt Mönchengladbach, Umweltschutzamt (1992): Orientierende Erfassung von Altlastenverdachtsflächen auf dem Gelände der ehemaligen Liegenschaft der Britischen Rheinarmee.

Prof. Mull und Partner (1992): Gefährdungsabschätzung "Ehemalige Liegenschaft der Britischen Rheinarmee - Westlicher Teilbereich - in MG-Lürrip" im Auftrag der Fa. CFF Cellulose Füllstoff Fabrik.

Prof. Mull und Partner (1993): Gefährdungsabschätzung "Ehemalige Liegenschaft der Britischen Rheinarmee - Nördlicher Teil - in MG-Lürrip" im Auftrag der Stadt MG, Umweltschutzamt.

Prof. Mull und Partner (1995): Konzeptionelle Sanierungsplanung "der ehemaligen Liegenschaft REME - Rhine Workshop - der Britischen Rheinarmee in MG-Lürrip" im Auftrag der Stadt Mönchengladbach, Umweltschutzamt.

Prof. Mull und Partner **(2002)**: Sanierungsuntersuchung für den Bereich der Entfettungsanlage des Altstandortes REME Rhine Workshop in Mönchengladbach-Lürrip; Auftraggeber: Stadt Mönchengladbach, Umweltschutzamt.

LZ Umwelttechnik-Ingenieurberatungs GmbH (2004a): "Zusammenfassende Stellungnahme zur Altlastensituation auf dem ehemaligen Militärstützpunkt der britischen Rheinarmee in Mönchengladbach, Lürriper Straße 400" im Auftrag der Fa. J. Rettenmaier & Söhne GmbH & Co. KG.

LZ Umwelttechnik-Ingenieurberatungs GmbH (**2004b**): "Abschließende Bewertung - Stellungnahme zu den ergänzenden Boden-, Bodenluft- und Grundwasseruntersuchungen auf dem ehemaligen Militärstützpunkt der britischen Rheinarmee und dem Grundstück Rettenmaier II in Mönchengladbach, Lürriper Straße 400" im Auftrag der Fa. J. Rettenmaier & Söhne GmbH & Co. KG.

Grüning Consulting GmbH (2008a): "Gutachterliche Stellungnahme mit Massen- und Kostenschätzung" im Auftrag der H. & J. Jessen Baugesellschaft mbH & Co. KG.

Grüning Consulting GmbH (**2008b**): "Gutachterliche Stellungnahme: Untersuchungen einer Bodenverunreinigung mit LCKW. - Projekt: Erschließung des ehemaligen REME-Geländes Lürriper Straße in Mönchengladbach" im Auftrag der H. & J. Jessen Baugesellschaft mbH & Co. KG.

5 Standortbeschreibung

5.1 Lage und Charakterisierung des Untersuchungsgebietes

Das REME-Areal an der Lürriper Straße 400 in Mönchengladbach-Lürrip wurde Mitte der 50er Jahre von der britischen Rheinarmee bezogen und bis April 1992 von dieser als Panzerwerkstatt genutzt. Vor der Nutzung durch die britische Rheinarmee befand sich die Liegenschaft im Besitz der Fa. Heinrich Weller Stahlbau. Nach der britischen Rheinarmee erfolgte eine Nutzung diverser Gebäude und Gebäudeabschnitte durch die Fa. CFF Cellulose Füllstoff Fabrik und verschiedene Dienstleistungsunternehmen u.a. zu Lager- und Unterstellzwecken.

Das Areal ist gekennzeichnet durch eine nahezu vollständige Oberflächenversiegelung mit Asphalt, Beton, Verbundpflaster und durch eine Bebauung mit Hallen, Verwaltungs- und Schulungsgebäuden.

Der Westteil (Gemarkung Mönchengladbach, Flur 38, Flurstücke 75,76, 321, 322, 323) des REME-Areals umfasst eine Fläche von 37.135 m². Ehemalige Nutzungen und Altstandorte sind vor allem der A-Shop mit u.a. Generatorenprüfstand, Kesselanlagen, Entfettungs- und Entrostungsanlagen, Säurebecken, Montagegruben, Transformatorenstandort und Benzinwaschplatz sowie der Paint-Shop (Lackiererei). Hinzu kommen Abwassersammelbecken, Kanalsammelschächte, Farblager, Tanklager, Fasslager (Romney Huts) sowie Benzin-, Öl- und Fettabscheider.

Das Gelände ist nahezu eben mit einer durchschnittlichen Geländehöhe von 44,10 m üb. NN.

5.2 Geologie / Böden

Regionalgeologisch liegt Mönchengladbach im Bereich der Niederrheinischen Bucht, einem Senkungsgebiet, das sich im Laufe des Tertiärs entwickelt hat und durch zahlreiche Staffelbrüche in einzelne Schollen zerlegt wurde.

Das Untersuchungsgebiet REME-West befindet sich im Bereich der Venloer Scholle, die durch den wenige hundert Meter nordöstlich etwa im Bereich der Zeppelinstraße verlaufenden Viersener Sprung bzw. durch das Viersener Sprungsystem von der Krefelder Scholle abgegrenzt wird.

Folgende Schichtfolge ist fürs REME-Gelände charakteristisch (vom Hangenden zum Liegenden:

- großflächige Versiegelung (Beton, Asphalt, Verbundpflaster)
- Anthropogene Auffüllungen bzw. Anschüttungen (max. ca. 2,5 m mächtig),
- Quartäre Ablagerungen (Pleistozän):
 - Lößlehm (bis 3 m mächtig),
 - Untere Mittelterrasse (Sande und Kiese, ca. 10-20 m mächtig),
- Tertiäre Sedimente (Miozän):
 - Meeressande (Feinsande, z.T. schluffig bis stark schluffig, lokal Ton, mehrere 10er Meter mächtig).

Unterlagert werden die Meeressande von Flöz Frimmersdorf, dessen Oberfläche im Untersuchungsgebiet bei -20 bis -30 m NN, d.h. in ca. 70 m Tiefe liegt.

In der Bodenkarte von Nordrhein-Westfalen 1:50.000, Blatt L 4704 Krefeld sind für das gesamte REME-Gelände Gleye und Pseudogley-Gleye, vereinzelt Naßgleye, aus z.T. umgelagertem Löß über Mittelterrassenablagerungen dargestellt (Bodeneinheit (s)G3). Bodenphysikalische Eigenschaften dieses Standorts sind (bzw. waren) eine mittlere Sorptionskapazität sowie eine mittlere nutzbare Wasserkapazität bei z.T. unzureichender Durchlässigkeit.

5.3 Hydrogeologie

Die hydrogeologischen Verhältnisse werden durch die Lockergesteinsschichten des Quartärs und Tertiärs bestimmt. Die sandig-kiesigen Ablagerungen der Haupt- und Mittelterrasse bilden im allgemeinen das oberste Grundwasserstockwerk. Darunter folgen tertiäre feinkörnige Sedimente (miozäne Meeressande, z.T. schluffig, lokal Tone), die geringer durchlässig sind und ein gesondertes Grundwasserstockwerk. Im Liegenden der Meeressande bildet Flöz Frimmersdorf als Grundwasserstauer die Basis der oberen Grundwasserstockwerke.

Hauptgrundwasserleiter sind im Untersuchungsgebiet die 10-20 m mächtigen Sande und Kiese der Unteren Mittelterrasse. Sie weisen zumeist k_f -Werte von 10^{-3} bis 10^{-4} m/s auf und sind als gut bis sehr gut durchlässig einzustufen.

Nach Mull & Partner 2002 ergab ein Grundwassergütepumpversuch einen kf-Wert von $8\cdot 10^{-4}$ m/s, eine Filtergeschwindigkeit (v_f) von ca. 10 m/a sowie eine Abstandsgeschwindigkeit (v_a) von ca. 70 m/a (bei einer angenommenen Porosität (P^*) von 16 %.

Der Grundwasserabfluss erfolgt großräumig zum etwa 1,6 km entfernten Vorfluter Niers in Nord-Nord-Ost-Richtung (vgl. Abb. 8). Im Bereich REME-West zeichnet sich u.a. nach den Ergebnissen der Stichtagsmessung vom 09.02.2010 eine eher parallel zum unmittelbar südlich angrenzenden Gladbach als Regenwasservorfluter, d.h. eine Ost-Süd-Ost gerichtete Fließrichtung ab, bei einem geringen hydraulischen Gradienten von ca. 0,002 bzw. 1:500 (vgl. Abb. 9).

Die Basis des quartären Grundwasserleiters bilden tertiäre Meeressande, die je nach Korngröße bzw. Schluffanteil wechselnde kf-Werte von 10⁻⁴ bis 10⁻⁵ aufweisen. Lokal kommen hier auch Schluffe und Tone vor (z.B. GWM 780078, 780079, 780130), die als Grundwassergering- bis -nichtleiter anzusprechen sind.

Grundwasserdeckschicht ist der weitverbreitete, bis etwa 3 m mächtige Lößlehm, ein Grundwassergeringleiter mit Durchlässigkeiten bzw. kf-Werten in der Größenordnung 10⁻⁶ bis 10⁻⁹.

Der Grundwasserflurabstand liegt zwischen 0,8 und 3,5 m, so dass lokal bzw. bei hohen Grundwasserständen mit halb gespannten bis gespannten Grundwasserverhältnissen gerechnet werden muss, d.h. die Basis des Lößlehms liegt z.T. im Grundwasserbereich bzw. in der wassergesättigten Zone.

6 Ergebnisse früherer Untersuchungen

In nachfolgender Tabelle sind die vor der aktuellen Untersuchung bekannten potentiellen Kontaminationsverdachtsflächen und das geplante Untersuchungsprogramm zusammenfassend dargestellt.

Tab. 1: Bisherige Untersuchungsergebnisse und geplantes Untersuchungsprogramm

Verdachtsfläche	Bisherige Untersuchungen	Ergeb	geplantes				
		Gelände	Labor	Untersuchungsprogramm			
1: Abwassersammelbecken nördl. Haupteingang	(M+P 1993, LZ 2004) Boden: 4 RKS, Analytik einer Mischprobe auf As, Schwermetalle, PAK, KW, PCB	Anschüttung (Boden mit Aschen und Schlacken) bis max. 1,8 m, keine sensorischen Auffälligkeiten	PAK 25 mg/kg, sonst keine erhöhten Gehalte	-			
2+13: Öltanks und Abscheide- vorrichtungen vor der Lackiererei (Paint Shop)	(M+P 1993, LZ 2004) Boden: 4 RKS, Untersuchung einer Probe des Betonbodens auf KW, Bodenluft: Untersuchung einer Probe auf BTEX und LHKW	Anschüttung (Boden mit Aschen, Schlacken, Bauschutt) bis max. 1,2 m, keine sensorischen Auffälligkeiten	erhöhter KW-Gehalt in der Betonprobe, LHKW und BTEX in der Bodenluft unauffällig	Boden: 2 RKS, Entnahme von Bodenproben, Analytik auf As, Schwermetalle, PAK, KW, PCB, Bodenluft: Untersuchung auf LHKW. BTEX			
3+17: A-Shop Dampfkessel	(M+P 1993, LZ 2004) Boden: 5 RKS, Analytik einer Probe auf As, Schwermetalle, PAK, KW sowie zweier Proben auf PAK, KW, Bodenluft: Untersuchung von 2 Proben auf BTEX und LHKW	Anschüttung (Boden/Bauschutt mit Aschen, Schlacken, bis max. 1,2 m, z.T. stechender Geruch	PAK in einer Probe mit 176 mg/kg erhöht, sonst keine erhöhten Gehalte, geringe LHKW-Konzentration in der Bodenluft, BTEX n.n.	Boden: 2 RKS, Entnahme von Bodenproben (ggf. headspace), Analytik auf As, Schwermetalle, PAK, KW, PCB, ggf. auf leicht- und mittelflüchtige organische Schadstoffe (GC-Übersicht), Bodenluft: GC-Übersicht, GW (direct push): GC-Übersicht			
4: A-Shop Generatorenprüfstand	(M+P 1993, LZ 2004) Boden: 5 RKS, Analytik von 3 Proben auf PAK, Untersuchung einer Betonbodenprobe auf KW, Bodenluft: Untersuchung von 5 Proben auf LHKW, z.T. BTEX	Anschüttung (Boden/Bauschutt mit Aschen, Schlacken, bis max. 1,6 m, z.T. PAK-Geruch	PAK in einer Probe mit 294 mg/kg deutlich erhöht, KW in der Betonprobe erhöht, Bodenluft mit erhöhten LHKW-Konzentrationen (bis 92 mg/m³), BTEX unauffällig	Boden: 3 RKS, Entnahme von Bodenproben (ggf. headspace), Analytik auf As, Schwermetalle, PAK, KW, PCB, ggf. auf leicht- und mittelflüchtige organische Schadstoffe (GC-Übersicht), Bodenluft: GC-Übersicht, GW (direct push): GC-Übersicht			
5: MKW-Schaden vor Garagen und Unterständen	(M+P 1992, LZ 2004) Boden: 5 RKS, Analytik einer Probe auf As, Schwermetalle, PAK, KW sowie 3 Proben auf KW, Bodenluft: Untersuchung von 2 Proben auf BTEX und LHKW	Anschüttung (Boden mit Aschen und Schlacken) bis max. 2,4 m, keine sensorischen Auffälligkeiten	KW in einer Anschüttungsprobe erhöht (2600 mg/kg), Schwermetalle z.T. erhöht	Boden: 2 RKS, Entnahme von Bodenproben, Analytik auf As, Schwermetalle, PAK, KW, PCB			

Tab. 1: Bisherige Untersuchungsergebnisse und geplantes Untersuchungsprogramm

Verdachtsfläche	Bisherige Untersuchungen	Ergeb	onisse	geplantes
		Gelände	Labor	- Untersuchungsprogramm
6: Parkplatz für Vertragsfirmen	(M+P 1992, 1993, LZ 2004) Boden: 13 RKS, Analytik einer Bodenprobe auf As, Schwermetalle, PAK, KW sowie von 5 Proben auf KW, einer Probe auf PAK	Anschüttung (Boden/Bauschutt mit Aschen, Schlacken, bis max. 2,0 m, oft kein Bohrfortschritt in 0,5-1,4 m Tiefe, z.T. stark aromatischer Geruch, z.T. schwacher PAK-Geruch	KW lokal gering erhöht (300 mg/kg), PAK z.T. leicht erhöht (39 mg/kg)	Boden: 2 RKS, Entnahme von Bodenproben (ggf. headspace), Analytik auf As, Schwermetalle, PAK, KW, PCB, ggf. auf leicht- und mittelflüchtige organische Schadstoffe (GC-Übersicht), Bodenluft: GC-Übersicht, GW (direct push): GC-Übersicht
7+19: Kanalsammelschacht von Lackiererei, C-Shop und Parkplatz	(M+P 1993, LZ 2004) Boden: 4 RKS, Analytik einer Mischprobe auf As, Schwermetalle, PAK, KW, PCB	Anschüttung (Boden mit Aschen, Schlacken, Bauschutt) bis max. 1,2 m, z.T. kein Bohrfortschritt in 0,6 m Tiefe, keine Auffälligkeiten	alles unauffällig	-
8: Lackiererei (Paint Shop)	(M+P 1993, LZ 2004) Boden: 5 RKS, Untersuchung des Betonbodens auf KW, EOX und extrahierbare lipophile Stoffe, Bodenluft: Untersuchung von 3 Proben auf BTEX und LHKW	Anschüttung (Schlacken, Aschen, Bauschutt) bis max. 2,8 m, keine sensorischen Auffälligkeiten	in der Probe des Betonbodens EOX und KW nicht nachweisbar, extrahierbare lipophile Stoffe erhöht (230 mg/kg), in der Bodenluft unauffällige BTEX- und LHKW-Gehalte	Boden: 3 RKS, Entnahme von Bodenproben, Analytik auf As, Schwermetalle, PAK, KW, PCB, Bodenluft: Untersuchung, auf leicht- und mittelflüchtige org. Schadstoffe (GC-Übersicht)
9: C-Shop	(M+P 1993, LZ 2004) Boden: 4 RKS, Analytik einer Probe auf KW, Bodenluft: Untersuchung von 2 Proben auf BTEX und LHKW	Anschüttung (Schlacken, Aschen, Bauschutt) bis max. 2,4 m, z.T. kein Bohrfortschritt in 0,6 m Tiefe keine sensorischen Auffälligkeiten	alle Konzentrationen im Bereich der Nachweisgrenze	Boden: 3 RKS, Entnahme von Bodenproben, Analytik auf As, Schwermetalle, PAK, KW, Bodenluft: Untersuchung auf leicht- und mittelflüchtige org. Schadstoffe (GC-Übersicht)
10: Bereich GWM 78054 (südl. Lehrwerkstatt)	(M+P 1992, LZ 2004) Boden: 5 RKS, Analytik von 4 Proben auf KW sowie einer Probe auf BTEX, GW: Untersuchung auf BTEX, LHKW, KW, Phenole, Arsen und Schwermetalle*	Anschüttung (Boden mit Aschen, Schlacken, Bauschutt) bis max. 1,7 m, keine sensorischen Auffälligkeiten	alle Konzentrationen in Boden- proben <nachweisgrenze, grund-<br="">wasser zeitweise erheblich BTEX- belastet (Abstrom ehem. Gas- werk), KW (Schöpfprobe) und Kupfer z.T. >Geringfügigkeits- schwelle, LHKW in Schöpfprobe in geringen Konzentrationen</nachweisgrenze,>	GW: weitere Untersuchungen

Tab. 1: Bisherige Untersuchungsergebnisse und geplantes Untersuchungsprogramm

Verdachtsfläche	Bisherige Untersuchungen	Ergeb	nisse	geplantes
		Gelände	Labor	- Untersuchungsprogramm
11: A-Shop – Entfettungs- und Entrostungsanlage, Säurebecken, Hauptwaschstelle mit Ablaufrinne	(M+P 1993, 1995, 2002, LZ 2004, Grüning 2008) Boden: mehr als 50 RKS, Analytik zahlreicher Bodenproben auf LHKW, Bodenluft: Untersuchung zahlreicher Proben auf LHKW, GW: mehrere Untersuchungen auf LHKW, z.T. BTEX, KW, Metalle, An- und Kationen	Bodenanschüttung bis max. 1 m, oft stechender Lösungsmittelgeruch bis mehr als 2,5 m Tiefe (gesättigte Zone), aufschwimmende MKW-Phase in der GWM 78058 (Zentrum Schadensherd)	hohe LHKW-Belastungen in Boden, Bodenluft und z.T. im Grundwasser (widersprüchliche Ergebnisse), hoher MKW-Gehalt in aufschwimmender MKW-Phase in GWM 78058, BTEX n.n.	Boden: 3 RKS und Entnahme von Bodenproben (z.T. headspace-), Analytik auf As, Schwermetalle, PAK, KW, PCB, LHKW, BTEX, Bodenluft: Untersuchung auf LHKW und BTEX (s. auch Fläche 12) GW: Beprobung von 4 Pegeln (davon 2 direct push) mit je 3 Beprobungstiefen, Untersuchung auf LHKW, z.T. BTEX, KW
12: Innenhof mit ehem. Farblager, Öltank und Abscheidervorrichtung der Entfettungs- und Entrostungs- anlage	(M+P 1993, 1995, 2002, Grüning 2008) Boden: 6 RKS, Analytik einer Probe des Betonbodens auf KW, Bodenluft: Untersuchung an 7 Stellen neben Entfettungsanlage (Fläche 11), GW: Untersuchung auf LHKW, z.T. BTEX, KW	Bodenanschüttung (z.T. mit Schlacken) bis max. 0,8 m, Lösungsmittelgeruch in Bodenluftmessstellen neben der Entfettungsanlage	hohe KW-Belastung im Betonboden, z.T. erhöhte LHKW-Gehalte im Grundwasser (widersprüchliche Ergebnisse), z.T. erhöhte LHKW-Gehalte in der Bodenluft (widersprüchliche Ergebnisse),	Boden: 5 RKS und Entnahme von Bodenproben (ggf. headspace), Analytik auf As, Schwermetalle, PAK, KW, PCB, ggf. GC-Übersicht auf leicht- und mittelflüchtige organische Schadstoffe, Bodenluft: Untersuchung auf LHKW und BTEX, GW: Beprobung von 8-9 Pegeln (davon 5-6 direct push) mit je 3 Beprobungstiefen, Untersuchung auf LHKW, z.T. BTEX, KW
14: A-Shop – gepl. Lackiererei und Härterei	(M+P 1993) Boden: 2 RKS ohne Analytik	Anschüttung (Boden, z.T. mit Bauschutt) bis max. 2,1 m	-	Boden: 8 RKS und Entnahme von Bodenproben, Analytik auf As, Schwermetalle, PAK, KW, PCB, Bodenluft: Untersuchung auf LHKW und BTEX

Tab. 1: Bisherige Untersuchungsergebnisse und geplantes Untersuchungsprogramm

Verdachtsfläche	Bisherige Untersuchungen	Ergeb	nisse	geplantes
		Gelände	Labor	- Untersuchungsprogramm
15: A-Shop – Montagegruben und 18: A-Shop – "flächendeckende" Untersuchung	(M+P 1993, LZ 2004) Boden: 10 RKS, Analytik einer Probe auf PCB und Phenole sowie von 3 Proben im Feststoff auf Arsen, Schwermetalle, PAK, PCB, Cyanide sowie im Eluat auf Arsen, Schwermetalle, Phenole, Chrom VI und Fluorid, Untersuchung von 2 Proben des Betonbodens auf KW	Anschüttung (Boden, z.T. mit Bauschutt, Schlacken) bis max. 3 m, z.T. kein Bohrfortschritt ab 1 m z.T. stechender Geruch im Löß	keine erhöhten Schadstoffgehalte in den Bodenproben, erhöhte KW-Gehalte in beiden Betonproben	Boden: 10 RKS, Entnahme von Bodenproben (ggf. headspace), Analytik auf As, Schwermetalle, PAK, KW, PCB, ggf. auf leicht- und mittelflüchtige organische Schadstoffe (GC-Übersicht), Bodenluft: GC-Übersicht, GW (direct push): GC-Übersicht
16: A-Shop – ehem. Standort eines Transformators	(M+P 1993): Boden: 3 RKS, Untersuchung einer Probe auf KW	Anschüttung (Boden / Bauschutt) bis max. 2 m, z.T. kein Bohrfortschritt ab 0,6 m	KW unauffällig	Boden: 2 RKS, Entnahme von Bodenproben, Analytik auf As, Schwermetalle, PAK, KW, PCB
20: Fasslager (Romney Huts)	(M+P 1992) Boden: 1 RKS westl., d.h. außerhalb des Fasslagers, keine Analytik	Anschüttung bzw. Platzbefestigung bis 1 m (Schlacke, Beton- und Asphalt-bruch)	-	Boden: 4 RKS, Entnahme von Bodenproben (ggf. headspace), Analytik auf As, Schwermetalle, PAK, KW, PCB, ggf. auf leicht- und mittelflüchtige organische Schadstoffe (GC-Übersicht), Bodenluft: GC-Übersicht, ggf. GW (direct push): GC- Übersicht
21: Abscheidevorrichtung NG 3 (nördl. C-Shop)	(M+P 1992) Boden: 2 RKS, Analytik einer Probe auf PAK und KW	Anschüttung (Bauschutt, Schlacken) bis 2,1 m, z.T. kein Bohrfortschritt ab 0,3 m	PAK und KW unauffällig	Boden: 2 RKS, Entnahme von Bodenproben, Analytik auf As, Schwermetalle, PAK, KW, PCB Bodenluft: Untersuchung auf LHKW. BTEX
22: "Flächenuntersuchung"	(M+P 1992) Boden: 1 RKS, keine Analytik	humose Bodenanschüttung bis 0,5 m	-	Boden: evtl. Entnahme von Mischproben nach BBodSchV und Analytik auf As, Schwermetalle, PAK, KW, PCB

Tab. 1: Bisherige Untersuchungsergebnisse und geplantes Untersuchungsprogramm

Verdachtsfläche	Bisherige Untersuchungen	Ergeb	onisse	geplantes Untersuchungsprogramm
		Gelände	Labor	ontersuchungsprogramm
25: Fettabscheider westlich der Zivilkantine	(M+P 1993) Boden: 1 RKS, keine Analytik	Anschüttung (Boden mit Bauschutt, Schlacken) bis 1,3 m	-	Boden: evtl. Entnahme von Mischproben nach BBodSchV und Analytik auf As, Schwermetalle, PAK, KW, PCB
26: A-Shop - Benzinwaschplatz	(M+P 1993) Boden: 2 RKS, keine Analytik	Anschüttung (Boden mit etwas Bauschutt, Schlacken) bis max. 2,4	-	Boden: 2 RKS, Entnahme von Bodenproben, Analytik auf As, Schwermetalle, PAK, KW, PCB Bodenluft: Untersuchung auf LHKW. BTEX

7 Untersuchungsprogramm und -methoden / Tätigkeitsbericht

Folgendes Untersuchungsprogramm wurde durchgeführt:

- 53 Rammkernsondierungen (davon 3 im Bereich des CKW-Schadens, 9 in der "Pollrichhalle" und 6 im dazugehörenden Innenhof sowie 3 im Bereich des Generatorenprüfstandes) bis ca. 5 m Tiefe zur Erkundung des Bodenaufbau, bes. im Hinblick auf Auffüllungen und sensorisch auffällige Bodenhorizonte bzw. Schichten und Entnahme von Bodenproben,
- 20 Grundwasseruntersuchungen in Rammkernbohrlöchern (direct push) zur Erkundung von Grundwasserbelastungen mit organischen Schadstoffen,
- Untersuchung des Grundwassers der vorhandenen Grundwassermessstellen auf die vor-Ort-Parameter pH-Wert, elektrische Leitfähigkeit, Redoxpotential und Sauerstoffgehalt sowie auf organische Schadstoffe, Arsen, Schwermetalle, Cyanide, Chlorid, Sulfat, Sulfid, Nitrat, Nitrit, Ammonium,
- Ausbau von 40 Rammkernbohrlöchern zu temporären Bodenluftmessstellen zur Beprobung der Bodenluft mittels Aktivkohle und Analytik auf leichtflüchtige organische Schadstoffe,
- Analytik 70 ausgewählter Bodenproben auf organische Schadstoffe sowie Arsen und Schwermetalle, sowie 15 weiterer Proben auf leichtflüchtige organische Schadstoffe.

8 Untersuchungsergebnisse

8.1. Darstellung der Untersuchungsergebnisse

Häufig wurden Auffüllungen bzw. Anschüttung bis ca. 1 m, in Ausnahmen bis ca. 3 m Tiefe (Boden, oft mit etwas Bauschutt, lokal Aschen, Schlacken, Bauschutt), z.T. gewachsene Böden (feinsandiger Schluff) unter einer fast überall vorhandenen Versiegelung angetroffen.

Deutliche sensorische Auffälligkeiten (Lösungsmittel-, Benzingeruch u.a.) wurden vor allem im LHKW- bzw. CKW-Schadensherd (ehem. Entfettungsanlage; RKS W01, W02 und W03), neben dem Abscheider im Innenhof (RKS W09) sowie im Bereich des Generatorenprüfstandes (RKS W42 und W43) in allen Fällen in der gesättigten, z.T. auch in der ungesättigten Bodenzone festgestellt (vgl. Anhang 3).

Die Ergebnisse der Boden-, Grundwasser- und Bodenluftuntersuchungen sind in den Tabellen und Karten im Anhang zusammenfassend im Vergleich mit entsprechenden Prüfwerten o.ä. dargestellt.

In der nachfolgenden Tabelle sind die durchgeführten Untersuchungen sowie die aktuellen Untersuchungsergebnisse hinsichtlich Schadstoffbelastungen zusammenfassend dargestellt:

Tab. 2: Aktuelle Untersuchungsergebnisse

Verda	chtsfläche	Unt	ersuchungsı	umfang	Ergebnisse der aktuellen Untersuchung						
Nr.	Art der Nutzung	RKS	Bodenluft	GW (direct push)							
2/13	Öltanks und Abscheide vorrichtungen vor der Lackiererei (Paint Shop)	2	1	1	im Bereich der Öltanks (RKS W 33) ohne bzw. keine nennenswerte Belastung, im Bereich des Abscheiders erhöhte Konzentrationen an BTEX und Naphthalin in direct-push-Grundwasserprobe (RKS W 34A)						
3 / 17	A-Shop Dampfkessel	2	2	1	erhöhte Gehalte an BTEX und Naphthalin in direct- push-Grundwasserprobe, vermutlich kleinräumiger Schaden						
4	A-Shop Generatorenprüfstand	3	3	3	Belastungsschwerpunkt mit weiterem Untersuchungs- bzw. Sanierungsbedarf: Grundwasser: BTEX >1000fache Überschreitung des Geringfügigkeitsschwellenwerts						
5	MKW-Schaden vor Garagen und Unterständen	2	-	-	ohne bzw. keine nennenswerte Belastung, d.h. kleinräumiger Schaden						
6	Parkplatz für Vertragsfirmen	2	2	1	ohne bzw. keine nennenswerte Belastung, d.h. kleinräumige Auffälligkeit						
8	Lackiererei (Paint Shop)	3	3	-	ohne bzw. keine nennenswerte Belastung						
9	C-Shop	3	3	-	ohne bzw. keine nennenswerte Belastung						
10	Bereich GWM 78054 (südl. Lehrwerkstatt)	-	-	-	erhöhte BTEX-Gehalte früherer Grundwasser- untersuchungen wurden nicht bestätigt						
11	A-Shop – Entfettungs- und Entrostungsanlage, Säure- becken, Hauptwaschstelle mit Ablaufrinne	3	3	3	Belastungsschwerpunkt mit weiterem Untersuchungs- bzw. Sanierungsbedarf: Bodenluft: CKW-Belastung z.T. >> Maßnahmenschwellenwert), Grundwasser: CKW und BTEX >1000fache Überschreitung der Geringfügigkeits- schwellenwerte						
12	Innenhof mit ehem. Farblager, Öltank und Abscheidevorrichtung der Entfettungs- und Entrostungsanlage	6	6	6	Belastungsschwerpunkt (Abscheidevorrichtung der Entfettungs- und Entrostungsanlage im südöstlichen Bereich des Innenhofs) mit weiterem Untersuchungs- bzw. Sanierungsbedarf						
14	A-Shop – gepl. Lackiererei und Härterei	9	5	1	überwiegend ohne bzw. keine nennenswerte Belastung, lokal (RKS W 14) leicht erhöhte CKW- Gehalte in der Bodenluft						
15 / 18	A-Shop – Montagegruben, Schweißplatz und "flächen- deckende" Untersuchung	10	5	1	erhöhte Gehalte an BTEX und Naphthalin in direct- push-Grundwasserprobe in RKS W46 neben einer Montagegrube, vermutlich kleinräumiger Schaden						
16	A-Shop – ehem. Standort eines Transformators	1	-	-	erhöhte PAK-Gehalte (120 mg/kg)						
20	Fasslager (Romney Huts)	4	4	2	leicht erhöhte Naphthalingehalte in direct-push- Grundwasserproben (RKS W23 und W25), vermutlich kleinräumiger Schaden						
21	Abscheidevorrichtung NG 3 (nördlich C-Shop)	2	2	1	leicht erhöhter BTEX-Gehalt in direct-push- Grundwasserprobe RKS W32, vermutlich kleinräumiger Schaden						
22	"Flächenuntersuchung"	-	-	-	in Abstimmung mit Fachbereich Umweltschutz und Entsorgung der Stadt MG wurde hier vorerst keine Mischprobenahme durchgeführt						
25	Fettabscheider westlich der Zivilkantine	-	-	-	in Abstimmung mit Fachbereich Umweltschutz und Entsorgung der Stadt MG wurde hier vorerst keine Mischprobenahme durchgeführt						
26	A-Shop - Benzinwaschplatz	1	1	-	ohne bzw. keine nennenswerte Belastung						

8.2 Beurteilung der Untersuchungsergebnisse / Gutachterliche Empfehlungen

8.2.1 Bewertungsgrundlagen

Für die Bewertung von Schadstoffgehalten im Boden ist in erster Linie die Bundes-Bodenschutzund Altlastenverordnung (BBodSchV 1999) relevant. Für das Untersuchungsgebiet REME-West sollen in erster Linie die Wirkungspfade Boden - Bodenluft und Boden - Grundwasser betrachtet werden. Der Wirkungspfad Boden - Mensch (Direktkontakt) ist aufgrund der weitgehenden Versiegelung sowie der aktuellen Nutzung nicht relevant. Zur Orientierung werden die Prüfwerte für Industrie- und Gewerbegrundstücke bzw. Park- und Freizeitanlagen herangezogen.

Die in der BBodSchV aufgestellten Prüfwerte gründen sich auf humantoxikologische Bewertungsmaßstäbe sowie die Annahmen über die Exposition von Menschen gegenüber Schadstoffen in Böden. In die Ableitung der Prüfwerte wurden kanzerogene Risiken quantifiziert miteinbezogen. Die Unterschreitung der Prüfwerte schließt mit hoher Wahrscheinlichkeit eine gesundheitliche Gefährdung aus.

Weitere Bewertungsgrundlage ist die LAGA-Liste (1997), zum einen hinsichtlich des Grundwasserschutzes bzw. der Einschätzung einer Grundwassergefährdung, zum anderen in abfallrechtlicher Relevanz im Hinblick auf potentielle Umgestaltungs- bzw. Sanierungsmaßnahmen. Die dort angegebenen Zuordnungswerte sind für eine Wiederverwertung von Bodenaushub festgelegt worden.

Je nach Belastung kann Bodenaushub uneingeschränkt (bei Einhaltung des Zuordnungswertes Z 0) oder mit bestimmten Einschränkungen (bei Einhaltung der Zuordnungswerte Z 1.1, Z 1.2 oder Z 2) unter Berücksichtigung u.a. der Nutzung und der hydrogeologischen Verhältnisse wiederverwertet werden.

Die Prüfwerte der BBodSchV (1997) sowie die LAGA-Zuordnungswerte sind in Tab. 4 in Anhang 2 den Feststoffergebnissen gegenübergestellt.

Für BTEX und LHKW in der Bodenluft schlägt die LAWA (1994) Prüf- sowie Maßnahmenschwellenwerte vor. Die Analysenergebnisse der untersuchten Bodenluftproben sind in Tab. 5 diesen Werten gegenübergestellt (vgl. Anhang 2).

Bewertungsgrundlage für den Wirkungspfad Boden-Grundwasser ist die Sickerwasserprognose (s. §2 Abs. 5 BBodSchV), genauer Eintragsprognose, die der Abschätzung der z.B. von einer Altablagerung ausgehenden Gefahren für das Grundwasser dient. Auf der Basis von Messergebnissen, Berechnungen oder Erfahrungswerten soll dabei ermittelt werden, ob die Schadstoffkonzentration im Sickerwasser bzw. im Kontaktgrundwasser am Ort der Beurteilung (Übergangsbereich von der ungesättigten zur gesättigten Bodenzone bzw. gesättigte Zone der Altablagerung) die Prüfwerte der BBodSchV (1999) übersteigt.

Außerdem kommen die Geringfügigkeitsschwellenwerte der LAWA (2004) zur Anwendung (vgl. Tab. 6, 7 und 9 in Anhang 2).

8.2.2 Wirkungspfade

8.2.2.1 Boden - Mensch (Direktkontakt)

Die Fläche ist fast vollständig versiegelt. Der Wirkungspfad Boden - Mensch (Direktkontakt) ist daher im Untersuchungsgebiet von sehr untergeordneter Bedeutung.

Mischprobenahmen im Bereich unversiegelter oder teilversiegelter Außenanlagen des REME-Geländes wurden in Abstimmung mit dem Fachbereich Umweltschutz und Entsorgung der Stadt Mönchengladbach deshalb vorerst nicht durchgeführt.

Die in den 70 untersuchten Bodenproben festgestellten Gehalte an Arsen, Schwermetallen und PAK sind meist unauffällig.

Die zur Orientierung herangezogenen Prüfwerte der Bundesbodenschutz- und Altlastenverordnung (BBodSchV) für Industrie- und Gewerbegrundstücke bzw. für Park- und Freizeitanlagen werden mit einer bzw. zwei Ausnahmen eingehalten (vgl. Tab. 4).

8.2.2.2 Boden – Grundwasser / Sickerwasser- bzw. Eintragsprognose

Eine Schadstoffverlagerung durch Sickerwasser war und ist im Untersuchungsgebiet aufgrund der weitgehenden Versiegelung kaum von Bedeutung. Einträge erfolgten eher über Handhabungsverluste, Überfüllungen und Leckagen im Bereich von Abscheidern, Abwasserleitungen etc.

Zur Erkundung der Schadstoffgehalte im Grundwasser wurden im Bereich der aus den Voruntersuchungen bekannten Kontaminations(verdachts)flächen sog. direct-push-Proben, d.h. Proben frisch nachgeflossenen Grundwassers aus Rammkernbohrlöchern, entnommen. Außerdem wurden die bestehenden Grundwassermessstellen beprobt.

Folgende Belastungsschwerpunkte mit erheblichem Gefährdungspotential sind bestätigt worden:

ehem. Entfettungsanlage (11) und dazugehörende, nördlich im Innenhof gelegene Abscheidevorrichtung (12): wie schon bei den vorhergehenden Untersuchungen waren schon bei den Rammkernsondierungen deutliche sensorische Auffälligkeiten (Lösungsmittel-, Benzingeruch u.a.) bis in die gesättigte Zone hinein zu verzeichnen. In den direct-push-Grundwasserproben sind sehr hohe LHKW-Gehalte (hauptsächlich 1,1,1-Trichlorethan und Abbauprodukte wie 1,1-Dichlorethan, Dichlormethan, lokal Vinylchlorid), mit z.T. mehr als 1000-facher Überschreitung des Geringfügigkeitsschwellenwertes (GFS) nach LAWA 2004 bzw. des Prüfwertes nach BBodSchV 1999 gemessen worden. Dazu kommen - besonders in RKS W03 - hohe Gehalte an BTEX, Naphthalin und leichtflüchtigen aliphatischen Kohlenwasserstoffen. Auch im nördlich gelegenen Innenhof wurden z.T. noch deutlich erhöhte LHKW-Konzentrationen festgestellt. Im Bereich der Abscheidevorrichtung (RKS W09) kommen außerdem sehr hohe Gehalte an leichtflüchtigen aliphatischen Kohlenwasserstoffen sowie deutlich erhöhte an BTEX und Naphthalin vor (vgl. Tab. 6).

Die LHKW-Konzentrationen in den Grundwasserproben (vom 18.03.2010) der Dauermessstellen im Umfeld der ehem. Entfettungsanlage waren dagegen bis auf eine Ausnahme unauffällig. Lediglich in der Messstelle 780058 im Schadensherd, die zudem einen Ölfilm auf dem Grundwasser zeigt, wurde in der Schöpfprobe eine erhöhte Konzentration an 1,1,1-

Trichlorethan (42 μ g/l) festgestellt, in der Pumpprobe ein erhöhter Kohlenwasserstoffindex ermittelt. Dieser Befund passt zu den teils widersprüchlichen Messergebnissen der 1,1,1-Trichlorethan-Gehalte im Grundwasser dieser Fläche (vgl. Tab. 8). Tendenziell nimmt die Konzentration besonders in der Messstelle 780058 von oft einigen 1000 μ g/l in der Zeit 1992 bis 2001 (jeweils in Schöpfproben) auf meist wenige 10er bis max. 181 μ g/l bzw. <Nachweisgrenze seit 2002 ab. Die Konzentrationen in Pumpproben waren schon immer deutlich niedriger (meist <100 μ g/l, max. 240 μ g/l). Erhebliche 1,1,1-Trichlorethan-Gehalte in benachbarten Messstellen wurden nur 1995 (GWM 780078 und 780079 mit 840 bzw. 110 μ g/l in der Schöpfprobe, <Nachweisgrenze in der Pumpprobe) und 2008 (GWM780130 (Pumpprobe 489 μ g/l, Schöpfprobe 230 μ g/l)) festgestellt.

Das könnte abgesehen von den sehr komplexen Vorgängen bei der Ausbreitung von DNLAP (dense non aquous phase liquid, zu Deutsch Schwerphase; vgl. z.B. STUPP 2001), zu denen die meisten LHKW gehören, u.a. folgende Ursachen haben:

Der anstehende, bis etwa 3 m Tiefe wasserungesättigte Lößlehm hat ein relativ hohes Rückhaltevermögen und die eingebrachte Menge an 1,1,1-Trichlorethan hat möglicherweise nicht zu einer Konzentration oberhalb der Residual- oder Restsättigung geführt, die z.B. für CKW in einem Sand bei ca. 30 l/m³ liegt. Aufgrund des hohen Dampfdruckes sowie der großen Dichte (1,34 g/cm³) von 1,1,1-Trichlorethan ist es sicher zu einer lateralen und vertikalen Ausbreitung und Verlagerung gekommen, aber die Grenze zur gesättigten Zone wurde möglicherweise nur lokal bzw. bevorzugt bei hohen Grundwasserständen überschritten, so dass es hier zu Lösungsvorgängen kommen konnte (Löslichkeit 1,1,1-Trichlorethan: 1,3 g/l). Bei der Durchteufung des belasteten Bodens durch die Brunnenbohrung wurden zusätzliche Wegsamkeiten geschaffen, so dass hier eine erhöhte Mobilisierung mit einem entsprechenden Schadstoffaustrag in die gesättigte Zone erfolgen konnte. Damit wären auch die hohen Konzentrationen in den direct-push-Proben erklärbar.

Das in der ungesättigten Bodenzone festgestellte Schadstoffinventar im den Bereichen der ehem. Entfettungsanlage und der zugehörenden Abscheidevorrichtung stellt neben dem bereits stattgefundenen Schadstoffeintrag in das Grundwasser auch zukünftig ein hohes Gefährdungspotential für das Schutzgut Grundwasser dar.

In der näheren Umgebung dieses Schadensherdes wurden in Grundwasserproben der Messstellen 780100 und 780101 Spuren von Tetrachlorethen (Per), das in der ehem. Entfettungsanlage nicht eingesetzt worden ist, nachgewiesen (vgl. Tab. 7 und 9).

Bereich des Genatorenprüfstandes (4): In den direct-push-Grundwasserproben sind sehr hohe Konzentrationen an BTEX (mehr als 1000-fache Überschreitung des Geringfügigkeitsschwellenwertes (GFS) nach LAWA 2004), Naphthalin und leichtflüchtigen aliphatischen Kohlenwasserstoffen in der gesättigten Zone bzw. im Grundwasserbereich ab ca. 3 m festgestellt worden. Hier haben Schadstoffeintrag in und -ausbreitung über das Grundwasser bereits stattgefunden. Der Eintragsort ist im Grundwasseranstrom zu erwarten, aber ebenso wie die laterale Ausdehnung des Schadensherdes nicht bekannt. Es muss jedoch mit einer weiteren Schadstoffverbreitung gerechnet werden.

Die bei vorherigen Untersuchungen in der Bodenluft gemessenen erhöhten LHKW-Konzentrationen konnten hier nicht bestätigt werden.

Neben den beiden größeren Belastungsschwerpunkten wurden kleinräumig erhöhte Schadstoffkonzentrationen in direct-push-Grundwasserproben aus folgenden Bereichen festgestellt, in denen mit einem kleinräumig erhöhten Gefährdungspotential für das Grundwasser zu rechnen ist:

- Abscheidevorrichtung vor der Lackiererei (Paint Shop) (2): erhöhte Konzentrationen an BTEX und Naphthalin in direct-push-Grundwasserprobe (RKS W 34A)
- Bereich des Dampfkessels, A-Shop (3/17): erhöhte Gehalte an BTEX und Naphthalin in directpush-Grundwasserprobe,
- Montagegruben A-Shop (15/18): erhöhte Gehalte an BTEX und Naphthalin in direct-push-Grundwasserprobe in RKS W46 neben einer Montagegrube,
- Fasslager (Romney Huts) (20): leicht erhöhte Naphthalingehalte in direct-push-Grundwasserproben (RKS W23 und W25),
- Abscheidevorrichtung NG 3 (nördlich C-Shop) (21): leicht erhöhter BTEX-Gehalt in directpush-Grundwasserprobe RKS W32.

Die Schadstoffkonzentrationen in den Grundwasserproben der Dauermessstellen außerhalb des CKW-Schadenbereiches sind weitgehend unauffällig. Lediglich in der Messstelle 780061 wurde ein Benzolgehalt von 1 μ g/l, das entspricht dem Geringfügigkeitsschwellenwert (GFS) nach LAWA 2004), festgestellt. In 3 Messstellen wurden Zinkgehalte geringfügig über GFS gemessen.

8.2.2.3 Boden - Bodenluft

Die Ergebnisse der Bodenluftuntersuchungen deuten ebenfalls auf die genannten Schadensherde. Die mit Abstand höchste LHKW-Konzentration (ausschließlich 1,1,1-Trichlorethan) wurde mit 36000 mg/m³ (mehr als 700-fache Überschreitung des Maßnahmenschwellenwertes nach LAWA 1994) im Bereich der ehemaligen Entfettungsanlage gemessen (vgl. Abb. 4 und Tab. 5). Sie liegt damit in der Größenordnung bereits früher ermittelter Gehalte (Prof. Mull & Partner 1995).

In den anderen Bereichen sind die Ergebnisse sowohl für BTEX als auch für LHKW meist unauffällig und liegen weit unter den LAWA-Prüfwerten (1994). Vereinzelt wird hier der Prüfwertbereich erreicht, aber nicht überschritten.

Ein erhöhtes Gefährdungspotential besteht hier nicht.

8.2.2.4 Abfallrechtliche Kategorisierung

Abfallrechtlich ist das beprobte Anschüttungsmaterial nach den vorliegenden Ergebnissen meist als Z0 bis Z2 (d.h. Wiederverwertung möglich), nur in 4 Proben als >Z2 nach LAGA einzustufen:

A-Shop:

- RKS W 07: Bereich Montagegruben: 1200 mg/kg Blei, 160 mg/kg PAK in 110-210 cm Tiefe,
- RKS W 48: ehem. Transformatorstandort: 120 mg/kg PAK (n. EPA) in 15-120 cm Tiefe,
- RKS W 53: Schweißplatz: 3800 mg/kg Chrom in 20-120 cm Tiefe.

Parkplatz (Verdachtsfläche 6):

RKS W 30: 630 mg/kg Kupfer in 25-110 cm Tiefe.

Zur Festlegung des endgültigen Entsorgungsweges sollte entsprechender Aushub repräsentativ beprobt und im Feststoff und Eluat nach LAGA Bauschutt und ggf. DepV analysiert werden.

8.2.3 Handlungsempfehlungen

Die festgestellten Schadstoffkonzentrationen, insbesondere der leichtflüchtigen organischen Schadstoffe, stellen ein hohes Gefährdungspotential für das Schutzgut Grundwasser dar, so dass davon auszugehen ist, dass in Teilbereichen eine Sanierung durchgeführt werden muss.

Nach den bisherigen Ergebnissen zeichnen sich folgende Sanierungsgebiete ab:

- der bekannte LHKW-Schadensherd im Bereich der ehem. Entfettung und der dazu gehörende Abscheider im nördlich benachbarten Innenhof. Eine Sanierungsmöglichkeit ist der Austausch der belasteten Böden. Dabei wäre Teilabriss der Halle unumgänglich.
- der ehem. Generatorenprüfstand. Zur Abgrenzung der Kontaminationen und ggf. der Sanierungsbereiche sind hier insbesondere im Umfeld weitere Untersuchungen erforderlich.
 Im Falle eines evtl. erforderlichen Bodenaustausches ist auch hier mit einem Teilabriss der Gebäude zu rechnen.

Vor der Durchführung von Sanierungen muss in jedem Fall eine **Sanierungsuntersuchung** durchgeführt sowie ein **Sanierungsplan** nach §13 BBodSchG (inkl. Arbeits- und Sicherheitsplan) erstellt werden.

Für alle anderen Bereiche ist nach den vorliegenden Erkenntnissen keine Sanierung nötig, eine gewerbliche Nutzung problemlos möglich. Bei allen Entsiegelungs- und Baumaßnahmen auf dem Gelände ist jedoch eine fachgutachterliche Begleitung erforderlich, da weitere, bisher nicht erfasste Schadstoffnester nicht mit Sicherheit ausgeschlossen werden können.

Im Falle einer Umnutzung in ein Wohngebiet muss neben der erforderlichen vollständigen Entsiegelung von einem flächendeckenden Bodenaustausch bis mind. 60 cm Tiefe oder einer Bodenüberdeckung mit mind. 60 cm sauberem Boden (Z 0) ausgegangen werden.

9 Schriften- und Kartenverzeichnis

Ad-hoc-Arbeitsgruppe Boden (2005): Bodenkundliche Kartieranleitung, 5. Aufl., Hannover.

AK STADTBÖDEN (1989): Kartierung von Stadtböden. - UBA-Texte 18/89, Berlin.

Bundes-Bodenschutz- und Altlastenverordnung (BBodSchV) (1999).

Geologisches Landesamt Nordrhein-Westfalen (Hrsg.; 1978): Bodenkarte von Nordrhein-Westfalen 1:50.000, Blatt L 4704 Krefeld; - Krefeld.

Grüning Consulting GmbH (2008a): "Gutachterliche Stellungnahme mit Massen- und Kostenschätzung" im Auftrag der H. & J. Jessen Baugesellschaft mbH & Co. KG.

Grüning Consulting GmbH (2008b): "Gutachterliche Stellungnahme: Untersuchungen einer Bodenverunreinigung mit LCKW. - Projekt: Erschließung des ehemaligen REME-Geländes Lürriper Straße in Mönchengladbach" im Auftrag der H. & J. Jessen Baugesellschaft mbH & Co. KG.

Königlich Preußische Geologische Landesanstalt (1912): Geologische Karte von Preußen und benachbarten Bundesstaaten 1:25.000, Blatt 4804 (neu) Mönchen-Gladbach; - Berlin.

Königlich Preußische Geologische Landesanstalt (1917): Geologische Karte von Preußen und benachbarten Bundesstaaten 1:25.000, Blatt 4704 (neu) Viersen; - Berlin.

LAGA - Länderarbeitsgemeinschaft Abfall (1994): Anforderungen an die stoffliche Verwertung von mineralischen Reststoffen / Abfällen - Technische Regeln.

LAWA - Länderarbeitsgemeinschaft Wasser (2004): Ableitung von Geringfügigkeitsschwellenwerten für das Grundwasser, Düsseldorf

LUA - Landesumweltamt Nordrhein-Westfalen (2002): Vollzugshilfe zur Gefährdungsabschätzung "Boden-Grundwasser". Hinweise zur Untersuchung und Bewertung von Grundwassergefährdungen durch Altlasten nach Bodenschutzrecht. - Materialien zur Altlastensanierung und zum Bodenschutz, Bd. 17; Essen.

LZ Umwelttechnik-Ingenieurberatungs GmbH (2004a): "Zusammenfassende Stellungnahme zur Altlastensituation auf dem ehemaligen Militärstützpunkt der britischen Rheinarmee in Mönchengladbach, Lürriper Straße 400" im Auftrag der Fa. J. Rettenmaier & Söhne GmbH & Co. KG.

LZ Umwelttechnik-Ingenieurberatungs GmbH (2004b): "Abschließende Bewertung - Stellungnahme zu den ergänzenden Boden-, Bodenluft- und Grundwasseruntersuchungen auf dem ehemaligen Militärstützpunkt der britischen Rheinarmee und dem Grundstück Rettenmaier II in Mönchengladbach, Lürriper Straße 400" im Auftrag der Fa. J. Rettenmaier & Söhne GmbH & Co. KG.

Prof. Mull und Partner (1992): Gefährdungsabschätzung "Ehemalige Liegenschaft der Britischen Rheinarmee - Westlicher Teilbereich - in MG-Lürrip" im Auftrag der Fa. CFF Cellulose Füllstoff Fabrik.

Prof. Mull und Partner (1993): Gefährdungsabschätzung "Ehemalige Liegenschaft der Britischen Rheinarmee - Nördlicher Teil - in MG-Lürrip" im Auftrag der Stadt Mönchengladbach, Umweltschutzamt.

Prof. Mull und Partner (1995): Konzeptionelle Sanierungsplanung "der ehemaligen Liegenschaft REME - Rhine Workshop - der Britischen Rheinarmee in MG-Lürrip" im Auftrag der Stadt Mönchengladbach, Umweltschutzamt.

Prof. Mull und Partner (2002): Sanierungsuntersuchung für den Bereich der Entfettungsanlage des Altstandortes REME Rhine Workshop in Mönchengladbach-Lürrip; Auftraggeber: Stadt Mönchengladbach, Umweltschutzamt.

Stadt Mönchengladbach, Umweltschutzamt (1992): Orientierende Erfassung von Altlastenverdachtsflächen auf dem Gelände der ehemaligen Liegenschaft der Britischen Rheinarmee.

Stupp, H. D. (2001): DNAPL in Boden und Grundwasser – Verhalten von LCKW und PAK-Ölen, in Handbuch der Altlastensanierung, 27. Erg.-Lfg. 12/2001

Bochum, 11. Juni 2010

Dipl.-Geologe, Dipl.-Geograph E. Heitkemper

Dipl.-Geograph Manfred Dorsch

Anhang 1

Abbildungen



Abb. 1: Lage des Untersuchungsgebietes im Stadtgebiet von Mönchengladbach

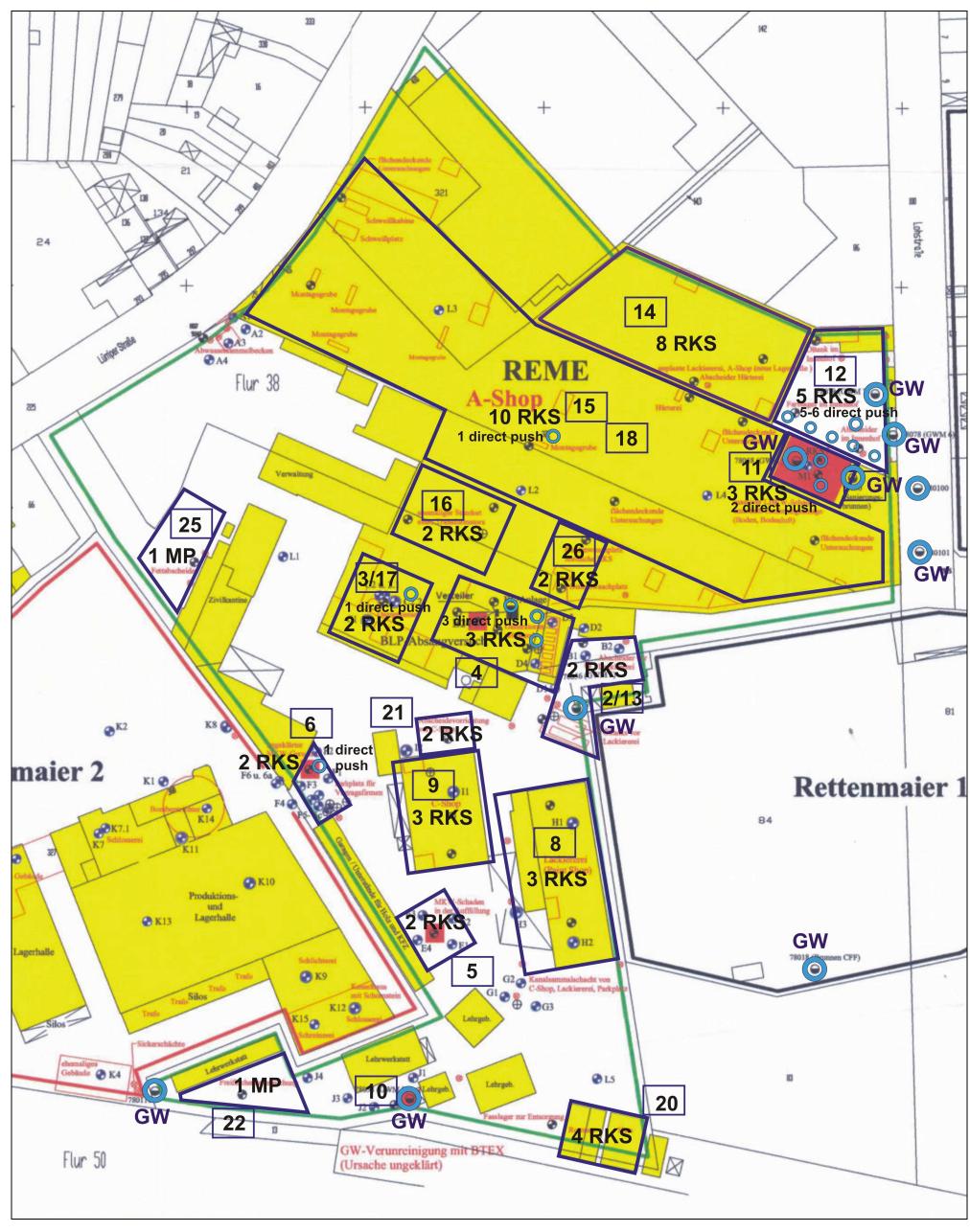
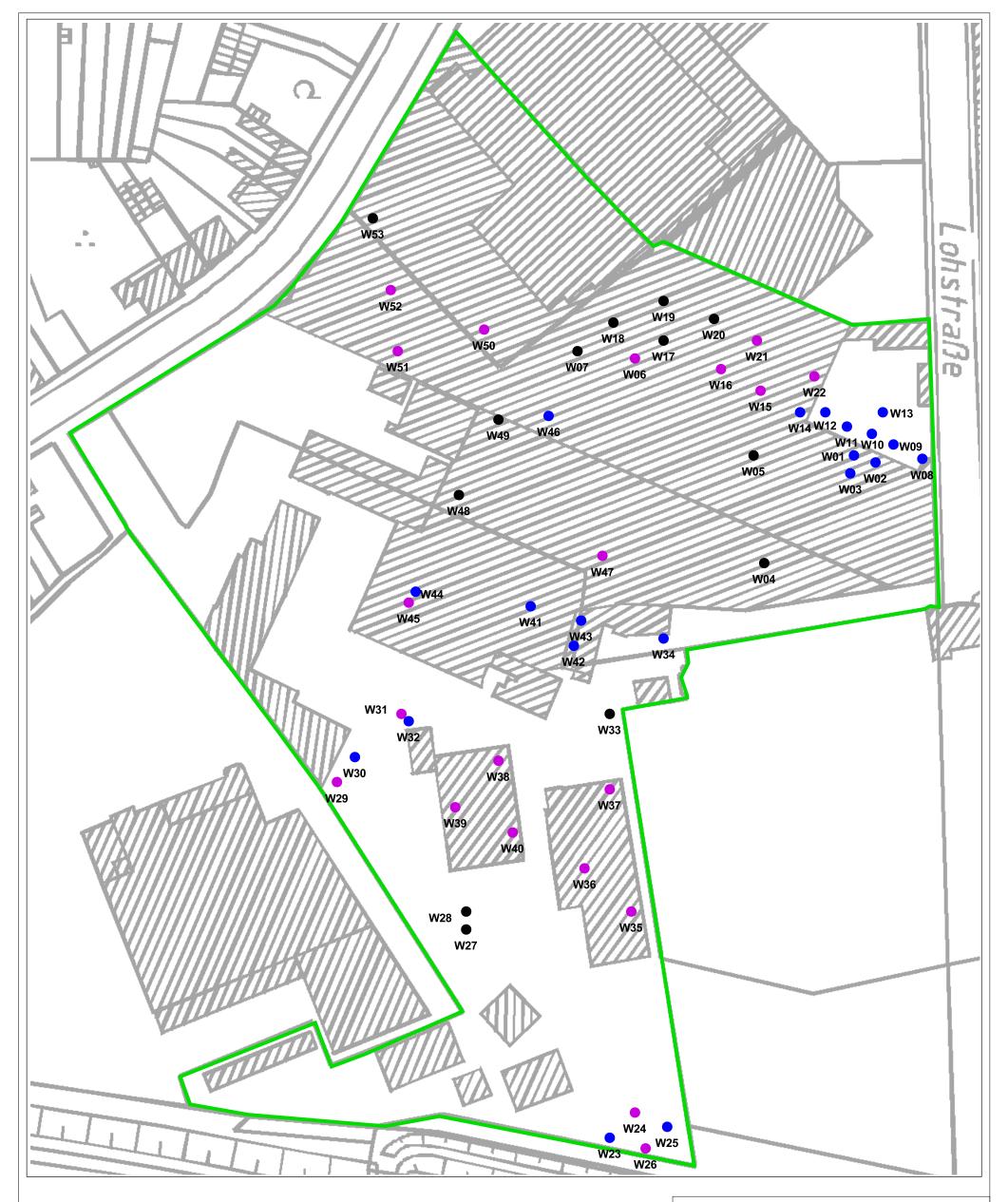



Abb. 2: Lageplan der Kontaminationsverdachtsflächen und Untersuchungsprogramm (Kartengrundlage LZ 2004b, Grüning 2008a)

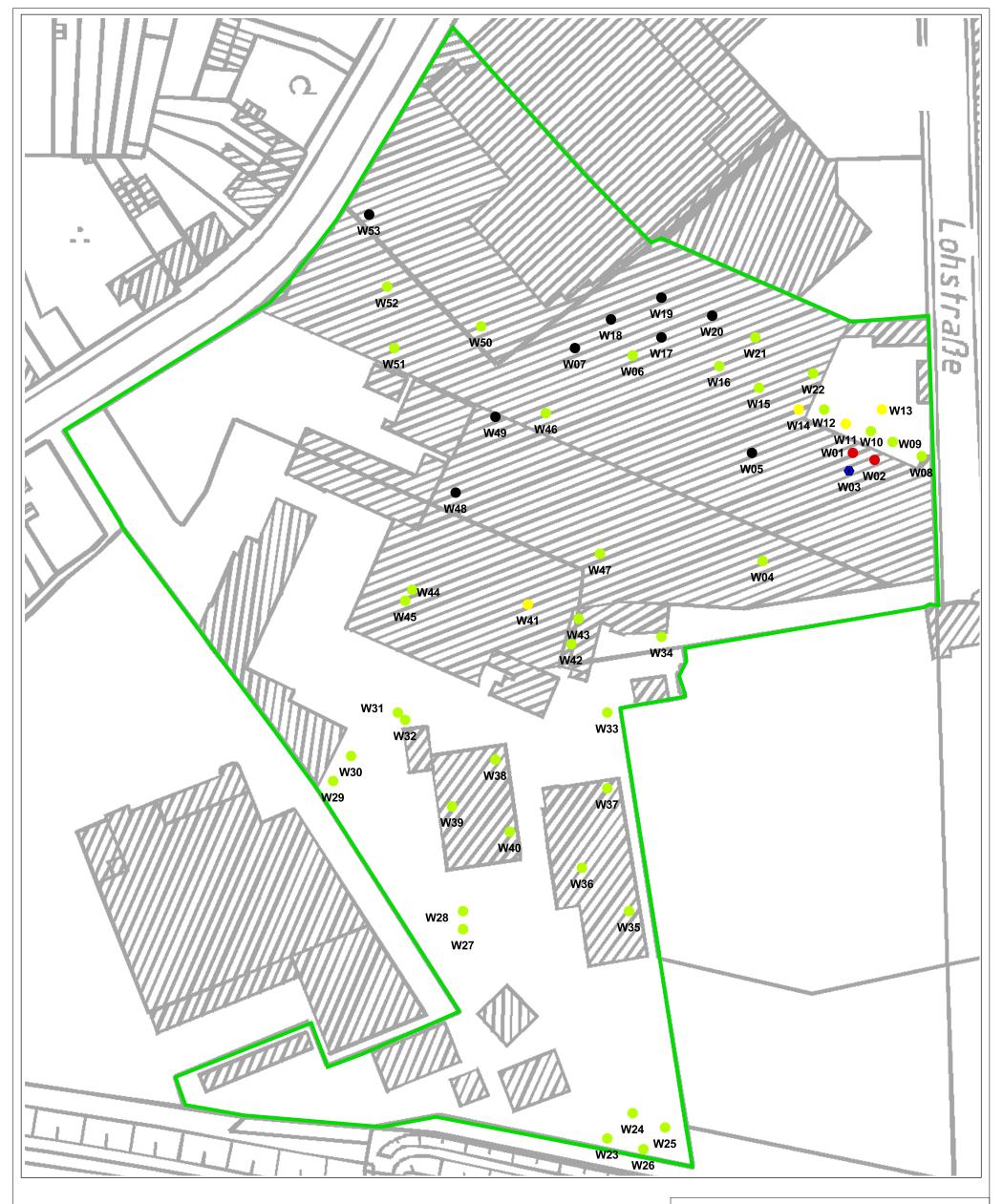
Legende

- RKS (Rammkernsondierung)
- RKS + Bodenluftuntersuchung
- RKS + Bodenluft- und Grundwasseruntersuchung

Grenze des Untersuchungsgebietes

Auftraggeber:

Stadt Mönchengladbach, Fachbereich Umweltschutz und Entsorgung


Boden · Wasser · UVS · Abfall · Altlasten

Kurfürstenstr. 12, 44791 Bochum, Tel. : 0234 / 583838, Fax : 0234 / 583839

Abb. 3: Lageplan der Rammkernsondierungen, temporären Bodenluftmessstellen und direct-push-Grundwasserentnahmen

Die digitalen Karten wurden von der Stadt Mönchengladbach bereit gestellt.

CKW / BTEX-Belastung Bodenluft

- >>Maßnahmenschwellenwert
- >Maßnahmenschwellenwert
- Bereich Prüfwert
- <Prüfwert</p>
- RKS ohne Bodenluftuntersuchung

Prüfwert / Maßnahmenschwellenwert nach LAWA 1994

Grenze des Untersuchungsgebietes

uftraggeber:

Stadt Mönchengladbach, Fachbereich Umweltschutz und Entsorgung

Boden · Wasser · UVS · Abfall · Altlasten

Kurfürstenstr. 12, 44791 Bochum, Tel. : 0234 / 583838, Fax : 0234 / 583839

Abb. 4: CKW- und BTEX-Gehalte in der Bodenluft

Die digitalen Karten wurden von der Stadt Mönchengladbach bereit gestellt.

CKW-Belastung Grundwasser

- >1000-fache Überschreitung GFS
- >100-fache Überschreitung GFS
- >10-fache Überschreitung GFS
- >1-fache Überschreitung GFS
- keine Überschreitung GFS
- RKS ohne Grundwasseruntersuchung

GFS = Geringfügigkeitsschwellenwert (LAWA 2004): 20 µg/l

 \sim

Grenze des Untersuchungsgebietes

uftraggeber:

Stadt Mönchengladbach, Fachbereich Umweltschutz und Entsorgung

Boden · Wasser · UVS · Abfall · Altlasten

Kurfürstenstr. 12, 44791 Bochum, Tel. : 0234 / 583838, Fax : 0234 / 583839

Abb. 5: CKW-Gehalte in direct-push-Grundwasserproben

Die digitalen Karten wurden von der Stadt Mönchengladbach bereit gestellt.

BTEX-Belastung Grundwasser

- >1000-fache Überschreitung GFS
- >100-fache Überschreitung GFS
- >10-fache Überschreitung GFS
- >1-fache Überschreitung GFS
- keine Überschreitung GFS
- RKS ohne Grundwasseruntersuchung

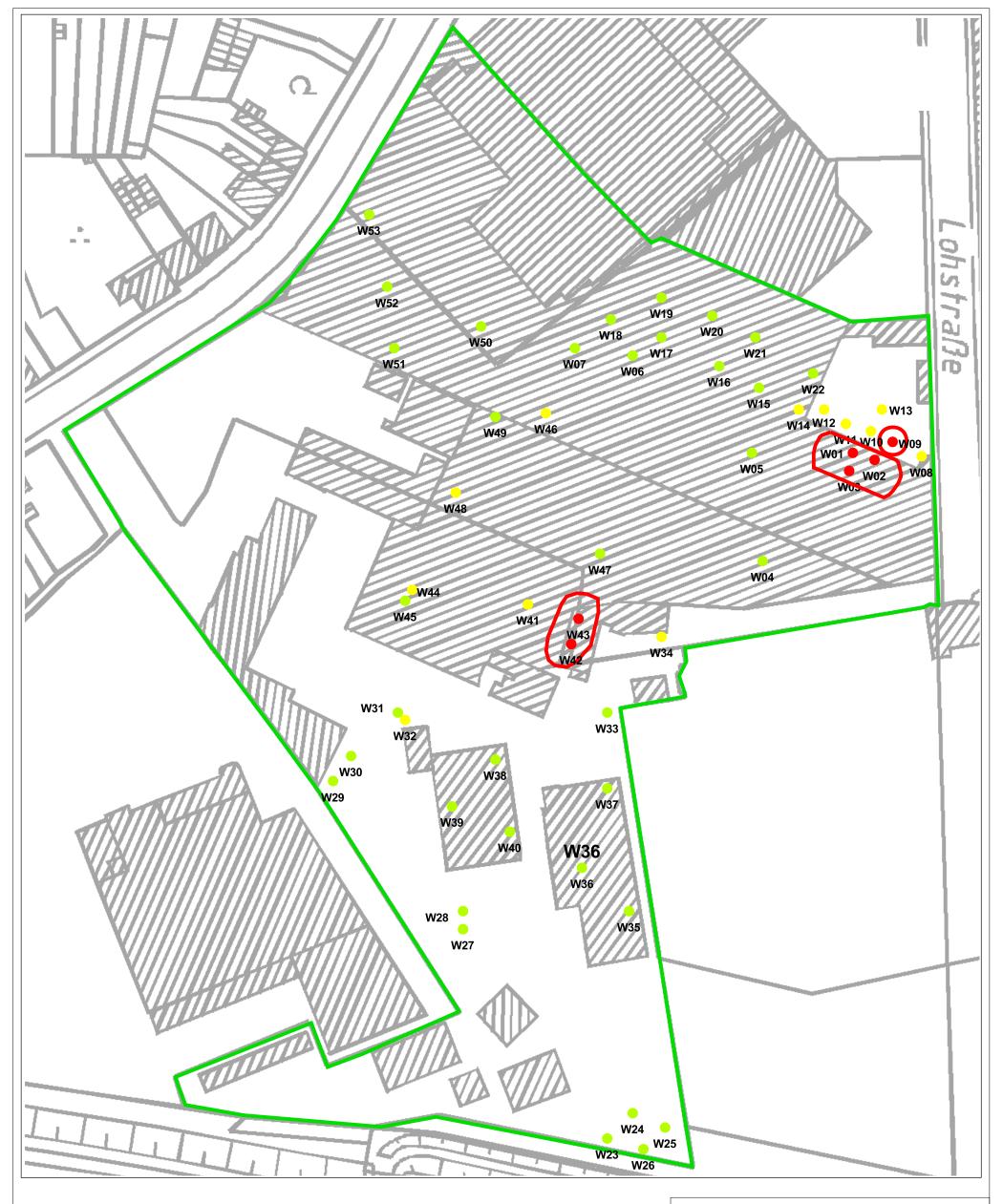
GFS = Geringfügigkeitsschwellenwert (LAWA 2004): 20 μg/l

N

Grenze des Untersuchungsgebietes

uftraggeber:

Stadt Mönchengladbach, Fachbereich Umweltschutz und Entsorgung


Boden · Wasser · UVS · Abfall · Altlasten

Kurfürstenstr. 12, 44791 Bochum, Tel. : 0234 / 583838, Fax : 0234 / 583839

Abb. 6: BTEX-Gehalte in direct-push-Grundwasserproben

Die digitalen Karten wurden von der Stadt Mönchengladbach bereit gestellt.

Rammkernsondierung (W01-W53)

- mit sehr hoher Belastung an organ. Schadstoffen
- mit erhöhter Schadstoffbelastung
- ohne bzw. keine nennenswerte Belastung

Belastungsschwerpunkte (weiterer Untersuchungs- bzw. Sanierungsbedarf)

Grenze des Untersuchungsgebietes

uftraggeber:

Stadt Mönchengladbach, Fachbereich Umweltschutz und Entsorgung

Boden · Wasser · UVS · Abfall · Altlasten

Kurfürstenstr. 12, 44791 Bochum, Tel. : 0234 / 583838, Fax : 0234 / 583839

Abb. 7: Belastungsschwerpunkte

Die digitalen Karten wurden von der Stadt Mönchengladbach bereit gestellt.

Abb. 8: Überregionale Grundwassergleichen 1955 – 2007 (Maßstab ca. 1:6000)

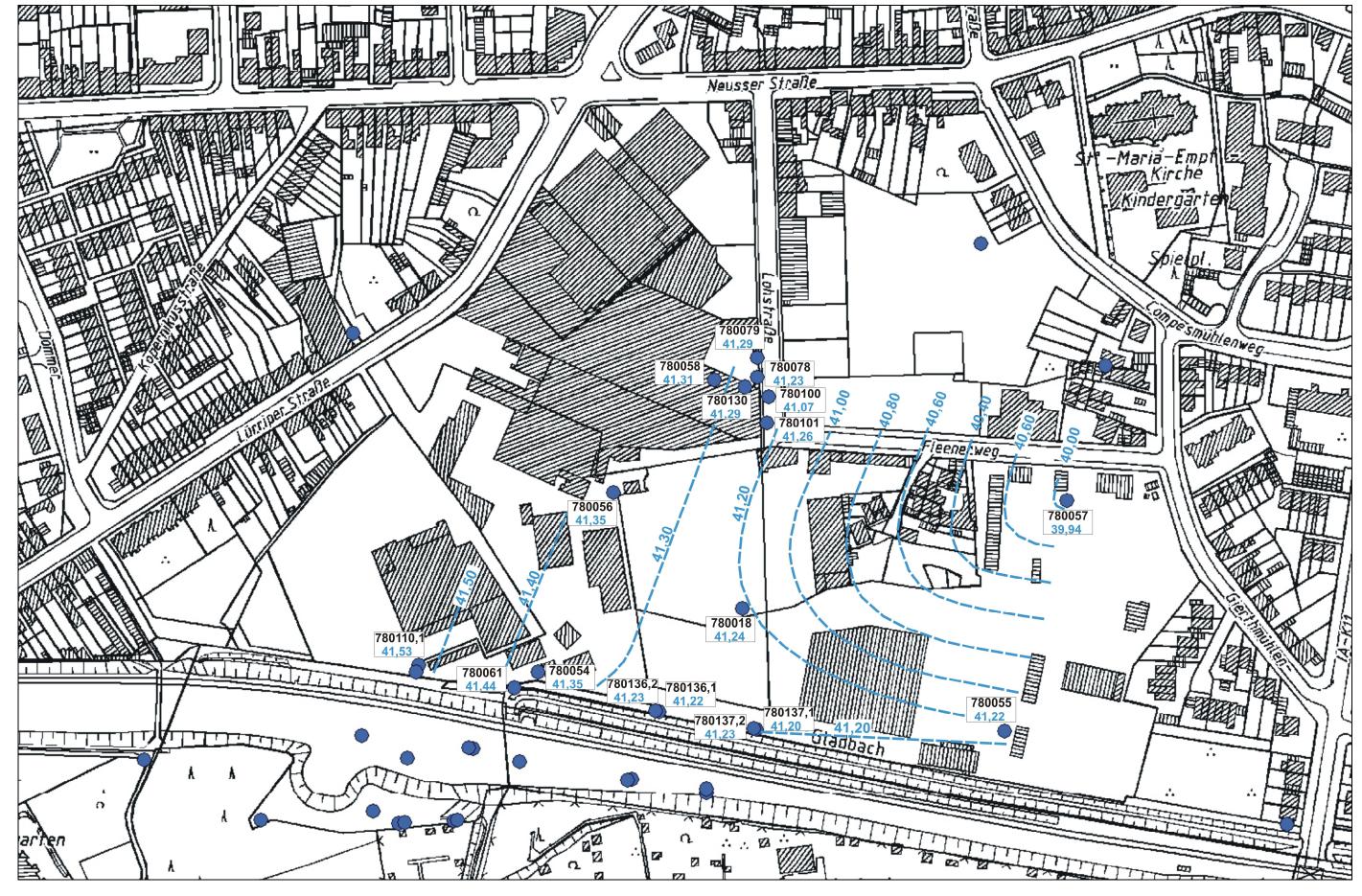


Abb. 9: Grundwassergleichen 09.02.2010 (Maßstab ca. 1:2500)

Anhang 2

Tabellen

Tab. 3: Grundwasserstände der Stichtagsmessung am 09.02.2010

GW-Messtelle (alte Bezeichnung in Klammern)	Tiefe	Quartär- mächtigkeit (m)	Höhe ROK/ Messpunkt (m ü.NN)	Höhe GOK (m ü.NN)	GW unter ROK (m)	Höhe GW (m ü.NN)
780018	15,8		44,61	43,81	3,37	41,24
780054 (GWMS 2)	11,3	11,1	44,09	43,72	2,74	41,35
780055 (GWMS 1)	13	12,4	43,13	43,19	1,91	41,22
780056 (GWMS 3)	11,2	11,3	44,63	44,11	3,28	41,35
780057 (GWMS 4)	11,5	11,7	43,53	43,61	3,59	39,94
780058 (GWMS 5)	11	10,9	44,52	44,02	3,21	41,31
780061	5	>5	44,17	43,75	2,73	41,44
780078 (GWMS 6)	13,3	13,5	43,91	44,04	2,68 ¹⁾	41,23
780079 (GWMS 7)	13,3	12,7	43,93	44,10	2,64 ¹⁾	41,29
780100	15	>15	44,16	44,29	3,09	41,07
780101	14,3	13,9	44,28	44,39	3,02	41,26
780110	11,6	>12	44,27	43,43		
780110,1	11,6	>12,5	44,07	43,5	2,54	41,53
780130	12,5	12	43,86	43,99	2,57	41,29
708136-1	6,2		44,14	43,53	2,92	41,22
708136-2	12,3		44,15	43,49	2,92	41,23
708137-1	7,4		44,04	43,34	2,84	41,20
708137-2	13		43,95	43,34	2,72	41,23

Tab. 4: Feststoffanalysenergebnisse REME-Gelände West, Lürriper Str. 400 in Mönchengladbach-Lürrip, Prüfwerte BBodSchV (1999) sowie Zuordnungswerte nach LAGA (1997)

Proben-Nr.	Standort	Tiefe	Charakterisierung /	pH-Wert	As	Pb	Cd	Cr	Cu	Ni	Hg	Zn	PAK	Naph.	BaP		KV	N _		LHKW	ВТЕХ	РСВ
		(cm)	Bemerkungen													Index	LAK C1-C9	C10- C22	C22- C40			
							•						mg/kg	•	l .			•	•			
MP (W01/1, W01/2, W01/3)		15-240	Quartär	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0,050	<0,050	-
W01/4		240-300	Quartär / chemischer Geruch	8,1	5,5	25	<0,20	72	15	35	<0,050	92	1,9	<0,01	0,13	300	-	200	96	0,058	<0,050	0,11
MP (W01/5, W01/6)		300-430	Quartär / chemischer Geruch	-	ı	-	-	ı	ı	-	-	-	-	-	-	-	2,5	-	-	<0,050	<0,050	-
MP (W02/1, W02/2, W02/3)	A-Shop (Entfettungs- und	15-260	Quartär / KW-Geruch	-	ı	-	-		-	-	-	-	-	-	-	-	0,11	=	-	<0,050	<0,050	-
W02/4	Entrostungsanlage,	260-320	Quartär / Benzingeruch	8,16	1,4	7,1	<0,20	15	5,7	9,8	<0,050	45	0,88	<0,010	0,12	<100	-	<100	<100	<0,010	<0,050	n.b.
W02/5	Säurebecken)	320-430	Quartär / Benzingeruch	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0,050	<0,050	-
W03/1		25-110	Auffüllung / Benzin-, KW-Geruch	=	-	-	-		=	-	-	-	-	-	-	-	65	=	-	7,2	1,8	-
MP (W03/2, W03/3)		110-260	Quartär / KW-Geruch	6,89	4,5	16	0,82	60	20	33	<0,050	86	2,6	0,77	0,26	<100	48	<100	<100	0,38	0,32	n.b.
W03/4		260-330	Quartär / KW-Geruch	7,49	1,1	5,4	<0,20	11	3,0	7,0	<0,050	43	0,29	0,16	<0,10	180	10	180	<50	0,39	<0,050	n.b.
MP (W03/5, W03/6)		330-500	Quartär / schwacher KW-Geruch	-	ı	-	1	ı	ı	-	-	-	-	1	-	-	-	-	-	<0,005	<0,005	-
W04/1	A-Shop	15-60	Auffüllung	8,46	5,8	18	<0,20	15	6,5	9,6	<0,050	68	2,7	0,041	0,34	<100	-	<100	<100	-	-	n.b.
W05/1		16-120	Quartär	6,31	5,7	9,2	<0,20	24	49	15	<0,050	51	1,2	<0,010	0,12	<100	-	<100	<100	-	-	n.b.
W06/1	A Ob an	20-110	Auffüllung	7,19	8,7	58	0,22	110	40	19	0,21	110	5,7	0,017	0,50	<100	-	<100	<100	-	-	n.b.
W06/2	A-Shop (Montagegruben)	110-200	Auffüllung	7,04	25	780	0,73	31	130	34	1,1	510	10,0	0,29	0,57	<100	-	<100	<100	-	-	n.b.
W07/1	(agegraze)	20-110	Auffüllung	7,15	7,2	60	<0,20	50	39	24	0,25	93	2,8	0,046	0,25	<100	-	<100	<100	-	-	n.b.
W07/2		110-210	Auffüllung	7,48	40	1200	1,3	38	200	44	1,0	520	160	2,7	8,3	<100	-	<100	<100	-	-	n.b.
Bewertungsgrundlag	en												mg/kg									
BBodSchV (1999)																						
Prüfwerte Park- und Fi	reizeitanlagen			-	125	1000	50	1000		350	50	ı	-	-	10		-			-	-	2
Prüfwerte Industrie- ur	nd Gewerbegrundstücke			-	140	2000	60	1000	-	900	80	-	-	-	12		-			-	-	40
LAGA (1997);			Z 0	-	20	100	0,6	50	40	40	0,3	120	1/1	-	-	- 100				1	1	0,1
	enaushub und Bauschutt		Z 1.1		30	200	1	100	100	100	1	300	5/5 (20) ²	0,5	0,5		30	0		3	10	0,5
	Z 1.2			-	50	300	3	200	200	200	3	500	15/15 (50) ²	1	1		50	0		10	30	2,5
	Z 2			-	150	1000	10	600	600	600	10	1500	20/75 (100) ²	-	-		100	00		15	100	5

Tab. 4: Feststoffanalysenergebnisse REME-Gelände West, Lürriper Str. 400 in Mönchengladbach-Lürrip, Prüfwerte BBodSchV (1999) sowie Zuordnungswerte nach LAGA (1997) (Forts.)

Proben-Nr.	Standort	Tiefe	Charakterisierung /	pH-Wert	As	Pb	Cd	Cr	Cu	Ni	Hg	Zn	PAK	Naph.	BaP		KV	1		LHKW	BTEX	РСВ
		(cm)	Bemerkungen													Index	LAK C1-C9	C10- C22	C22- C40			
													mg/kg									
W08/1		20-80	Auffüllung / Benzin-, KW-Geruch	8,66	16	91	0,34	67	38	51	<0,050	200	0,86	0,037	0,060	<100	2,7	<100	<100	<0,050	<0,050	n.b.
W09/1		20-130	Quartär / Benzin-, KW-Geruch	-	-	-	-	-	-	-	-	-	-	-	-	-	1,1	-	-	<0,050	<0,050	-
MP (W09/2, W09/3)		130-330	Quartär / Benzin-, KW-Geruch	7,99	5,4	21	<0,20	42	16	39	<0,050	95	1,8	<0,010	0,16	<100	0,68	<100	<100	<0,050	<0,050	n.b.
W09/4	Innenhof (mit ehemaligem	330-420	Quartär / leichter Benzingeruch	-	i	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0,050	<0,050	-
W09/5	Farblager, Öltanks, Abscheidern)	420-500	Quartär / leichter chemischer Geruch	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0,050	<0,050	-
W10/1		30-70	Auffüllung	8,16	2,9	7,0	<0,20	23	6,4	12	<0,050	48	0,43	<0,010	0,054	<100	-	<100	<100	-	- '	n.b
MP (W10/2, W10/3)		70-250	Quartär		-	-	-	-	-	-			-	-	-	-	-	-	-	<0,050	<0,050	-
MP (W11/1, W11/2)		40-240	Quartär / KW-Geruch	7,67	4,5	9,3	<0,20	26	6,2	16	<0,050	51	0,28	<0,010	0,041	<100	1,6	<100	<100	<0,050	<0,050	n.b.
MP (W12/1, W12/2)		45-250	Quartär / KW-Geruch	7,79	2,1	7,1	<0,20	14	5,6	13	<0,050	45	0,22	<0,010	0,029	<100	0,16	<100	<100	<0,050	<0,050	n.b.
W13/1		50-90	Auffüllung / KW-Geruch	-	-	=	-	=	-	-	-	-	-	-	-	-	0,19	-	-	<0,050	<0,050	-
MP (W14/1, W14/2)		30-210	Quartär	7,44	9,7	11	<0,20	26	13	14	<0,050	87	0,41	<0,010	0,048	<100	-	<100	<100	<0,050	<0,050	n.b.
W15/1		30-110	Auffüllung	8,11	8,4	17	<0,20	26	9,5	16	0,054	74	34	0,17	2,1	2500	-	<100	2500	-	- '	n.b.
MP (W16/1, W16a/1)		35/35-110/140	Auffüllung / Quartär	8,52	5,3	610	0,29	35	14	18	0,076	350	9,2	0,044	0,55	<100	-	<100	<100	-	-	0,29
W17/1	A-Shop	35-110	Auffüllung	7,90	4,9	23	<020	18	9,6	8,8	0,053	65	11	0,41	0,54	<100	-	<100	<100	1	- '	n.b.
MP (W18/1, W18/2)	(geplante Lackiererei, Härterei)	35-220	Auffüllung	7,73	18	340	0,62	41	95	39	0,21	720	60	0,18	3,1	<100	-	<100	<100	-	-	n.b.
W18/3		220-340	Auffüllung	105,5	4,0	32	<0,20	12	9,4	8,7	<0,050	110	12	0,047	0,53	<100	-	<100	<100	-	- '	n.b.
W19/1		35-90	Auffüllung	8,11	12	110	<0,20	23	43	27	1,3	160	11	0,074	0,65	<50	-	<50	<50	-	-	n.b.
W20/1		30-110	Auffüllung	7,90	31	250	0,37	40	90	54	0,66	310	14	0,061	0,98	<50	-	<50	<50	-	-	n.b.
W21/1		35-90	Auffüllung	8,05	8,9	49	0,70	25	20	19	0,084	180	9,2	0,028	0,40	<50	-	<50	<50	1	- '	n.b.
W22/1		40-80	Auffüllung	9,60	9,8	40	<0,20	19	15	19	<0,050	82	1,7	0,13	0,091	<50	-	<50	<50	1	- '	n.b.
W23/1		15-50	Auffüllung	8,13	9,2	98	0,44	95	62	14	0,55	160	4,8	0,078	0,32	<50	-	<50	<50	1	- '	n.b.
W24/1	Romney Huts	20-80	Auffüllung	9,61	6,4	27	<0,20	22	11	5,0	0,069	56	3,2	0,23	0,32	<100	-	<100	<100	n.b.	0,5	n.b.
MP (W25/1, W26/1)		25/40-60/70	Auffüllung	9,60	6,5	79	0,39	24	28	14	<0,050	110	2,2	0,088	0,13	<50	-	<50	<50	-	-	n.b.
MP (W27/1, W27/2)		15-100	Auffüllung	7,84	9,1	240	<0,20	27	59	21	0,18	120	7,9	0,028	0,62	<50	-	<50	<50	-	-	1,3
MP (W28/1, W28A/1)	MKW-Schaden vor Garagen und Unterständen	20-110/120	Auffüllung	8,44	11	100	<0,20	31	48	23	0,35	140	4,7	0,018	0,33	<50	-	<50	<50	-	-	0,34
W28A/2	Onterstanden	110-210	Auffüllung	7,11	6,4	40	<0,20	17	22	12	0,11	63	2,0	0,011	0,15	<50	-	<50	<50	-	-	n.b.
W29/1		20-50	Auffüllung	9,85	6,6	130	<0,20	19	10	12	<0,050	130	5,8	0,019	0,40	<100	-	<100	<100	n.b.	0,50	n.b.
W29/2	Parkplatz	50-170	Auffüllung	8,03	7,1	7,7	<0,20	8,2	5,2	9,1	<0,050	44	0,71	<0,010	0,070	<50	-	<50	<50	-		n.b.
W30/1		25-110	Auffüllung	7,79	12	42	<0,20	19	630	61	0,064	180	6,5	0,031	0,40	<100	-	<100	<100	-		n.b.
W31/1	Abscheidevorrichtung	25-140	Auffüllung	7,87	8,7	41	0,23	30	24	21	0,066	95	2,6	0,037	0,22	<50	-	<50	<50			n.b.
Bewertungsgrundlag	gen			•									mg/kg									
BBodSchV (1999)																					<u> </u>	
Prüfwerte Park- und F	~			-	125	1000	50	1000	-	350	50	-	-	-	10		-			-	<u> </u>	2
Prüfwerte Industrie- und Gewerbegrundstücke			-	140	2000	60	1000	-	900	80	-	-	-	12		-			-	<u> </u>	40	
LAGA (1997);			-	20	100	0,6	50	40	40	0,3	120	1/1	-	-		1			1	1	0,1	
	uordnungswerte Bodenaushub und Bauschutt Z 1.1			-	30	200	1	100	100	100	1	300	5/5 (20) ²	0,5	0,5		3			3	10	0,5
	Z 1.2			-	50	300	3	200	200	200	3	500	15/15 (50) ²	1	1		10			10	30	2,5
			Z 2	-	150	1000	10	600	600	600	10	1500	20/75 (100) ²	-	-		15			15	100	5

Tab. 4: Feststoffanalysenergebnisse REME-Gelände West, Lürriper Str. 400 in Mönchengladbach-Lürrip, Prüfwerte BBodSchV (1999) sowie Zuordnungswerte nach LAGA (1997) (Forts.)

Proben-Nr.	Standort	Tiefe	Charakterisierung /	pH-Wert	As	Pb	Cd	Cr	Cu	Ni	Hg	Zn	PAK	Naph.	ВаР		К	.w		LHKW	BTEX	РСВ
		(cm)	Bemerkungen													Index	LAK C1-C9	C10- C22	C22- C40			
													mg/kg									
MP (W32/1, W32/2)	Abscheider vor C-Shop	30-180	Auffüllung	-	5,5	8,6	<0,20	13	8,0	14	<0,050	46	1,1	<0,010	0,15	<50	-	<50	<50	-	-	n.b.
W33/1	Öltanks vor Lackiererei	20-60	Auffüllung	6,9	7,3	26	<0,20	16	26	21	<0,050	81	3,2	0,030	0,26	<100	-	<100	<100	0,025	<0,050	n.b.
MP (W34/1, W34A/1, W34A2)	Abscheider vor Lackiererei	25/30-130/280	Auffüllung	-	3,1	5,7	<0,20	8,4	4,2	8,7	<0,050	40	1,0	<0,010	0,15	<50	-	<50	<50	-	-	n.b.
W35/1		25-110	Auffüllung	9,36	4,4	110	<0,20	21	20	14	0,16	150	3,3	0,097	0,23	<100	-	<100	<100	n.b.	0,090	n.b.
W36/1		25-130	Auffüllung	-	9,1	420	0,34	22	28	16	0,13	170	9,1	0,026	0,42	<100	-	<100	<100	-	-	n.b.
W36/2	Paint Shop	130-210	Auffüllung	-	14	60	<0,20	37	28	16	0,17	68	3,6	0,031	0,23	<100	-	<100	<100	-	-	n.b.
W37/1	(Lackiererei)	25-130	Auffüllung	-	13	230	<0,20	26	71	24	0,071	120	8,7	0,028	0,42	<100	-	<100	<100	-	-	n.b.
W37/2		130-200	Auffüllung	-	12	42	<0,20	27	44	19	<0,050	120	4,1	0,020	0,31	<100	-	<100	<100	-	-	n.b.
W37/3		200-290	Auffüllung	-	4,1	5,0	<0,20	12	5,4	8,7	<0,050	42	0,45	<0,010	0,041	<100	-	<100	<100	-	-	n.b.
MP (W38/1, W38/2)		25-240	Auffüllung	8,37	10	300	0,27	22	110	23	0,16	130	35	0,21	1,6	<100	-	<100	<100	-	-	n.b.
W39/1		45-150	Auffüllung	7,47	28	230	<0,20	52	76	47	0,40	120	3,4	0,041	0,27	<100	-	<100	<100	n.b.	n.b.	n.b.
W39/2	C-Shop	150-240	Auffüllung	7,81	15	78	<0,20	29	160	85	<0,050	190	46	0,49	2,5	<100	-	<100	<100	-	-	n.b.
W40/1		45-130	Auffüllung	8,82	28	88	0,20	28	89	35	0,42	210	60	0,17	5,8	<100	-	<100	<100	-	-	n.b.
W40/2		130-220	Auffüllung	7,85	22	32	0,20	34	72	35	<0,050	60	0,98	<0,010	0,096	<100	-	<100	<100	-	-	n.b.
MP (W41/1, W41/2)	A-Shop (westlich	20-180	Auffüllung	7,60	38	66	<0,20	45	22	33	0,11	75	3,1	<0,010	0,085	<100	-	<100	<100	0,67	<0,050	n.b.
W41/3	Generatoren prüfstand)	180-290	Quartär	5,20	2,5	5,8	<0,20	12	4,0	6,3	<0,050	36	0,66	<0,010	0,099	<100	-	<100	<100	<0,050	<0,050	n.b.
W42/1		25-140	Auffüllung	9,62	13	210	1,2	32	61	34	0,19	380	5,8	0,063	0,23	<50	-	<50	<50	-	-	n.b.
W42/2		140-240	Quartär	7,70	3,7	19	<0,20	34	13	24	<0,050	79	1,2	<0,010	0,097	<50	-	<50	<50	-	-	n.b.
W42/3		240-340	Quartär / Benzingeruch	1	-	-	-	-	-	Ī	-	-	-	-	-	-	-	-	-	<0,050	<0,050	=
W42/4	A-Shop	340-450	Quartär / Benzingeruch	7,63	1,6	11	<0,20	10	2,5	6,2	<0,050	42	4,5	1,6	0,13	<100	33	<100	<100	<0,050	6,3	n.b.
W42/5	(Generatoren- prüfstand)	450-500	Quartär		-	-		-				-	-	-	-	-	-	-	-	<0,050	<0,050	-
W43/1	pruistariuj	25-140	Auffüllung	9,66	9,4	570	0,80	83	88	18	0,088	1400	6,1	0,066	0,27	<50	-	<50	<50	-		0,22
MP (W43/2, W43/3)		140-300	Quartär	-	-	-	-	-	-	ı	-	-	-	-		-	-	-	-	<0,050	<0,050	-
W43/4		300-420	Quartär / Benzingeruch	7,76	3,5	9,3	<0,20	25	5,7	13	<0,050	47	0,91	0,59	0,070	<100	14	<100	<100	<0,050	3,1	n.b.
W43/5		420-500	Quartär	-	-	-	-	-	-	ī		-	-	-	<u>-</u>	-		-		<0,010	<0,050	-
Bewertungsgrundlag	en												mg/kg									
BBodSchV (1999)																					<u> </u>	
Prüfwerte Park- und F	•			-	125	1000	50	1000	-	350	50	-	-	-	10			=		-	'	2
Prüfwerte Industrie- ur	nd Gewerbegrundstüc	ke .		-	140	2000	60	1000	-	900	80	-	-	-	12			-		-	-	40
LAGA (1997);		L	Z 0	-	20	100	0,6	50	40	40	0,3	120	1/1	-	-			00		1	1	0,1
Zuordnungswerte Bod	enaushub und Bausch	nutt	Z 1.1	-	30	200	1	100	100	100	1	300	5/5 (20) ²	0,5	0,5		3	00		3	10	0,5
			Z 1.2	-	50	300	3	200	200	200	3	500	15/15 (50) ²	1	1		5	00		10	30	2,5
			Z 2	-	150	1000	10	600	600	600	10	1500	20/75 (100) ²	-	-		10	000		15	100	5

Tab. 4: Feststoffanalysenergebnisse REME-Gelände West, Lürriper Str. 400 in Mönchengladbach-Lürrip, Prüfwerte BBodSchV (1999) sowie Zuordnungswerte nach LAGA (1997) (Forts.)

Proben-Nr.	Standort	Tiefe	Charakterisierung /	pH-Wert	As	Pb	Cd	Cr	Cu	Ni	Hg	Zn	PAK	Naph.	BaP		K	W		LHKW	BTEX	РСВ
		(cm)	Bemerkungen													Index	LAK C1-C9	C10- C22	C22- C40			
													mg/kg									
W44/1		15-110	Auffüllung	8,16	7,7	24	<0,20	14	12	12	<0,050	84	4,5	0,035	0,32	<100	-	<100	<100	n.b.	0,013	n.b.
W44/2	A-Shop	110-220	Auffüllung	8,03	3,6	4,7	<0,20	10	6,4	7,6	<0,050	73	0,44	<0,010	0,048	<100	-	<100	<100	-	-	n.b.
W45/1	(Dampfkessel)	15-120	Auffüllung	7,19	43	47	<0,20	43	15	43	0,087	100	4,8	0,023	0,36	<100	-	<100	<100	0,014	n.b.	n.b.
W45/2		120-230	Auffüllung	7,08	93	44	<0,20	79	40	75	0,17	110	1,6	0,012	0,11	<100	-	<100	<100	-	-	n.b.
W46/1	A-Shop	15-120	Auffüllung	7,89	16	240	0,47	39	110	32	0,49	280	3,5	0,057	0,26	<100	-	<100	<100	-	-	n.b.
W46/2	(Montagegrube)	120-190	Auffüllung	7,67	30	360	1,2	58	190	53	0,64	570	7,0	0,045	0,49	<100	ı	<100	<100	-	-	n.b.
W47/1	A-Shop (Benzinwaschplatz)	15-150	Auffüllung	8,83	5,9	26	<0,20	33	16	18	<0,050	82	4,1	0,079	0,26	<100	-	<100	<100	-	-	n.b.
W48/1	A-Shop	15-120	Auffüllung	8,37	12	100	0,55	26	240	25	0,20	180	120	0,55	8,2	<100	-	<100	<100	-	-	n.b.
W48/2	(Transformatore- nstandort)	120-210	Auffüllung	7,89	13	360	0,22	140	76	36	0,29	270	5,7	0,031	0,45	<100	-	<100	<100	-	-	n.b.
MP (W49/1, W49/2)	A-Shop	15-190	Auffüllung	7,65	22	310	0,57	35	120	47	0,83	460	2,2	0,012	0,20	<100	-	<100	<100	-	-	n.b.
W50/1		15-60	Auffüllung	7,02	12	110	0,57	200	58	21	0,46	310	3,8	0,022	0,31	<100	-	<100	<100	-	-	n.b.
W51/1	A-Shop (Montagegruben)	20-110	Auffüllung	7,31	18	150	0,64	64	80	31	0,54	230	2,7	0,013	0,21	<100	-	<100	<100	-	-	n.b.
W52/1	(Workagegraberi)	20-110	Auffüllung	7,66	13	59	0,27	34	170	27	0,12	140	1,8	0,011	0,13	<100	-	<100	<100	-	-	n.b.
W53/1	A-Shop (Schweißplatz)	20-120	Auffüllung	7,02	2,2	56	0,25	3800	63	20	0,70	91	2,4	<0,010	0,15	<100	-	<100	<100	-	-	n.b.
Bewertungsgrundlag	gen												mg/kg									
BBodSchV (1999)																						
Prüfwerte Park- und F	reizeitanlagen			-	125	1000	50	1000	-	350	50	-	-	-	10		-	-		-	-	2
Prüfwerte Industrie- un	nd Gewerbegrundstücke			-	140	2000	60	1000	-	900	80	-	-	-	12		-			-	-	40
LAGA (1997);			Z 0	-	20	100	0,6	50	40	40	0,3	120	1/1	-	-		10	00		1	1	0,1
	lenaushub und Bauschutt	t [Z 1.1	-	30	200	1	100	100	100	1	300	5/5 (20) ²	0,5	0,5		30	00		3	10	0,5
			Z 1.2	-	50	300	3	200	200	200	3	500	15/15 (50) ²	1	1		50	00		10	30	2,5
			Z 2	-	150	1000	10	600	600	600	10	1500	20/75 (100) ²	-	-		10	00		15	100	5

Tab. 5: Analysenergebnisse Bodenluft und Bewertungsgrundlagen

Probenbezeic	hnung	W 01	W 02	W 03	W 06	W 08	W 09	W 10	W 11	W 12	W 13	W 14	W 15	W 16	LAWA-L	iste 1994
															Prüfwert	Maßnahmen- schwellenwert
Parameter	Einheit															
Benzol	mg/m³	<0,010	<0,010	<0,010	<0,01	<0,01	<0,01	<0,01	0,2	<0,01	0,2	<0,01	<0,01	<0,01		
Toluol	mg/m³	<0,010	<0,010	1,8	-	-	-	-	-	-	-	-	-	-		
Ethylbenzol	mg/m³	<0,010	<0,010	1,4	-	-	-	-	-	-	-	-	-	-		
m/p-Xylol	mg/m³	<0,010	<0,010	2,2	-	-	-	-	-	-	-	-	-	-		
o-Xylol	mg/m³	<0,010	<0,010	1,6	-	-	-	-	-	-	-	-	-	-		
Σ nachgewiesener BTEX	mg/m³	<0,050	<0,050	7,0	0,2	0,11	0,083	0,083	4,2	1,4	8,1	1,6	1,2	0,81	5-10	50
Dichlormethan	mg/m³	<0,10	<0,10	<0,10	-	-	-	-	-	-	-	-	-	-		
Trichlormethan	mg/m³	240	120	<0,010	-	-	-	-	-	-	-	-	-	-		
1,1,1-Trichlorethan	mg/m³	<0,010	<0,010	36000	<0,05	<0,05	<0,05	0,9	5,5	4,7	0,61	8,1	0,17	0,095		
Tetrachlormethan	mg/m³	<0,010	<0,010	<0,010	-	-	-	-	-	-	-	-	-	-		
Trichlorethen	mg/m³	<0,010	<0,010	0,61	-	-	-	-	-	-	-	-	-	-		
Tetrachlorethen	mg/m³	<0,010	<0,010	<0,010	-	-	-	-	-	-	-	-	-	-		
Σ nachgewiesener LHKW	mg/m³	240	120	36000	<0,05	<0,05	<0,05	0,9	5,5	4,7	0,61	8,1	0,17	0,095	5-10	50
Naphthalin	mg/m³	<0,010	<0,010	<0,010	-	-	-	-	-	-	-	-	-	-		

Tab. 5: Analysenergebnisse Bodenluft und Bewertungsgrundlagen (Forts.)

Probenbezeic	hnung	W 21	W 22	W 23	W 24	W 25	W 26	W 29	W 30	W 31	W 32	W 34	W 35	W 36	LAWA-I	_iste 1994
															Prüfwert	Maßnahmen- schwellenwert
Parameter	Einheit															
Benzol	mg/m³	<0,01	0,086	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,040	<0,040		
Toluol	mg/m³	-	=	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,040	<0,040		
Ethylbenzol	mg/m³	-	-	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,040	<0,040		
m/p-Xylol	mg/m³	-	-	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,040	<0,040		
o-Xylol	mg/m³	-	-	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,040	<0,040		
Σ nachgewiesener BTEX	mg/m³	2,1	2,9	<0,050	<0,050	<0,050	<0,050	<0,050	<0,050	<0,050	<0,050	<0,050	<0,20	<0,20	5-10	50
Dichlormethan	mg/m³	-	-	<0,10	<0,10	<0,10	<0,10	<0,10	<0,10	<0,10	<0,10	<0,10	<0,40	<0,40		
Trichlormethan	mg/m³	-	-	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,040	<0,040		
1,1,1-Trichlorethan	mg/m³	<0,05	0,11	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,040	<0,040		
Tetrachlormethan	mg/m³	-	-	<0,010	<0,010	<0,010	<0,010	<0,010	0,42	<0,010	<0,010	<0,010	<0,040	<0,040		
Trichlorethen	mg/m³	-	-	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,040	<0,040		
Tetrachlorethen	mg/m³	-	-	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,040	<0,040		
Σ nachgewiesener LHKW	mg/m³	<0,05	0,11	<0,050	<0,050	<0,050	<0,050	<0,050	0,42	<0,050	<0,050	<0,050	<0,20	<0,20	5-10	50
Naphthalin	mg/m³	-	-	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,040	<0,040		

Tab. 5: Analysenergebnisse Bodenluft und Bewertungsgrundlagen (Forts.)

Probenbezeic	hnung	W 37	W 38	W 39	W 40	W 41	W 42	W 43	W 44	W 45	W 46	W 47	W 50	W 51	W 52	LAWA-L	iste 1994
	I															Prüfwert	Maßnahmen- schwellenwert
Parameter	Einheit																
Benzol	mg/m³	<0,040	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010		
Toluol	mg/m³	<0,040	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010		
Ethylbenzol	mg/m³	<0,040	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010		
m/p-Xylol	mg/m³	<0,040	<0,010	<0,010	<0,010	0,077	0,024	0,23	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010		
o-Xylol	mg/m³	<0,040	<0,010	<0,010	<0,010	0,032	0,024	<0,044	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010		
Σ nachgewiesener BTEX	mg/m³	<0,20	<0,050	<0,050	<0,050	0,11	0,048	0,36	n.b.	n.b.	n.b.	<0,050	n.b.	n.b.	n.b.	5-10	50
Dichlormethan	mg/m³	<0,40	<0,10	<0,10	<0,10	<0,10	<0,10	<0,10	<0,10	<0,10	<0,10	<0,10	<0,10	<0,10	<0,10		
Trichlormethan	mg/m³	<0,040	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010		
1,1,1-Trichlorethan	mg/m³	<0,040	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	0,28	<0,010	<0,010	<0,010		
Tetrachlormethan	mg/m³	<0,040	<0,010	<0,010	<0,010	2,5	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010		
Trichlorethen	mg/m³	<0,040	<0,010	<0,010	<0,010	2,4	<0,010	<0,010	<0,010	<0,010	<0,010	0,17	<0,010	<0,010	<0,010		
Tetrachlorethen	mg/m³	<0,040	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	0,010	<0,010	<0,010	<0,010	<0,010	0,024		
Σ nachgewiesener LHKW	mg/m³	<0,20	<0,050	<0,050	<0,050	4,9	<0,050	<0,050	n.b.	0,010	n.b.	0,45	n.b.	n.b.	0,024	5-10	50
Naphthalin	mg/m³	<0,040	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010		

Tab. 6: Analysenergebnisse der direct-push-Grundwasseruntersuchungen und Bewertungsgrundlagen

Grundwasserme	ssstelle	W01	W02	W03	W08	W09	W10	W11	W12	W13	W14	W23	W25	W30	W32	W34A	W41	W42	W43	W44	W46	Bewertun	gsgrundlagen
																						BBodSchV 1999 Prüfwert	LAWA 2004 Geringfügigkeits- schwellenwert
Parameter	Einheit																						
Summe BTEX	μg/l	92	72	780	38	410	110	91	46	33	150	12	6,1	<5	27	80	40	30000	22000	270	180	20	20
Benzol	μg/l	<5	<5	9,7	1,2	3,3	0,92	1,2	0,84	1,0	4,6	0,86	0,55	<0,5	<0,5	1,5	1,6	520	1200	5,2	1,6	1	1
Toluol	μg/l	38	32	130	14	7,8	6,2	15	8,3	7,5	56	5,4	2,3	2,7	1,5	29	16	1800	1000	20	21		
Ethylbenzol	μg/l	14	12	98	4,1	91	23	16	6,9	4,4	15	1,3	0,62	<0,5	20	9,5	4,0	6800	5000	52	27		
m/p-Xylol	μg/l	24	14	290	11	300	75	49	23	14	45	3,1	1,7	<0,5	0,97	21	11	16000	11000	150	89		
o-Xylol	μg/l	16	14	250	7,8	11	5,4	9,6	7,1	5,7	28	1,8	0,93	0,55	4,5	19	7,4	5100	3900	43	37		
Summe LHKW	μg/l	10000	740	25000	22	33	210	610	190	880	120	<5	<5	<5	<5	<5	<5	<50	<50	<5	<5	10	20
Vinylchlorid	μg/l	3,9	<2,5	<25	<2,5	<12,5	<2,5	<2,5	<2,5	<2,5	<2,5	<2,5	<2,5	<2,5	<2,5	<2,5	<2,5	<25	<2,5	<2,5	<2,5		0,5
1,2 Dichlorethan	μg/l	34	<5	37	<5	<25	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<50	<50	<5	<5	2	2
1,1,1-Trichlorethan	μg/l	6700	88	17000	9,4	14	65	97	77	280	40	0,86	0,99	<0,5	<0,5	<0,5	<0,5	<0,5	<0,5	<0,5	<0,5		
Trichlorethen	μg/l	<0,5	<0,5	<0,5	<0,5	<0,5	<0,5	<0,5	<0,5	<0,5	<0,5	<0,5	<0,5	0,5	<0,5	<0,5	<0,5	<0,5	<0,5	<0,5	<0,5		
Tetrachlorethen	μg/l	<0,5	<0,5	<5	<0,5	<0,5	<0,5	<0,5	<0,5	<0,5	<0,5	<0,5	<0,5	<0,5	<0,5	<0,5	<0,5	<0,5	<0,5	<0,5	<0,5		
Naphthalin	μg/l	20	24	540	25	640	170	120	75	56	95	5,1	5,3	<5	<5	12	<5	1500	980	14	18	2	2
Leichtflüchtige aliphatische KW (LAK)	μg/l	<500	<500	3200	<50	14000	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50	30000	15000	<50	<50		

Tab. 7: Analysenergebnisse der Grundwassermessstellen im Umfeld der ehem. Entfettungsanlage (CKW-Schadensherd) und Bewertungsgrundlagen

											T	
			780058			780078			780079		Bewertung	sgrundlagen
		2 m u. GWO	Schöpf- probe ²⁾	Sohle	2 m u. GWO	Schöpf- probe	Sohle	2 m u. GWO	Schöpf- probe	Sohle	BBodSchV 1999 Prüfwert	LAWA 2004 Geringfügigkeits- schwellenwert
Parameter	Einheit											
Arsen	μg/l	<10	-	-	<10	-	-	<10	-	-	10	10
Blei	μg/l	<5	-	-	<5	-	-	<5	-	-	25	7
Cadmium	μg/l	<0,5	-	-	<0,5	-	-	<0,5	-	-	5	0,5
Chrom (ges.)	μg/l	<5	-	-	<5	-	-	<5	-	-	50	50
Kupfer	μg/l	<5	-	-	<5	-	-	<5	-	-	50	14
Nickel	μg/l	<5	-	-	<5	-	-	<5	-	-	50	14
Quecksilber	μg/l	<0,2	-	-	<0,2	-	-	<0,2	-	-	1	0,2
Zink	μg/l	31	-	-	13	-	-	<10	-	-	500	58
KW-Index	μg/l	300	-	-	<100	-	-	<100	<100	-	200	100
Phenol-Index 1)	μg/l	<5	-	-	<5	-	-	<5	<5	-	20	8
Summe nachgewiesener BTEX	μg/l	n.b.	<5,0	-	n.b.	<5,0	-	n.b.	<5,0	-	20	15
Benzol	μg/l	<0,50	<0,50	-	<0,50	<0,50	-	<0,50	<0,50	-	1	1
Toluol	μg/l	<0,50	<0,50	-	<0,50	<0,50	-	<0,50	<0,50	-		
Ethylbenzol	μg/l	<0,50	<0,50	-	<0,50	<0,50	-	<0,50	<0,50	-		
m-,p-Xylol	μg/l	<0,50	<0,50	-	<0,50	<0,50	-	<0,50	<0,50	-		
o-Xylol	μg/l	<0,50	<0,50		<0,50	<0,50		<0,50	<0,50			
Summe nachgewiesener LHKW	μg/l	n.b.	42	n.b.	n.b.	<5,0	n.b.	n.b.	<5,0	n.b.	10	20
Vinylchlorid	μg/l	<2,5	<2,5	<2,5	<2,5	<2,5	<2,5	<2,5	<2,5	<2,5		
Dichlormethan	μg/l	<5,0	<5,0	<5,0	<5,0	<5,0	<5,0	<5,0	<5,0	<5,0		
cis-1,2-Dichlorethen	μg/l	<5,0	<5,0	<5,0	<5,0	<5,0	<5,0	<5,0	<5,0	<5,0		
Trichlormethan	μg/l	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50		
1,1,1-Trichlorethan	μg/l	<0,50	42	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50		
Tetrachlormethan	μg/l	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50		
Trichlorethen	μg/l	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50		
Tetrachlorethen	μg/l	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50		
Summe nachgewiesener PAK (n. EPA)	μg/l	n.b.	- -	- -	n.b.	- -	-	n.b.	- -	-		
Naphthalin	μg/l	<0,10	-	-	<0,10	-	-	<0,10	-	-	2	2
Benzo(a)pyren	μg/l	<0,050	-	-	<0,050	-	-	<0,050	-	_		
Cyanid (ges.)	μg/l	<10	-	-	<10	-	-	<10	=	-	50	50

¹⁾ Der Prüfwert gilt für Phenole. In den Phenol-Index gehen neben Phenolen auch phenolartige Moleküle aus Huminverbindungen ein ²)Schöpfprobe 780058 Auffälligkeit Kohlenwasserstoffe

Tab. 7: Analysenergebnisse von 18 Wasserproben und Bewertungsgrundlagen (Forts.)

			780100			780101			780130		Bewertung	sgrundlagen
		2 m u. GWO	Schöpf- probe	Sohle	2 m u. GWO	Schöpf- probe	Sohle	2 m u. GWO	Schöpf- probe	Sohle	BBodSchV 1999 Prüfwert	LAWA 2004 Geringfügigkeits- schwellenwert
Parameter	Einheit											
Arsen	μg/l	<10	-	-	<10	-	-	<10	-	-	10	10
Blei	μg/l	<5	-	-	<5	-	-	<5	-	-	25	7
Cadmium	μg/l	<0,5	-	-	<0,5	-	-	<0,5	-	-	5	0,5
Chrom (ges.)	μg/l	<5	-	-	<5	-	-	<5	-	-	50	50
Kupfer	μg/l	<5	-	-	<5	-	-	5,2	-	-	50	14
Nickel	μg/l	<5	-	-	<5	-	-	<5	-	-	50	14
Quecksilber	μg/l	<0,2	-	-	<0,2	-	-	<0,2	-	-	1	0,2
Zink	μg/l	<10	-	-	28	-	-	36	-	-	500	58
KW-Index	μg/l	<100	<100	-	<100	<100	-	<100	<100	-	200	100
Phenol-Index 1)	μg/l	<5	<5	-	<5	<5	-	<5	<5	-	20	8
Summe nachgewiesener BTEX	μg/l	n.b.	<5,0	-	n.b.	<5,0	-	n.b.	<5,0	-	20	15
Benzol	μg/l	<0,50	<0,50	-	<0,50	<0,50	-	<0,50	<0,50	-	1	1
Toluol	μg/l	<0,50	<0,50	-	<0,50	<0,50	-	<0,50	<0,50	-		
Ethylbenzol	μg/l	<0,50	<0,50	-	<0,50	<0,50	-	<0,50	<0,50	-		
m-,p-Xylol	μg/l	<0,50	<0,50	-	<0,50	<0,50	-	<0,50	<0,50	-		
o-Xylol	μg/l	<0,50	<0,50		<0,50	<0,50	=.	<0,50	<0,50			
Summe nachgewiesener LHKW	μg/l	n.b.	<5,0	0,66	1,1	<5,0	0,98	n.b.	<5,0	0,84	10	20
Vinylchlorid	μg/l	<2,5	<2,5	<2,5	<2,5	<2,5	<2,5	<2,5	<2,5	<2,5		
Dichlormethan	μg/l	<5,0	<5,0	<5,0	<5,0	<5,0	<5,0	<5,0	<5,0	<5,0		
cis-1,2-Dichlorethen	μg/l	<5,0	<5,0	<5,0	<5,0	<5,0	<5,0	<5,0	<5,0	<5,0		
Trichlormethan	μg/l	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50		
1,1,1-Trichlorethan	μg/l	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50		
Tetrachlormethan	μg/l	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50		
Trichlorethen	μg/l	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50		
Tetrachlorethen	μg/l	<0,50	<0,50	0,66	1,1	<0,50	0,98	<0,50	<0,50	0,84		
Summe nachgewiesener PAK (n. EPA)	μg/l	n.b.	-	-	n.b.	-	-	n.b.	-	-		
Naphthalin	μg/l	<0,10	-	-	<0,10	-	-	<0,10	-	-	2	2
Benzo(a)pyren	μg/l	<0,050	-	-	<0,050	-	-	<0,050	-	-		
Cyanid (ges.)	μg/l	<10	-	-	<10	-	-	<10	-	_	50	50

¹⁾ Der Prüfwert gilt für Phenole. In den Phenol-Index gehen neben Phenolen auch phenolartige Moleküle aus Huminverbindungen ein

Tab. 8: Entwicklung der 1,1,1-Trichlorethan-Gehalte im Grundwasser (in μg/l; Geringfügigkeitsschwellenwert nach LAWA 2004 für LHKW_{gesamt}: 20 μg/l)

	26.04 1993		05. 93	26. 19	.06. 195		.07. 995	10. ⁻ 199		30.0 199		04.08. 2000	09.08. 2000	27. 20		17. 20		23.08. 2002	16.03. 2004	26.0 200		10. 20		10. 20	.11. 005	18. 20			18.03. 2010	
GWM	Р	S	Р	S	Р	S	Р	S	Р	S (?)	Р	S (?)	Р	S	Р	8	Р	Р	Р	S	Р	S	Р	S	Р	8	Р	S	Р	Sohle
780058	7,7	3100	30	6100	49	8100	240	7879	3,85	2100	7,1	3900	0,58	3800	11	22	1,3	63	<0,1	7,4	0,23	<0,5	<0,5	170	<0,5	<1	<1	42	<0,5	<0,5
780130	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0,5	<0,5	<0,5	<0,1	0,16	<0,1	-	-	-	-	230	489	<0,5	<0,5	<0,5
780078	-	-	-	<0,5	2,1	840	<0,5	0,21	2,23	-	-	-	-	-	-	<0,5	<0,5	<0,5	<0,1	-		-	-		-	-	-	<0,5	<0,5	<0,5
780079	-	-	-	<0,5	<0,5	110	<0,5	0,13	3,12	-	-	-	-	-	-	-	-	<0,5	-	-		-	-		-	-	-	<0,5	<0,5	<0,5

GWM = Grundwassermessstelle

S = Schöpfprobe

P = Pumpprobe (1-2 m u. Grundwasseroberfläche)

- = nicht untersucht

Gutachter / Probenehmer / Labor	Untersuchungstermin	Legende
Mull & Partner / SEWA 1993	26.04. und 26.05.1993	>100-fache Überschreitung GFS
Mull & Partner / SEWA 1995	26.06. und 31.07.1995	
?/? (zit. in LZ Umwelttechnik 2004)	10.10.1996	>10-fache Überschreitung GFS
ALA	30.07.1999, 04. und 09.08.2000, 27.08.2001	
Mull & Partner / Analytis 2002	17.04. und 23.08.2002	>1-fache Überschreitung GFS
LZ Umwelttechnik / GEOTAIX 2004	16. und 26.03.2004	
apero	10.09.2004	keine Überschreitung GFS
Analytis	10.11.2005	
Grüning Consulting / UCL 2008	18.08.2008	
agus / apero / SEWA 2010	18.03.2010	

Tab. 9: Analysenergebnisse der Grundwassermessstellen des REME-Geländes (West und Ost) (ohne Umfeld ehem. Entfettungsanlage)

Grundwassermessstelle	e (GWM)	780018	780054	780055	780056	780057	780061	780110-1	780136-1	780136-2	780137-1	780137-2	Bewertung	sgrundlagen
		14.04.2010	14.04.2010	14.04.2010	14.04.2010	14.04.2010	14.04.2010	14.04.2010	14.04.2010	14.04.2010	14.04.2010	14.04.2010	BBodSchV 1999 Prüfwert	LAWA 2004 Geringfügigkeits- schwellenwert
Parameter	Einheit													
Geruch		ohne	schwach aromatisch	schwach muffig	schwach aromatisch	ohne	schwach aromatisch	aromatisch	schwach H₂S	schwach muffig	schwach H₂S	ohne		
Temperatur	C	10,9	12,2	12,9	12,3	12,5	12,7	11,2	12,5	13,0	11,8	12,1		
pH-Wert		5,63	6,11	6,27	6,42	5,79	7,01	6,89	6,43	5,48	6,39	6,45		
elektrische Leitfähigkeit	μS/cm	285	462	436	508	466	932	245	499	482	457	344		
Redoxpotential	mV	75	10	350	10	112	35	78	13	43	53	70		
Sauerstoffgehalt	mg/l	1,46	0,7	1,24	0,93	1,94	2,93	1,32	4,6	0,68	1,24	1,69		
Arsen	μg/l	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	10	10
Blei	μg/l	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	25	7
Cadmium	μg/l	<0,5	<0,5	<0,5	<0,5	<0,5	<0,5	<0,5	<0,5	<0,5	<0,5	<0,5	5	0,5
Chrom (ges.)	μg/l	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	50	50
Kupfer	μg/l	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	50	14
Nickel	μg/l	<5	<5	<5	<5	<5	14	<5	<5	<5	<5	<5	50	14
Quecksilber	μg/l	<0,2	<0,2	<0,2	<0,2	<0,2	<0,2	<0,2	<0,2	<0,2	<0,2	<0,2	1	0,2
Zink	1	61	15	69	14	17	68	14	21	<10	43	<10	500	58
TOC	μg/l	1,3	3,9	1,0	14	3,5	39	4,6	1,0	1,1	1,5	<1,0	300	
KW-Index	mg/l	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	200	100
	μg/l									-				
Phenol-Index 1)	μg/l	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	20	8
Summe nachgewiesener BTEX	μg/l	n.b.	n.b.	n.b.	n.b.	n.b.	1,0	n.b.	n.b.	n.b.	n.b.	n.b.	20	20
Benzol	μg/l	<0,50	<0,50	<0,50	<0,50	<0,50	1,0	<0,50	<0,50	<0,50	<0,50	<0,50	1	1
Toluol	μg/l	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50		
Ethylbenzol	μg/l	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50		
m-,p-Xylol	μg/l	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50		
o-Xylol	μg/l	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50		
Summe nachgewiesener LHKW	μg/l	n.b.	n.b.	0,70	n.b.	1,0	n.b.	n.b.	0,80	0,67	0,55	n.b.	10	20
Vinylchlorid	μg/l	<2,5	<2,5	<2,5	<2,5	<2,5	<2,5	<2,5	<2,5	<2,5	<2,5	<2,5		0,5
Dichlormethan	μg/l	<5,0	<5,0	<5,0	<5,0	<5,0	<5,0	<5,0	<5,0	<5,0	<5,0	<5,0		
1,2 Dichlorethan	μg/l	<5,0	<5,0	<5,0	<5,0	<5,0	<5,0	<5,0	<5,0	<5,0	<5,0	<5,0		2
cis-1,2-Dichlorethen	μg/l	<5,0	<5,0	<5,0	<5,0	<5,0	<5,0	<5,0	<5,0	<5,0	<5,0	<5,0		
Trichlormethan	μg/l	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50		
1,1,1-Trichlorethan	μg/l	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50		
Tetrachlormethan	μg/l	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50		
Trichlorethen	μg/l	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50		
Tetrachlorethen	μg/l	<0,50	<0,50	0,70	<0,50	1,0	<0,50	<0,50	0,80	0,67	0,55	<0,50		10
Summe nachgewiesener	,/!	n h	- h	- h	n h	- h	n h	- h	n h	- h	- h	n h	0,2 ²⁾	0 2 2)
PAK (n. EPA)	μg/l	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	1	0,2 2)
Naphthalin	μg/l	<0,10	<0,10	<0,10	<0,10	<0,10	<0,10	<0,10	<0,10	<0,10	<0,10	<0,10	2	2
Benzo(a)pyren	μg/l	<0,050	<0,050	<0,050	<0,050	<0,050	<0,050	<0,050	<0,050	<0,050	<0,050	<0,050		0,01
Chlorid	mg/l	15	7,6	33	14	22	330	3,2	41	44	31	24		250
Sulfat	mg/l	45	65	110	57	110	880	27	130	130	100	85		240
Sulfid	mg/l	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010		
Nitrat	mg/l	<0,10	9,5	<0,10	0,18	1,7	2,4	0,50	0,22	<0,10	2,3	<0,10		
Nitrit	mg/l	<0,050	<0,050	<0,050	<0,050	0,095	<0,050	0,25	<0,050	<0,050	<0,050	<0,050		
Ammonium	mg/l	<0,030	2,0	0,20	2,6	0,36	0,034	1,1	0,36	0,27	0,43	0,095		
Cyanid (ges.)	μg/l	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	50	50

¹⁾ Der Prüfwert gilt für Phenole. In den Phenol-Index gehen neben Phenolen auch phenolartige Moleküle aus Huminverbindungen ein, 2) Summe PAK (EPA) ohne Naphthalin