

Immissionsschutz-Gutachten

Schalltechnische Beurteilung im Rahmen der Bauleitplanung für die Aufstellung des Bebauungsplanes Nr. 315 "Blumenstraße/Bahnhofstraße" in Lippstadt

Auftraggeber Stadt Lippstadt Fachdienst

Stadtplanung und Umweltschutz

Ostwall 1

59557 Lippstadt

Schallimmissionsprognose Nr. 105 0649 18

vom 13. Aug. 2018

Projektleiter Dipl.-Umweltwiss. Melanie Rohring

Umfang Textteil 29 Seiten

> Anhang 19 Seiten

Ausfertigung PDF-Dokument

Eine auszugsweise Vervielfälligung des Berichtes bedarf der schriftlichen Zustimmung der uppenkamp + partner Sachverständige für Immissionsschutz GmbH.

Standort Ahaus und Berlin

Inhalt Textteil

Zusamı	menfassung	4
1	Grundlagen	8
2	Veranlassung und Aufgabenstellung	10
3	Grundlage für die Ermittlung und Beurteilung der Immissionen	
3.1	Schallschutz im Städtebau	
3.1.1	Orientierungswerte der DIN 18005.	
3.2 3.2.1	Weitere Abwägungskriterien zum Schallschutz in der städtebaulichen Planung Immissionsgrenzwerte der 16. BImSchV	
3.2.1	Sanierungs- bzw. Auslösewerte der VLärmSchR 97	
3.2.3	Zumutbarkeitsschwelle	
4	Beschreibung und Berechnungsverfahren des einwirkenden Verkehrslärms	
4.1 4.2	Berechnungsverfahren der [RLS-90]	
4.2		
5	Beschreibung der Emissionsansätze	
5.1	Straßenverkehr	
5.2	Schienenverkehr	20
6	Ermittlung der Geräuschimmissionen und Diskussion der Untersuchungsergebnisse	22
6.1	Allgemeine Informationen	22
6.2	Verkehrslärmbelastung im Bebauungsplangebiet	22
7	Schallschutzmaßnahmen für das Plangebiet	24
7.1	Allgemeine Informationen	
7.2	Anforderungen an die Schalldämmung von Außenbauteilen	24
8	Vorschlag für Festsetzungen zum Schallschutz im Bebauungsplan	26
		28

Inhalt Anhang

- A Tabellarische Emissionskataster
- B Grafische Emissionskataster
- C Immissionspläne
- D Lagepläne

Gutachten-Nr.: 105 0649 18 Textteil - Inhalt Projekt: Bauleitplanung Nr. 315 "Blumenstraße/Bahnhofstraße" Seite 2 von 29

Abbildungsverzeichnis

Abbildung 1:	Geltungsbereich des Bebauungsplans Nr. 315, © Planungsamt Lippstadt	4
Abbildung 2:	Übersicht der betrachteten Straßenführungen bestehende (schwarz/gelb), geplante	
	bzw. geänderte (türkis/weiß) und der Bahnstrecke (lila)	15
	Tabellenverzeich	nis
Tabelle 1:	Schalltechnische Orientierungswerte der DIN 18005-1 Bbl. 1	11
Tabelle 2:	Immissionsgrenzwerte der 16. BImSchV	13
Tabelle 3:	Auslösewerte für Lärmsanierung VLärmSchR 97, BMVBS 2009	13
Tabelle 4:	Maßgebende Verkehrsmengen Neubau, Prognose-Planfall 2030 mit Ansiedlung	18
Tabelle 5:	Straßenbelastungszahlen aus der Verkehrsuntersuchung ehem. Güterbahnhofgelände	
	für den Prognose-Planfall 2030 mit Ansiedlung Güterbahnhof, Bestandsstraßen	18
Tabelle 6:	Schienen-Belastungszahlen der DBAG, Strecke 1760 Abschnitt Lippstadt Bereich Hbf.,	
	Prognosehorizont 2025	20
Tabelle 7:	Längenbezogene Schallleistungspegel zur Tages- und Nachtzeit	20
Tabelle 8:	Farbwechsel Orientierungswerte	22
Tabelle 9:	Zuordnung zwischen Lärmpegelbereichen und maßgeblichem Außenlärmpegel, DIN	
	4109-1:2018-01	25
Tabelle 10:	Zuordnung zwischen Lärmpegelbereichen und maßgeblichen Außenlärmpegel, DIN	
	4109-1:2018-01	26

Zusammenfassung

Gegenstand des vorliegenden schalltechnischen Gutachtens ist die seitens der Stadt Lippstadt geplante Aufstellung des Bebauungsplans Nr. 315 "Blumenstraße/Bahnhofstraße". Ziel der Aufstellung des Bebauungsplans ist es, die derzeitig dort befindliche und geplante Nutzung als Urbanes Gebiet (MU) bzw. Kerngebiet (MK) zu überplanen.

Der Geltungsbereich des Bebauungsplans Nr. 315 ist der Abbildung 1 zu entnehmen.

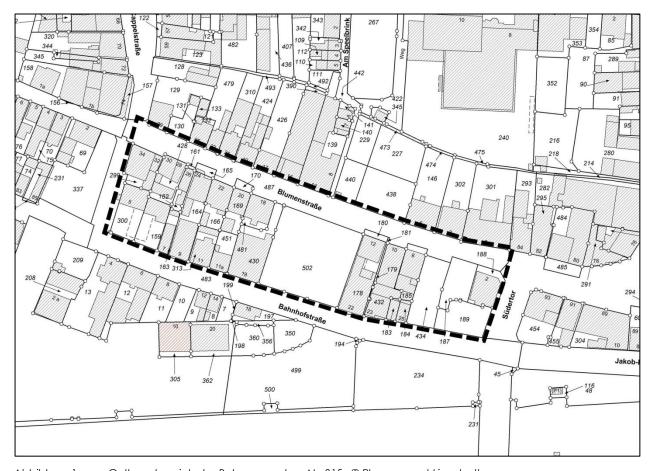


Abbildung 1: Geltungsbereich des Bebauungsplans Nr. 315, © Planungsamt Lippstadt

Das Plangebiet des Bebauungsplans Nr. 315 grenzt unmittelbar an den Geltungsbereich des in Aufstellung befindlichen Bebauungsplans Nr. 313 "Jakob-Koenen-Straße". Hintergrund der Aufstellung des Bebauungsplans Nr. 313 ist es, die Fläche des ehemaligen Güterbahnhofs einer Nutzung - u. a. Stadthausneubau inkl. Parken sowie Lebensmittelmarkt- zuzuführen und durch eine neue Verkehrstrasse "Jakob-Koenen-Straße" als Teil des Gesamtverkehrskonzeptes der Stadt Lippstadt entlang der Bahntrasse zu erschließen.

105 0649 18 Textteil - Kurzfassung Projekt: Bauleitplanung Nr. 315 "Blumenstraße/Bahnhofstraße" Seite 4 von 29

Um den Immissionsschutz im Rahmen der Aufstellung des Bebauungsplans Nr. 315 sicherzustellen, sind die schalltechnischen Auswirkungen des Straßen- und Schienenverkehrs auf die innerhalb des Plangebietes bestehenden bzw. geplanten Nutzungen zu ermitteln und zu bewerten. Im Hinblick auf eine ausreichende Prognosesicherheit für das Plangebiet wird die im Bebauungsplan Nr. 313 angestrebte städtebauliche Zielsetzung für das Jahr 2030 zugrunde gelegt.

Im Rahmen der Prognose wurde folgende Situation untersucht und dargestellt:

Verkehrslärm

Ermittlung und Bewertung der Verkehrslärmeinwirkungen durch die bestehenden bzw. geplanten Straßenführungen und die Bahnanlage der DBAG auf das Plangebiet. Beurteilungsgrundlage im Hinblick auf eine ausreichende Prognosesicherheit ist dabei die Variante Prognose-Planfall 2030 mit Neubau der Jakob-Koenen-Straße sowie Ansiedlung im Endausbau. Bei Bedarf Darlegung erforderlicher Lärmminderungsmaßnahmen bzw. textlicher Festsetzungen für den B-Plan.

Hierzu wurde eine Schallimmissionsprognose erstellt. Die Planungsgrundlagen und die getroffenen Annahmen und Voraussetzungen werden in der Langfassung des vorliegenden Berichts erläutert.

Ergebnisse

Verkehrslärmbelastung im Bebauungsplangebiet

Der Bebauungsplan sieht im nordwestlichen Bereich eine Gebietsausweisung als Urbanes Gebiet (MU), im östlichen Bereich die Gebietsausweisung als Kerngebiet (MK) vor. Die im Rahmen der städtebaulichen Planung heranzuziehende DIN 18005 als auch die Verkehrslärmschutzverordnung (16.BlmSchV) haben diese Gebietseinstufung bis dato noch nicht mit aufgenommen und somit auch noch keine Orientierungswerte bzw. Immissionsgrenzwerte benannt. Grundsätzlich ist das Urbane Gebiet zwischen Mischgebiet und Gewerbegebiet einzustufen. Aus diesem Grund werden für die Beurteilung der vorliegenden Verkehrsgeräusche sowohl die Mischgebietswerte als auch die Kerngebietswerte herangezogen.

Wie aus den Schallimmissionsplänen im Anhang ersichtlich, ergibt sich für das Plangebiet bei freier Schallausbreitung, d. h. ohne bestehende bzw. geplante Nutzung, für den im Prognosejahr 2025/2030 mit Ansiedlung Folgendes:

Textteil - Kurzfassung Projekt: Bauleitplanung Nr. 315 "Blumenstraße/Bahnhofstraße" Seite 5 von 29

- Die Orientierungswerte von 60 dB(A) für Mischgebiete (MI) als auch die Orientierungswerte von 65 dB(A) für Kerngebiete (MK) werden zur Tageszeit lediglich in einem in der Abschirmung der Gebäude Bahnhofstraße 6 bis 14 befindlichem Bereich eingehalten. Dabei ist insbesondere das südöstliche Plangebiet aufgrund der Nähe zur Bahnanlage sowie einer fehlenden Abschirmung durch vorgelagerte Gebäude durch Schienenverkehrslärm stark beeinträchtigt. Der Einfluss des Schienenverkehrs führt in dem Bereich dazu, dass nicht nur die Orientierungswerte, sondern auch der für Misch-/Kerngebiete geltende Immissionsgrenzwert von 64 dB(A) überschritten werden. Im Bereich des Flurstücks 189 wird darüber hinaus auch der für Misch- Kerngegebiete geltende Auslösewert für Lärmsanierung [VLärmSchR 97] von 69 dB(A) erreicht. Im nordwestlichen Bereich des Plangebietes zeigt sich aufgrund des geringeren Einflusses des Schienenverkehrslärms im Nahbereich der westlich verlaufenden Cappelstraße eine Beeinträchtigung durch Straßenverkehrslärm.
- Im Nachtzeitraum bleibt der normalerweise gegenüber dem Tageszeitraum absinkende Verkehrsgeräuschpegel aufgrund des auf der angrenzenden Bahnanlage hohen Güterverkehrsaufkommens aus. Damit ergeben sich im Nachtzeitraum im südöstlichen Plangebiet aufgrund der Nähe zur Bahnanlage sowie einer fehlenden Abschirmung durch vorgelagerte Gebäude sogar höhere Verkehrsgeräuschpegel als zur Tageszeit. Dieses führt zwangsläufig dazu, dass im Nachtzeitraum nicht nur deutliche Überschreitungen des anzustrebenden Orientierungswertes vorliegen, sondern, wie ja bereits zur Tageszeit, der für Mischgebiete (MI) und Kerngebiete (MK) geltende Immissionsgrenzwert von 54 dB(A) und sogar der Auslösewert für Lärmsanierung [VLärmSchR 97] von 59 dB(A) zur Nachtzeit deutlich überschritten wird.

Wie aus den Schallimmissionsplänen im Anhang ersichtlich, ergibt sich für das Plangebiet bei Berücksichtigung der bestehenden bzw. geplanten Nutzung für den im Prognosejahr 2025/2030 mit Ansiedlung Folgendes:

Die nahezu bestehende bzw. geplante geschlossene Riegelbebauung entlang der Bahnhofstraße führt dazu, dass die Fassaden in Ausrichtung zu den Verkehrswegen durch Schienenverkehrslärm stark beeinträchtigt sind. Durch die Abschirmung des Verkehrslärms dieser Riegelbebauung kann jedoch im rückwärtigen Bereich erreicht werden, dass die Orientierungswerte der DIN 18005 für Mischgebiete und damit auch für Kerngebiete zur Tages- und Nachtzeit nahezu im gesamten Plangebiet eingehalten werden.

Gutachten-Nr.: 105 0649 18 Textteil - Kurzfassung
Projekt: Bauleitplanung Nr. 315 "Blumenstraße/Bahnhofstraße" Seite 6 von 29

Aufgrund der durch die Bahnanlage im Tages- und Nachtzeitraum gegebenen Geräuscheinwirkungen ist zur Wahrung gesunder Wohn- bzw. Arbeitsverhältnissen der Immissionsschutz im Rahmen der Bauleitplanung sicherzustellen. Der erforderliche Immissionsschutz innerhalb der Gebäude sollte daher über sogenannte passive Maßnahmen, d. h. Schallschutzfenster in den der Straßenführung zugewandten Fassade sichergestellt werden. Darüber hinaus zielführend ist es, Fenster von besonders schutzbedürftigen Räumen - wie etwa Schlaf- und Kinderzimmer - ggf. mit Lüftungseinrichtungen auszustatten. Des Weiteren ist auf straßenseitige Balkone zu verzichten.

Gutachten-Nr.: 105 0649 18 Textteil - Kurzfassung Projekt: Bauleitplanung Nr. 315 "Blumenstraße/Bahnhofstraße" Seite 7 von 29

1 Grundlagen

[16. BlmSchV]	Sechzehnte Verordnung zur Durchführung des Bundes-Immissionsschutz-					
,	gesetzes, Verkehrslärmschutzverordnung vom 12. Juni 1990 (BGBI. I S. 1036),					
	die durch Artikel 1 der Verordnung vom 18. Dezember 2014 (BGBI. I S. 2269)					
	geändert worden ist					
[BlmSchG]	Gesetz zum Schutz vor schädlichen Umwelteinwirkungen durch Luftver-					
[Birriserro]	unreinigungen, Geräusche, Erschütterungen und ähnliche Vorgänge,					
	Bundes-Immissionsschutzgesetz in der Fassung der Bekanntmachung vom					
	17. Mai 2013 (BGBl. I S. 1274), das zuletzt durch Artikel 3 des Gesetzes vom					
	29. Mai 2017 (BGBI. I S. 1274), das zoietzi doiet 7 tilikei a das Gesetzes voiti					
[DIN ISO 9613-2]	Akustik - Dämpfung des Schalls bei der Ausbreitung im Freien, Teil 2:					
	Allgemeines Berechnungsverfahren. 1999-09					
[DIN 4109-1]	Schallschutz im Hochbau - Teil 1: Mindestanforderungen. 2018-01					
[DIN 4109-2]	Schallschutz im Hochbau - Teil 2: Rechnerische Nachweise der Erfüllung					
	der Anforderungen. 2018-01					
[DIN 4109-4]	Schallschutz im Hochbau – Teil 4: Bauakustische Prüfungen. 2016-07					
[DIN 18005-1]	Schallschutz im Städtebau - Teil 1: Grundlagen und Hinweise für die					
	Planung. 2002-07					
[DIN 18005-1 Bbl. 1]	Schallschutz im Städtebau – Berechnungsverfahren - Schalltechnische					
	Orientierungswerte für die städtebauliche Planung. 1987-05					
[DIN 18005-2]	Schallschutz im Städtebau - Lärmkarten - Kartenmäßige Darstellung von					
	Schallimmissionen. 1991-09					
[IG I 7 - 501-1/2]	Korrektur redaktioneller Fehler beim Vollzug der Technischen Anleitung zum					
	Schutz gegen Lärm – TA Lärm, Schreiben des BMUB/Dr. Hilger an die					
	obersten Immissionsschutzbehörden der Länder sowie das					
	Bundesministerium für Verkehr und digitale Infrastruktur und das Eisenbahn-					
	Bundesamt. 07.07.2017					
[Piorr 2001]	Zum Nachweis der Einhaltung von Geräuschimmissionswerten mittels					
, , , , ,	Prognose, Piorr, D., Zeitschrift für Lärmbekämpfung 48 (2001) Nr. 5					
[RLS-90]	Richtlinien für den Lärmschutz an Straßen, Bundesminister für Verkehr. 1990					
	(Berichtigter Nachdruck 1992)					
[Schall 03 2012]	Anlage 2 (zu § 4) der Sechzehnten Verordnung zur Durchführung des					
	Bundes-Immissionsschutzgesetzes, Verkehrslärmschutzverordnung vom					
	12. Juni 1990 (BGBl. I S. 1036), die durch Artikel 1 der Verordnung vom					

Gutachten-Nr.: 105 0649 18 Textteil - Grundlagen Projekt: Bauleitplanung Nr. 315 "Blumenstraße/Bahnhofstraße" Seite 8 von 29

	18. Dezember 2014 (BGBI. I S. 2269) geändert worden ist, Berechnung des Beurteilungspegels für Schienenwege (BGBI. I 2014 S. 2271 – 2313).
[TA Lärm]	Sechste Allgemeine Verwaltungsvorschrift zum Bundes-Immissionsschutz-
	gesetz (Technische Anleitung zum Schutz gegen Lärm – TA Lärm) vom
	26. August 1998 (GMBI Nr. 26/1998 S. 503), zuletzt geändert durch
	Bekanntmachung des BMUB vom 1. Juni 2017 (BAnz AT 08.06.2017 B5), in
	Kraft getreten am 9. Juni 2017, redaktionell korrigiert durch Schreiben des
	BMUB vom 07.07.2017 (IG 7 - 501-1/2)
[VDI 2719]	Schalldämmung von Fenstern und deren Zusatzeinrichtungen. 1987-08

Hinweis: Die im gegenständlichen Bericht dokumentierte Untersuchung wurde auf Basis bzw. unter Berücksichtigung der im oben stehenden Grundlagenverzeichnis genannten Regelwerke durchgeführt. Die Ergebnisse sind somit – wenn nicht anders gekennzeichnet – entlang den entsprechenden Anforderungen ermittelt.

Informationen und Unterlagen wurden zur Verfügung gestellt durch:

- Auftraggeber: Stadt Lippstadt, Planungsamt,
- Verkehrsgutachten ehemaliges G\u00fcterbahnhofgel\u00e4nde, dipl-ing d.holzhauer, planungsb\u00fcro verkehr
 + strasse, Lippstadt,
- Schalltechnische Beurteilung im Rahmen der Bauleitplanung für die Aufstellung des Bebauungsplanes Nr. 312 "Jakob-Koenen-Straße" in Lippstadt vom 5. April 2018.

Ortstermine wurden am 12. Dez. 2016 durchgeführt.

Gutachten-Nr.: 105 0649 18 Textteil - Grundlagen Projekt: Bauleitplanung Nr. 315 "Blumenstraße/Bahnhofstraße" Seite 9 von 29

2 Veranlassung und Aufgabenstellung

Gegenstand des vorliegenden schalltechnischen Gutachtens ist die seitens der Stadt Lippstadt geplante Aufstellung des Bebauungsplans Nr. 315 "Blumenstraße/Bahnhofstraße" mit dem Ziel, die derzeitig dort befindliche und geplante Nutzung als Urbanes Gebiet (MU) bzw. Kerngebiet (MK)) zu überplanen.

Das Plangebiet liegt südlich unmittelbar angrenzend an die historische Altstadt. Im Süden wird das Gebiet durch die Bahnhofstraße und die dort vorhandene Bahntrasse begrenzt. Die nördliche Grenze bildet die Blumenstraße mit der angrenzenden 2- bis 3-geschossigen Bebauung.

Um den Immissionsschutz im Rahmen der Aufstellung des Bebauungsplans Nr. 315 innerhalb des Plangebietes sicherzustellen, sind die auf das Plangebiet einwirkenden Verkehrslärmimmissionen (Straße/Schiene) zu ermitteln und zu bewerten. Im Hinblick auf eine ausreichende Prognosesicherheit wird die im Bebauungsplan Nr. 313 angestrebte städtebauliche Zielsetzung für das Jahr 2030 mit Neubau der Jakob-Koenen-Straße sowie Ansiedlung im Endausbau zugrunde gelegt.

Kriterien zur Ermittlung der Geräuschimmissionen und zur Beurteilung, ob die mit der Eigenart des geplanten Baugebietes verbundene Erwartung auf angemessenen Schutz vor Lärmbelastungen erfüllt ist, sind in der Norm DIN 18005 definiert.

Hierzu wird eine Schallimmissionsprognose erstellt. Sollten die vorgegebenen Anforderungen nicht eingehalten werden, sind geeignete Maßnahmen zur Lärmminderung aufzuzeigen.

Gutachten-Nr.: 105 0649 18 Textteil - Langfassung
Projekt: Bauleitplanung Nr. 315 "Blumenstraße/Bahnhofstraße" Seite 10 von 29

3 Grundlage für die Ermittlung und Beurteilung der Immissionen

3.1 Schallschutz im Städtebau

3.1.1 Orientierungswerte der DIN 18005

Zur Berücksichtigung des Schallschutzes im Rahmen der städtebaulichen Planung sind Hinweise in der [DIN 18005-1] gegeben. In [DIN 18005-1 Bbl. 1] sind für die unterschiedlichen Gebietsnutzungen schalltechnische Orientierungswerte angegeben, deren Einhaltung oder Unterschreitung wünschenswert ist, um die mit der Eigenart des betreffenden Baugebietes verbundene Erwartung auf angemessenen Schutz vor Lärmbelastungen zu erfüllen. Diese Orientierungswerte sind in Tabelle 1 zusammengefasst.

Tabelle 1: Schalltechnische Orientierungswerte der DIN 18005-1 Bbl. 1

	Orientierungswerte in dB(A)							
	Tag 6:00 bis 22:00 Uhr	Nacht 22:00 bis 6:00 Uhr						
Gebietseinstufung	Verkehrslärm, Industrie-, Gewerbe- und Freizeitlärm	Verkehrslärm	Industrie-, Gewerbe- und Freizeitlärm					
Reine Wohngebiete (WR), Wochenendhaus- und Feriengebiete	50	40	35					
Allgemeine Wohngebiete (WA), Kleinsiedlungsgebiete (WS)	55	45	40					
Mischgebiete (MI), Dorfgebiete (MD)	60	50	45					
Kerngebiete (MK), Gewerbegebiete (GE)	65	55	50					
Sondergebiete (SO), soweit sie schutzbedürftig sind, je nach Nutzungsart	45 - 65	35 - 65	35 - 65					

Die [DIN 18005-1] bzw. [DIN 18005-1 Bbl. 1] enthält folgende Anmerkung und Hinweise:

Im Rahmen der erforderlichen Abwägung der Belange in der städtebaulichen Planung ist der Belang des Schallschutzes als ein wichtiger Planungsgrundsatz neben anderen Belangen zu sehen. Die Abwägung kann in bestimmten Fällen bei Überwiegen anderer Belange – insbesondere in bebauten Gebieten – zu einer entsprechenden Zurückstellung des Schallschutzes führen.

Die Beurteilungspegel der Geräusche verschiedener Arten von Schallquellen (Verkehr, Industrie und Gewerbe, Freizeit) sollen jeweils für sich allein mit den Orientierungswerten verglichen und nicht addiert werden.

Textteil - Langfassung Projekt: Bauleitplanung Nr. 315 "Blumenstraße/Bahnhofstraße" Seite 11 von 29

In vorbelasteten Bereichen, insbesondere bei vorhandener Bebauung, bestehenden Verkehrswegen und in Gemengelagen, lassen sich die Orientierungswerte oft nicht einhalten. Wo im Rahmen der Abwägung mit plausibler Begründung von den Orientierungswerten abgewichen werden soll, weil andere Belange überwiegen, sollte möglichst ein Ausgleich durch andere geeignete Maßnahmen (z. B. geeignete Gebäudeanordnung und Grundrissgestaltung, bauliche Schallschutzmaßnahmen, insbesondere für Schlafräume) vorgesehen und planungsrechtlich abgesichert werden.

Überschreitungen der Orientierungswerte und entsprechende Maßnahmen zum Erreichen ausreichenden Schallschutzes sollen in der Begründung zum Bebauungsplan beschrieben und ggf. in den Plänen gekennzeichnet werden.

Bei Beurteilungspegeln über 45 dB(A) während der Nachtzeit ist selbst bei nur teilweise geöffnetem Fenster ungestörter Schlaf häufig nicht mehr möglich. Diesbezüglich ist anzumerken, dass die [VDI 2719] erst ab einem A-bewerteten Außengeräuschpegel $L_m > 50$ dB(A) auf die Notwendigkeit zusätzlicher Belüftungsmöglichkeiten für Schlaf- und Kinderzimmer hinweist.

3.2 Weitere Abwägungskriterien zum Schallschutz in der städtebaulichen Planung

Die in [DIN 18005-1 Bbl. 1] angegebenen Orientierungswerte lassen bei ihrer Einhaltung erwarten, dass ein Baugebiet entsprechend seinem üblichen Charakter ohne Beeinträchtigungen genutzt werden kann. Die Orientierungswerte können, dies drückt bereits der Begriff "Orientierungswert" aus, zur Bestimmung der zumutbaren Lärmbelastung in einem Plangebiet im Rahmen einer gerechten Abwägung lediglich als Orientierungshilfe herangezogen werden. Über die reine immissionsschutztechnische Betrachtung hinaus sind auch andere gewichtige Belange in die bauleitplanerische Abwägung einzubeziehen.

3.2.1 Immissionsgrenzwerte der 16. BlmSchV

Bei dem Bau oder einer wesentlichen Änderung von öffentlichen Verkehrswegen wird gemäß Bundes-Immissionsschutzgesetz [BImSchG] die Verkehrslärmschutzverordnung [16. BImSchV] angewendet. Hiernach ist eine Änderung wesentlich, wenn

- eine Straße um einen oder mehrere durchgehende Fahrstreifen für den Kraftfahrzeugverkehr baulich erweitert wird oder
- durch einen erheblichen baulichen Eingriff der Beurteilungspegel des von dem zu ändernden Verkehrsweg ausgehenden Verkehrslärms um mindestens 3 dB oder auf mindestens 70 dB(A) am Tage oder mindestens 60 dB(A) in der Nacht erhöht wird,

Gutachten-Nr.: 105 0649 18 Textteil - Langfassung
Projekt: Bauleitplanung Nr. 315 "Blumenstraße/Bahnhofstraße" Seite 12 von 29

• eine Änderung ist auch wesentlich, wenn der Beurteilungspegel des von dem zu ändernden Verkehrsweg ausgehenden Verkehrslärms von mindestens 70 dB(A) zur Tageszeit und mindestens 60 dB(A) zur Nachtzeit durch einen erheblichen baulichen Eingriff erhöht wird¹.

In der [16. BlmSchV] werden folgende zum Schutz der Nachbarschaft einzuhaltende Immissionsgrenzwerte aufgeführt (Tabelle 2):

Tabelle 2: Immissionsgrenzwerte der 16. BlmSchV

	Immissionsgrenzwerte in dB(A)					
Gebietseinstufung	Tag 6:00 bis 22:00 Uhr	Nacht 22:00 bis 6:00 Uhr				
Krankenhäuser, Schulen, Kurheime, Altenheime	57	47				
Reine Wohngebiete (WR), Allgemeine Wohngebiete (WA), Kleinsiedlungsgebiete (WS)	59	49				
Kerngebiete (MK), Dorfgebiete (MD), Mischgebiete (MI)	64	54				
Gewerbegebiete (GE)	69	59				

3.2.2 Sanierungs- bzw. Auslösewerte der VLärmSchR 97

Die [VLärmSchR 97] vereinen in sich die Regelungen der [16. BlmSchV] hinsichtlich der Lärmvorsorge und der [24. BlmSchV] hinsichtlich Schallschutzmaßnahmen an Gebäuden und ergänzen sie mit Regelungen zum Schallschutz an bestehenden Straßen (Lärmsanierung). Im Juni 2010 wurden mit Inkrafttreten des Bundeshaushaltes auf Basis des [BMVBS 2009] die in der ursprünglichen Fassung genannten Auslösewerte zur Lärmsanierung vom Bundesministerium für Verkehr, Bau und Stadtentwicklung um jeweils 3 dB gesenkt.

Tabelle 3 enthält die bereits abgesenkten Werte.

Tabelle 3: Auslösewerte für Lärmsanierung VLärmSchR 97, BMVBS 2009

	Immissionsgrenzwerte in dB(A)					
Gebietseinstufung	Tag 6:00 bis 22:00 Uhr	Nacht 22:00 bis 6:00 Uhr				
Krankenhäuser, Schulen, Kurheime, Altenheime	67	57				
Reine Wohngebiete (WR), Allgemeine Wohngebiete (WA), Kleinsiedlungsgebiete (WS)	67	57				
Kerngebiete (MK), Dorfgebiete (MD), Mischgebiete (MI)	69	59				
Gewerbegebiete (GE)	72	62				

Dies gilt nicht in Gewerbegebieten.

Gutachten-Nr.: 105 0649 18 Textteil - Langfassung
Projekt: Bauleitplanung Nr. 315 "Blumenstraße/Bahnhofstraße" Seite 13 von 29

3.2.3 Zumutbarkeitsschwelle

Die sogenannte Zumutbarkeitsschwelle² liegt im Rahmen der städtebaulichen Planung in Wohngebieten bei 70 dB(A) am Tag und 60 dB(A) im Nachtzeitraum.

Schallschutz in Wohnungen und Büroräumen

In lärmbelasteten Gebieten ist neben der Reduzierung der Außenlärmpegel für die empfundene Wohnund Arbeitsqualität insbesondere der Schutz von Aufenthaltsräumen in Gebäuden ein wichtiges Ziel. Durch geeignete Dimensionierung der Schalldämmung der Außenbauteile kann gemäß den Empfehlungen der [DIN 4109-1] ein gesundheitsverträgliches Wohnen und Arbeiten ermöglicht werden.

Gutachten-Nr.: 105 0649 18 Textteil - Langfassung
Projekt: Bauleitplanung Nr. 315 "Blumenstraße/Bahnhofstraße" Seite 14 von 29

² Urteil vom 12. April 2000 – BVerwG 11 A 18.98; BGH Urteil vom 25. März 1993 – III ZR 60.91 – BGHZ 122, 76 <81> m. w. N.

4 Beschreibung und Berechnungsverfahren des einwirkenden Verkehrslärms

Um die Wohnqualität innerhalb des Bebauungsplangebietes bzw. der dortigen Bauvorhaben sicherzustellen, werden die aus den angrenzenden Verkehrswegen einwirkenden Verkehrslärmimmissionen (Straßen- und Schienenverkehr) wie in Abbildung 2 ermittelt.

Grundlage bildet dabei die im Rahmen der Bauleitplanung Nr. 313 zur Umstrukturierung des ehemaligen Güterbahnhofs durchgeführte Untersuchung der schalltechnischen Auswirkung der Verkehrsplanung.

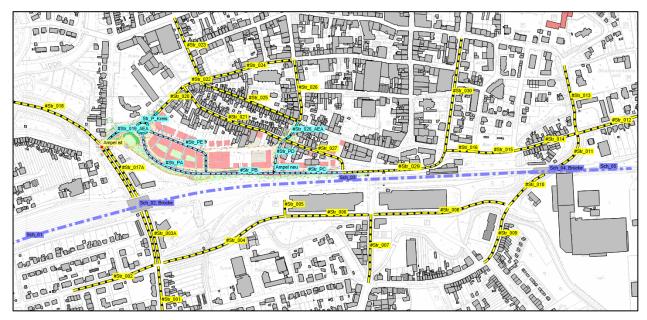


Abbildung 2: Übersicht der betrachteten Straßenführungen bestehende (schwarz/gelb), geplante bzw. geänderte (türkis/weiß) und der Bahnstrecke (lila)

Das Rechenverfahren für die Ermittlung von Lärmpegeln an Straßen- und Schienenwegen wird durch die [DIN 18005-1] vorgegeben und der [16. BImSchV] bzw. [RLS-90] und [Schall 03 2012] näher beschrieben.

4.1 Berechnungsverfahren der [RLS-90]

Die Berechnung der Schallimmissionen durch den Straßenverkehr erfolgt nach dem Berechnungsverfahren der [RLS-90]. Hierzu wird die qualitätsgesicherte Software MAPANDGIS der Kramer Software GmbH, St. Augustin, in ihrer aktuellen Softwareversion (1.1.3.9) verwendet.

Die Schallausbreitungsberechnung wird mit A-bewerteten Schallpegeln mit einer Schwerpunktfrequenz von 500 Hz durchgeführt. Die Abschirmung sowie die Reflexion durch Gebäude sowie die Abschirmung durch natürliche und künstliche Geländeverformungen werden - soweit vorhanden bzw. schalltechnisch

Gutachten-Nr.: 105 0649 18 Textteil - Langfassung Projekt: Bauleitplanung Nr. 315 "Blumenstraße/Bahnhofstraße" Seite 15 von 29

relevant - berücksichtigt. Im Falle einer für die Berechnungen relevanten Topografie des Untersuchungsgebietes wird diese in das Berechnungsmodell eingestellt. Nach dem Berechnungsverfahren der [RLS-90] wird zunächst der Emissionspegel $\mathbf{L}_{m,E}$ in dB(A) eines Fahrstreifens berechnet:

$$\mathbf{L}_{m,E} = \mathbf{L}_{m}^{(25)} + \mathbf{D}_{v} + \mathbf{D}_{StrO} + \mathbf{D}_{Sta} + \mathbf{D}_{E}$$
 in dB(A)

Hierbei ist:

 $\mathbf{L}_{m}^{(25)}$ der Mittelungspegel in dB(A),

D_v die Korrektur für unterschiedliche zulässige Höchstgeschwindigkeiten in dB,

D_{StrO} die Korrektur für unterschiedliche Straßenoberflächen in dB,

Dstg der Zuschlag für Steigungen und Gefälle in dB,

DE die Korrektur zur Berücksichtigung der Absorptionseigenschaften von refl. Flächen in dB.

Die Korrektur zur Berücksichtigung der Absorptionseigenschaften von reflektierenden Flächen wird bei einer Einfachreflexion mit 1 dB gemäß [RLS-90] in Ansatz gebracht³.

Der Mittelungspegel \mathbf{L}_m in dB(A) eines langen, geraden Fahrstreifens berechnet sich dann gemäß der [RLS-90] zu:

$$\mathbf{L}_{m} = \mathbf{L}_{m,E} + \mathbf{D}_{S\perp} + \mathbf{D}_{BM} + \mathbf{D}_{B}$$
 in dB(A)

Hierbei ist:

 $\mathbf{L}_{m,E}$ der Emissionspegel in dB(A),

D_{S,L} die Pegeländerung zur Berücksichtigung des Abstandes und der Luftabsorption in dB,
 D_{BM} die Pegeländerung zur Berücksichtigung der Boden- und Meteorologiedämpfung in dB,
 D_B die Pegeländerung durch topografische Gegebenheiten und bauliche Maßnahmen in dB.

Das Berechnungsprogramm unterteilt die Schallquellen in Teilstrecken, deren Ausdehnungen klein gegenüber den Abständen zu den Immissionsorten sind und die daher als Punktschallquellen behandelt werden können.

Der Beurteilungspegel \mathbf{L}_r in dB(A) berechnet sich dann gemäß der [RLS-90] zu:

 $\mathbf{L}_{r} = \mathbf{L}_{m} + \mathbf{K}$ in dB(A)

Hierbei ist:

 \mathbf{L}_{m} der Mittelungspegel in dB(A),

K der Zuschlag für erhöhte Störwirkung von lichtzeichengeregelten Kreuzungen und Einmündungen.

Textteil - Langfassung

Seite 16 von 29

Gutachten-Nr.: 105 0649 18
Projekt: Bauleitplanung Nr. 315 "Blumenstraße/Bahnhofstraße"

³ Im Rahmen des Geltungsbereiches der [16. BlmSchV] wird die Pegelzunahme durch Reflexionen an den eingegebenen Gebäuden nur für Straßenverkehrsgeräusche und nur für die erste Reflexion berücksichtigt.

Die Berechnung der Geräuschimmissionen im Plangebiet erfolgt in Form von Schallimmissionsplänen gemäß [DIN 18005-2] flächenmäßig in einem festgelegten Raster, wobei für jede Rasterfläche im Untersuchungsgebiet ein Immissionspunkt gesetzt wird.

4.2 Berechnungsverfahren der [Schall 03 2012]

Die Berechnung der Schallimmissionen durch den Schienenverkehr erfolgt nach dem Berechnungsverfahren der [Schall 03 2012]. Hierzu wird die qualitätsgesicherte Software MAPANDGIS der Kramer Software GmbH, St. Augustin, in ihrer aktuellen Softwareversion (1.1.3.9) verwendet.

Die Schallausbreitungsberechnung wird mit A-bewerteten Oktav-Schallpegeln im Frequenzbereich von 63 Hz bis 8.000 Hz durchgeführt. Die Abschirmung sowie die Reflexion durch Gebäude sowie die Abschirmung durch natürliche und künstliche Geländeverformungen werden – soweit vorhanden bzw. schalltechnisch relevant – entsprechend den Vorgaben der [Schall 03 2012] berücksichtigt. Im Falle einer für die Berechnungen relevanten Topografie des Untersuchungsgebietes wird diese in das Berechnungsmodell eingestellt. Die Schallimmission an einem Immissionsort wird als äquivalenter Dauerschalldruckpegel LpAeq für den Zeitraum einer vollen Stunde errechnet. An Strecken der Eisenbahn und Straßenbahn sind Summationen der Schalldruckpegel nach folgender Gleichung durchzuführen:

$$\mathbf{L}_{\text{pAeq}} = 10 \cdot \log \left(\sum_{f, \ h, \ k_{s}, w} 10^{0,1 \cdot \left(\mathbf{L}_{\text{WA,f,h,k}_{s}} + \mathbf{D}_{\text{l,k}_{s}, w} + \mathbf{D}_{\Omega,k_{s}} - \mathbf{A}_{\text{f,h,k}_{s}, w} \right)} \right) \qquad \text{in dB(A)}$$

Hierbei ist:

f, h, k_s, w Zähler für Oktavband, Höhenbereich, Teilstück, Ausbreitungswege,

LwA,f,h,ks der A-bewertete Schallleistungspegel der Punktschallquelle in der Mitte des Teilstücks ks, der die Emission

aus dem Höhenbereich hangibt,

D_{l,ks,w} das Richtwirkungsmaß für den Ausbreitungsweg w,

 $\mathbf{D}_{\Omega,ks}$ das Raumwinkelmaß,

A_{f,h,ks,w} das Ausbreitungsdämpfungsmaß im Oktavband f, im Höhenbereich h, vom Teilstück k_S längs des Weg w.

An einem Immissionsort, der durch Geräusche von einer Strecke für Eisenbahnen mit oder ohne Bahnhöfe, Haltestellen oder Haltepunkte betroffen ist, wird der Beurteilungspegel getrennt für den Beurteilungszeitraum Tag (6 Uhr bis 22 Uhr) und den Beurteilungszeitraum Nacht (22 Uhr bis 6 Uhr) berechnet:

$$\mathbf{L}_{r,Tag} = \mathbf{L}_{pAeg,Tag} + \mathbf{K}_{S}$$
 bzw. $\mathbf{L}_{r,Nacht} = \mathbf{L}_{pAeg,Nacht} + \mathbf{K}_{S}$ in dB(A)

Hierbei ist:

 $\mathbf{L}_{r,Tag}$ der Beurteilungspegel für den Beurteilungszeitraum Tag (6 Uhr bis 22 Uhr) in dB, $\mathbf{L}_{r,Nacht}$ der Beurteilungspegel für den Beurteilungszeitraum Nacht (22 Uhr bis 6 Uhr) in dB,

 $\mathbf{L}_{\text{p,Aeq,Tag}}$, $\mathbf{L}_{\text{p,Aeq,Nacht}}$ äquivalenter Dauerschalldruckpegel von Strecken in dB,

 \mathbf{K}_{S} - 5 dB Pegelkorrektur zur Berücksichtigung der geringeren Störwirkung des Schienen-

verkehrslärms gegenüber dem Straßenverkehr.

Pegelkorrekturen für ton-, impuls- oder informationshaltige Geräusche sind in der Berechnung der Schallemission enthalten und werden bei der Bildung des Beurteilungspegels nicht gesondert angesetzt.

Gutachten-Nr.: 105 0649 18 Textteil - Langfassung Projekt: Bauleitplanung Nr. 315 "Blumenstraße/Bahnhofstraße" Seite 17 von 29

5 Beschreibung der Emissionsansätze

Im Rahmen der Bauleitplanung war der schalltechnische Immissionsschutz im Hinblick auf die außerhalb des Plangebietes befindlichen Geräuschquellen (Straßen-und Schienenverkehr) zu prüfen.

5.1 Straßenverkehr

Als Berechnungsgrundlage des Verkehrslärms wird die seitens der Stadt Lippstadt zur Verfügung gestellte Verkehrsuntersuchung zum ehem. Güterbahnhofgelände des Büros dipl-ing d.holzhauer, planungsbüro verkehr + strasse aus Lippstadt, Stand Januar 2017 wie folgt für die Bestandsstraßen und die geplanten Verkehrswege zugrunde gelegt. Beurteilungsgrundlage im Hinblick auf eine ausreichende Prognosesicherheit ist dabei die Variante Prognose-Planfall 2030 mit Neubau der Jakob-Koenen-Straße sowie Ansiedlung im Endausbau.

Tabelle 4: Maßgebende Verkehrsmengen Neubau, Prognose-Planfall 2030 mit Ansiedlung

Nr.	Name	Achs. Abst.	DTV	ΜT	M N	PΤ	PN	V Pkw T/N	LME T	LME N
		[m]	[Kfz/24h]	[Kfz/h]	[Kfz/h]	[%]	[%]	[km/h]	[dB(A)]	[dB(A)]
#Str_PA	Jakob-Koenen-Straße	2.5	7006	407	61	5	5	50	60.0	51.8
#Str_PB	Jakob-Koenen-Straße W	2.5	7680	406	80	5	5	50	60.0	53.0
#Str_PC	Jakob-Koenen-Straße O	2.5	10316	600	90	5	5	50	61.7	53.5
#Str_PD	Cappelstraße Süd	2.5	8426	500	53	6	7	30	58.8	49.5
#Str_PE	Jakob-Koenen-Straße	1	680	41	8	5	5	30	47.6	40.5
#Str_P_Kreis	Kreisverkehr Plan	1	8451	489	80	5	5	30	58.3	50.5

Hierbei ist:

DTV die durchschnittliche tägliche Verkehrsstärke in Kfz/24 h,M die maßgebende stündliche Verkehrsstärke in Kfz/h,

der prozentuale Anteil des Schwerverkehrs am durchschnittlichen täglichen Verkehrsaufkommens in %,
 die für den betreffenden Straßenabschnitt zulässige Höchstgeschwindigkeit in km/h für Pkw und Lkw, jedoch mindestens 30 km/h und höchstens 80 km/h für Lkw und 130 km/h für Pkw.

Tabelle 5: Straßenbelastungszahlen aus der Verkehrsuntersuchung ehem. Güterbahnhofgelände für den Prognose-Planfall 2030 mit Ansiedlung Güterbahnhof, Bestandsstraßen

Nr.	Name	Achs. Abst. [m]	DTV [Kfz/24h]	M T [Kfz/h]	M N [Kfz/h]	P T [%]	P N [%]	V Pkw T/N [km/h]	LME T [dB(A)]	LME N [dB(A)]
#Str_001	Stirper Straße Süd	4	14375	854	90	6	7	50	63.7	54.3
#Str_002	Akazienstraße	1	2815	158	35	2	3	50	54.3	48.4
#Str_003A	Stirper Straße stadteinwärts	3.5	9489	550	59	6	7	50	61.8	52.5
#Str_003B	Stirper Straße stadtauswärts	3.5	9745	563	59	6	7	50	61.9	52.5

Gutachten-Nr.: 105 0649 18 Textteil - Langfassung
Projekt: Bauleitplanung Nr. 315 "Blumenstraße/Bahnhofstraße" Seite 18 von 29

Sachverständige für Immissionsschutz

Nr.	Name	Achs.	DTV	M T	MN	PΤ	PΝ	V Pkw	LME	LME
		Abst. [m]	[Kfz/24h]	[Kfz/h]	[Kfz/h]	[%]	[%]	T/N [km/h]	T [dB(A)]	N [dB(A)]
#Str_004	Konrad- Adenauerring Ost TS1	3.5	6984	406	61	5	5	50	60.0	51.8
#Str_005	Anbindung Cineplex	3	2321	145	0	0	0	30	50.2	0.0
#Str_006	Konrad-Adenauer- Ring Ost TS2	3	7101	413	62	5	5	50	60.1	51.9
#Str_007	Südertor	3.5	6432	366	72	2	3	50	57.9	51.5
#Str_008	Konrad-Adenauer- Ring Ost TS3	3.5	5453	317	48	5	5	50	58.9	50.7
#Str_009	Bökenförder Straße	3.5	11151	634	125	2	3	50	60.3	53.9
#Str_010	Unionstraße Nord TS1	6	12308	731	77	6	7	50	63.0	53.6
#Str_011	Unionstraße Nord TS2	6	12308	700	138	6	7	50	62.8	56.2
#Str_012	Rixbecker Straße Ost	4.5	11600	689	73	6	7	50	62.7	53.4
#Str_013	Oststraße	3.5	6152	350	69	0.5	0.5	50	56.6	49.6
#Str_014	Rixbecker Straße West TS1	3.5	11386	676	71	6	7	50	62.7	53.3
#Str_015	Rixbecker Straße West TS2	5	10899	647	68	6	7	50	62.5	53.1
#Str_016	Rixbecker Straße	10	10766	639	67	6	7	50	62.4	53.0
#Str_017A	Stirper Straße stadteinwärts	3.5	9489	563	59	6	6	50	61.9	52.1
#Str_017B	Stirper Straße stadtauswärts	3.5	9745	597	61	6	7	50	62.1	52.6
#Str_018	Udener Straße	4	15964	948	100	6	7	50	64.1	54.8
#Str_019	Klosterstraße TS1	3	11070	643	97	5	5	30	59.5	51.3
#Str_020	Klosterstraße West, TS2	2.5	6596	375	74	3	2	30	55.7	49.2
#Str_021	Hospitalstraße	1	309	18	3	2	3	30	42.5	35.3
#Str_022	Klosterstraße Ost, TS3	1	6410	365	72	2	3	30	55.6	49.1
#Str_023	Weihenstraße	1	3855	219	43	2	3	30	53.4	46.8
#Str_024	Klosterstraße Ost, TS4	1	2291	130	26	2	3	30	51.1	44.7
#Str_025	Nicolaiweg	1	107	6	1	0	0	30	36.3	28.5
#Str_026	Cappelstraße Nord	1	8337	495	52	6	7	30	58.8	49.4
#Str_026_AE A	Cappelstraße Süd	1	8337	495	52	6	7	30	58.8	49.4
#Str_027	Bahnhofstraße	2.5	150	9	2	2	2	30	39.5	33.0
#Str_029	Bahnhofstraße	3	10303	599	90	5	5	30	59.2	51.0
#Str_030	Woldemei	3	6623	385	58	5	5	30	57.3	49.1

Gutachten-Nr.: 105 0649 18
Projekt: 105 0649 18
Bauleitplanung Nr. 315 "Blumenstraße/Bahnhofstraße"

5.2 Schienenverkehr

Die in den Berechnungen berücksichtigten Belastungszahlen (Tabelle 6) der angrenzenden Bahnlinie beruhen auf Angaben der Deutschen Bahn AG. Dabei werden im Hinblick auf eine ausreichende Prognosesicherheit die im Folgenden für den Prognosehorizont 2025 von der Deutschen Bahn AG zur Verfügung gestellten Personen- und Güterverkehre für die Beurteilung der Verkehrslärmsituation berücksichtigt.

Tabelle 6: Schienen-Belastungszahlen der DBAG, Strecke 1760 Abschnitt Lippstadt Bereich Hbf., Prognosehorizont 2025

Anz Zü	ahl ge	Zugart- Traktion	V _{max}		Fahrzeugkategorien gem. [Schall 03 2012] im Zugverband								
T	N		km/h	Fzg Kat.	Anz.	Fzg Kat.	Anz.	Fzg Kat.	Anz.	Fzg Kat.	Anz.	Fzg Kat.	Anz.
54	56	GZ-E	100	7-Z5_A4	1	10-Z5	24	10-Z2	6	10-Z18	6	10-Z15	1
13	14	GZ-E	120	7-Z5_A4	1	10-Z5	24	10-Z2	6	10-Z18	6	10-Z15	1
58	10	RV-ET	130	5-Z5_A12	2								
16	2	RV-E	130	7-Z5_A4	1	9-Z5	5						
13	1	IC-E	130	7-Z5_A4	1	9-Z5	12						
2	0	ICE	130	4-V1	2								
156	156 83 Summe beider Richtungen												

Unter Berücksichtigung der oben genannten Parameter und den entsprechenden Zuschlägen bzw. Korrekturwerten für die Geschwindigkeit, die Ausführung der Strecke mit Betonschwellen ergeben sich für das Jahr 2025 die in Tabelle 7 dargestellten längenbezogenen Schallleistungspegel zur Tages- (Lw·A,T) und Nachtzeit (Lw·A,N):

Tabelle 7: Längenbezogene Schallleistungspegel zur Tages- und Nachtzeit

Nr.	Strecke/Streckenabschnitt	L _{W'A,T} dB(A)	L _{W'A,N} dB(A)
S_01	Strecke 1760 Abschnitt Lippstadt Bereich Hbf., Prognosehorizont 2025	92.0	94.6
S_02	Strecke 1760 Abschnitt Lippstadt Bereich Hbf. Bürckenbereich , Prognosehorizont 2025	95.0	97.6

Gutachten-Nr.: 105 0649 18 Textteil - Langfassung Projekt: Bauleitplanung Nr. 315 "Blumenstraße/Bahnhofstraße" Seite 20 von 29

Gemäß [Schall 03 2012] sind darüber hinaus für die erhöhte Störwirkung von Brückenbauwerken Zuschläge zu berücksichtigen.

Bei den nunmehr in Hinblick auf den Prognosehorizont 2025 zugrunde zu legenden Belastungsdaten sind die aktuell durch die WLE in dem Bereich stattfindenden bis zu 10 Güterzüge der Stadt Lippstadt mit abgedeckt. Nicht berücksichtigt sind hingegen ggf. auf der Strecke stattfindende Rangiertätigkeiten.

Gutachten-Nr.: 105 0649 18 Textteil - Langfassung Projekt: Bauleitplanung Nr. 315 "Blumenstraße/Bahnhofstraße" Seite 21 von 29

6 Ermittlung der Geräuschimmissionen und Diskussion der Untersuchungsergebnisse

6.1 Allgemeine Informationen

Die Berechnung der Geräuschimmissionen im Plangebiet erfolgt in Form von Schallimmissionsplänen gemäß [DIN 18005-2] flächenmäßig in einem festgelegten Raster, wobei für jede Rasterfläche im Untersuchungsgebiet ein Immissionspunkt gesetzt wird. In den Schallimmissionsplänen können die Orientierungswerte wie folgt abgelesen werden (Tabelle 8):

Tabelle 8: Farbwechsel Orientierungswerte

Gebietsausweisung	Tag	Nacht
Mischgebiete (MI)	60 dB(A) Farbwechsel orange/rot	50 dB(A) Farbwechsel gelb/braun
	>55-60 >60-65 dB(A) dB(A)	>45-50 >50-55 dB(A) dB(A)

6.2 Verkehrslärmbelastung im Bebauungsplangebiet

Die auf das Plangebiet einwirkenden Verkehrslärmimmissionen werden in Hinblick auf die Wahrung gesunder Wohn- und Arbeitsverhältnisse für den Prognosehorizont 2025/2030 ermittelt. Die zu erwartenden Straßenverkehrsbelastungen entsprechen dem Prognose-Plan-Fall-2030 mit Ansiedlung, die Schienenbelastungsdaten dem Prognosehorizont 2025. Die Ergebnisse der Berechnungen sind im Anhang C - beispielhaft wie folgt - dokumentiert:

> Geräuschimmissionen: Straßen- und Schienenverkehr

Darstellung: Beurteilungspegel

Beurteilungszeitraum: Tageszeitraum (6:00 bis 22:00 Uhr) Höhe: 1. OG (Oberkante Fenster = 5.6 m)

Minderungsmaßnahmen: keine Nutzungskonzept: ohne/mit

Wie aus den Schallimmissionsplänen im Anhang zu ersehen ist, ergibt sich für das Plangebiet ohne bestehende bzw. geplante Nutzung, in Bezug auf die gebietsspezifischen schalltechnischen Orientierungswerte des [DIN 18005-1 Bbl. 1] für den Straßen- und Schienenverkehr für das Prognosejahr 2025/2030 mit Ansiedlung als worst-case-Fall Folgendes:

105 0649 18 Textteil - Langfassung Projekt: Bauleitplanung Nr. 315 "Blumenstraße/Bahnhofstraße" Seite 22 von 29

- Die Orientierungswerte von 60 dB(A) für Mischgebiete (MI) sowie die Orientierungswerte von 65 dB(A) für kerngebiete (MK) werden zur Tageszeit lediglich in einem in der Abschirmung der Gebäude Bahnhofstraße 6 bis 14 befindlichen Bereich eingehalten. Dabei ist insbesondere das südöstliche Plangebiet aufgrund der Nähe zur Bahnanlage sowie einer fehlenden Abschirmung durch vorgelagerte Gebäude durch Schienenverkehrslärm stark beeinträchtigt. Der Einfluss des Schienenverkehrs führt in dem Bereich dazu, dass nicht nur die Orientierungswerte sondern auch der Immissionsgrenzwert von 64 dB(A) überschritten werden. Im Bereich des Flurstücks 189 wird darüber hinaus auch der für Mischund Kerngebiete geltende Auslösewert für Lärmsanierung [VLärmSchR 97] von 69 dB(A) erreicht. Im nordwestlichen Bereich des Plangebietes zeigt sich aufgrund des geringeren Einflusses des Schienenverkehrslärms im Nahbereich der westlich verlaufenden Cappelstraße eine Beeinträchtigung durch Straßenverkehrslärm.
- Im Nachtzeitraum bleibt der normalerweise zur Nachtzeit absinkende Verkehrsgeräuschpegel aufgrund des auf der angrenzenden Bahnanlage hohen Güterverkehrsaufkommens aus. Damit ergeben sich im Nachtzeitraum im südöstlichen Plangebiet aufgrund der Nähe zur Bahnanlage sowie einer fehlenden Abschirmung durch vorgelagerte Gebäude sogar höhere Verkehrsgeräuschpegel als zur Tageszeit. Dieses führt zwangsläufig dazu, dass im Nachtzeitraum nicht nur deutliche Überschreitungen des anzustrebenden Orientierungswertes vorliegen, sondern, wie ja bereits zur Tageszeit, der für Misch- und Kerngebiete geltende Immissionsgrenzwert von 54 dB(A) und sogar der Auslösewert für Lärmsanierung [VLärmSchR 97] von 59 dB(A) zur Nachtzeit deutlich überschritten wird.

Aufgrund der durch die Bahnanlage im Tages- und Nachtzeitraum gegebenen und zukünftig noch deutlich ansteigenden Geräuscheinwirkungen zur Wahrung gesunder Wohn- bzw. Arbeitsverhältnisse innerhalb des Plangebietes werden teilweise erhebliche Lärmminderungsmaßnahmen erforderlich.

Gutachten-Nr.: 105 0649 18 Textteil - Langfassung
Projekt: Bauleitplanung Nr. 315 "Blumenstraße/Bahnhofstraße" Seite 23 von 29

7 Schallschutzmaßnahmen für das Plangebiet

7.1 Allgemeine Informationen

Dass die mit der Eigenart eines Baugebietes oder einer Baufläche verbundenen Erwartungen an den Schallschutz erfüllt sind, wird durch die Einhaltung der Orientierungswerte der [DIN 18005-1 Bbl. 1] ausgedrückt. In vorbelasteten Gebieten, insbesondere bei vorhandener Bebauung, bei bestehenden Verkehrswegen und in Gemengelagen, lassen sich die Orientierungswerte off nicht einhalten. Sind Überschreitungen der Orientierungswerte festzustellen, ist der Immissionsschutz durch geeignete Maßnahmen sicherzustellen. Im Allgemeinen ist dabei der aktive Lärmschutz an der Emissionsquelle dem passiven Lärmschutz an den Gebäuden Vorrang zu geben.

Wie die Berechnungen bei bestehender Wohnbebauung zeigen, führt die nahezu bestehende bzw. geplante geschlossene Riegelbebauung entlang der Bahnhofstraße dazu, dass die Fassaden in Ausrichtung zu den Verkehrswegen durch Schienenverkehrslärm stark beeinträchtigt sind. Durch die Abschirmung des Verkehrslärms dieser Riegelbebauung kann jedoch im rückwärtigen Bereich erreicht werden, dass die Orientierungswerte der DIN 18005 für Mischgebiete zur Tages- und Nachtzeit nahezu im gesamten Plangebiet eingehalten werden.

Aufgrund der durch die Bahnanlage im Tages- und Nachtzeitraum gegebenen Geräuscheinwirkungen ist zur Wahrung gesunder Wohn- bzw. Arbeitsverhältnisse der Immissionsschutz im Rahmen der Bauleitplanung sicherzustellen.

Der erforderliche Immissionsschutz innerhalb der Gebäude sollte daher über sogenannte passive Maßnahmen, d. h. Schallschutzfenster in den der Straßenführung zugewandten Fassade sichergestellt werden. Darüber hinaus ist es zielführend, Fenster von besonders schutzbedürftigen Räumen - wie etwa Schlaf- und Kinderzimmer - ggf. mit Lüftungseinrichtungen auszustatten. Des Weiteren ist auf straßenseitige Balkone zu verzichten.

7.2 Anforderungen an die Schalldämmung von Außenbauteilen

Für die Festlegung der erforderlichen Luftschalldämmung von Außenbauteilen gegenüber Außenlärm werden unterschiedliche Lärmpegelbereiche zugrunde gelegt, denen die jeweils vorhandenen oder zu erwartenden "maßgeblichen Außenlärmpegel" bei rechnerischer Ermittlung gemäß [DIN 4109-2] zuzuordnen sind.

Die Art und der Umfang der passiven Maßnahmen am Gebäude werden durch den maßgeblichen Außenlärmpegel vorgegeben. Der maßgebliche Außenlärmpegel ist gemäß [DIN 4109-2] der um 3 dB

Gutachten-Nr.: 105 0649 18 Textteil - Langfassung Projekt: Bauleitplanung Nr. 315 "Blumenstraße/Bahnhofstraße" Seite 24 von 29

erhöhte Tagesbeurteilungspegel. Beträgt die Differenz wie im vorliegendem Fall zwischen dem Beurteilungspegel Tag und Nacht weniger als 10 dB, so ergibt sich der maßgebliche Außenlärmpegel zum Schutz des Nachtschlafes aus einem 3 dB erhöhten Nachtbeurteilungspegel und einem Zuschlag von 10 dB.

Aufgrund der Frequenzzusammensetzung von Schienenverkehrsgeräuschen in Verbindung mit dem Frequenzspektrum der Schalldämm-Maße von Außenbauteilen ist der Beurteilungspegel für den Schienenverkehr pauschal um 5 dB zu mindern.

Die nachfolgende Tabelle 9 entspricht der Tabelle 7 der [DIN 4109-1]. Hierin enthalten sind die maßgeblichen Außenlärmpegel die zur Bestimmung des gesamten bewerteten Bau-Schalldämm-Maßes R'w,ges der Außenbauteile von schutzbedürftigen Räumen im nachgeschalteten Planungsprozesses heranzuziehen sind.

Tabelle 9: Zuordnung zwischen Lärmpegelbereichen und maßgeblichem Außenlärmpegel, DIN 4109-1:2018-01

Lärmpegelbereich	Maßgeblicher Außenlärmpegel in dB(A)
I	55
II	60
III	65
IV	70
V	75
VI	80
VII	> 80*

^{*} Die Anforderungen sind hier aufgrund der örtlichen Gegebenheiten festzulegen.

Schalldämmlüfter

In der [DIN 18005-1 Bbl. 1] wird darauf hingewiesen, dass bereits bei Außengeräuschpegeln über 45 dB(A) bei teilweise geöffnetem Fenster ein ungestörter Schlaf häufig nicht mehr möglich ist.

Es wird daher empfohlen, zumindest für zum Schlafen genutzte Räume fensterunabhängige Lüftungseinrichtungen in die textlichen Festsetzungen zum Bebauungsplan aufzunehmen.

Gutachten-Nr.: 105 0649 18 Textteil - Langfassung Projekt: Bauleitplanung Nr. 315 "Blumenstraße/Bahnhofstraße" Seite 25 von 29

8 Vorschlag für Festsetzungen zum Schallschutz im Bebauungsplan

Hinweis

Inwieweit die im Folgenden genannten Vorschläge für Festsetzungen zum Schallschutz im Bebauungsplan sich tatsächlich als Festsetzung oder aber als Hinweis oder Empfehlung im Bebauungsplan wiederfinden, obliegt der planaufstellenden Behörde. Aus unserer Sicht empfehlen wir die Aufnahme als Festsetzung.

Zum Schutz vor Lärmeinwirkungen durch den Straßen- und Schienenverkehr werden bei einer baulichen Errichtung oder baulichen Änderung von Räumen, die nicht nur zum vorübergehenden Aufenthalt von Menschen bestimmt sind, passive Schallschutzmaßnahmen erforderlich. Die Lärmpegelbereiche zur Bestimmung des erforderlichen R'w,ges des Außenbauteils sind zu kennzeichnen.

Tabelle 10: Zuordnung zwischen Lärmpegelbereichen und maßgeblichen Außenlärmpegel, DIN 4109-1:2018-01

Lärmpegelbereich	Maßgeblicher Außenlärmpegel in dB(A)
I	55
II	60
III	65
IV	70
V	75
VI	80
VII	> 80*

Die Anforderungen sind hier aufgrund der örtlichen Gegebenheiten festzulegen.

Im Bereich, in dem ein Außenpegel von zur Tageszeit 60 dB(A) überschritten wird, ist auf die Entwicklung von Außenwohnbereichen wie Terrassen oder Balkone zu verzichten. Es können Ausnahmen gewährt werden, wenn es sich bei den Terrassen oder Balkonen um Zweit-Terrassen oder Balkone handelt und sich die Haupt-Terrasse bzw. der Hauptbalkon auf der der Lärmquelle abgewandten Seite befindet.

Fenster von nachts genutzten Räumen (i. d. R. Schlaf- und Kinderzimmer) sind innerhalb des Plangebietes - sofern die Fassaden zur Lärmquelle ausgerichtet sind und höhere Außengeräuschpegel als 50 dB(A) [VDI 2719] vorliegen - zu Lüftungszwecken mit einer schalldämmenden Lüftungseinrichtung auszustatten. Das Schalldämm-Maß von Lüftungseinrichtungen/Rollladenkästen ist bei der Berechnung des resultierenden Bau-Schalldämm-Maßes R'w,ges zu berücksichtigen.

Textteil - Langfassung Projekt: Bauleitplanung Nr. 315 "Blumenstraße/Bahnhofstraße" Seite 26 von 29

Von den vorgenannten Festsetzungen kann abgewichen werden, wenn im Rahmen eines Einzelnachweises nach DIN 4109 ermittelt wird, dass durch die Errichtung vorgelagerter Baukörper oder sonstiger baulicher Anlagen aufgrund der verminderten Lärmbelastung geringere Anforderungen an den Schallschutz resultieren.

Gutachten-Nr.: 105 0649 18 Textteil - Langfassung Projekt: Bauleitplanung Nr. 315 "Blumenstraße/Bahnhofstraße" Seite 27 von 29

9 Qualität der Prognose

Ausbreitungsberechnung

Die Dämpfung von Schall, der sich im Freien zwischen einer Schallquelle und einem Aufpunkt ausbreitet, fluktuiert aufgrund der Schwankungen in den Witterungsbedingungen auf dem Ausbreitungsweg sowie durch Dämpfung oder Abschirmung des Schalls durch Boden, Bewuchs und Hindernisse.

Die eingesetzten Schallemissionspegel der Straßen bzw. Schienenstrecken basieren auf den Berechnungsvorschriften der [16. BlmSchV] bzw. der [RLS-90] und [Schall 03 2012] unter Berücksichtigung der im Gutachten genannten Frequentierungsdaten. Die Emissionsansätze beinhalten dabei im gewählten Prognosehorizont eine konservative Abschätzung der Verkehrsentwicklung.

Prognosesicherheit

Die Ergebnisse der gegenständlichen Schallimmissionsprognose in Bezug auf Verkehrslärm werden im Hinblick auf die oben genannten Randbedingungen als auf der sicheren Seite liegend abgeschätzt. Die Prognosesicherheit wird daher mit +0 dB/-3 dB abgeschätzt.

Gutachten-Nr.: 105 0649 18 Textteil - Langfassung Projekt: Bauleitplanung Nr. 315 "Blumenstraße/Bahnhofstraße" Seite 28 von 29

Die Unterzeichner erstellten dieses Gutachten unabhängig und nach bestem Wissen und Gewissen.

Als Grundlage für die Feststellungen und Aussagen der Sachverständigen dienten die vorgelegten und im Gutachten zitierten Unterlagen sowie die Auskünfte der Beteiligten.

Für den Inhalt verantwortlich:

Dipl.-Umweltwiss. Melanie Rohring

Projektleiterin

Berichtserstellung und Auswertung

Dipl.-Ing. Matthias Brun

Stellvertretend Fachlich Verantwortlicher

Prüfung und Freigabe

Anhang

Verzeichnis des Anhangs

- A Tabellarische Emissionskataster
- B Grafische Emissionskataster
- C Immissionspläne
- D Lagepläne

Gutachten-Nr.: 105 0649 18 Anhang
Projekt: Bauleitplanung Nr. 315 "Blumenstraße/Bahnhofstraße" Seite 1 von 19

A Tabellarische Emissionskataster

Zeichen	Einheit	Bedeutung
Allgemein		
Nr.	-	Laufende Emissionsquellenortskennzahl
		Emissionsquellen mit gleichen Koordinaten (bei ggf. unterschiedlicher Höhe) haben gleiche Nummern.
Kommentar	-	Bezeichnung der Emissionsquelle
Gruppe	-	Bezeichnung der Emissionsquellengruppe
LmE	dB(A)	Mittelungspegel der Emissionsquelle.
		Der Wert LmE beinhaltet bereits die in den Spalten "num.Add.", "Messfl./Anz." sowie "Anz." getätigten Angaben.
num.Add.	dB	Korrekturfaktor
110111.71.00.	GB .	RonoRionario
		num.Add. = leer → keine numerische Addition bei der entsprechenden Emissionsquelle
Messfl./Anz.	m²/-	berücksichtigt. Eintragung der Messfläche/Fläche des schallabstrahlenden Bauteils oder
MC3311./ ALIZ.		Anzahl der Fahrzeuge auf der dazugehörigen Teilstrecke.
		7 (12drill del l'arii 200ge doi dei dazogeriongeri leiisireeke.
		Messfl./Anz. = leer → Lw/LmE stellt den bereits berechneten Emissionswert dar.
Anz.	-	Eintragung der Anzahl der Fahrzeuge auf der dazugehörigen Teilstrecke,
		getrennt nach Beurteilungszeiträumen.
		Anz. = leer → Lw/LmE stellt den bereits berechneten Emissionswert dar.
ST	-	Statusfeld
		ST = 1 → Die Emissionsquelle ist eine kurzzeitige Geräuschspitze.
		ST = -1 → Die Emissionsquelle ist nicht in den Berechnungen berücksichtigt.
T/N		ST = leer → Die Emissionsquelle ist eine Standard-Emissionsquelle.
	-	Tageszeit/Nachtzeit
Zugdaten		
Nr.	-	Laufende Emissionsquellenortskennzahl
Name	-	Bezeichnung
TypID	-	Identifizierung des Zuges
Fahrzeugart	-	Art des Zuges
Anzahl	-	Anzahl der Züge
Anzahl Achsen	-	Anzahl der Achsen des Zuges
Lwʻ,i	dB(A)	Längenbezogener Schallleistungspegel
V	Km/h	Geschwindigkeit des Zuges
Schienenstrecke		
Name	-	Bezeichnung
Тур	-	Zugtyp
Gruppe	-	Bezeichnung der Emissionsquellengruppe
TypID	-	Identifizierung des Zuges
Lw	-	Schallleistungspegel des Zuges
Lw,Okt 0m	-	Oktavbezogener Schallleistungspegel des Zuges (Höhe = 0 m)
Lw,Okt 4m	-	Oktavbezogener Schallleistungspegel des Zuges (Höhe = 0 m)
Lw,Okt 5m	-	Oktavbezogener Schallleistungspegel des Zuges (Höhe = 0 m)
MM	dB	Minderungsmaßnahme an der Emissionsquelle
141141	GD.	Militadion garriadi arti del Ettissiona quelle

Gutachten-Nr.: 105 0649 18 Anhang
Projekt: Bauleitplanung Nr. 315 "Blumenstraße/Bahnhofstraße" Seite 2 von 19

		ng Verkehrslärm mSchV, RLS-90, Schall 03 2012
Zeichen	Einheit	Bedeutung
		MM = leer → keine Minderung bei der entsprechenden Emissionsquelle berücksichtigt.
C1 Tab.7	dB	Pegelkorrektur für Fahrbahnarten
C2 Tab. 8	dB	Pegelkorrektur für Fahrflächenzustand
KBr Tab. 9	dB	Pegelkorrektur für Brücken
KLM Tab.9	dB	Pegelkorrektur für Schallminderungsmaßnahmen an Brücken
KL Tab.11	dB	Pegelkorrektur für die Auffälligkeit von Geräuschen
KLA Tab.11	dB	Pegelkorrektur für Schallschutzmaßnahmen gegen die Auffälligkeit von Geräuschen
Vmax	Km/h	Maximal zulässige Geschwindigkeit auf dem Streckenabschnitt
Straße		
Nr.	-	Laufende Emissionsquellenortskennzahl Emissionsquellen mit gleichen Koordinaten (bei ggf. unterschiedlicher Höhe) haben gleiche Nummern.
Name	-	Bezeichnung
Achs.Abst.	m	Achsabstand
LmE	dB(A)	Mittelungspegel der Emissionsquelle. Der Wert LmE beinhaltet bereits die in den Spalten "num.Add.", "Messfl./Anz." sowie "Anz." getätigten Angaben.
DTV	Kfz/24h	Durchschnittliche Tägliche Verkehrsstärke
Str.Gatt.	-	Straßengattung
M	Kfz/h	Maßgebende Stündliche Verkehrsstärke
р	%	Maßgebender Lkw-Anteil
V	Km/h	Zulässige Höchstgeschwindigkeit
DStrO	dB	Korrektur für unterschiedliche Straßenoberflächen
Stg.	%	Steigung des Streckenabschnittes
MFrefl.	dB	Mehrfachreflexion

Hinweis: Bei den aufgelisteten Spalten ist zu beachten, dass je nach Projekt nicht alle Spalten für die Berechnungen genutzt bzw. entsprechend dokumentiert werden.

Gutachten-Nr.: 105 0649 18 Anhang
Projekt: Bauleitplanung Nr. 315 "Blumenstraße/Bahnhofstraße" Seite 3 von 19

Verkehr

Maßgebende Verkehrsmengen Neubau und Bestand, Prognose-Planfall 2030 mit Ansiedlung

Nr	Name	Achs	LmE	LmE	DTV	Str	ΜT	MN	рT	pΝ	v Pkw	v Lkw	v Pkw	v Lkw	DStrO	Stg	MFrefl	
		Abst	T dB(A)	N dB(A)	Kfz/24h	Gatt,	Kfz/h	Kfz/h	%	%	T km/h	T km/h	N km/h	N km/h	dB	%	dB	
#Str PA	Jakob-Koenen-Straße	2.5	60.0	51.8	7006	4	407	61	5.0	5.0	50	50	50	50	0.0	0.0	0.0	
#Str PB	Jakob-Koenen-Straße W	2.5	60.0	53.0	7680	4	407	80	5.0	5,0	50	50	50	50	0.0	0,0	0.0	
#Str_PC	Jakob-Koenen-Straße O	2.5	61.7	53,0	10316	4	600	90	5,0	5.0	50	50	50	50	0.0	0.0	0.0	
#Str PD	Cappelstraße Süd	2.5	58.8	49.5	8426	4	500	53	6.0	7,0	30	30	30	30	0.0	0.0	0.0	
Str P Kreis	Kreisverkehr Plan	1	58.3	50.5	8451	4	489	80	5.0	5.0	30	30	30	30	0.0	0.0	0.0	
#Str PE	Jakob-Koenen-Straße	1	47.6	40.5	680		409	8	5,0	5,0	30	30	30	30	0.0	0,0	0,0	
_		4	63.7	40,5 54.3	14375	4	854	90			50	50	50	50	0.0			
#Str_001	Stirper Straße Süd	1	,-			4			6,0	7,0		50	50	50	-,-	0,0	0,0	
#Str_002	Akazienstraße		54,3	48,4	2815		158	35	2,0	3,0	50				0,0	0,0	0,0	
#Str_003A	Stirper Straße stadteinwärts	3.5	61,8	52,5	9489	4	550	59	6,0	7,0	50	50	50	50	0,0	0,0	0,0	
#Str_003B	Stirper Straße stadtauswärts	3.5	61,9	52,5	9745	4	563	59	6,0	7,0	50	50	50	50	0,0	0,0	0,0	
#Str_004	Konrad-Adenauerring Ost TS1	3.5	60,0	51,8	6984	4	406	61	5,0	5,0	50	50	50	50	0,0	0,0	0,0	
#Str_005	Anbindung Cineplex	3	50,2	0,0	2321	4	145	0	0,0	0,0	30	30	30	30	0,0	0,0	0,0	
#Str_006	Konrad-Adenauer-Ring Ost TS2	3	60,1	51,9	7101	4	413	62	5,0	5,0	50	50	50	50	0,0	0,0	0,0	
#Str_007	Südertor	3.5	57,9	51,5	6432	4	366	72	2,0	3,0	50	50	50	50	0,0	0,0	0,0	
#Str_008	Konrad-Adenauer-Ring Ost TS3	3.5	58,9	50,7	5453	4	317	48	5,0	5,0	50	50	50	50	0,0	0,0	0,0	
#Str_009	Bökenförder Straße	3.5	60,3	53,9	11151	4	634	125	2,0	3,0	50	50	50	50	0,0	0,0	0,0	
#Str_010	Unionstraße Nord TS1	6	63,0	53,6	12308	4	731	77	6,0	7,0	50	50	50	50	0,0	0,0	0,0	
#Str_011	Unionstraße Nord TS2	6	62,8	56,2	12308	4	700	138	6,0	7,0	50	50	50	50	0,0	0,0	0,0	
#Str_012	Rixbecker Straße Ost	4.5	62,7	53,4	11600	4	689	73	6,0	7,0	50	50	50	50	0,0	0,0	0,0	
#Str_013	Oststraße	3.5	56,6	49,6	6152	4	350	69	0,5	0,5	50	50	50	50	0,0	0,0	0,0	
#Str_014	Rixbecker Straße West TS1	3.5	62,7	53,3	11386	4	676	71	6,0	7,0	50	50	50	50	0,0	0,0	0,0	
#Str_015	Rixbecker Straße West TS2	5	62,5	53,1	10899	4	647	68	6,0	7,0	50	50	50	50	0,0	0,0	0,0	
#Str_016	Rixbecker Straße	4	62,4	53,0	10766	4	639	67	6,0	7,0	50	50	50	50	0,0	0,0	0,0	
#Str_017A	Stirper Straße stadteinwärts	3.5	61,9	52,1	9489	4	563	59	6,0	6,0	50	50	50	50	0,0	0,0	0,0	
#Str_017B	Stirper Straße stadtauswärts	3.5	62,1	52,6	9745	4	597	61	6,0	7,0	50	50	50	50	0,0	0,0	0,0	
#Str_018	Udener Straße	4	64,1	54,8	15964	4	948	100	6,0	7,0	50	50	50	50	0,0	0,0	0,0	
#Str_020	Klosterstraße West TS2	2.5	55,7	49,2	6596	4	375	74	2,0	3,0	30	30	30	30	0,0	0,0	0,0	
#Str_022	Klosterstraße Ost TS3	1	55,6	49,1	6410	4	365	72	2,0	3,0	30	30	30	30	0,0	0,0	0,0	
#Str_023	Weihenstraße	1	53,4	46,8	3855	4	219	43	2,0	3,0	30	30	30	30	0,0	0,0	0,0	
#Str_024	Klosterstraße Ost TS4	1	51,1	44,7	2291	4	130	26	2,0	3,0	30	30	30	30	0,0	0,0	0,0	
#Str_025	Nicolaiweg	1	36,3	28,5	107	4	6	1	0,0	0,0	30	30	30	30	0,0	0,0	0,0	
#Str 027	Bahnhofstraße	2.5	39,5	33,0	150	4	9	2	2,0	2,0	30	30	30	30	0,0	0,0	0,0	
#Str_030	Woldemei			385	58	5,0	5,0	30	30	30	30	0,0	0,0	0,0				
#Str_019	Klosterstraße TS1	3	59,5	51,3	11070	4	643	97	5,0	5,0	30	30	30	30 0,0 0,0		0,0		
#Str 021	Hospitalstraße	1	42,5			30	30	0,0	0,0	0,0								
#Str 026	Cappelstraße Nord	1	58,8	49,4	8337	4	495	52	6,0	7,0	30	30	30	30	0,0	0,0	0,0	
#Str 029	Bahnhofstraße	3	59.2	51.0	10303	4	599	90	5,0	5,0	30	30	30	30	0.0	0,0	0.0	
#Str 026 AEA	Cappelstraße Süd	1	58.8	49.4	8337	4	495	52	6,0	7.0	30	30	30	30	0.0	0.0	0.0	

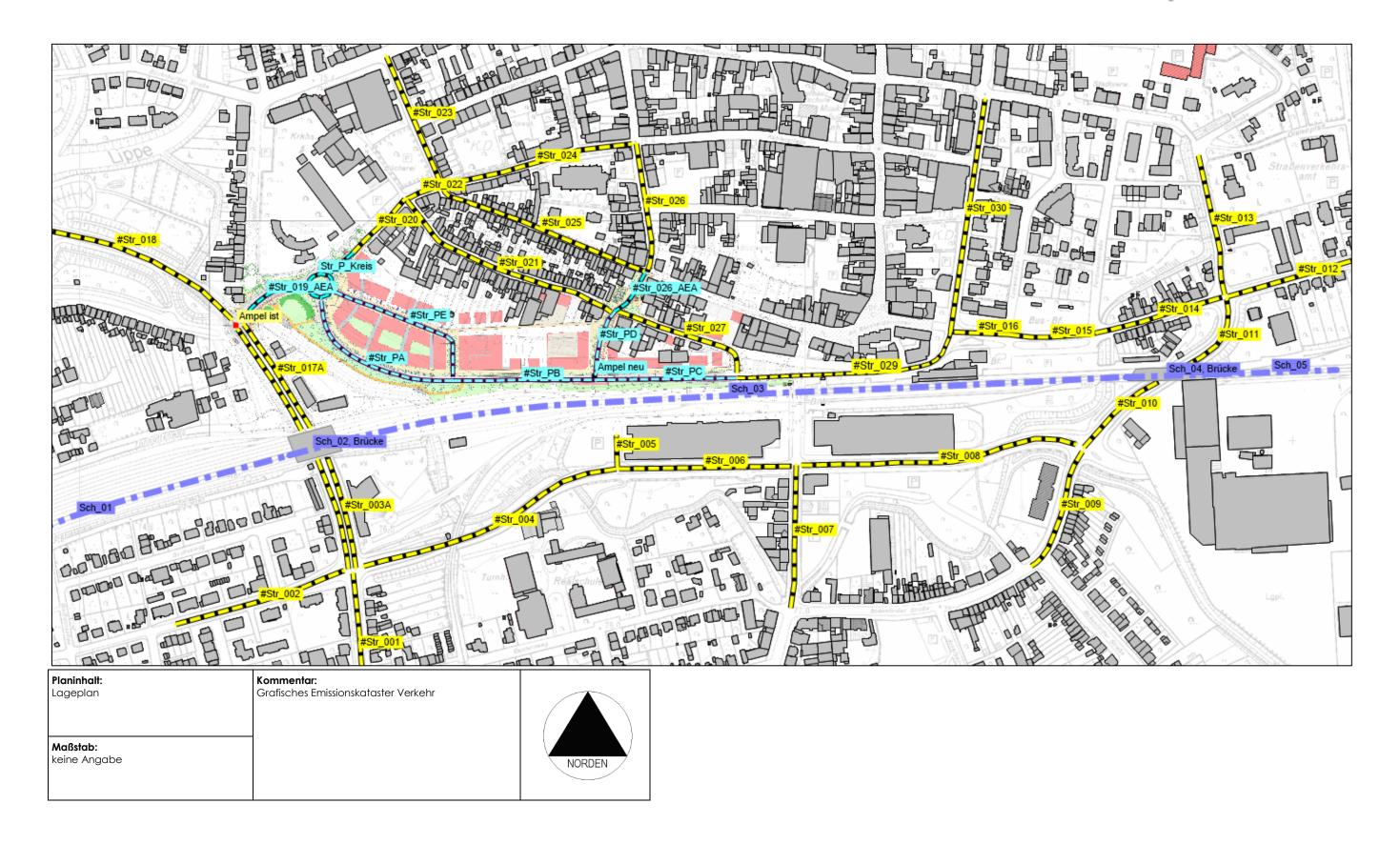
Gutachten-Nr.: 105 0649 18 Anhang
Projekt: Bauleitplanung Nr. 315 "Blumenstraße/Bahnhofstraße" Seite 4 von 19

Schienen-Belastungszahlen der DBAG Strecke 1760 Abschnitt Lippstadt Bereich Hbf., Prognosehorizont 2025

Name	Typ ID	Fahrzeugart	Anzahl	Anzahl	Anzahl Achsen	Lw',i	Lw',i	٧
			'	N	Actisett	dB(A)	dB(A)	km/h
GZ-E_1	1	7b. ELOK_SB	54	56	4	73,1	76,3	100
GZ-E_1	1	10b. GW_VK	1296	1344	4	86,6	89,8	100
GZ-E_1	1	10a. GW_GGK	324	336	4	85,5	88,6	100
GZ-E_1	1	10f. KW_KS	324	336	4	81,0	84,1	100
GZ-E_1	1	10e. KW_GGK	54	56	4	78,1	81,3	100
GZ-E_2	1	7b. ELOK_SB	13	14	4	67,7	71,1	120
GZ-E_2	1	10b. GW_VK	312	336	4	81,6	84,9	120
GZ-E_2	1	10a. GW_GGK	78	84	4	80,4	83,8	120
GZ-E_2	1	10f. KW_KS	78	84	4	75,9	79,2	120
GZ-E_2	1	10e. KW_GGK	13	14	4	73,0	76,4	120
RV-ET	1	5b. E_TZUG_SBAHN_RS	116	20	12	80,5	75,9	130
RV-E	1	7b. ELOK_SB	16	2	4	69,1	63,0	130
RV-E	1	9b. RZW_SB	80	10	4	76,0	70,0	130
IC-E	1	7b. ELOK_SB	13	1	4	68,2	60,0	130
IC-E	1	9b. RZW_SB	156	12	4	78,9	70,8	130
ICE	1	4a. HGV_NZ	4	0	28	66,6	0,0	0

Schienenverkehr der DBAG, Strecke 1760 Abschnitt Lippstadt Bereich Hbf., Prognosehorizont 2025

Nr	Typ Gruppe Typ Lw T Lw , Okt T Lw , Okt T Lw , Okt T Lw , Okt N L							Lw,Okt N	Lw,Okt N	Lw,Okt N			c2	KBr	KLM	VΙ	KLA	
INI	Тур	Gruppe	IJР	LWI	LW IN	0 m	4 m	5 m	0 m	4 m	5 m	IVIIVI	Tab, 7	Tab.	Tab, 9	Tab, 9		
				dB(A)	4D/A)		dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB		8 8	dB	dB	11	11
				ub(A)	ub(A)	UD(A)	UD(A)	UD(A)	UD(A)	ub(A)	ub(A)	uБ	ub	dB	uБ	uБ	dB	dB
Sch 01	Schiene	Schiene	1	92,0	94,6	51,78;	46,27;	28,93;	53,86;	49; 57,97;	26,43;	0.0	0, Schwellengleis im	иБ 0.	0, Keine Brücke	0	0.0	0
OCII_U I		2025	ļ '	92,0	94,0	59,97;	55,18;	37,93;	62,29;	65,39;	20,43, 35,43;	0,0	Schotterbett	V, Keine	o, Reille Brucke	U	U	U
	zusammen	2023				69,06;	63,35;	45,93;	71,53;	72,28;	43,43;		Schollerbell	Kelile				
						83,24;	69,61;	49,93;	85,91;	72,26,	43,43, 47,43;							
						88,73;	70,06;	52,93;	91,35;	71,92;	50.43:							
						86.73:	69.06:	54,93;		61,94; 53,02								
						80,62; 64,45					47,43; 39,43							
Sch 02	Schiene	Schiene	1	95 N	97,5		46,27;		55,27; 64,2;	49; 57,97;			0, Schwellengleis im	0.	3. Mit massiver Platte	0	0	0
Brücke		2025	l '	33,0	51,5	61.63:	55.18:	37,93;	74,17; 88,9;	65,39;	35.43:	0,0	Schotterbett	Keine	Schotter (Tab, 9 Z, 3)	0		ı o
Didoko	Luoummon	2020				71,54;	63,35;	45,93;	94,35;	72,28;	43,43;		Conodorbott	TOITIO	001101101 (140, 02, 0)			
						86,21;	69,61;	49,93;	92,21;	72,84;	47,43;							
						91,72;	70,06;		85,91; 70,04		50.43:							
						89.72:	69.06:	54.93:		61,94; 53,02								
						83,62; 67,44					47,43; 39,43							
Sch 03	Schiene	Schiene	1	92.0		51.78:	46,27;	28,93;	53.86:	49; 57,97;			0, Schwellengleis im	0.	Keine Brücke	0	0	0
		2025		,-	,-	59,97;	55,18;	37,93;	62,29;	65,39;	35,43;	-,-	Schotterbett	Keine	-,	-	-	
						69.06:	63,35;	45,93;	71,53;	72,28;	43,43;			- 1				
						83,24;	69,61;	49,93;	85,91;	72,84;	47,43;							
						88,73;	70,06;	52,93;	91,35;	71,92;	50,43;							
						86,73;	69,06;	54,93;	89,21;	61,94; 53,02	52,43;							
						80,62; 64,45	59,65; 50,78				47,43; 39,43							
Sch_04	Schiene	Schiene	1	95,0	97,5	52,94;	46,27;	28,93;	55,27; 64,2;	49; 57,97;	26,43;	0,0	0, Schwellengleis im	0,	Mit massiver Platte	0	0	0
Brücke	zusammen	2025				61,63;	55,18;	37,93;	74,17; 88,9;	65,39;	35,43;		Schotterbett	Keine	Schotter (Tab, 9 Z, 3)			
						71,54;	63,35;	45,93;	94,35;	72,28;	43,43;							
						86,21;	69,61;	49,93;	92,21;	72,84;	47,43;							
						91,72;	70,06;		85,91; 70,04		50,43;							
						89,72;	69,06;	54,93;		61,94; 53,02								
						83,62; 67,44					47,43; 39,43							
Sch_05	Schiene	Schiene	1	92,0	94,6	51,78;	46,27;	28,93;	53,86;	49; 57,97;		0,0	0, Schwellengleis im	0,	0, Keine Brücke	0	0	0
	zusammen	2025				59,97;	55,18;	37,93;	62,29;	65,39;	35,43;		Schotterbett	Keine				
						69,06;	63,35;	45,93;	71,53;	72,28;	43,43;							
						83,24;	69,61;	49,93;	85,91;	72,84;	47,43;							
						88,73;	70,06;	52,93;	91,35;	71,92;	50,43;							
						86,73;	69,06;	54,93;		61,94; 53,02								
]					80,62; 64,45	59,65; 50,78	49,93; 41,93	82,91; 67,05		47,43; 39,43							


Gutachten-Nr.: 105 0649 18 Anhang
Projekt: Bauleitplanung Nr. 315 "Blumenstraße/Bahnhofstraße" Seite 5 von 19

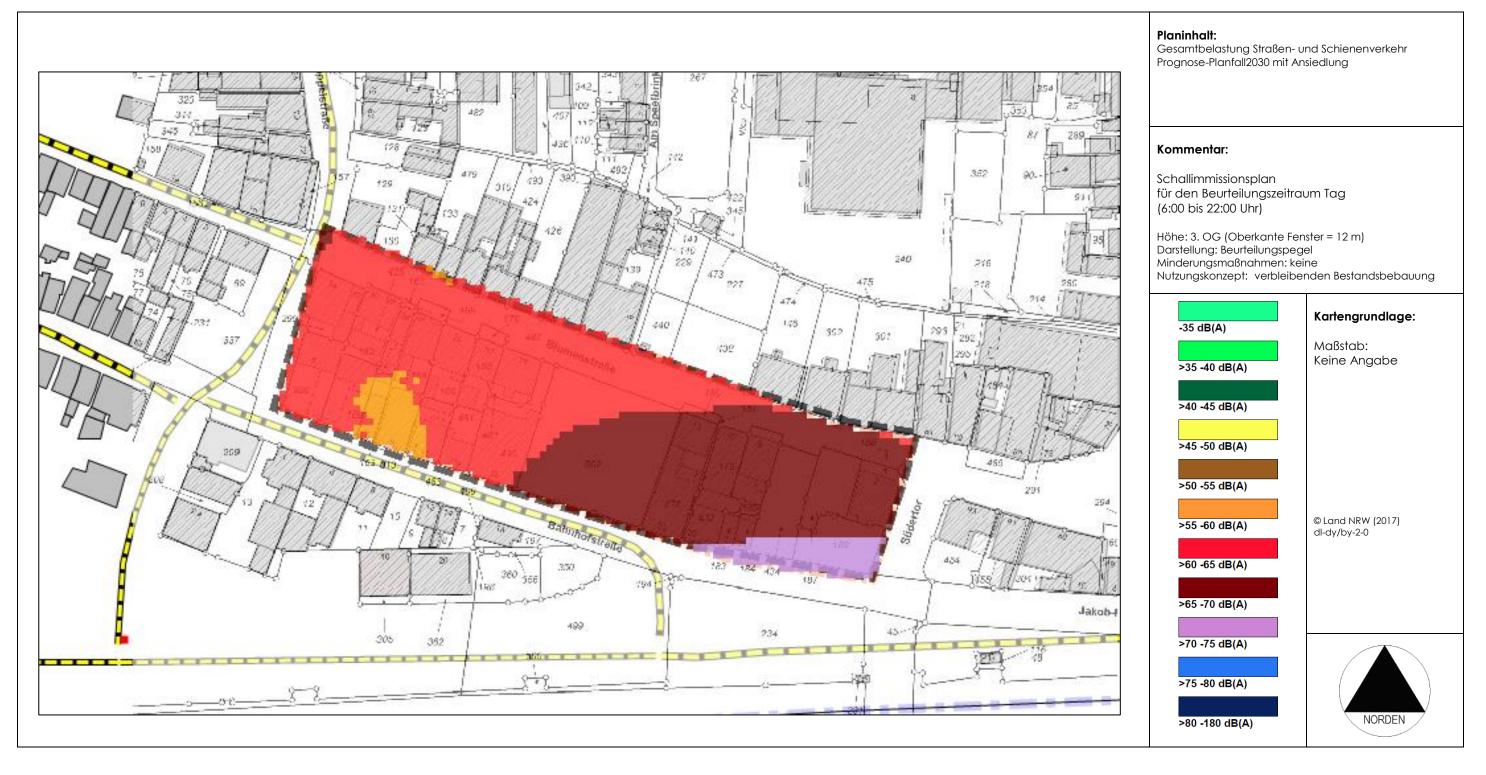
B Grafische Emissionskataster

Gutachten-Nr.: 105 0649 18 Anhang
Projekt: Bauleitplanung Nr. 315 "Blumenstraße/Bahnhofstraße" Seite 6 von 19

C Immissionspläne

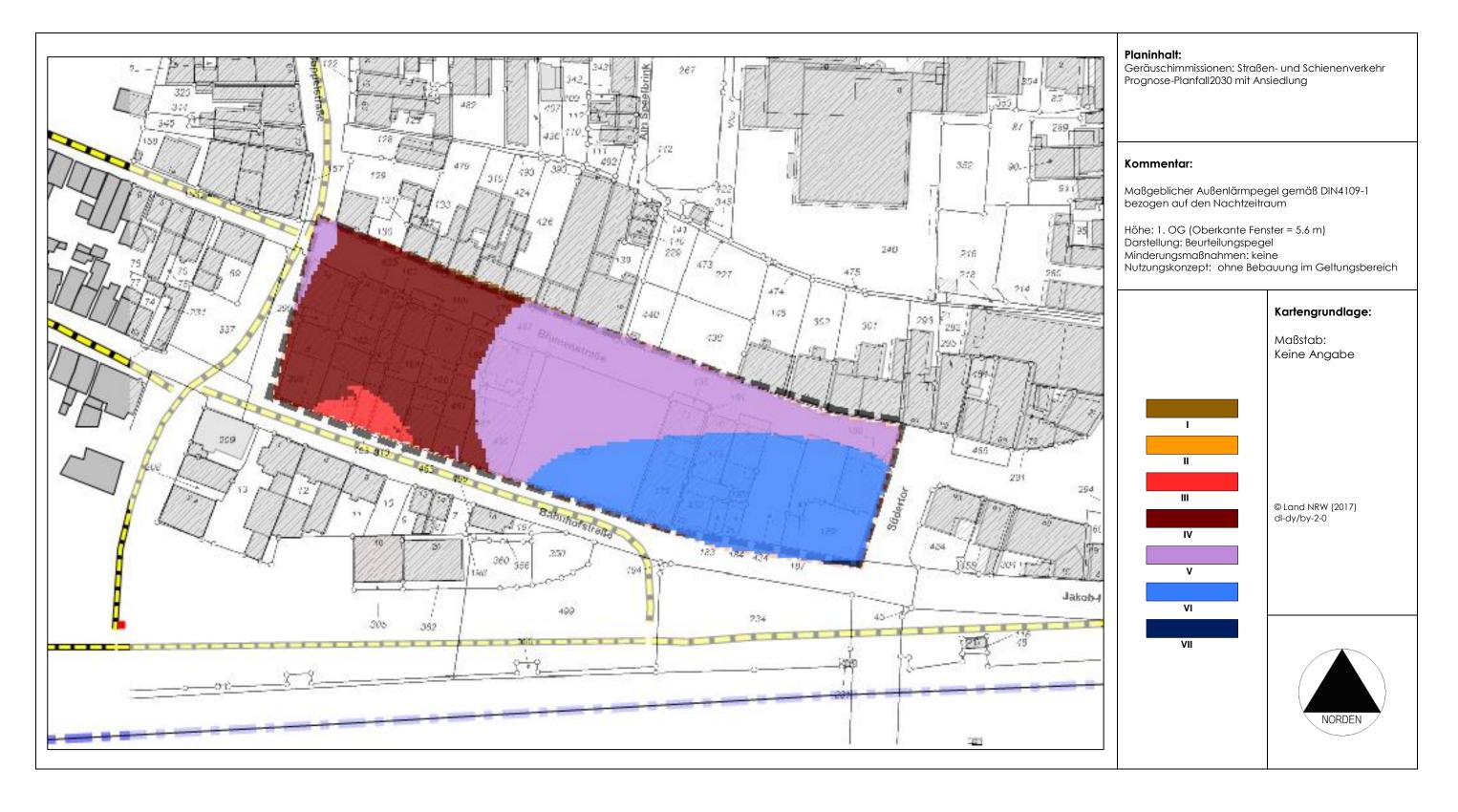
Beim Vergleich von Schallimmissionsplänen mit den an den diskreten Immissionsorten ermittelten Beurteilungspegeln ist Folgendes zu beachten:

Als Immissionsort außerhalb von Gebäuden gilt allgemein die Position 0,5 m außerhalb vor der Mitte des geöffneten Fensters von schutzbedürftigen Räumen nach DIN 4109. Dementsprechend werden die Schallreflexionen am eigenen Gebäude nicht berücksichtigt. Die so berechneten Beurteilungspegel werden tabellarisch angegeben.


Bei der Berechnung der Schallimmissionspläne werden Schallreflexionen an Gebäuden generell mit berücksichtigt, sodass unmittelbar vor den Gebäuden gegenüber den Gebäudelärmkarten um bis zu 3 dB höhere Immissionspegel dargestellt werden. Dies ist nicht gleichzusetzen mit den Beurteilungspegeln, die mit den entsprechenden Immissionsrichtwerten zu vergleichen sind.

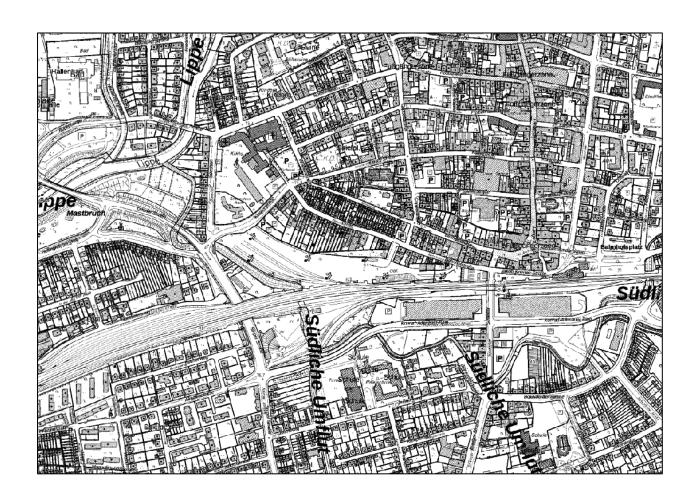
Gutachten-Nr.: 105 0649 18 Anhang
Projekt: Bauleitplanung Nr. 315 "Blumenstraße/Bahnhofstraße" Seite 8 von 19





D Lagepläne

Gutachten-Nr.: 105 0649 18 Anhang
Projekt: Bauleitplanung Nr. 315 "Blumenstraße/Bahnhofstraße" Seite 17 von 19



Planinhalt: Lageplan	Kommentar: Übersichtslageplan mit Darstellung Geltungsbereich	NORDEN
Maßstab: keine Angabe:		

Gutachten-Nr.: 105 0649 18
Projekt: Bauleitplanung Nr. 315 "Blumenstraße/Bahnhofstraße"

Planinhalt: Lageplan	Kommentar: Übersichtslageplan	
Maßstab: keine Angabe		NORDEN

Gutachten-Nr.: 105 0649 18
Projekt: 105 0649 18
Bauleitplanung Nr. 315 "Blumenstraße/Bahnhofstraße"