

Hinz Ingenieure GmbH - Alte Dorfstraße 5 - 48161 Münster

Stadt Drensteinfurt
Fachbereich 6 – Planen, Bauen, Umwelt
Herr Niggemann
Landsbergplatz 7
48317 Drensteinfurt

Ihre Nachricht

Ihr Zeichen

Unser Zeichen Bu/He 4578-1 Datum 15.12.2008

Untersuchung im Bereich der Altablagerung "Bergehalde Berthas Halde" und des Altstandortes "Betriebsfläche Berthas Maria, östlicher Teil" in Drensteinfurt

Orientierende Gefährdungsabschätzung und Bewertung der Verwertbarkeit der Bodenmaterialien

1 Vorbemerkung

Im Zuge der Aufstellung des Bebauungsplanes 1.36 "Berthas Halde" sollten aus bodenschutzrechtlicher Sicht die Auswirkungen der angrenzenden, im Altlastenverzeichnis geführten Altablagerung "Bergehalde Berthas Halde" (Key-Nr. 61065) und des Altstandortes "Betriebsfläche Berthas Maria, östlicher Teil" (Key-Nr. 61084) untersucht werden.

Die Hinz Ingenieure GmbH wurden von der Stadt Drensteinfurt beauftragt, in Absprache mit dem Kreis Warendorf Untersuchungen zur Gefährdungsabschätzung und hinsichtlich einer ggf. geplanten Verwertung bzw. Entsorgung des Bodenmaterials nach LAGA durchzuführen. Die Ergebnisse der Untersuchungen werden im Folgenden dargestellt und bewertet.

Hinz Ingenieure GmbH Beratende Ingenieure

beraten – planen – steuern

Geotechnik/Altlasten Erd- und Grundbau Hydrogeologie Flächenrecycling Gebäuderückbau

48161 Münster Alte Dorfstraße 5 Telefon 0 25 34 / 97 43 - 0 Telefax 0 25 34 / 97 43 - 30 info@hinz-ingenieure.de www.hinz-ingenieure.de

58313 Herdecke Heimweg 5 a Telefon 02330 / 910 480 Telefax 02330 / 910 482

Registergericht Münster HRB 4214

Geschäftsführer: Dipl.-Ing. D. Bulk Dr. rer. nat. M. Kurtenacker

USt-IdNr.: DE 163 424 888

Bankverbindung: Nationalbank Essen BLZ 360 200 30 Konto 1 428 195

2 Bearbeitungsunterlagen

Als Unterlagen zu diesem Bericht dienten:

- 2.1 Auszug aus der städtebaulichen Rahmenplanung, Lageplan, Maßstab ca. 1 : 2.500 mit Fotoaufnahmen
- 2.2 Kartenauszug aus dem Verzeichnis über Altablagerungen etc. des Kreises Warendorf, Maßstab 1 : 2.000 (Kopie)
- 2.3 Lageplan (gescannt) von der Bergehalde und der Betriebsfläche (Stand: 1945)
- 2.4 Ergebnisse der chemisch-analytischen Untersuchungen
- 2.5 Ortsbesichtigung und Besprechung

3 Untergrundverhältnisse

Die Bergehalde Bertha ist während des Strontianitabbaus Ende des 19. Jhdts. entstanden und ist mit der Zeit bewachsen; sie erstreckt sich in ihrer Längsachse in West-Ost-Richtung. Die Höhe der Bergehalde wird bei unregelmäßigem Relief mit 4-6 m abgeschätzt. Der ehemalige Betriebsstandort Berthas Maria lag nach [2.3] östlich der Bergehalde und bestand ehemals aus drei unterschiedlich großen Gebäuden. Die Gebäude auf der ehemaligen Betriebsfläche sind nicht mehr vorhanden und die Betriebsfläche selbst ist zurückgebaut.

Zur Erfassung von möglichen Schadstoffbelastungen im Boden wurden nach Absprache mit dem Kreis Warendorf in der Bergehalde an vier Stellen Rammkernsondierungen (RKS) bis in den gewachsenen Boden, max. 7,0 m unter GOK, und im Bereich der ehemaligen Betriebsfläche zwei RKS bis max. 1,30 m unter GOK durchgeführt. Die Oberbodenschicht wurde dabei durch Schurf (SCH) und die Proben aus größerer Tiefe durch Rammkernsondierung je Meter bzw. bei Schichtwechsel auch in geringerem Abstand entnommen.

Die Lage der Untersuchungsstellen geht aus dem Lageplan (Anlage 1) hervor. Die Ergebnisse der Untersuchungen in der Örtlichkeit sind den Schurf- und Bohrprofilen (Anlage 2) zu entnehmen.

3.1 Bodenschichtung

Den Ergebnissen der durchgeführten Rammkernsondierungen zufolge wurden <u>im Bereich der Betriebsfläche</u> unter der Geländeoberfläche noch bis 0,35 m/ 0,60 m Tiefe Auffüllungen erbohrt. Im nördlichen Aufschluss (SCH/RKS 1) besteht die Auffüllung aus schluffigem Sand (SCH 1) und Mergel (RKS 1) mit geringen Bauschuttanteilen. Im südlichen Aufschluss (RKS 2) wurde bis ca. 0,35 m Tiefe eine Auffüllung aus humosem Mergel mit Bauschutt- und geringen Schlackeresten und darunter bis 0,60 m Tiefe umgelagerter Mergel angetroffen.

Darunter folgt der gewachsene Kreidemergel, der bis 1,15 m/ 1,30 m unter GOK in seiner Verwitterungszone erbohrt werden konnte. Darunter war mit dem angewandten Verfahren kein weiterer Bohrfortschritt möglich.

Die <u>Bergehalde</u> besteht in ihrer nahezu gesamten Mächtigkeit aus aufgefülltem Gemisch aus Mergel und Mergelstein, das unterschiedlich bis 3,80 m (RKS 3) bzw. bis 6,30 m unter OK Bergehalde angetroffen wurde. Bei SCH 3 und SCH 5 stand am Top der Halde bis 0,23 m/0,28 m unter OK Bergehalde noch schluffiger humoser Sand an. Die Trennung zwischen der Mergel-Auffüllung und dem gewachsenen Boden erfolgte wegen nicht auffälliger Fremdstoffe nur aufgrund der Struktur des Bodens.

Der darunter folgende gewachsene verwitterte Mergel wurde bis max. 7,0 m unter OK Bergehalde aufgeschlossen.

3.2 Grundwasser

Bei den Untersuchungen am 14./19.11.2008 wurden in den Aufschlüssen keine Wasserstände erbohrt. Der Grundwasserstand ist erfahrungsgemäß im Kluftgefüge des Mergelsteins anzutreffen.

4 Organoleptische Beurteilung

Die entnommenen Proben aus den aufgefüllten und gewachsenen Böden waren organoleptisch nahezu unauffällig. Lediglich an der oberflächennahen Probe aus SCH 1 (0,00-0,34 m) wurde ein Geruch festgestellt. Z.T. waren oberflächennah auch Schlackenreste und Bruchstücke von Schwarzdecken auffällig.

5 Probenahme und Ergebnisse der chemischen Untersuchungen

5.1 Probenbildung

Von den entnommenen Bodenproben wurden die nachfolgend aufgeführten Proben für die chemische Analyse ausgewählt, die teilweise zu Mischproben zusammengeführt wurden (Tab. 1).

P-Nr.	Entnahmestelle	Tiefe	Gefäß	Art
	SCH 3	0,00-0,23	Е	Auffüllung, Sand
	RKS 3	0,00-0,22	G	Auffüllung, Sand
MP 1	SCH 4	0,00-0,31	Е	Auffüllung, Mergel
	SCH 5	0,00-0,28	E	Auffüllung, Sand
	SCH 6	0,00-0,33	Е	Auffüllung, Mergel
	RKS 3	0,22-0,85	G	Auffüllung, Mergel
MDO	RKS 4	0,30-1,00	G	Auffüllung, Mergel
MP 2	RKS 5	0,30-1,00	G	Auffüllung, Mergel
	RKS 6	0,30-1,00	G	Auffüllung, Mergel
	RKS 3	0,85-3,80	G	Auffüllung, Mergel
	RKS 4	1,00-2,00	G	Auffüllung, Mergel
	RKS 4	2,00-3,00	G	Auffüllung, Mergel
MP 3	RKS 5	1,00-2,00	G	Auffüllung, Mergel
	RKS 5	2,00-3,00	G	Auffüllung, Mergel
	RKS 6	1,00-2,00	G	Auffüllung, Mergel
	RKS 6	2,00-3,00	G	Auffüllung, Mergel
	RKS 3	3,80-5,00	G	Auffüllung, Mergel
	RKS 4	3,00-4,00	G	Auffüllung, Mergel
	RKS 4	4,00-5,00	T	Auffüllung, Mergel
MP 4	RKS 5	3,00-4,00	G	Auffüllung, Mergel
	RKS 5	4,00-5,00	Т	Auffüllung, Mergel
	RKS 6	3,00-4,00	G	Auffüllung, Mergel
	RKS 6	4,00-5,00	G	Auffüllung, Mergel
	SCH 2	0,00-0,28	Е	Auffüllung, Mergel
MP 5	SCH 2	0,00-0,34	Т	Auffüllung, Mergel
,	SCH 2	0,34-0,60	Т	Mergel

P 6	SCH 1	0,00-0,34	Е	Auffüllung, Sand
D 7	RKS 1	0,35-1,00	m	Auffüllung, Mergel

Tabelle 1

Probenauswahl für die chemische Untersuchung

Die Proben wurden in horizontaler Ausdehnung der Schichten über die Tiefenbereiche

- 0,00 m bis 0,30 m
- 0,30 m bis 1,00 m
- 1,00 m bis 3,00 m
- 3,00 m bis 5,00 m

zusammengefasst und nach Bundesbodenschutzverordnung für die Wirkungspfade Boden-Mensch (1.4) und Boden-Grundwasser (3.1) sowie nach LAGA Merkblatt M 20, Ausgabe 2004 untersucht (Tab. 2).

Probe	Untersuchung nach
MP 1	BBodSchV (1.4 und 3.1)
MP 2	BBodSchV (1.4 und 3.1)
MP 3	LAGA, Tab. II 1.2-2 und 1.2-3
MP 4	LAGA, Tab. II 1.2-2 und 1.2-3
MP 5	BBodSchV (1.4 und 3.1)
P 6	LAGA, Tab. II 1.2-2 und 1.2-3
P 7	BBodSchV (1.4 und 3.1)

Tabelle 2

Untersuchungsumfang der zusammengestellten bzw. ausgewählten Proben

Bei dem Material der Mischproben handelt es sich überwiegend um Boden mit insgesamt geringem Anteil an Fremdstoffen im Gesamtgemisch.

5.2 Chemische Analytik – Bewertung der Ergebnisse nach Bundesbodenschutzverordnung (BBodSchV)

Die ermittelten Konzentrationen nachweisbarer Stoffe am Feststoff der untersuchten Proben sind nach BBodSchV für den <u>Wirkungspfad Boden-Mensch</u> (Prüfwerte nach 1.4) in Anlage 3.1 tabellarisch dargestellt; sie sind im Einzelnen den Laborprotokollen (Anlage 3.1) zu entnehmen.

Dabei wurden an Proben aus dem <u>Bereich der Halde</u> keine Überschreitungen der Prüfwerte nach 1.4 festgestellt. An der aus der südlichen Betriebsfläche oberflächennah entnommenen Probe (RKS 2) lag die ermittelte Konzentration an Benzo(a)pyren unter dem Prüfwert für Wohngebiete.

Für den <u>Wirkungsgrad Boden-Grundwasser</u> wurden Überschreitungen der Prüfwerte nach 3.1 (BBodSchV) an den Proben MP 1, MP 2 und MP 5 festgestellt (Tab. 3/ Einzelwerte in Laborprotokollen, Anlage 3.2).

	Probe		Stoff	konzentration	[µg/l]
MP	RKS	Tiefe	Fluorid (F)	PAK	Prüfwert (3.1)
1	3+4+5+6	0,00-0,30		0,32	0,2
2	3+4+5+6	0,30-1,00	1.000		750
5	2	0,00-0,60		0,36	0,2

Tabelle 3 Überschreitungen der Prüfwerte nach 3.1 (BBodSchV)

Demnach ist eine Beeinträchtigung des Wirkungspfades Boden-Grundwasser in den oberflächennahen Böden nachgewiesen. Aus den Untersuchungen an den tieferen Ablagerungshorizonten im Bereich der Bergehalde ist bezüglich des PAK-Wertes im Feststoff keine weitere Gefährdung abzuleiten.

Im nördlichen Bereich der Betriebsfläche (RKS 1) wurde eine nennenswerte PAK-Belastung im Feststoff ermittelt. Der Wirkungspfad Boden-Grundwasser ist hier durch die natürlicherweise vorhandene praktisch undurchlässige Verwitterungszone des Mergels unterbunden.

5.3 Chemische Analytik – Bewertung nach Länderarbeitsgemeinschaft Altlasten (LAGA)

Untersucht wurden Proben aus der Bergehalde und aus dem nördlichen Bereich der ehemaligen Betriebsfläche. Die Ergebnisse der Untersuchungen nach LAGA-Boden gehen im Einzelnen aus der tabellarischen Zusammenfassung und den Laborprotokollen (Anlage 3.3) hervor.

Die für eine zusammenfassende Bewertung relevanten Konzentrationen über dem jeweiligen Hintergrundwert der Parameter sind in Tab. 4 aufgeführt.

Analysen- parameter	Einheit				zentration Probe			
		MP 3 MP 4 P 6						
		(RKS 3-6:	1,00-3,00 m)	(RKS 3-6:	3,00-5,00 m)	(SCH 1: 0	0,00-0,34 m)	
Feststoff								
Σ ΡΑΚ (ΕΡΑ)	mg/kg			10-3333		55	> Z 2	
Eluat			1100-11	Obs. 191. W		N N N N N N N N N N N N N N N N N N N	- I	
Leitfähigkeit	μS/cm			320	Z 1.2			
Sulfat (SO ₄)	μg/l	71	Z 2	130	Z 2			

Tabelle 4 Überschreitungen der Hintergrundwerte nach LAGA im Feststoff der untersuchten Proben

Die ermittelten Stoffkonzentrationen an den Proben MP 3 und MP 4 aus der <u>Bergehalde</u> aus dem Tiefenbereich von 1,00 m bis 5,00 m lagen im Feststoff im Bereich der Hintergrundwerte. Im Eluat der Proben wurden Konzentrationen an Sulfat (M 3 und MP 4) sowie an Leitfähigkeit (MP 4) bis zum Zuordnungswert Z 2 ermittelt.

An der Probe aus dem <u>nördlichen Bereich der ehemaligen Betriebsfläche</u> wurden im Feststoff Konzentrationen an polyzyklischen aromatischen Kohlenwasserstoffen (PAK) <u>über</u> dem Zuordnungswert Z 2 ermittelt. Im Eluat der Probe wurden keine Überschreitungen der Hintergrundwerte festgestellt.

6 Zusammenfassung

Die Bewertung der vorliegenden Untersuchungen erfolgte an Hand der ermittelten Untergrundverhältnisse und chemischen Analytik und kann nur Aussagen für die jeweiligen Untersuchungsstellen liefern.

beraten – planen – steuerr

Nach den bisherigen Erkenntnissen aus den punktuell durchgeführten Untersuchungen und der chemischen Analytik kann eine Gefährdung der Bergehalde für den Wirkungspfad Boden-Mensch (Kategerie Wohngebiete) nicht abgeleitet werden. Als Kinderspielfläche ist die Bergehalde jedoch nicht geeignet.

Die Untersuchungen ergaben für die oberflächennahen Böden Überschreitungen der Prüfwerte für den Wirkungspfad Boden-Grundwasser. Aus unserer Sicht ist aufgrund der vorhandenen Untergrundverhältnissen mit natürlicherweise flächenhaft vorhandener praktisch undurchlässiger Verwitterungszone des Mergels die Gefahr für das Grundwasser nicht sehr hoch einzuschätzen.

Im südlichen Bereich reicht das Plangebiet in das ehemalige Betriebsgelände hinein. Da in der oberflächennahen Probe aus dem nördlichen Teil des Betriebsgeländes (SCH 1) eine PAK-Konzentration über der Verwertbarkeitsgrenze ermittelt wurde, ist nicht auszuschließen, dass der Boden bis zum Erdplanum für den geplanten Straßenbau einer Entsorgung zugeführt werden muss. Eine Beurteilung zumindest für den zu überbauenden Teil des ehemaligen Betriebsgeländes erfordert eine rasterförmige Untersuchung mit festzulegender chemischer Analytik einschließlich Deklarationsanalytik.

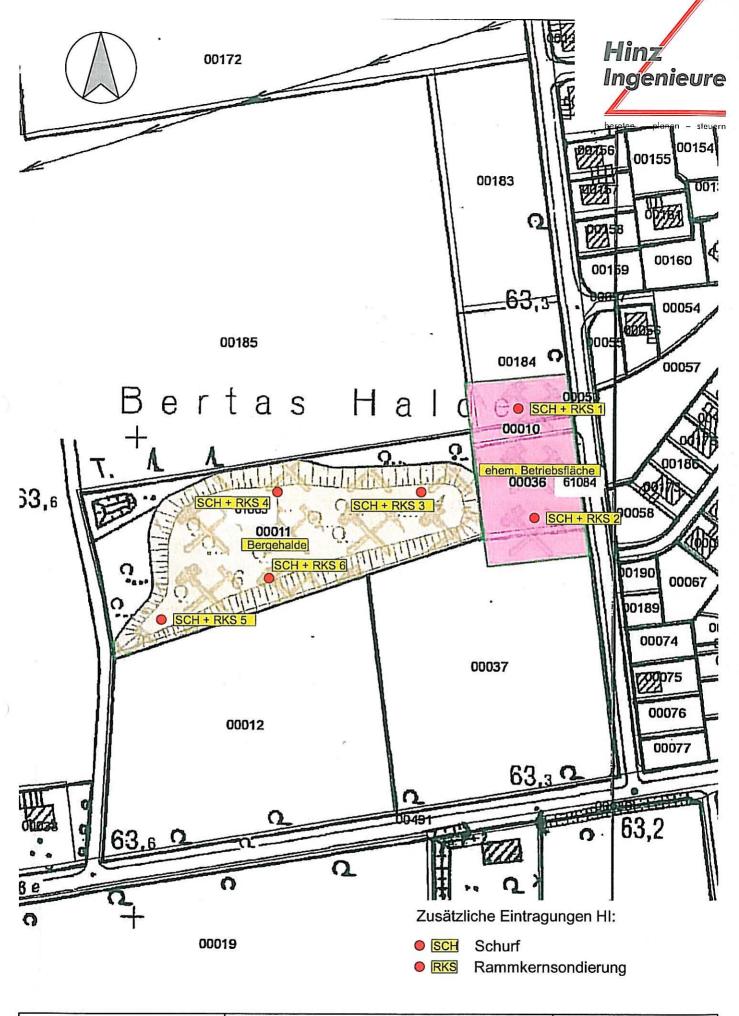
Abweichend von den vorliegenden Ergebnissen können bei eventuellen Bauarbeiten andere Verhältnisse angetroffen werden, die zusätzliche Untersuchungen zur Eingrenzung von Schadstoffherden und eine anschließende chemische Analytik erfordern.

D. Bulk

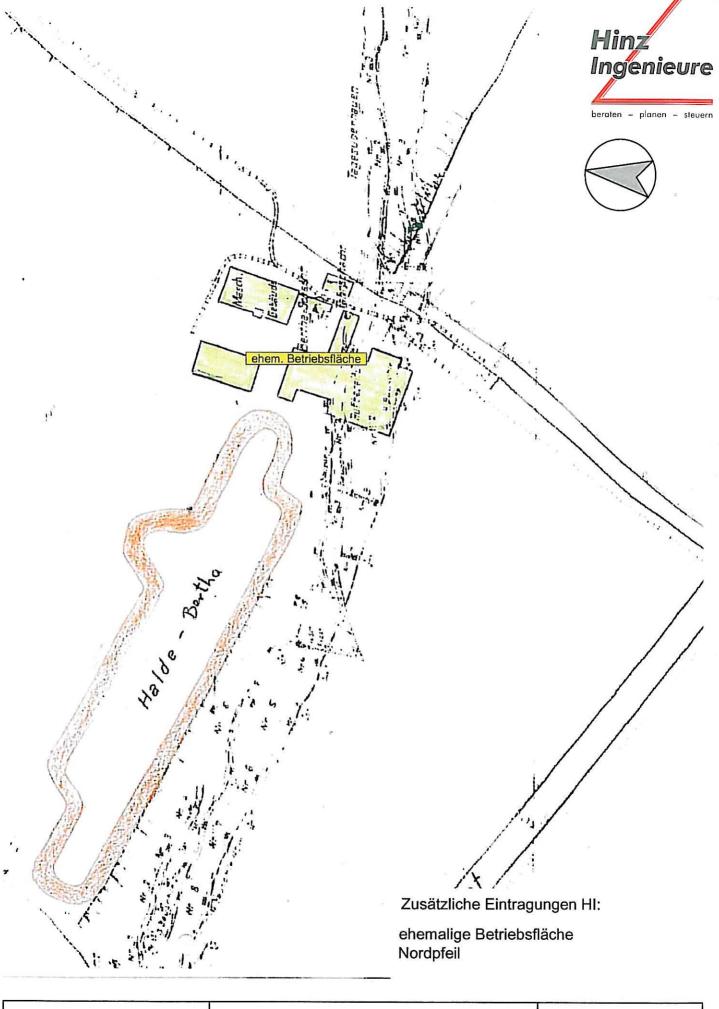
Dipl.-Ing.

Sachbearbeiter:

S. Heinrich

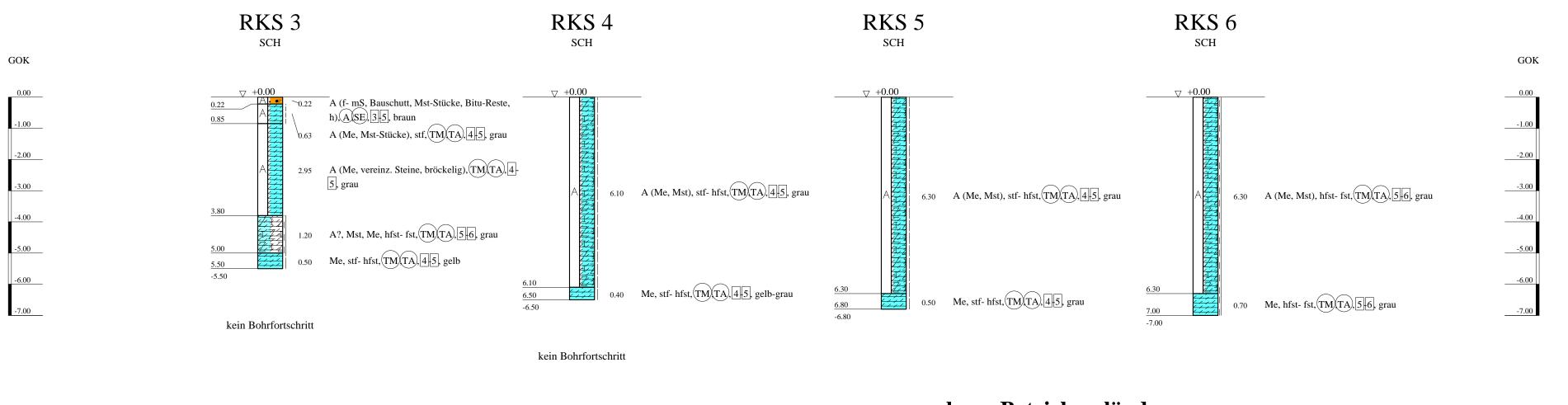

Dipl.-Ing.

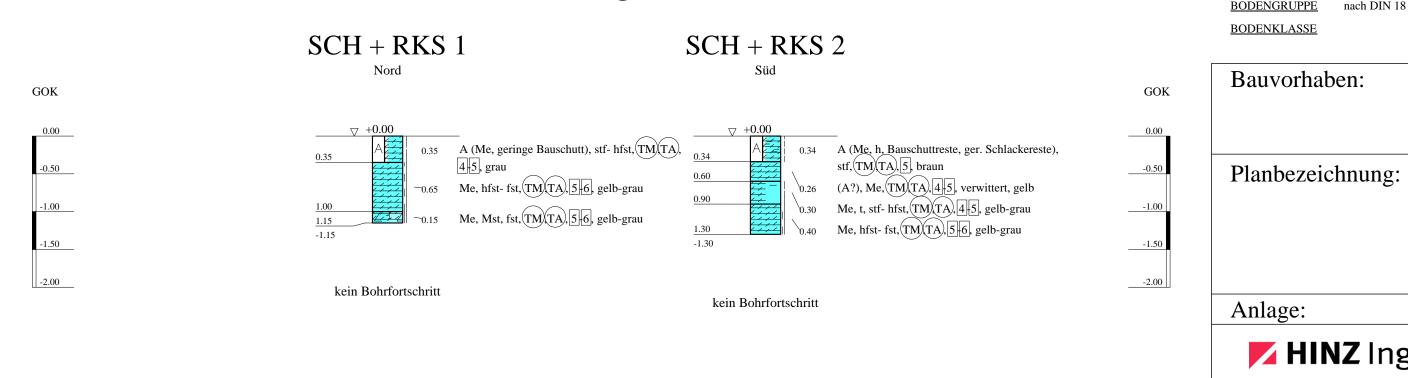
Anlagen

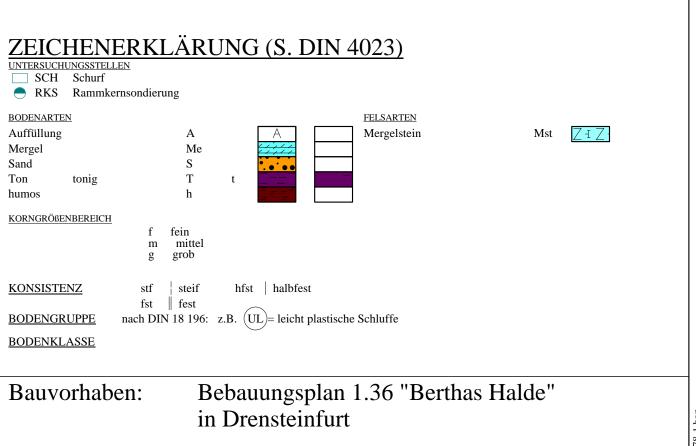

- 1 Lageplan
- 2 Bohrprofile
- 3 Ergebnisse der chemisch-analytischen Untersuchungen

Verteiler

Stadt Drensteinfurt, Herr Niggemann (3-fach)


Projekt-Nr: 4578-1	Lageplan, Maßstab ca. 1 : 2.000	Anlage: 1.1
Proj.: Untersuchung der Altablage	erung Berthas Halde im Zuge des Bebauungsplans	1.36 in Drensteinfurt


Projekt-Nr: 4578-1 Lageplan Anlage: 1.2


Plan: Aufzeichnungen von der Lage der Bergehalde und des Betriebsgeländes [Stand: 1945]

Bergehalde

ehem. Betriebsgelände

Maßstab:

Bearbeiter:

Gezeichnet:

Geändert:

Gesehen:

Projekt-Nr: 4578-1

1:-/100

Ja/Br/Kn, He, Bu

E.-M. Bröker

Datum:

01.12.08

Bohrprofile

HINZ Ingenieure

HINZ Ingenieure GmbH

Tel: 02534/9743-0 Fax: -30

Alte Dorfstraße 5

48161 Münster

Anlage 3.1

Drensteinfurt, Berthas Halde Proj.-Nr.: 4578-1

1.4)
erte nach
rüfwerte
V (Pri
odSch
äß BBo
gemä
alyse
An

	SCH/ RKS 3+4+5+6	3+4+5+6	3+4+5+6	2	-		BBodSchV	SchV		
		MP 1	MP 2	MP 5	P.7		Boden-Mensch	Mensch		
	Tiefe [m]	0,00-0,30	0,30-1,00	09'0-00'0	0,35-1,00		Prüfwerte zu 1.4	e zu 1.4		
						Kinderspiel- flächen	Wohn- gebiete	Park- und Freizeit- anlagen	Industrie- und Gewerbe- grundstücke	
Trockenrückstand 105°C	%	84,4	88,0	81,7	82,5					
Schwerflüchtige Chlorkohlenwasserstoffe	rasserstoffe									
Aldrin	mg/kg	<0,02	<0,02	<0,02	<0,02	2	4	10	1	
DDT-Summe	mg/kg	<0,02	<0,02	<0,02	<0,02	40	80	200	ı	
Hexachlorbenzol (HCB)	mg/kg	<0,02	<0,02	<0,02	<0,02	4	8	20	200	
beta-Hexachlorcyclohexan	mg/kg	<0,02	<0,02	<0,02	<0,02	5	10	25	400	
Chlorphenole										
Pentachlorphenol (PCP)	mg/kg	<0,2	<0,2	<0,2	<0,2	20	100	250	250	
Summenparameter								70		
Cyanide	mg/kg	<0,1	<0,1	<0,1	<0,1	20	50	50	100	
Schwermetalle	70,000			ets.					r	
Arsen (As)	mg/kg	<5	\$	5,3	<5	25	50	125	140	
Blei (Pb)	mg/kg	22	24	46	10	200	400	1.000	2.000	
Cadmium (Cd)	mg/kg	8'0>	8'0>	0,48	8'0>	10	20	20	90	
Chrom gesamt (Cr)	mg/kg	6	11	17	14	200	400	1.000	1.000	
Nickel (Ni)	mg/kg	16	17,0	18,0	21,0	70	140	350	900	
Quecksilber (Hg)	mg/kg	60'0	0,130	0,070	<0,05	10	20	50	80	
Polychlorierte Biphenyle										
PCB ₆ (Summe 6 Komp.)	mg/kg	n.n.	n.n.	n.n.	n.n.	0,4	8'0	2	40	
PAK										-
Benzo[a]pyren	mg/kg	60'0	0,25	3,1	<0,05	2	4	10	12	

beraten – planen – steuern

Drensteinfurt, Berthas Halde Proj.-Nr.: 4578-1

Eluatuntersuchungen

Anlage 3.2

Analyse gemäß BBodSchV (Prüfwerte nach 3.1)	
Zusammenfassung der Ergebnisse der Eluatuntersuchungen	

	SCH/ RKS		3+4+5+6	2	1	
		MP 1	MP 2	MP 5	P 7	
	Tiefe [m]	0,00-0,30	0,30-1,00	0,00-0,60	0,35-1,00	55 15 11
						BBodSchV Prüfwerte zu 3.1
Anorganische Stoffe	Konz.	1.0		· ·		Pruiwerte 2u 3.1
Antimon (Sb)	μg/l	<5	<5 _	<5	<5	10
Arsen (As)	μg/l	<5	<5	<5	<5	10
Blei (Pb)	μg/l	<5	<5	<5	<5	25
Cadmium (Cd)	µg/l	<0,5	<0,5	<0,5	<0,5	5
Chrom gesamt (Cr)	μg/l	<5	<5	<5	<5	50
Chrom VI	µg/l	<10	<10	<10	<10	8
Kobalt (Co)	µg/l	<2	<2	<2	<2	50
Kupfer (Cu)	μg/l	13	5,9	18	4,3	50
Molybdän (Mo)	μg/l	<2	<2	2,4	<2	50
Nickel (Ni)	µg/l	6,1	<5	6,1	<5	50
Quecksilber (Hg)	μg/l	<0,2	<0,2	<0,2	<0,2	1
Selen	μg/l	<5	<5	<5	<5	10
Zink (Zn)	μg/l	<10	<10	26	<10	500
Zinn (Sn)	µg/l	<5	<5	<5	<5	40
Cyanide, ges.	µg/l	<5	<5	<5	<5	50
Cyanide, leicht freisetzbar	μg/l	<5	<5	<5	<5	10
Fluorid (F)	μg/l	380	1000	470	620	750
Organische Stoffe Kohlenwasserstoff-Index	μg/l	<100	<100	<100	<100	200
втх						
Summe BTEX	μg/l	n.n.	n.n.	n.n.	n.n.	20
LHKW						
Summe LHKW	μg/l	n:n.	n.n.	n.n.	n.n.	10
Schwerflüchtige Chlorkohlenwasse	erstoffe					
Aldrin	µg/l	<0,03	<0,03	<0,03	<0,03	2
DDT						
Summe DDT	µg/l	<0,03	<0,03	<0,03	<0,03	0,1
Phenole						
Summe Phenole	µg/l	<0,5	<0,5	<0,5	<0,5	20
Summe Phenole		<0,5	<0,5	<0,5	<0,5	20
		<0,5 n.n.	<0,5 n.n.	<0,5 n.n.	<0,5 n.n.	20 0,05
Summe Phenole PCB Summe 6 PCB	µg/l					
Summe Phenole PCB	µg/l		n.n.	n.n.	n.n.	0,05
PCB Summe 6 PCB PAK	µg/l	n.n.				

WESSLING Laboratorien GmbH, Oststr. 6, 48341 Altenberge

Hinz Ingenieure GmbH Herr Detlef Bulk Alte Dorfstraße 5 48161 Münster

Prüfbericht Nr.:

UAL08-16558-2

Auftrag Nr.:

UAL-06587-08

Ansprechpartner: Durchwahl:

Heinz-Peter Janett (02505) 89-154

E-Mail:

Heinz-Peter.Janett

@wessling.de

Datum:

10.12.2008

Projekt-Nr.: 4578-1 - Drensteinfurt, Berthas Halde

Ihr Auftrag:

schriftlich vom 28.11.2008

Probeninformationen

Probe Nr.

08-101466-01

08-101466-02

Eingangsdatum

01.12.2008

01.12.2008

MP 1

MP 2

Bezeichnung

Boden

Probenart

Boden

Probenahme durch

Auftraggeber Eimer / Schraubglas Auftraggeber Schraubglas

Probengefäß Anzahl Gefäße

Untersuchungsbeginn

01.12.2008

01.12.2008

Untersuchungsende

10.12.2008

10.12.2008

Prüfbericht Nr.:

UAL08-16558-2

Auftrag Nr.:

UAL-06587-08

Datum:

10.12.2008

Untersuchungsergebnisse

Probenvorbereitung				
Probe Nr.			08-101466-01	08-101466-02
Bezeichnung			MP 1	MP2
Feinanteil < 2mm	Gew%	TS	54	46,8
Grobanteil > 2mm	Gew%	TS	46 -	53,2
Feinanteil < 2mm	g	os	276	260
Crobantoil > 2mm	a	os	235	296

Physikalische Untersuchung

Probe Nr.			08-101466-01 MP 1	08-101466-02 MP 2
Bezeichnung			A Company of the Comp	
Trockenrückstand	Gew%	os	84,4	88
Lufttrockensubstanz	Gew%	os	95,8	99,7

Schwerflüchtige Chlorkohlenwasserstoffe

Probe Nr.			08-101466-01	08-101466-02
Bezeichnung			MP 1	MP 2
Aldrin	mg/kg	TS	<0,02	<0,02
o,p'-DDT	mg/kg	TS	<0,02	<0,02
p,p'-DDT	mg/kg	TS	<0,02	<0,02
Hexachlorbenzol	mg/kg	TS	<0,02	<0,02
а-НСН	mg/kg	TS	<0,02	<0,02
β-HCH	mg/kg	TS	<0,02	<0,02
y-HCH (Lindan)	mg/kg	TS	<0,02	<0,02
δ-HCH	mg/kg	TS	<0,02	<0,02
ε-HCH	mg/kg	TS	<0,02	<0,02

Chlorohenole

Chlorphenole			00 101100 01	08-101466-02
Probe Nr.			08-101466-01	MP 2
Bezeichnung			MP 1	
Pentachlorphenol	mg/kg	TS	<0,2	<0,2

Prüfbericht Nr.:

UAL08-16558-2

Auftrag Nr.:

UAL-06587-08

Datum:

10.12.2008

Summennaram	otor

Probe Nr.

08-101466-01

08-101466-02

Bezeichnung

MP 1

MP 2

Cyanid (CN), ges.

mg/kg TS

<0,1

<0,1

Im Königswasser-Extrakt

Elemente

Probe Nr.			08-101466-01 MP 1	08-101466-02 MP 2
Bezeichnung			IVIP I	IVII Z
Arsen (As)	mg/kg	TS	<5	<5
Blei (Pb)	mg/kg	TS	22	24
Cadmium (Cd)	mg/kg	TS	<0,8	<0,8
Chrom (Cr)	mg/kg	TS	8,8	11
Nickel (Ni)	mg/kg	TS	16	17
Quecksilber (Ha)	mg/kg	TS	0,09	0,13

Polychlorierte Biphenyle (PCB)

Probe Nr.			08-101466-01	08-101466-02 MP 2
Bezeichnung			MP 1	WIF Z
PCB Nr. 28	mg/kg	TS	<0,01	<0,01
PCB Nr. 52	mg/kg	TS	<0,01	<0,01
PCB Nr. 101	mg/kg	TS	<0,01	<0,01
PCB Nr. 138	mg/kg	TS	<0,01	<0,01
PCB Nr. 153	mg/kg	TS	<0,01	<0,01
PCB Nr. 180	mg/kg	TS	<0,01	<0,01
Summe der 6 PCB	mg/kg	TS	-/-	-/-
PCB gesamt (Summe 6 PCB x 5)	mg/kg	· TS	- !-	-1-

Polycyclische aromatische Kohlenwasserstoffe (PAK)

Folycyclische aromation.				00 404 400 00
Probe Nr.			08-101466-01	08-101466-02
· · · · · · · · · · · · · · · · · · ·			MP1	MP 2
Bezeichnung			Mark is	
Benzo(a)pyren	mg/kg	TS	0,09	0,25

Prüfbericht Nr.:

UAL08-16558-2

Auftrag Nr.:

UAL-06587-08

Datum:

10.12,2008

Im Eluat				
Elemente				
Probe Nr.			08-101466-01	08-101466-02
Bezeichnung			MP 1	MP2
Chrom-VI	μg/l	W/E	<10	<10
Quecksilber (Hg)	μg/l	WE	<0,2 -	<0,2
Probe Nr.			08-101466-01	08-101466-02
Bezeichnung			MP 1	MP2
Antimon (Sb)	μg/l	W/E	<5	<5
Arsen (As)	μg/l	W/E	<5	<5
Blei (Pb)	μg/l	W/E	<5	<5
Cadmium (Cd)	μg/l	W/E	<0,5	<0,5
Chrom (Cr)	μg/l	W/E	<5	<5
Cobalt (Co)	μg/l	W/E	<2	<2
Kupfer (Cu)	μg/l	W/E	13	5,9
Molybdän (Mo)	μg/l	W/E	<2	<2
Nickel (Ni)	μg/l	W/E	6,1	<5
Selen (Se)	μg/l	W/E	<5	<5
Zink (Zn)	μg/l	W/E	<10	<10
Zinn (Sn)	μg/l	W/E	<5	<5
Kationen, Anionen und Nichtmetalle				
Probe Nr.			08-101466-01	
Bezeichnung			MP1	MP2
Cyanid (CN), ges.	µg/l	W/E	<5	<5
Cyanid (CN), I. freis.	μg/l	W/E	<5	<5
Fluorid (F)	μg/l	· WE	380	1.000

Prüfbericht Nr.:

UAL08-16558-2

Auftrag Nr.:

UAL-06587-08

Datum:

10.12.2008

Im Säuleneluat gem. BBodSchV LUA

200	22	8.7			90
Α	kv	D	ner	10	ıe

Probe Nr.			08-101466-01	08-101466-02 MP 2
Bezeichnung			MP1	
Phenol	µg/l	W/E	<0,5	<0,5
o-Kresol	μg/l	W/E	<0,5	<0,5
m-Kresol	μg/l	W/E	<0,5	<0,5
p-Kresol	μg/l	W/E	<0,5	<0,5
4-Ethylphenol	μg/l	W/E	<0,5	<0,5
2-Chlor-5-methylphenol	μg/l	W/E	<0,5	<0,5
4-Chlor-2-methylphenol	μg/I	W/E	<0,5	<0,5
4-Chlor-3-methylphenol	μg/l	W/E	<0,5	<0,5
4-Chlor-2-isopropyl-5-methylphenol	μg/l	W/E	<0,5	<0,5
	μg/l	W/E	<0,5	<0,5
2,4-Dichlor-3,5-dimethylphenol	μg/l	W/E	<0,5	<0,5
2-Phenylphenol	22/02/03/	W/E	<0,5	<0,5
2-Benzylphenol	µg/l			
1-Naphthol	μg/l	W/E	<0,5	<0,5
2-Naphthol	μg/l	W/E	<0,5	<0,5

Leichtflüchtige aromatische Kohlenwasserstoffe (BTEX)

Probe Nr.			08-101466-01 MP 1	08-101466-02 MP 2
Bezeichnung			ivii i	A CONTRACTOR OF STREET
Benzol	μg/l	W/E	<0,5	<0,5
Toluol	µg/l	W/E	<0,5	<0,5
Ethylbenzol	μg/l	W/E	<0,5	<0,5
m-, p-Xylol	μg/l	W/E	<0,5	<0,5
o-Xylol	μg/l	W/E	<0,5	<0,5
Styrol	μg/l	" W/E	<0,5	<0,5
Cumol	μg/l	W/E	<0,5	<0,5
Summe nachgewiesener BTEX	μg/l	W/E	-/-	-/-

Schwerflüchtige Chlorkohlenwasserstoffe

Probe Nr.			08-101466-01 MP 1	08-101466-02 MP 2	
Bezeichnung				-0.00	
Aldrin	μg/l	W/E	<0,03	<0,03	
o,p'-DDT	μg/l	W/E	<0,03	<0,03	
p,p'-DDT	μg/l	W/E	<0,03	<0,03	

Seite 5 von 14

Prüfbericht Nr.:

UAL08-16558-2

Auftrag Nr.:

UAL-06587-08

Datum:

10.12.2008

Kohlenwasserste	offe
-----------------	------

Probe Nr.

08-101466-01

08-101466-02

Bezeichnung

MP 1

MP2

08-101466-01 08-101466-02

<0,003

<0,003

<0,003

-/-

<0,003

<0,003

<0,003

-/-

Kohlenwasserstoff-Index

μg/l

W/E <100

<100

Leichtflüchtige halogenierte Kohlenwasserstoffe (LHKW)

Probe Nr.			08-101466-01	08-101466-02
Bezeichnung			MP 1	MP 2
Vinylchlorid	μg/l	W/E	<0,5	<0,5
Dichlormethan	μg/l	W/E	<0,5	<0,5
cis-1,2-Dichlorethen	μg/l	W/E	<0,5	<0,5
Trichlormethan	μg/l	W/E	<0,5	<0,5
1,1,1-Trichlorethan	µg/l	W/E	<0,5	<0,5
Tetrachlormethan	µg/l	W/E	<0,5	<0,5
Trichlorethen	μg/l	W/E	<0,5	<0,5
Tetrachlorethen	µg/l-	W/E	<0,5	<0,5
Chlorethan	μg/l	W/E	<0,5	<0,5
Trichlorfluormethan (Frigen 11)	μg/l	W/E	<0,5	<0,5
1,1,2-Trichlor-1,2,2-trifluorethan (Frigen 113)	μg/l	W/E	<0,5	<0,5
1,1-Dichlorethan	μg/l	W/E	<0,5	<0,5
1,2-Dichlorethan	µg/l	W/E	<0,5	<0,5
Summe nachgewiesener LHKW	µg/l	W/E	-/-	-/-
Polychlorierte Biphenyle (PCB)				
Probe Nr.			08-101466-01	
Bezeichnung			MP 1	MP 2
PCB Nr. 28	μg/l °	W/E	<0,003	<0,003
PCB Nr. 52	µg/l	W/E	<0,003	<0,003
PCB Nr. 101	μg/l	W/E	<0,003	<0,003
		2012/05/2012		-0.000

μg/l

μg/l

μg/l

μg/l

µg/l

Seite 6 von 14

W/E

W/E

W/E

W/E

W/E

PCB Nr. 138

PCB Nr. 153

PCB Nr. 180

Summe der 6 PCB

PCB gesamt (Summe 6 PCB x 5)

Prüfbericht Nr.:

UAL08-16558-2

Auftrag Nr.:

UAL-06587-08

Datum:

10.12.2008

Probe Nr.			08-101466-01	08-101466-02
Bezeichnung			MP1	MP2
Naphthalin	μg/l	W/E	0,1	0,09
Acenaphthylen	μg/l	W/E	<0,02	<0,02
Acenaphthen	μg/l	W/E	<0,02	<0,02
Fluoren	μg/l	W/E	<0,02	<0,02
Phenanthren	μg/l	W/E	0,1	0,05
Anthracen	µg/l	W/E	<0,02	<0,02
Fluoranthen	μg/l	W/E	0,07	<0,02
Pyren	μg/l	W/E	0,05	<0,02
Benzo(a)anthracen	μg/l	W/E	<0,02	<0,02
Chrysen	μg/l	W/E	<0,02	<0,02
Benzo(b)fluoranthen	μg/l	W/E	<0,02	<0,02
Benzo(k)fluoranthen	μg/l	W/E	<0,02	<0,02
Benzo(a)pyren	μg/l	W/E	<0,02	<0,02
Dibenz(ah)anthracen	μg/l	W/E	<0,02	<0,02
Benzo(ghi)perylen	μg/l	W/E	<0,02	<0,02
Indeno(1,2,3-cd)pyren	μg/l	W/E	<0,02	<0,02
Summe nachgewiesener PAK	μg/l	W/E	0,32	0,14

Prüfbericht Nr.:

UAL08-16558-2

Auftrag Nr.:

UAL-06587-08

Datum:

ım: 10.12.2008

Probeninformationen

	08-101466-03	08-101466-04
Probe Nr.		24 40 0000
Eingangsdatum	01.12.2008	01.12.2008
Bezeichnung	MP5	P 7 / RKS 1 (0,35-1,0m)
Probenart	Boden	Boden
Probenahme durch	Auftraggeber	Auftraggeber
Probengefäß	Eimer / Schraubglas	Schraubglas
Anzahl Gefäße	3	1
Untersuchungsbeginn	01.12.2008	01.12.2008
Untersuchungsende	10.12.2008	10.12.2008
[C.]		

Untersuchungsergebnisse

Probenvorbereitung

Probe Nr.		08-101466-03	08-101466-04	
Bezeichnung			MP 5	P 7 / RKS 1 (0,35-1,0m)
Feinanteil < 2mm	Gew%	TS	68,3	100
Grobanteil > 2mm	Gew%	TS	31,7	0
Feinanteil < 2mm	g	os	195	100
Grobanteil > 2mm	g	os	90,2	0

Physikalische Untersuchung

Probe Nr.			08-101466-03	08-101400-04
Flobe Ni.			MP 5	P7/RKS1
Bezeichnung				(0,35-1,0m)
Trockenrückstand	Gew%	os	81,7	82,5
Lufttrockensubstanz	Gew%	os	98,2	97,6

Schwerflüchtige Chlorkohlenwasserstoffe

Schwerflüchtige Chlorkonienwa	asserstone	*		
Probe Nr.			08-101466-03	08-101466-04
Bezeichnung			MP5	P 7 / RKS 1 (0,35-1,0m)
Aldrin	mg/kg	TS	<0,02	<0,02
o.p'-DDT	mg/kg	TS	<0,02	<0,02
p,p'-DDT	mg/kg	TS	<0,02	<0,02
Hexachlorbenzol	mg/kg	TS	<0,02	<0,02
а-НСН	mg/kg	TS	<0,02	<0,02
β-HCH	mg/kg	TS	<0,02	<0,02
y-HCH (Lindan)	mg/kg	TS	<0,02	<0,02
δ-HCH	mg/kg	TS	<0,02	<0,02
ε-HCH	mg/kg	TS	<0,02	<0,02

Seite 8 von 14

Prüfbericht Nr.:

UAL08-16558-2

Auftrag Nr.:

UAL-06587-08

Datum:

10.12.2008

		· Annone	_ 1 _
Chi	orp	hen	oie

Probe Nr.

08-101466-03

MP 5

08-101466-04 P7/RKS1

Bezeichnung

(0,35-1,0m)

Pentachlorphenol

mg/kg

<0,2

<0,2

Summenparameter

Probe Nr.

08-101466-03

08-101466-04

Bezeichnung

MP 5

P7/RKS1

(0,35-1,0m)

Cyanid (CN), ges.

mg/kg TS <0,1

<0,1

Im Königswasser-Extrakt

Elemente

Probe Nr. Bezeichnung			08-101466-03 MP 5	08-101466-04 P 7 / RKS 1 (0,35-1,0m)
Arsen (As)	mg/kg	TS	5,3	<5
Blei (Pb)	mg/kg	TS	46	10
Cadmium (Cd)	mg/kg	TS	0,48	<0,8
Chrom (Cr)	mg/kg	TS	17	14
Nickel (Ni)	mg/kg	TS	18	21
Quecksilber (Hg)	mg/kg	TS	0,07	<0,05

Polychlorierte Biphenyle (PCB)

Probe Nr.			08-101466-03	08-101466-04 P 7 / RKS 1
Bezeichnung			MP 5	(0,35-1,0m)
PCB Nr. 28	mg/kg	- TS	<0,01	<0,01
PCB Nr. 52	mg/kg	TS	<0,01	<0,01
PCB Nr. 101	mg/kg	TS	<0,01	<0,01
PCB Nr. 138	mg/kg	TS	<0,01	<0,01
PCB Nr. 153	mg/kg	TS	<0,01	<0,01
PCB Nr. 180	mg/kg	TS	<0,01	<0,01
Summe der 6 PCB	mg/kg	TS	-/-	-/-
PCB gesamt (Summe 6 PCB x 5)	mg/kg	TS	-/ -	4-

Seite 9 von 14

Prüfbericht Nr.:

UAL08-16558-2

Auftrag Nr.:

UAL-06587-08

Datum:

10.12.2008

Polycyclische aromatische Kohle	nwassers	stoffe (P	AK)	
Probe Nr.			08-101466-03	08-101466-04
Bezeichnung			MP5	P 7 / RKS 1 (0,35-1,0m)
And experience of the second s	mg/kg	TS	3,1	<0,05
Benzo(a)pyren	mgmg	.0		,
lm Eluat				
Elemente				
Probe Nr.			08-101466-03	08-101466-04
			MP 5	P 7 / RKS 1 (0,35-1,0m)
Bezeichnung		W/E	<10	<10
Chrom-VI	µg/l	W/E	<0,2	<0,2
Quecksilber (Hg)	µg/l	VVIL	10,12	
Probe Nr.			08-101466-03	08-101466-04
Bezeichnung			MP 5	P 7 / RKS 1 (0,35-1,0m)
A STATE OF THE PARTY OF THE PAR	μg/l	W/E	<5	<5
Antimon (Sb)	μg/l	W/E	<5	<5
Arsen (As)		W/E	<5	<5
Blei (Pb)	µg/l	W/E	<0,5	<0,5
Cadmium (Cd)	μg/l /l	W/E	<5	<5
Chrom (Cr)	µg/l	W/E	<2	<2
Cobalt (Co)	μg/l	W/E	18	4,3
Kupfer (Cu)	μg/l 	V.T. G.T. Comb	2,4	<2
Molybdän (Mo)	μg/l ·	W/E	<5	<5
Nickel (Ni)	μg/l 	W/E	<5	<5
Selen (Se)	μg/l 	W/E		<10
Zink (Zn)	μg/l	W/E	26	<5
Zinn (Sn)	μg/l	* W/E	<5	med dan en de la de
Kationen, Anionen und Nichtmetalle	E			
Probe Nr.			08-101466-03 MP 5	9 08-101466-04 P 7 / RKS 1
Bezeichnung			WI (#	(0,35-1,0m)
Cyanid (CN), ges.	μg/l	W/E	<5	<5
Cyanid (CN), I. freis.	μg/l	W/E	<5	<5
Fluorid (F)	μg/l	W/E	470	620

Seite 10 von 14

Prüfbericht Nr.:

UAL08-16558-2

Auftrag Nr.:

UAL-06587-08

Datum:

10.12.2008

lm Säuleneluat gem. BBodSchV LUA

	725	511 1		100	
ΛΙ	kv	n	hai	nn	Δ
\sim		ı			

Probe Nr.			08-101466-03	08-101466-04
Bezeichnung			MP 5	P 7 / RKS 1 (0,35-1,0m)
Phenol	μg/l	W/E	<0,5	<0,5
o-Kresol	μg/l	W/E	<0,5	<0,5
m-Kresol	μg/l	W/E	<0,5	<0,5
p-Kresol	μg/l	W/E	<0,5	<0,5
4-Ethylphenol	μg/l	W/E	<0,5	<0,5
2-Chlor-5-methylphenol	μg/l	W/E	<0,5	<0,5
4-Chlor-2-methylphenol	μg/l	W/E	<0,5	<0,5
4-Chlor-3-methylphenol	μg/l	W/E	<0,5	<0,5
4-Chlor-2-isopropyl-5-methylphenol	μg/l	W/E	<0,5	<0,5
2,4-Dichlor-3,5-dimethylphenol	μg/l	W/E	<0,5	<0,5
2-Phenylphenol	μg/l	W/E	<0,5	<0,5
2-Benzylphenol	μg/l	W/E	<0,5	<0,5
1-Naphthol	μg/l	W/E	<0,5	<0,5
2-Naphthol	µg/l	W/E	<0,5	<0,5

Leichtflüchtige aromatische Kohlenwasserstoffe (BTEX)

Probe Nr.			08-101466-03	08-101466-04
Bezeichnung			MP 5	P 7 / RKS 1 (0,35-1,0m)
Benzol	μg/l	W/E	<0,5	<0,5
Toluol	μg/l	W/E	<0,5	<0,5
Ethylbenzol	μg/l	W/E	<0,5	<0,5
m-, p-Xylol	µg/l	W/E	<0,5	<0,5
o-Xylol	μg/l	"WE	<0,5	<0,5
Styrol	μg/l	W/E	<0,5	<0,5
Cumol	μg/l	W/E	<0,5	<0,5
Summe nachgewiesener BTEX	μg/l	W/E	+	-/-

Schwerflüchtige Chlorkohlenwasserstoffe

Probe Nr.			08-101466-03	P7/RKS1 (0,35-1,0m)	
Trobb Ni.			MP5	P7/RKS1	
Bezeichnung				(0,35-1,0m)	
Aldrin	μg/l	W/E	<0,03	<0,03	
o,p'-DDT	μg/l	W/E	<0,03	<0,03	
p.p'-DDT	μg/l	W/E	<0,03	<0,03	

Seite 11 von 14

Prüfbericht Nr.:

UAL08-16558-2

Auftrag Nr.:

UAL-06587-08

Datum:

08-101466-03 08-101466-04

10.12.2008

0000		
Koh	lenwasserstofi	re

Kohlenwasserstoff-Index

Probe Nr.

08-101466-03

08-101466-04

Bezeichnung

MP 5

P7/RKS1 (0,35-1,0m)

<0,003

<0,003

<0,003

<0,003

-/-

-/-

W/E

μg/l

<100

<100

Leichtflüchtige halogenierte Kohlenwasserstoffe (LHKW)

Probe Nr.			08-101466-03	08-101466-04
, t			MP 5	P7/RKS1
Bezeichnung				(0,35-1,0m)
Vinylchlorid	µg/l	W/E	<0,5	<0,5
Dichlormethan	µg/l	W/E	<0,5	<0,5
cis-1,2-Dichlorethen	μg/l	W/E	<0,5	<0,5
Trichlormethan	μg/l	W/E	<0,5	<0,5
1,1,1-Trichlorethan	μg/l	W/E	<0,5	<0,5
Tetrachlormethan	µg/l	W/E	<0,5	<0,5
Trichlorethen	µg/l	W/E	<0,5	<0,5
Tetrachlorethen	µg/l	W/E	<0,5	<0,5
Chlorethan	μg/l	W/E	<0,5	<0,5
Trichlorfluormethan (Frigen 11)	μg/l	W/E	<0,5	<0,5
1,1,2-Trichlor-1,2,2-trifluorethan (Frigen 113)	μg/l	W/E	<0,5	<0,5
1.1-Dichlorethan	μg/l	W/E	<0,5	<0,5
1,2-Dichlorethan	μg/l	W/E	<0,5	<0,5
Summe nachgewiesener LHKW	μg/l	W/E	-/-	
Polychlorierte Biphenyle (PCB)				
Probe Nr.			08-101466-03	08-101466-04
	•		MP5	P7/RKS1
Bezeichnung				(0,35-1,0m)
PCB Nr. 28	μg/l	W/E	<0,003	<0,003
PCB Nr. 52	μg/l	W/E	<0,003	<0,003

µg/l

μg/l

µg/l

μg/l

μg/l

μg/l

Seite 12 von 14

W/E

W/E

W/E

W/E

W/E

W/E

<0,003

<0,003

<0,003

<0,003

-/-

PCB Nr. 52

PCB Nr. 101

PCB Nr. 138

PCB Nr. 153

PCB Nr. 180

Summe der 6 PCB

PCB gesamt (Summe 6 PCB x 5)

Prüfbericht Nr.:

UAL08-16558-2

Auftrag Nr.:

<0,02

<0,02

<0,02

<0,02

<0,02

<0,02

<0,02

0,08

<0,02

<0,02

<0,02

<0,02

<0,02

<0,02

<0,02

0,36

W/E

W/E

W/E

W/E

W/E

W/E

W/E

W/E

UAL-06587-08

Datum:

10.12.2008

Probe Nr.			08-101466-03	08-101466-04 P 7 / RKS 1
Bezeichnung			MP 5	(0,35-1,0m)
Naphthalin	μg/l	W/E	0,1	80,0
Acenaphthylen	μg/l	W/E	<0,02	<0,02
Acenaphthen	μg/l	W/E	<0,02	<0,02
Fluoren	μg/l	W/E	<0,02	<0,02
Phenanthren	μg/l	W/E	0,1	<0,02
Anthracen	μg/l	W/E	<0,02	<0,02
Fluoranthen	μg/l	W/E	0,09	<0,02
Pyren	μg/l	W/E	0,07	<0,02
Benzo(a)anthracen	μg/l	W/E	<0,02	<0,02
501.20(-7-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-			49,417	0.00

μg/l

μg/l

µg/l

μg/l

μg/l

μg/l

μg/l

µg/l

Polycyclische aromatische Kohlenwasserstoffe (PAK)

08-101466-01; -02; -04

Chrysen

Benzo(b)fluoranthen

Benzo(k)fluoranthen

Dibenz(ah)anthracen

Indeno(1,2,3-cd)pyren

Benzo(ghi)perylen

Benzo(a)pyren

Kommentare der Ergebnisse:

Summe nachgewiesener PAK

Cadmium (Cd): Auf Grund von Matrixstörungen wurde die Bestimmungsgrenze erhöht.

08-101466-01 bis -04

Kommentare der Ergebnisse:

Pentachlorphenol: Auf Grund der geringen Tockensubstanz wurde die Bestimmungsgrenze erhöht.

Prüfbericht Nr.:

UAL08-16558-2

Auftrag Nr.:

UAL-06587-08

Datum:

10.12.2008

Abkürzungen und Methoden

Siebung

Siebung

Trockenrückstand / Wassergehalt im Feststoff

Chlorkohlenwasserstoffe schwerflüchtig

Chlorphenole

Cyanide gesamt

Metalle/Elemente in Feststoff (ICP-OES / ICP-MS)

Quecksilber

Polychlorierte Biphenyle (PCB)

Polycyclische aromatische Kohlenwasserstoffe (PAK)

Chrom (VI) in Wasser/Eluat

Quecksilber in Wasser/Eluat (AAS)

Metalle/Elemente in Wasser/Eluat (ICP-OES / ICP-MS)

Cyanide gesamt in Wasser/Eluat Cyanide leicht freisetzbar (Wasser)

Fluorid in Wasser/Eluat

Alkyl- und Arylphenole in Wasser/Eluat

Leichtflüchtige aromatische Kohlenwasserstoffe (BTEX)

Chlorkohlenwasserstoffe schwerflüchtig in Wasser/Eluat

Kohlenwasserstoff-Index in Wasser/Eluat (GC)

Leichtflüchtige halogenierte Kohlenwasserstoffe (LHKW)

Polychlorierte Biphenyle (PCB)

Polycyclische aromatische Kohlenwasserstoffe (PAK)

os

TS

W/E

ISO 11464^A

ISO 11464^A

ISO 11465A

ISO 10382A

E DIN ISO 14154A

ISO 11262A

ISO 11885 / ISO 17294-2

E DIN ISO 16772A

ISO 10382A

DIN 38414 S23A

DIN 38405 D24A

EN 1483^A

ISO 11885 / ISO 17294-2A

DIN 38405 D13/D14A

DIN 38405 D13/D14^A

DIN 38405-4A

EN 12673 mod.

DIN 38407 F9^A

ISO 6468A

EN ISO 9377-2^A

EN ISO 10301A

EN ISO 6468^A

DIN 38407 F8A

Originalsubstanz

Trockensubstanz

Wasser/Eluat

Heinz-Peter Janett

(Diplom-Biologe); Kundenbetreuung

Drensteinfurt, Berthas Halde Proj.-Nr.: 4578-1

Entnahme am:

Gesamt-Einstufung

08.11.08

Ergebnisse der Bodenuntersuchung gemäß LAGA - Boden

Ingenieure

beraten – planen – steuern

Anlage 3.3

	Probe	MP 3	MP 4	P 6			nach	LAGA: 20	04-11		
	SCH			1	1	Baus	chuttanteil ·	< 10 Vol% a	an Gesamtm	asse	
	RKS	3+4+5+6	3+4+5+6			Z 0 (Tab.	. II.1.2-2)			Z1	Z2
	Tiefe	1,00-3,00	3,00-5,00	0,00-0,34	Sand	Lehm/Schlufl	Ton	Verfülung			
Feststoff											
Trockenrückstand 105°C	%	92,4	92,8	83,3							
oH-Wert		7,8	7,8	7,4	,						
Arsen (As)			5,2	60	40	45	20	1 45	1 1	45	450
Blei (Pb)	mg/kg	<5 9	11	6,8 85	40	70	20 100	15 140		45 210	150 700
Cadmium (Cd)	mg/kg mg/kg	0,41	<0,4	0,79	0,4	1	1,5	140		3	10
Chrom gesamt (Cr)	mg/kg	5	6	26	30	60	100	120		180	600
Kupfer (Cu)	mg/kg	11	17	34	20	40	60	80		120	400
Nickel (Ni)	mg/kg	17	21	15	15	50	70	100		150	500
Quecksilber (Hg)	mg/kg	0,28	0,24	0,14	0,1	0,5	1	1		1,5	5
Thallium (TI)	mg/kg	<0,4	<0,4	<0,4	0,1	0,7	1	0,7		2,1	7
Zink (Zn)	mg/kg	49	48	110	60	150	200	300		450	1500
Cyanid (CN), ges.	mg/kg	<0,1	<0.1	<0,1		100	200	300		3	10
Cyariia (Crty, goo.	mgmg	-0,1	,	.0,1	<u> </u>				U P		
TOC	M%	1			0,5 (1,0)	0,5 (1,0)	0,5 (1,0)	0,5 (1,0)		1,5	5
EOX	mg/kg	<0,5	<0,5	<0,5	1	1	1	1		3	10
		-									
Kohlenwasserstoffe	mg/kg	<10	<10	73	100	100	100	200		300 (600)	1000 (200
BTX	mg/kg	n.n.	n.n.	n.n.	1	1	1	1		1	1
					No. of the last of				EV 175		
LHKW	mg/kg	n.n.	n.n.	n.n.	1	1	1	1		1	1
									53 J.		
PCB ₈	mg/kg	n.n.	n.n.	n.n.	0,05	0,05	0,05	0,1		0,15	0,5
PAK ₁₆	mg/kg	0,05	n.n.	55	3	3	3	3		3 (9)	30
Benzo(a)pyren	mg/kg	<0,05	<0,05	4,9	0,3	0,3	0,3	0,6		0,9	3
		-							8 13		
, i											100 E 100 E 100 E 100
							nach	LAGA: 20	04-11		
					1			< 10 Vol% a	an Gesamtm	asse	
						Z 0 (Tab	. II.1.2-2)		Z 1.1	Z 1.2	Z2
F14											
Eluat pH-Wert		1 00	0.6	0.4	CEOE			_	0505	0.40	F F 40
Leitfähigkeit [20°], elektrische	Clam	8,6	8,6 320	8,1	6,5-9,5				6,5-9,5	6-12	5,5-12
Chlorid (CI)	μS/cm	210 <5		130,.	250 30		-	 	250	1500	2000
	mg/l mg/l		<5	<5				 	30	50	100
Sulfat (SO ₄)		71	130	<5	20				20	50	200
Cyanid (CN), ges.	μg/l	<5	<5	<5	5				5	10	20
Phenol-Index ohne Destillation	µg/l	<5	<5	<5	20				20	40	100
Schwermetalle											
Arsen (As)	uall	<5	<5	/ E	14				14	20	60
Blei (Pb)	µg/l	<5	<5 <5	<5 <5	14 40			-	14 40	20	60
Cadmium (Cd)	μg/l μg/l	<0,5	<0,5	<0,5	1,5					80	200
		<0,5 <5	<0,5 <5						1,5	3	6
	μg/l μg/l	<3	<3	<5 7,8	12,5 20				12,5	25 60	60 100
				<5	15				20 15	20	70
Kupfer (Cu)		1 6							10		. /1/
Kupfer (Cu) Nickel (Ni)	μg/l	<5 <0.4	<5 <0.4								
Kupfer (Cu) Nickel (Ni) Quecksilber (Hg)	μg/l μg/l	<0,4	<0,4	<0,4	<0,5				<0,5	1	2
Chrom gesamt (Cr) Kupfer (Cu) Nickel (Ni) Quecksilber (Hg) Thallium (Tl) Zink (Zn)	μg/l										

Z2 >Z2

Z2

WESSLING Laboratorien GmbH, Oststr. 6, 48341 Altenberge

Hinz Ingenieure GmbH Herr Detlef Bulk Alte Dorfstraße 5 48161 Münster

Prüfbericht Nr.:

UAL08-16525-1

Auftrag Nr.:

UAL-06587-08

Ansprechpartner:

Heinz-Peter Janett

Durchwahl: E-Mail:

(02505) 89-154 Heinz-Peter.Janett

@wessling.de

Datum:

10.12.2008

Projekt-Nr.: 4578-1 - Drensteinfurt, Berthas Halde

Ihr Auftrag:

schriftlich vom 28.11.2008

Probeninformationen

Probe Nr.	
Eingangsdatum	

Bezeichnung Probenart

Probenahme durch Probengefäß

Anzahl Gefäße

Untersuchungsbeginn Untersuchungsende

08-101479-01

01.12.2008

MP3

Boden

Auftraggeber

Schraubglas

7

01.12.2008 10.12.2008

08-101479-02

01.12.2008

MP4

Boden

Auftraggeber

Schraubglas/PE-Beutel

01.12.2008

10.12.2008

08-101479-03 01.12.2008

P 6 / SCH 1 (0,0-0,34m)

Boden Auftraggeber

Eimer

01.12.2008 10.12.2008

Prüfbericht Nr.:

UAL08-16525-1

Auftrag Nr.:

UAL-06587-08

Datum:

10.12.2008

Untersuchungsergebnisse

Physikalische Untersuchung

Probe Nr.			08-101479-01	08-101479-02	08-101479-03
ac accordance accordance			MP3	MP 4	P6/SCH1
Bezeichnung				P	(0,0-0,34m)
Trockenrückstand	Gew%	os	92,4	92,8	83,3

Bezogen auf Trockenmasse

Probe Nr.			08-101479-01	08-101479-02	08-101479-03
Bezeichnung			MP3	MP4	P 6 / SCH 1 (0,0-0,34m)
pH-Wert		os	7,8	7,8	7,4
EOX	mg/kg	TS	<0,5	<0,5	<0,5
Kohlenwasserstoffe	mg/kg	TS	<10	<10	73

Leichtflüchtige aromatische Kohlenwasserstoffe (BTEX)

Probe Nr.			08-101479-01	08-101479-02	08-101479-03
Bezeichnung			MP3	MP4	P 6 / SCH 1 (0,0-0,34m)
Benzol	mg/kg	TS	<0,1	<0,1	<0,1
Toluol	mg/kg	TS	<0,1	<0,1	<0,1
Ethylbenzol	mg/kg	TS	<0,1	<0,1	<0,1
m-, p-Xylol	mg/kg	TS	<0,1	<0,1	<0,1
o-Xylol	mg/kg	TS	<0,7	<0,1	<0,1
Summe nachgewiesener BTEX	mg/kg	TS	-/-	-/-	-/-

Leichtflüchtige halogenierte Kohlenwasserstoffe (LHKW)

Probe Nr.		٠	08-101479-01	08-101479-02	08-101479-03
Bezeichnung			MP3	MP4	P 6 / SCH 1 (0,0-0,34m)
Dichlomethan	mg/kg	TS	<0,1	<0,1	<0,1
cis-1,2-Dichlorethen	mg/kg	TS	<0,1	<0,1	<0,1
Trichlormethan	mg/kg	TS	<0,1	<0,1	<0,1
1,1,1-Trichlorethan	mg/kg	TS	<0,1	<0,1	<0,1
Tetrachlormethan	mg/kg	TS	<0,1	<0,1	<0,1
Trichlorethen	mg/kg	TS	<0,1	<0,1	<0,1
Tetrachlorethen	mg/kg	TS	<0,1	<0,1	<0,1
Summe nachgewiesener LHKW	mg/kg	TS	-/-	-/-	-/-

Seite 2 von 5

Prüfbericht Nr.:

UAL08-16525-1

Auftrag Nr.:

UAL-06587-08

Datum:

10.12.2008

Polycyclische aromatische Kohlen	wasserstoffe	(PAK)			
Probe Nr.			08-101479-01	08-101479-02	08-101479-03
Bezeichnung			MP3	MP 4	P 6 / SCH 1 (0,0-0,34m)
Naphthalin	mg/kg	TS	<0,05	<0,05	<0,05
Acenaphthylen	mg/kg	TS	<0,05	<0,05	<0,05
Acenaphthen	mg/kg	TS	<0,05	<0,05	<0,05
Fluoren	mg/kg	TS	<0,05	<0,05	0,22
Phenanthren	mg/kg	TS	0,05	<0,05	4,9
Anthracen	mg/kg	TS	<0,05	<0,05	0,72
Fluoranthen	mg/kg	TS	<0,05	<0,05	12
Pyren	mg/kg	TS	<0,05	<0,05	11
Benzo(a)anthracen	mg/kg	TS	<0,05	<0,05	4,1
Chrysen	mg/kg	TS	<0,05	<0,05	4,3
Benzo(b)fluoranthen	mg/kg	TS	<0,05	<0,05	2,9
Benzo(k)fluoranthen	mg/kg	TS	<0,05	<0,05	2,4
Benzo(a)pyren	mg/kg	TS	<0,05	<0,05	4,9
Dibenz(ah)anthracen	mg/kg	TS	<0,05	<0,05	0,29
Benzo(ghi)perylen	mg/kg	TS	<0,05	<0,05	3,5
Indeno(1,2,3-cd)pyren	mg/kg	TS	<0,05	<0,05	4,0
Summe nachgewiesener PAK	mg/kg	TS	0,05	-/-	55
Polychlorierte Biphenyle (PCB)					
Probe Nr.			08-101479-01	08-101479-02	08-101479-03
Bezeichnung			MP3	MP4	P 6 / SCH 1 (0,0-0,34m)
PCB Nr. 28	mg/kg	TS	<0,01	<0,01	<0,01
PCB Nr. 52	mg/kg	TS	<0,01	<0,01	<0,01
PCB Nr. 101	mg/kg	, TS	<0,01	<0,01	<0,01
PCB Nr. 138	mg/kg	TS	<0,01	<0,01	<0,01
PCB Nr. 153	mg/kg	TS	<0,01	<0,01	<0,01
PCB Nr. 180	mg/kg	TS	<0,01	<0,01	<0,01
Summe der 6 PCB	mg/kg	TS	-/-	-/-	-/-
PCB gesamt (Summe 6 PCB x 5)	mg/kg	TS	-/-	-/-	-/-

Prüfbericht Nr.:

UAL08-16525-1

Auftrag Nr.:

UAL-06587-08

				Auftrag Nr.: Datum:	10.12.200
Probe Nr.			08-101479-01	08-101479-02	08-101479-03
Bezeichnung	chnung		MP3	MP 4	P 6 / SCH 1 (0,0-0,34m)
Arsen (As)	mg/kg	TS	<5	5,2	6,8
Blei (Pb)	mg/kg	TS	9	11	85
Cadmium (Cd)	mg/kg	TS	0,41	<0,4	0,79
Chrom (Cr)	mg/kg	TS	5 -	6,1	26
Kupfer (Cu)	mg/kg	TS	11	17	34
Nickel (Ni)	mg/kg	TS	17	21	15
Quecksilber (Hg)	mg/kg	TS	0,28	0,24	0,14
Thallium (TI)	mg/kg	TS	<0,4	<0,4	<0,4
Zink (Zn)	mg/kg	TS	49	48	110
Cyanid (CN), ges.	mg/kg	TS	<0,1	<0,1	<0,1
Untersuchungen im Eluat ge	mäß DEV S4				
Probe Nr.			08-101479-01	08-101479-02	08-101479-03
Bezeichnung			MP3	MP4	P 6 / SCH 1 (0,0-0,34m)
pH-Wert		W/E	8,6	8,6	8,1
Leitfähigkeit [25°C], elektrische	μS/cm	W/E	210	320	130
Chlorid (CI)	mg/l	W/E	<5	<5	<5
Sulfat (SO4)	mg/l	W/E	71	130	<5
Cyanid (CN), ges.	μg/l	W/E	<5	<5	<5
Phenol-Index ohne Destillation	µg/l	W/E	<5	<5	<5
Arsen (As)	µg/l	W/E	<5	<5	<5
Blei (Pb)	μg/l	W/E	<5	<5	<5
Cadmium (Cd)	μg/l	W/E	<0,5	<0,5	<0,5
Chrom (Cr)	μg/l	W/E	<5	<5	<5
Kupfer (Cu)	μg/l	W/E	<3	<3	7,8
Nickel (Ni)	μg/l	. WE	<5	<5	<5
Quecksilber (Hg)	μg/l	W/E	<0,4	<0,4	<0,4
Thallium (TI)	μg/l	W/E	<1	<1	<1

08-101479-01 bis -03

Zink (Zn)

Kommentare der Ergebnisse:

Auf Grund von Matrixstörungen wurde bei den markierten Parametern die Bestimmungsgrenze erhöht.

W/E

<10

μg/l

<10

<10

Prüfbericht Nr.:

UAL08-16525-1

Auftrag Nr.:

UAL-06587-08

Datum:

10.12.2008

Abkürzungen und Methoden

Trockenrückstand / Wassergehalt im Feststoff

pH-Wert im Feststoff

Extrahierbare organische Halogenverbindungen (EOX)

Kohlenwasserstoffe in Abfall (GC)

Leichtflüchtige aromatische Kohlenwasserstoffe (BTEX)

Leichtflüchtige halogenierte Kohlenwasserstoffe (LHKW)

Polycyclische aromatische Kohlenwasserstoffe (PAK)

Polychlorierte Biphenyle (PCB)

Metalle/Elemente in Feststoff (ICP-OES / ICP-MS)

Quecksilber

Cyanide gesamt

pH-Wert in Wasser/Eluat

Leitfähigkeit, elektrisch in Wasser/Eluat

Gelöste Anionen (D19/D20) in Wasser/Eluat Gelöste Anionen (D19/D20) in Wasser/Eluat

Cyanide gesamt in Wasser/Eluat

Phenol-Index gesamt in Wasser/Eluat

Metalle/Elemente in Wasser/Eluat (ICP-OES / ICP-MS)

Quecksilber in Wasser/Eluat (AAS)

os

TS

W/E

ISO 11465^A

ISO 10390^A

DIN 38414 S17A

EN 14039^A

ISO 22155

EN ISO 10301, mod.A

DIN 38414 S23A

ISO 10382A

ISO 11885 / ISO 17294-2

E DIN ISO 16772A

ISO 11262A

DIN 38404 C5

EN 27888

EN ISO 10304-1^A

EN ISO 10304 D19/D20A

DIN 38405 D13/D14A

DIN 38409 H16-1A

ISO 11885 / ISO 17294-2A

EN 1483^A

Originalsubstanz

Trockensubstanz

Wasser/Eluat

Heinz-Peter Janett

(Diplom-Biologe); Kundenbetreuung

DEUTSCHES DIP