Abwasseranlage Stadt Bayreuth

Erschließung Baugebiet "Saas – Saaser Berg"

Antrag auf wasserrechtliche Genehmigung

Einleitung von Niederschlagswasser gemäß Art. 15 BayWG

Entwurf vom 28.11.2011

Ergänzung vom 25.10.2012

KURZERLÄUTERUNG

1. Vorhabensträger

Vorhabensträger ist die Stadt Bayreuth mit der Oberbürgermeisterin, Frau Brigitte Merk-Erbe.

Die zuständige Abteilung ist das Tiefbauamt, zugehörig zum Stadtbaureferat mit dem Referatsleiter Herrn Ltd. BD Hans-Dieter Striedl.

Anschnrift: Stadt Bayreuth

Tiefbauamt -Luitpoldplatz 1395444 Bayreuth

Tel.: 0921/25-0 Fax: 0921/25-1701

e-mail: Tiefbauamt@stadt.bayreuth.de

2. Allgemeines

Die Erschließung der Bebauungsflächen "Saaser Berg" erfolgt durch die Stadt Bayreuth auf der Grundlage des Bebauungsplanes Nr. 1/09 "Saas – Saaser Berg" vom 19.05.2011.

Mit dem Bau der Schmutz- und Regenwasserkanäle, eines Grabens zur Hangwasserableitung sowie der Regenwasserrückhaltung wird die Erschließung des Baugebietes gesichert. Das Baugebiet umfasst eine Größe von ca. 4,0 ha und besitzt insgesamt 49 Bauparzellen.

Mittels der vorliegenden Planung sollen die erforderlichen Maßnahmen zur schadlosen Ableitung des anfallenden Niederschlagswassers aus der geplanten Bebauung zum Vorfluter, einschließlich notwendiger Maßnahmen Regenwasserrückhaltung und Hochwasserableitung der Hangeinzugsgebietsflächen unter Berücksichtigung technischer und wirtschaftlicher Gesichtspunkte aufgezeigt werden.

3. Bestehende Verhältnisse

3.1 Vorfluterverhältnisse

Der Vorfluter für die vorliegende Maßnahme ist ein namenloser Graben III. Ordnung. Im weiteren Verlauf fließt der Graben dem Aubach (Finsterweihergraben) und später dem Röhrensee zu.

Die Hangeinzugsflächen besitzen nach den amtlichen Ermittlungen (siehe Anhang Hydrotechnische Berechnungen) eine Größe von insgesamt 0,24 km² (24 ha). Der Mittelwasserabfluss (MQ) wird mit 2,0 l/s angegeben.

Nachfolgend sind die ermittelten Hochwasserabflüsse und die dazugehörigen Rückhaltevolumen für einen Hochwasserabfluss HQ₁₀₀ aufgelistet:

Hochwasserabflüsse (HQ_n)

HQ _n alle	1	10	20	50	100	Jahre
	100	450	600	800	950	1/s

Rückhaltevolumen bei HQ100

Drosselabfluss [1/s]	200	300	400	500	600
Volumen [m³]	2.500	1.900	1.400	1.000	600

Die Vorgaben werden bei der Planung der Hochwasserableitung zu Grunde gelegt.

4. Art und Umfang der Maßnahme

4.1 Darstellungen der Wahllösung mit Begründung der gewählten Lösung

Die Hangflächen entwässern über den geplanten und die vorhandenen Gräben in das Einlaufbauwerk. Von dort wird der Hochwasserabfluss HQ_{100} über Rohrleitungen (Bypass) zum unterhalb liegenden zum Ableitungskanal geführt.

Der Ablauf (Drossel- bzw. Notüberlauf) aus dem Rückhaltebecken kreuzt die bestehende Ortstraße und verläuft dann gemeinsam mit dem Hochwasserabfluss der Hangflächen parallel zur Straße Saaser Berg (bzw. Ludwig-Thoma-Str.) ca. 200m in nördliche Richtung. Dort quert der Sammelkanal die vorhandene Straße und bindet am vorhandenen Ableitungskanal zur Einleitungsstelle in den namenlosen Graben an.

Der Verlauf der geplanten Kanäle kann dem beiliegenden Lageplan entnommen werden.

Bemessungsgrundlagen:

Bemessungsregenspende $r_{5;0,2}$ 357 l/s/ha

Rauhigkeitsbeiwert k₀geplante/ bestehende Kanäle 0,75 mm / 1,5 mm

Maximaler Auslastungsgrad 90 %

Die Einteilung der Einzugsgebiete kann dem beiliegenden Lageplan entnommen werden. Folgende Hauptwerte der Berechnung liegen vor:

Einzugsgebiet Bebauungsflächen A _U =	1,5328 ha
Einzugsgebiet Einkausmarkt A _U =	0,3477 ha
Hangeinzugsgebiet A _U =	1,1290 ha
Maximaler Regenwasserabfluss Q _{r5;02}	653,7 l/s

Hochwasserabfluss HQ₁₀₀ 960,0 I/s

4.2 Kanalisation

Regenwasser-Ableitungskanal:

Die Bemessung der Kanäle (Regenwasserkanal) erfolgt auf der Grundlage der Bemessungsregen nach Starkregenereignissen (KOSTRA-Altlas des Deutschen Wetterdienstes, Station Bayreuth) mit $r_{5,02}$ mit 357 l/s x ha.

Die Regenwasserkanäle im Rahmen der Erschließung mit Durchmessern von DN 400 B bis DN 800 SB bereits bis zur Einleitung in den offenen Graben verlegt. Diese werden für den hydraulischen Nachweis mit einbezogen (siehe Beilage-Nr. 3).

Die Verbindung und Weiterleitung der Regenwasserabflüsse der Hangflächen erfolgt randlich des Geltungsbereiches über naturnah gestaltete, offene Gräben. Im Bereich der querenden Zufahrten sind Durchlass DN 500 und 600 SB angeordnet. Die Zu- und Auslaufbereiche müssen aus hydraulischer Sicht gegen Erosion etc. gesichert werden. Das erfolgt mittels Steinsatz aus Bruchsteinen (Fugen mit Erdreich verfüllt) bzw. mit Wasserbaupflaster auf Beton. Die Rohre erhalten Kolksicherungen aus Magerbeton. Die Nachweise der Grabenprofile sind im Anhang enthalten.

Folgende Durchmesser und Kanallängen sind als Regenwasserkanäle geplant:

Ableitungskanal	DN 800 SB DN 900 SB	105,00 m 222,00m
Drosselabfluss HRB (Bypass)	DN 700 SB	378,00 m

Für den Ableitungskanal wurde eine maximale Einleitungsmenge $Q_{r5;02} = 653,7$ l/s (Drosselablauf Baugebiet einschl. Notüberlauf) + 960 l/s (Hochwasserabflu HRB + Überlauf Sasser Stollen) = 1.613,7 l/s errechnet.

Hochwasserableitung HQ₁₀₀

Das Einzugsgebiet der Hangeinzugsflächen kann schwer aufgeteilt werden. Aufgrund der örtlichen Gegebenheiten und Platzverhältnisse (Nähe zur Bebauung, starke Hangneigung) kann ein Hochwasserrückhaltebecken nicht sinnvoll realisiert werden. Bei der vorliegenden Konzeption ist daher vorgesehen den Hochwasserabfluss HQ₁₀₀ mit 950 l/s (zzgl. 10 l/s Saaser Stollen) über einen Ableitungskanal (Bypass DN 700 im Bereich der Bebauungsflächen) zum Vorfluter zu leiten.

Berechnungsansätze: Fläche A_E 24,0 ha Hochwasserabfluss HQ_{100} 950 l/s

Einlaufbauwerk:

Die vorliegende Planung der Hochwasserrückhaltung sieht aufgrund der vorhandenen Topographie und Platzverhältnisse vor dem Einlaufbauwerk eine Geländevertiefung mit Zusammenführung der beiden Gräben vor. Es wird wieder ein kleiner Dauerstau vorgesehen. Das Einlaufbauwerk wird als naturnahes Erdbecken mit Dauerstau konzipiert. Konstruktiv wird das Bauwerk nach den Vorgaben der einschlägigen Vorschriften (DIN 19700, den DWA Arbeits- und Merkblättern A 166, M 153 und M 176) gestaltet.

Bei einem Hochwasserniederschlag wird das Einlaufbauwerk bis zum maximalen Wasserspiegel eingestaut. Bis zum Abfluss der maximalen Wassermenge von 960 l/s wird ein Einstau (einschl. Rechenverlust etc.) von 1,20 m über Rohrsohle (368,80 m ü. NN) erforderlich.

Die Zu- und Auslaufbereiche müssen aus hydraulischer Sicht gegen Erosion etc. gesichert werden. Das erfolgt mittels Steinsatz aus Bruchsteinen (Fugen mit Erdreich verfüllt) bzw. mit Wasserbaupflaster auf Beton. Durch die Anordnung von Palisaden und eines räumlichen Rechens vor dem Einlauf wird verhindert, dass Grobstoffe abgeschwemmt werden und die Abflussöffnung verstopfen kann.

Die Geländevertiefung des Einlaufbauwerkes erhält eine Zufahrtsrampe. Die Befestigung wird als Schotterrasen ausgebildet. Die wasserseitigen Böschungen des Erdbeckens werden mit 20 cm Oberboden angedeckt und begrünt. Auf der Dammkrone wird ein Zugangsweg als Schotterrasen erstellt.

Der Einlauf ist als Bauwerk aus Stahlbeton geplant. Die Abdeckung des Bauwerkes erfolgt mit einem Gitterrost aus verzinktem Stahl mit integrierter klappbarer Einstiegsöffnung. Zur Absturzsicherung erfolgt die Montage eines Geländers.

Vom Einlaufbauwerk erfolgt die Ableitung über einen Kanal DN 700 aus Stahlbeton in Richtung Einleitungsstelle. Ab dem Überlauf der Regenrückhaltebecken erfolgt die Ableitung zum Vorfluter über Rohrleitungen DN 800 und DN 900 ebenfalls aus Stahlbeton.

Auslaufbauwerk/Einleitungsstelle:

Im Bereich des geplanten Auslaufbauwerkes besteht eine Ableitung zum Vorfluter (Graben zum Finsterweihergraben) mittels Rohrleitungen DN 800 und DN 400. Aufgrund der Topographie und sehr geringen Überdeckung ist keine Verlegung einer größeren Rohrleitung innerhalb der landwirtschaftlich genutzten Flächen möglich.

Es wird daher ein Auslaufbauwerk mit Notüberlauf konzipiert. Das Ablaufbauwerk wird in den best. Kanal DN 800 aus Stahlbeton eingebaut. Von dort fließt der Hochwasserabfluss, zusammen mit den Notüberläufen der Regenrückhaltebecken (gepl. RRB "Saaser Berg" + best. RRB "An den Hofäckern") zum best. Schacht 103 G. Bis zur Einleitungsstelle in den offenen Graben besteht nur eine Rohrleitung DN 400 aus Beton. Diese besitzt eine Förderleistung von lediglich etwas über 500 l/s.

Über eine Ableitungsmöglichkeit für den Hochwasserabfluss (Gesamtentlastungswassermenge Q = 2.273,7 l/s) erhält das Auslaufbauwerk eine Überlaufschwelle. Von dort wird eine Geländemulde zum Graben profiliert.

Das Auslaufbauwerk wird auf städt. Grund angeordnet. Als Abgrenzung zum Grundstück wurde eine Flügelwand konzipiert. Von dort verläuft die Geländemulde (Böschungsneigung n=1:5, ausgerundet, überfahrbar) zum Graben. Da der vorhandene Kanal nur eine sehr geringe Überdeckung besitzt, wird die Geländemulde in nördliche Richtung verschoben.

Die geringeren Abflüsse schafft die Rohrleitung DN 400 (ca. 500 bis 550 l/s). Darüber hinaus werden die Abflüsse über die Schwelle und Geländemulde (ca. 2.274 l/s, einschl. best. Regenrückhaltebecken) abgeleitet. Für das Bauwerk wird die best. Zufahrt aufgelassen. Dafür werden zwei weitere, nördlich (Acker) und südlich (Wiese) vorgesehen.

Das Bauwerk ist aus Stahlbeton geplant. Die Abdeckung des Bauwerkes erfolgt mit einem Gitterrost aus verzinktem Stahl mit integrierter klappbarer Einstiegsöffnung. Zur Absturzsicherung erfolgt die Montage eines Geländers. Die Öffnung des Notüberlaufes erhält ein Schutzgitter. Einund Auslaufbereiche werden mit Bruchsteinen auf Betonbett befestigt, die Rohre erhalten Kolksicherungen aus Magerbeton.

Weitere Einzelheiten sind der hydrotechnischen Berechnung (Beilege Nr. 3) und den beigefügten Planunterlagen zu entnehmen.

Aufgestellt:

Bayreuth, 25.10.2012

Gah

Anhang:

1.) Hydrotechnische Berechnungen

WASSERRECHTSVERFAHREN

Rohrleitungen Tektur 25.10.2012

Hydraulischer Nachweis

Bemessungsregenspende r_{5,0.2}

357,0 I/sxha

(Berechnung nach dem Zeitbeiwertverfahren)

Regenwasserkanäle Baugebietsflächen:

Strang Nr.	EZG Nr.	Bezeichnung	Fläche A _E [ha]	Fläche A _U [ha]	Abfluß Q _r	Zufluß Q _{dr}	Summe Q _r	von Schacht	bis Schacht	Durchm.	Länge	Sohlhöhe oben	Sohlhöhe unten	Gefälle	Q _v	V _v	Aus- lastung
1	6	Baugebiet	0,2090	0,0873	31,2 l/s		31,2 l/s	R18	R17	DN 400	15,50 m	367,47 m+NN	367,12 m+NN	22,58 °/oo	347,0 l/s	2,76 m/s	9,0 %
2							31,2 l/s	R17	R16	DN 400	15,50 m	367,12 m+NN	366,50 m+NN	40,00 °/oo	462,4 l/s	3,68 m/s	6,7 %
3	5	Baugebiet	0,1120	0,0448	16,0 l/s		47,2 l/s	R16	R15	DN 400	44,00 m	366,50 m+NN	364,07 m+NN	55,23 °/oo	543,7 l/s	4,33 m/s	8,7 %
4	2	Baugebiet	0,2360	0,0540	19,3 l/s		19,3 l/s	R31	R15	DN 400	25,50 m	364,27 m+NN	364,07 m+NN	7,84 °/oo	203,8 l/s	1,62 m/s	9,5 %
5	3	Baugebiet	0,1090	0,0501	17,9 l/s		84,3 l/s	R15	R14	DN 400	10,50 m	364,07 m+NN	363,65 m+NN	40,00 °/oo	462,4 l/s	3,68 m/s	18,2 %
6	4	Baugebiet	0,2380	0,1278	45,6 l/s		129,9 l/s	R14	R13	DN 400	51,50 m	363,65 m+NN	363,15 m+NN	9,71 °/oo	227,0 l/s	1,81 m/s	57,2 %
7	7	Baugebiet	0,4610	0,1829	65,3 l/s		65,3 l/s	R30	R29	DN 400	43,00 m	367,28 m+NN	365,42 m+NN	43,26 °/oo	481,0 l/s	3,83 m/s	13,6 %
8							65,3 l/s	R29	R13	DN 400	43,00 m	365,42 m+NN	363,25 m+NN	50,47 °/oo	519,6 l/s	4,14 m/s	12,6 %
9	8	Baugebiet	0,2080	0,1032	36,8 l/s		232,1 l/s	R13	R12	DN 500	45,00 m	363,15 m+NN	362,70 m+NN	10,00 °/oo	414,7 l/s	2,11 m/s	56,0 %
10	10	Baugebiet	0,3180	0,1286	45,9 l/s		45,9 l/s	R28	R27	DN 400	35,50 m	367,19 m+NN	366,84 m+NN	9,86 °/00	228,7 l/s	1,82 m/s	20,1 %
11							45,9 l/s	R27	R26	DN 400	8,00 m	366,84 m+NN	366,76 m+NN	10,00 °/oo	230,4 l/s	1,83 m/s	19,9 %
12	9	Baugebiet	0,3600	0,1640	58,5 l/s		104,5 l/s	R26	R25	DN 400	45,50 m	366,76 m+NN	364,32 m+NN	53,63 °/oo	535,7 l/s	4,26 m/s	19,5 %
13							104,5 l/s	R25	R12	DN 400	43,00 m	364,32 m+NN	362,80 m+NN	35,35 °/oo	434,6 l/s	3,46 m/s	24,0 %
14	12	Baugebiet	0,1565	0,0781	27,9 l/s		364,4 l/s	R12	R11	DN 500	25,50 m	362,70 m+NN	362,45 m+NN	9,80 °/oo	410,6 l/s	2,09 m/s	88,8 %
15							364,4 l/s	R11	R10	DN 500	8,00 m	362,45 m+NN	362,37 m+NN	10,00 °/oo	414,7 l/s	2,11 m/s	87,9 %
16	11	Baugebiet	0,2240	0,0776	27,7 l/s		27,7 l/s	R24	R23	DN 400	23,00 m	367,60 m+NN	367,35 m+NN	10,87 °/oo	240,3 l/s	1,91 m/s	11,5 %
17							27,7 l/s	R23	R22	DN 400	10,50 m	367,35 m+NN	366,94 m+NN	39,05 °/oo	456,9 l/s	3,64 m/s	6,1 %
18	14	Baugebiet	0,6625	0,2407	85,9 l/s		113,6 l/s	R22	R21	DN 400	40,50 m	366,94 m+NN	364,95 m+NN	49,14 °/oo	512,7 l/s	4,08 m/s	22,2 %
19							113,6 l/s	R213	R20	DN 400	43,00 m	364,95 m+NN	362,77 m+NN	50,70 °/oo	520,8 l/s	4,14 m/s	21,8 %
20							113,6 l/s	R20	R10	DN 400	28,00 m	362,77 m+NN	362,57 m+NN	7,14 °/oo	194,4 l/s	1,55 m/s	58,4 %
21	13	Baugebiet	0,5160	0,1444	51,6 l/s		529,6 l/s	R10	R9	DN 600	43,00 m	362,37 m+NN	361,94 m+NN	10,00 °/oo	669,9 l/s	2,37 m/s	79,1 %
22							529,6 l/s	R8	Ausl2	DN 600	14,00 m	361,94 m+NN	361,80 m+NN	10,00 °/oo	669,9 l/s	2,37 m/s	79,1 %
Zwisch	nensum	nme (ohne Hang)	3,8100	1,4834			529,6 l/s				661,00 m						

WASSERRECHTSVERFAHREN

Rohrleitungen Tektur 25.10.2012

Hydraulischer Nachweis

Bemessungsregenspende r_{5,0.2} 357,0 I/sxha

(Berechnung nach dem Zeitbeiwertverfahren)

Ableitungskanal zum Finsterweihergraben:

Strang Nr.	EZG Nr.	Bezeichnung	Fläche A _E [ha]	Fläche A _U [ha]	Abfluß Q	Zufluß Q _r	Summe $Q_{\rm r}$	von Schacht	bis Schacht	Durchm.	Länge	Sohlhöhe oben	Sohlhöhe unten	Gefälle	Q_{v}	V _v	Aus- lastung
23					529,6 l/s		529,6 l/s	Ablauf	R8	DN 800	8,00 m	360,30 m+NN	360,24 m+NN	7,5 °/oo	1233,9 l/s	2,5 m/s	42,9 %
							529,6 l/s	R8	R7	DN 800	6,50 m	360,24 m+NN	360,20 m+NN	6,15 °/oo	1117,1 l/s	2,22 m/s	47,4 %
24						960,0 I/s	1489,6 l/s	R7	R6	DN 800	21,50 m	360,20 m+NN	359,90 m+NN	13,95 °/oo	2752,8 l/s	5,48 m/s	54,1 %
25							1489,6 l/s	R6	R5	DN 800	34,50 m	359,90 m+NN	358,62 m+NN	37,10 °/oo	2752,8 l/s	5,48 m/s	54,1 %
26	15	Einkaufsmarkt	0,5170	0,3477	124,1 l/s		1613,7 l/s	R5	R4	DN 800	24,50 m	358,62 m+NN	357,71 m+NN	37,14 °/oo	2754,4 l/s	5,48 m/s	58,6 %
27							1613,7 l/s	R4	R3	DN 800	10,00 m	357,71 m+NN	357,38 m+NN	33,00 °/oo	2595,8 l/s	5,16 m/s	62,2 %
28							1613,7 l/s	R3	R2.3	DN 900	30,00 m	357,38 m+NN	357,12 m+NN	8,67 °/oo	1807,3 l/s	2,84 m/s	89,3 %
29							1613,7 l/s	R2.3	R2.2	DN 900	60,00 m	357,12 m+NN	356,61 m+NN	8,50 °/oo	1789,7 l/s	2,8 m/s	90,2 %
30							1613,7 l/s	R2.2	R2	DN 900	40,00 m	356,61 m+NN	356,27 m+NN	8,50 °/oo	1789,7 l/s	2,81 m/s	90,2 %
31							1613,7 l/s	R2	R1	DN 900	39,00 m	356,27 m+NN	355,94 m+NN	8,46 °/00	1785,7 l/s	2,81 m/s	90,4 %
32							1613,7 l/s	R1	R0	DN 900	46,00 m	355,94 m+NN	355,55 m+NN	8,48 °/oo	1787,4 l/s	2,81 m/s	90,3 %
33							1613,7 l/s	R0	Ausl	DN 900	8,50 m	355,55 m+NN	355,48 m+NN	8,24 °/oo	1761,5 l/s	2,77 m/s	91,6 %
33		best. RRB "Saas -	An den Ho	ofäckern"		660,0 I/s	2273,7 l/s	Auslauf	103G	DN 800	1,50 m	355,45 m+NN	355,43 m+NN	13,33 °/oo	1647,5 l/s	3,28 m/s	138,0 %
34							2273,7 l/s	103G	104G	DN 400	36,60 m	355,43 m+NN	353,18 m+NN	61,48 °/oo	573,7 l/s	4,57 m/s	396,3 %
35							2273,7 l/s	103G	104G	DN 400	1,40 m	353,18 m+NN	353,11 m+NN	50,00 °/oo	517,2 l/s	4,12 m/s	439,6 %
Zwisch	Zwischensumme				2273,7 l/s				366,60 m								

WASSERRECHTSVERFAHREN

Rohrleitungen Tektur 25.10.2012

Hydraulischer Nachweis

Bemessungsregenspende r_{5,0.2} 357,0 l/sxha

(Berechnung nach dem Zeitbeiwertverfahren)

Grabendurchlässe Abfanggraben Hanggebiet:

Bemessungsregenspende HQ₁₀₀ 39,5833 I/sxha

Strang Nr.	EZG Nr.	Bezeichnung	Fläche A _E [ha]	Abfluß HQ ₁₀₀	Abfluß Q _r	Zufluß Q _r	Summe Q _r	von Schacht	bis Schacht	Durchm.	Länge	Sohlhöhe oben	Sohlhöhe unten	Gefälle	Q_{v}	V _v	Aus- lastung
39	1	Hangeinzugsgebie ^a	4,4380	39,5833	175,7 l/s		175,7 l/s										
40							175,7 l/s	DL1	DL2	DN 500	10,00 m	371,35 m+NN	371,25 m+NN	10,00 °/oo	1787,4 l/s	2,81 m/s	9,8 %
40	2	Hangeinzugsgebie	6,2790	39,5833	248,5 l/s		424,2 l/s										
41							175,7 l/s	DI3	DL4	DN 600	12,00 m	370,47 m+NN	370,41 m+NN	5,00 °/oo	1761,5 l/s	2,77 m/s	10,0 %
Zwisch	nensun	nme	10,7170				175,7 l/s				22,00 m						

Aufgestellt:

Bayreuth, 15.10.2012

INSENIEUR - TEAM

INGENIEUR - TEAM GEBHARDT · HAHN GMBH

WASSERRECHTSVERFAHREN

Bypass Tektur 25.10.2012

Hydraulischer Nachweis

Bemessungsregen H_Q 100 950,0 I/s

(Berechnung nach dem Zeitbeiwertverfahren)

Regenwasserkanäle Baugebietsflächen:

Strang Nr.	EZG Nr.	Bezeichnung	Fläche A _E [ha]	Fläche A _U [ha]	Abfluß Q _r	Zufluß Q _{dr}	Summe Q _r	von Schacht	bis Schacht	Durchm.	Länge	Sohlhöhe oben	Sohlhöhe unten	Gefälle	Q _v	V _v	Aus- lastung
1	1-3	Hangeinzugsgebiet	24,0000		950,0 I/s	10,0 l/s	960,0 l/s	Ausl	R41	DN 700	6,00 m	367,60 m+NN	367,47 m+NN	21,67 °/00	1480,8 l/s	3,85 m/s	64,8 %
2							960,0 l/s	R41	R40	DN 700	31,00 m	367,47 m+NN	366,79 m+NN	21,94 °/00	1490,0 l/s	3,87 m/s	64,4 %
3							960,0 l/s	R40	R39	DN 700	5,50 m	366,79 m+NN	366,67 m+NN	21,82 °/00	1485,9 l/s	3,86 m/s	64,6 %
4							960,0 l/s	R39	R38	DN 700	53,00 m	366,67 m+NN	365,50 m+NN	22,08 °/00	1494,7 l/s	3,88 m/s	64,2 %
5	5	Baugebiet					960,0 l/s	R38	R37	DN 700	44,00 m	365,50 m+NN	363,56 m+NN	44,09 °/00	2114,6 l/s	5,49 m/s	45,4 %
6							960,0 l/s	R37	R36	DN 700	11,00 m	363,56 m+NN	363,08 m+NN	43,64 °/00	2103,6 l/s	5,47 m/s	45,6 %
7	4	Baugebiet					960,0 l/s	R36	R35	DN 700	50,00 m	363,08 m+NN	362,48 m+NN	12,00 °/00	1100,7 l/s	2,86 m/s	87,2 %
8	8	Baugebiet					960,0 l/s	R35	R34	DN 700	70,00 m	362,48 m+NN	361,64 m+NN	12,00 °/00	1100,7 l/s	2,86 m/s	87,2 %
9							960,0 l/s	R34	R33	DN 700	10,00 m	361,64 m+NN	361,52 m+NN	12,00 °/00	1100,7 l/s	2,86 m/s	87,2 %
10							960,0 l/s	R33	R32	DN 700	50,00 m	361,52 m+NN	360,92 m+NN	12,00 °/00	1100,7 l/s	2,86 m/s	87,2 %
11							960,0 l/s	R31	R7	DN 700	48,50 m	360,92 m+NN	360,36 m+NN	11,55 °/oo	1079,6 l/s	2,81 m/s	88,9 %
			24,0000				960,0 l/s			·	379,00 m						

Einlaufverlust:

Ausgangsdaten:

Rohrdurchmesser:	DN	=	700 mm
Hochwasserabfluss	Q	=	960,0 l/s
Rohrgefälle	I _{so}		2,167 %
	Q_V	=	1480,8 l/s
Fließgeschwindigkeit:	V	=	2,49 m/s
Einlaufverlust: $h_{v\ddot{o}} =$	ζ x (v²/2g)		
Rauigkeitsbeiwert:	ζ	=	0,50
Verlusthöhe	$h_{v\ddot{o}}$	=	0,16 m
Rechenverlust $h_{v\ddot{o}} =$	ζ x (v²/2g)		
$\zeta = \delta$	x (d/a) $^{4/3}$ x sin α		
Rechenstab-Formbeiwer	t δ	=	2,42
Rechenneigung	α	=	60°
Stabdicke	d	=	0,030 m
Lichte Stabweite	a	=	0,070 m
Verlustbeiwert	ζ	=	0,68
Verlusthöhe	$h_{v\ddot{o}}$	=	0,21 m
Ergebnisse:			
Einstauhöhe (Rohrscheit	el) h	=	0.70 m
Einstauverluste	h _{vö}	=	0,16 m
Rechenverluste	h _{vö}	=	0,21 m
Sonstige Verluste:	h_{v}	=	0,13 m
Manometriche Förderhö	ne: h _{man}	=	1,20 m

WEHR / ÜBERFALL:

Q =	2.274,0 l/s 2.274 m ³ /s	m =	0,64 1,00
lü =	3,00 m		1,00
erf.hü =	0,544 m 54,4 cm		
	lü =	$2,274 \text{ m}^3/\text{s}$ $ \ddot{\mathbf{u}} = 3,00 \text{ m}$ erf.h $\ddot{\mathbf{u}} = 0,544 \text{ m}$	$2,274 \text{ m}^3/\text{s}$ $c = $ $1\ddot{\mathbf{u}} = 3,00 \text{ m}$ $erf.h\ddot{\mathbf{u}} = 0,544 \text{ m}$

Gerinnehydraulik

(Manning - Strickler)

Afluß $Q = k_{st} \times A \times r_{hy}^{2/3} \times I_{E}^{1/2} [m^{3}/s]$

Gegeben: Beiwert $k_{st} =$ 28 mm

Fließtiefe

Sohlbreite $b_{so} = 2,000 \text{ m}$

0,234 m

Böschungsneigung n = 1:5,00

Energiehöhengefälle $I_{So} = 12,800 \%$

Ergebnis: Querschnitt $A = 0.742 \text{ m}^2$ benetzter Umfang $I_u = 4.387 \text{ m}$ hydraulischer Radius $r_{hy} = 0.169 \text{ m}$ Abfluß $Q = 2.274 \text{ m}^3/\text{s}$ 2.274 l/sFließgeschwindigkeit V = 3.06 m/s

Gerinnehydraulik (Manning - Strickler)

Afluß Q = $k_{st} \times A \times r_{hy}^{2/3} \times I_{E}^{1/2} [m^{3}/s]$

Gegeben:	Beiwert	k _{st} =	28 mm
	Sohlbreite	b _{so} =	2,000 m
	Fließtiefe	$t_f =$	0,292 m
	Böschungsneigung	n =	1:5,00
	Energiehöhengefälle	I _{So} =	5,400 %

Ergebnis:	Querschnitt	A =	1,012 m²
	benetzter Umfang	$I_u =$	4,980 m
	hydraulischer Radius	$r_{hy}=$	0,203 m
	Abfluß	Q =	2,274 m³/s 2.274 l/s
	Fließgeschwindigkeit	V =	2,25 m/s

Gerinnehydraulik (Manning - Strickler)

Afluß Q = $k_{st} \times A \times r_{hy}^{2/3} \times I_{E}^{1/2} [m^{3}/s]$

Gegeben:	Beiwert	k _{st} =	28 mm	
	Sohlbreite	b _{so} =	2,000 m	
	Fließtiefe	$t_f =$	0,468 m	
	Böschungsneigung	n =	1:5,00	
	Energiehöhengefälle	I _{So} =	0,800 %	

Ergebnis:	Querschnitt	A =	2,028 m²
	benetzter Umfang	$I_u =$	6,768 m
	hydraulischer Radius	$r_{hy} =$	0,300 m
	Abfluß	Q =	2,274 m ³ /s 2.274 l/s
	Fließgeschwindigkeit	V =	1,12 m/s