Abwasseranlage Stadt Bayreuth Erschließung Baugebiet „Saas - Saaser Berg"

ERLÄ UTERUNG

1. Vorhabensträger

Vorhabensträger ist die Stadt Bayreuth mit dem Oberbürgermeister, Herr Dr. Michael Hohl.
Die zuständige Abteilung ist das Tiefbauamt, zugehörig zum Stadtbaureferat mit dem Referatsleiter Herrn Ltd. BD Hans-Dieter Striedl.

Anschnrift: Stadt Bayreuth

- Tiefbauamt -

Luitpoldplatz 13
95444 Bayreuth
Tel.: 0921/25-0
Fax: 0921/25-1701
e-mail: Tiefbauamt@stadt.bayreuth.de

2. Zweck des Vorhaben

Die Erschließung der Bebauungsflächen „Saaser Berg" erfolgt durch die Stadt Bayreuth auf der Grundlage des Bebauungsplanes Nr. 1/09 „Saas - Saaser Berg" vom 19.05.2011.

Mit dem Bau der Schmutz- und Regenwasserkanäle, eines Grabens zur Hangwasserableitung sowie der Regenwasserrückhaltung wird die Erschließung des Baugebietes gesichert. Das Baugebiet umfasst eine Größe von ca. 4,0 ha und besitzt insgesamt 49 Bauparzellen.

Mittels der vorliegenden Planung sollen die erforderlichen Maßnahmen zur schadlosen Ableitung des anfallenden Niederschlagswassers zum Vorfluter, einschließlich notwendiger Maßnahmen Regenwasserrückhaltung und Versickerung, unter Berücksichtigung technischer und wirtschaftlicher Gesichtspunkte (DWA Arbeits- und Merkblätter A 117, A 118, A 138 M 153, A 166 und M 176) aufgezeigt werden.

3. Bestehende Verhältnisse

3.1 Allgemeines

Das Baugebiet „Saas - Saaser Berg" liegt randlich des Stadtteiles Saas, im Süden der Stadt Bayreuth am Hangausläufer des Saaser Berges. Die Bauflächen befinden sich direkt an den Kreisstraße Kr BT s 5 (Saaser Berg - Ludwig-Thoma-Str.) mit Anbindung an die Bundesautobahn BAB A 9 über Anschlussstelle Bayreuth-Süd und die Bundesstraßen B 2/B 85 .

Die vorliegende Topographie der betrachteten Flächen ist leicht in nordöstliche Richtung geneigt. Die Geländehöhen betragen zwischen 360 m ü. NN und 375 m ü. NN. Die mittlere jährliche Niederschlagshöhe in Bayreuth beträgt $676 \mathrm{~mm} / \mathrm{Jahr}$ (Stationsnummer 73029, Atlas der Starkregenniederschlagshöhen).

Das Einzugsgebiet besitzt einen Entwässerungsbereich von 4,565 ha (Bauflächen). Weiterhin sind die Hangeinzugsgebietsflächen des Saaser Berges und Saaser Stollens mit 21,375 ha zu berücksichtigen. Die Gesamteinzugsgebietsflächen betragen 25,84 ha

Der Vorfluter für die vorliegende Maßnahme ist ein namenloser Graben III. Ordnung. Im weiteren Verlauf fließt der Graben dem Aubach (Finsterweihergraben) und später dem Röhrensee zu.

3.2 Baugrundverhältnisse

Auf ein Baugrundgutachten wurde bisher noch nicht durchgeführt. Deshalb beziehen sich die im vorliegenden Entwurf gemachten Angaben auf Erfahrungswerte aus vergleichbaren Baumaßnahmen im Umfeld der geplanten Erschließung. Diese Angaben sind beim Bau vor Ort zu überprüfen und gegebenenfalls den örtlichen Geländeverhältnissen anzupassen. Es wird empfohlen, vor Ausschreibung der Maßnahmen ein Baugrundgutachten durchzuführen, so dass gegebenenfalls die im Entwurf gemachten Aussagen überprüft und entsprechend angepasst sowie etwaige zusätzliche Maßnahmen berücksichtigt werden können.

Die zukünftigen Bauflächen wurden bisher als landwirtschaftliche Flächen genutzt. Das Gelände ist relativ flach, zum Saaser Berg hin ansteigend stärker, in nordöstlicher Richtung geneigt.

Im Bereich geplanten Kanal- und Bauwerkstiefen ist erfahrungsgemäß, i. d. R. mit einem tragfähigen Untergrund und einem geringen Felsanteil zu rechnen. Im Bereich, wo die Kanäle überbaut werden, ist ein Bodenaustausch mit verdichtungsfähigem Erdmaterialvorzusehen.

Im Bereich der Bebauungsflächen wird für die vorgesehen Aushubtiefen kein geschlossener Grundwasserstand erwartet. Witterungsabhängig ist jedoch mit Schichtenwasser (offenen Wasserhaltung) zu rechnen.

Der vorhandene Untergrund besitzt erfahrungsgemäß lediglich eine geringe Sickerfähigkeit. Das vollständige Versickern des Niederschlagswassers der Dach- und Freiflächen ist daher wirtschaftlich nicht möglich. Aufgrund der vorliegenden Geologie wird eine Konzeption mit einer Regenwasserrückhaltung und gedrosselter Ableitung entwickelt.

3.3 Bestehende Wasserversorgung

Das Gewerbegebiet besitzt einen Anschluß an die zentrale Wasserversorgung der Bayreuther Energie- und Wasserversorgungs- GmbH (BEW).

Trinkwasserschutzgebiete werden durch die geplanten Maßnahmen nicht tangiert.
Die Wasserversorgung obliegt der Bayreuther Energie- und Wassversorgungs- GmbH. Die geplanten Wasserleitungen sind hier nachrichtlich mit aufgenommen

3.4 Bestehende Abwasseranlagen

In Bayreuth existiert das kommunale Klärwerk mit einer Ausbaugröße von 300.000 EW. Das Klärwerk liegt am nordwestlichen Stadtrand, Vorfluter ist der Rote Main. Das Kanalnetz von Bayreuth leitet die Abwässer hauptsächlich im Mischsystem ab. Einige Gebiete wie z. B. Grunau, Birken, Eremitenhof, Seulbitz Destuben und Wolfsbach, wie auch z. B. Erschließungsflächen neueren Datums sind im Trennsystem erschlossen.

Die Entwässerung des Baugebietes erfolgt im Trennsystem. Das Schmutzwasser wird über das Sammelkanalnetz (Mischwasserkanäle) zur Abwasserschiene der Stadt Bayreuth geführt. Die Sammelkanalisation bis zu dem Erschließungsgebiet ist bereits errichtet.

Im Bereich des Saaser Berges und Saaser Stollens wird der vorhandenen Quell- und Oberflächenwasserabfluss teilweiseüber vorhandene Gräben und Rohrleitungen, über das bestehenden Rückhaltebecken, zum betrachteten Vorfluter abgeleitet. Die vorhandenen Rohrleitungen verlaufen Großteils über Privatgrund. Diese sind hydraulisch nicht ausreichend dimensioniert und in einem sehr schlechten baulichen Zustand. Eine Erneuerung ist technisch und wirtschaftlich nicht sinnvoll möglich.

Die Niederschlagswasserableitung aus den Hangeinzugs- und Baugebietsflächen werden über Gräben und Rohrleitungen mit erfasst und jeweils an die geplante Rückhaltung im öffentlichen Bereich einbezogen. Das Niederschlagswasser der Hangeinzugsgebiets- und Gewerbeflächen wird über offene Gräben den Rückhaltebecken 2 zugeführt. Die gedrosselte Ableitung erfolgt zur über die Baugebietsflächen zum Regenrückhaltebecken 1. Im nordwestlichen Bereich sind Bedarffflächen für einen Einkaufsmarkt eingeplant. Hier ist für die Entwässerung des Niederschlagswassers, entsprechend der baulichen Nutzung eine zusätzliche Rückhaltung (z. B. Rigolenspeicher) auf den Grundstücksflächen vorgegeben.

Die Drossel- sowie Notüberläufe der einzelnen Rückhaltungen werden über den geplanten Ableitungskanal, parallel zur Ludwig-Thoma-Str. bis zum Vorfluter geleitet. In der Nähe der geplanten einleitungsstelle befindet sich auch die Einleitung des bestehenden Regenrückhaltebeckens der nördlich gelegenen Bauflächen.

3.5 Vorfluterverhältnisse

Der Vorfluter für die vorliegende Maßnahme ist ein namenloser Graben III. Ordnung. Im weiteren Verlauf fließt der Graben dem Aubach (Finsterweihergraben) und später dem Röhrensee zu.

Über den betrachteten Gewässerabschnitt an der Einleitungsstelle liegen derzeit keine genauen Angaben vor.

Der zulässige Drosselabfluss wird nach DWA Merkblatt M 153 bemessen. Nach Abstimmung mit dem Wasserwirtschaftsamt wird im betrachteten Bereich ein kleiner Flachlandbach gemäß Tabelle 3 mit einer Drosselabflussspende von $15 \mathrm{I} / \mathrm{s} x$ ha $A u$ angesetzt. Dies entspricht etwa den Abfluss aus der bestehenden, unbebauten Fläche. Für die Berechnung werden die Gesamteinzugsflächen angesetzt. Die zulässigen Maximalabflüsse des Gewässers werden dabei nicht überschritten.

Für den qualitativen Nachweis der Einleitungen gemäß DWA Merkblatt M 153 werden für den Vorfluter mit G = 15 Gewässerpunkte vergeben.

Die öffentliche Rückhaltung erfolgt mit mehrstufigen Regenrückhaltebecken in Erdbauweise mit Dauerstau. Für diese werden entsprechend der vorliegenden Dimensionierung, die Ansätze nach Tabelle 4c DWA M 153 zugrunde gelegt.

Der Nachweis gemäß DWA Merkblatt M 153 ist im Anhang der Erläuterung beigefügt.

4. Art und Umfang der Maßnahme

4.1 Darstellungen der Wahllösung mit Begründung der gewählten Lösung

Grundlage der vorliegenden Planung ist der aktuelle Entwurf des Bebauungsplans mit Stand vom 19.05.2011.

Gemäß den Angaben zum Bebauungsplan (Entwurf) wird für die Ableitung des Abwassers aus dem Baugebiet das Trennsystem eingeplant. Dabei sind die erforderlichen Flächen für die Rückhaltebecken nach der Vorplanung bereits berücksichtigt. Für den Ausbau des Grabens sind ebenfalls bereits bedarfsflächen und Grünstreifen an den geplanten Straßen eingeplant. Die Hangflächen entwässern über den geplanten und die vorhandenen Gräben in das geplante Regenrückhaltebecken (RRB 2). Von Dort werden der Drossel- und auch der Notüberlauf über Rohrleitungen zum unterhalb gelegenen Regenrückhaltebecken (RRB 1) geführt. Die Einzugsflächen des Baugebietes werden über den geplanten Regenwasserkanal an diesen Sammelkanal angebunden und münden in das geplante Regenrückhaltebecken (RRB 1) am nordöstlichen Baugebietsrand.

Im nordwestlichen Planbereich sind Bedarfsflächen für einen Einkaufsmarkt eingeplant. Hier ist für die Entwässerung des Niederschlagswassers, entsprechend der baulichen Nutzung, eine zusätzliche Rückhaltung (z. B. Rigolenspeicher) auf den Grundstücksflächen vorgegeben. Der Drossel- und auch der Notüberlauf dieser Flächen wird unterhalb des Regenrückhaltebeckens an den geplanten Ableitungskanal mit angebunden.

Der Ablauf (Drossel- bzw. Notüberlauf) aus dem Rückhaltebecken kreuzt die bestehende Ortstraße und verläuft dann parallel zur Straße Saaser Berg (bzw. Ludwig-Thoma-Str.) ca. 200m in nördliche Richtung. Dort quert der Sammelkanal die vorhandene Straße und führt im weiteren Verlauf zur Einleitungsstelle in den namenlosen Graben.

Der Verlauf der geplanten Kanäle kann dem beiliegenden Lageplan entnommen werden.
Bemessungsgrundlagen:
Bemessungsregenspende $\mathrm{r}_{5 ; 0,2} \quad 357 \mathrm{I} / \mathrm{s} / \mathrm{ha}$
Rauhigkeitsbeiwert kb
geplante Kanäle/ bestehende Kanäle 0,75 mm / 1,5 mm
Maximaler Auslastungsgrad
90 \%
Die Einteilung der Einzugsgebiete kann dem beiliegenden Lageplan entnommen werden. Folgende Hauptwerte der Berechnung liegen vor:

Einzugsgebiet Bebauungsflächen $A u=$	1,5328 ha
Einzugsgebiet Einkausmarkt $A_{u}=$	0,3477 ha
Hangeinzugsgebiet $A_{u}=$	1,1290 ha
Maximaler Regenwasserabfluss $Q_{r 5 ; 02}$	$1.102 \mathrm{I} / \mathrm{s}$

4.2 Kanalisation

Schmutzwasserkanal:

Das Schmutzwasser der geplanten Erweiterungen wird gesammelt und mit einem Schmutzwasserkanal dem Sammelkanal (Schacht 409069) zugeführt. Folgende Gesamtlängen sind als Schutzwasserkanäle im Bereich geplant:

Schmutzwasserkanal DN 200 PP
ca. $\quad 850,00 \mathrm{~m}$
Mischwasserkanal:

Die Baufläche in der nordwestlichen Grundstücksecke liegt im Bereich der vorhandenen Geländemulde (Tiefpunkt). Eine Anbind an die geplante Regenwasserkanäle ist höhengerecht nicht möglich. Dieser Bereich (eine Bauparzelle) wird daher, in Abstimmung mit der Stadt Bayreuth, im Mischsystem entwässert. Der Anschluss erfolgt am bestehenden Mischwasserkanal im Edelweißweg. Folgende Gesamtlänge ist als Mischwasserkanal geplant:

Mischwasserwasserkanal DN 400 B ca. 40,00 m

Regenwasserkanal:

Die Bemessung der Kanäle (Regenwasserkanal) erfolgt auf der Grundlage der Bemessungsregen nach Starkregenereignissen (KOSTRA-Altlas des Deutschen Wetterdienstes, Station Bayreuth) mit r5,02 mit $357 \mathrm{I} / \mathrm{s} x$ ha.

Die Regenwasserkanäle im Rahmen der Erschließung mit Durchmessern von DN 400 B bis DN 800 SB bereits bis zur Einleitung in den offenen Graben verlegt. Diese werden für den hydraulischen Nachweis mit einbezogen (siehe Beilage-Nr. 3).

Die Verbindung und Weiterleitung der Regenwasserabflüsse der Hangflächen erfolgt randlich des Geltungsbereiches über naturnah gestaltete, offene Gräben. Im Bereich der querenden Zufahrten sind Durchlass DN 500 und 600 SB angeordnet. Die Zu- und Auslaufbereiche müssen aus hydraulischer Sicht gegen Erosion etc. gesichert werden. Das erfolgt mittels Steinsatz aus Bruchsteinen (Fugen mit Erdreich verfüllt) bzw. mit Wasserbaupflaster auf Beton. Die Rohre erhalten Kolksicherungen aus Magerbeton. Die Nachweise der Grabenprofile und Durchlässe sind unter Beilage Nr. 3 enthalten.

Folgende Durchmesser und Kanallängen sind als Regenwasserkanäle geplant:
Zulaufkanal DN 400 B 470,00 m
Zulaufkanal DN 600 SB 190,00 m
Zulaufkanal DN 700 SB $80,00 \mathrm{~m}$
Zulaufkanal DN 800 SB 400,00 m
Gesamtlänge 990,00 m

Für den Ableitungskanal wurde eine maximale Einleitungsmenge $\mathrm{Q}_{\mathrm{r} 5 ; 02}=1.102 \mathrm{I} / \mathrm{s}$ errechnet.
Einleitungsstelle:
Ein- und Auslaufbereiche werden mit Bruchsteinen auf Betonbett befestigt, die Rohre erhalten Kolksicherungen aus Magerbeton.

Weitere Einzelheiten sind der hydrotechnischen Berechnung (Beilege Nr. 3) und den beigefügten Planunterlagen zu entnehmen.

Regenwasserrückhaltung

Berechnung des erforderlichen Rückhaltevolumens:

Der Regenwasserrückhaltung im öffentlichen Bereich fließen sämtliche öffentliche Flächen, wie Erschließungsstraße, Wege und Grünstreifen zu. Weiterhin sind die Hangeinzugsgebietsflächen über die geplanten offenen Gräben angebunden.

Die Berechnung des erforderlichen Rückhaltevolumens erfolgt gemäß dem DWA-Arbeitsblatt A 117 „Bemessung von Regenrückhalteräumen" (Berechnungsprogramm des Bayerischen Landesamts für Umwelt).

Als Bemessungsregen wird der Starkregen (KOSTRA-Altlas des Deutschen Wetterdienstes, nach Landes-koordinaten interpoliert) verwendet. Für die Berechnung wird eine Überschreitungshäufigkeit $1 / n$ von 5 Jahren angesetzt. Der zulässige Drosselabfluss wurde nach ATV-DVWK Merkblatt M 153 bemessen. Die Flächenermittlung erfolgte auf der Grundlage der Abflussbeiwerte nach DWA A 117 und M 153.

Berechnungsansätze:	Hangeinzugsgebiet	Baufläche	Einkaufsmarkt
Fläche A_{E}	21,3750 ha	3,9450 ha	0,5170 ha
Fläche A_{u}	1,2068 ha	1,5328 ha	0,3477 ha
Fließzeit t_{f}	15 min	1 min	1 min
Überschreitungshäufigkeit n	0,2 1/a	0,2 1/a	0,2 1/a
Drosselabfluss Qdr	18,0 l/s	23,0 l/s	5,0 I/s

Die Berechnung des zulässigen Drosselabflüsse und des erforderlichen Rückhaltevolumens ist in der hydrotechnischen Berechnung (Beilage Nr. 3) beigefügt.

Folgendes Rückhaltevolumen wurde ermittelt:

RRB 1:	erf. $V_{R R B}=$	$577 \mathrm{~m}^{3}$
RRB 2:	erf. $V_{\text {RRB }}=$	$441 \mathrm{~m}^{3}$
RRB 3:	erf. $V_{R R B}=$	$129 \mathrm{~m}^{3}$
Gesamt:	erf. $V_{\text {RRB }}=$	$\mathbf{1 1 4 7} \mathbf{m}^{\mathbf{3}}$

Bei Ansatz eines Katastrophenregens erfolgt im Regenrückhaltebecken eine gezielte Notentlastung über die geplante Dammscharte. Diese wird entsprechend befestigt und mit groben Bruchsteinen zur Energieumwandlung versehen. Im Notabflussbereich ist keine direkte Bebauung o. ä. vorhanden. Eine Gefährdung bei Anspringen des Notüberlaufs im Fall eines Katastrophenregens ist daher nicht zu besorgen.

Die vorliegende Planung der Rückhaltung sieht aufgrund der Topographie und der eingeschränkten Platzverhältnisse wird eine mehrstufige Anlage, aus Regenrückhaltebecken im Hauptschluss vor. Es sind einstufigen Sedimentationsanlagen, als Absetz- und Regenrückhaltebecken vorgesehen. Die Anlagen werden als naturnahe Erdbecken mit Dauerstau wird für eine niedrige Oberflächenbeschickung ($\mathrm{Q}_{\text {krit }}=15 \mathrm{I} / \mathrm{s} \times \mathrm{ha}$) bemessen. Die konstruktive Ausbildung erfolgte nach den Vorgaben der einschlägigen Vorschriften (RAS-Ew, den DWA Arbeits- und Merkblättern A 166, M 153 und M).

Durch die konstruktive Gestaltung mit einer sehr geringen Oberflächenbeschickung und die Anordnung von Tauchwänden wird verhindert, dass Verunreinigungen abgeschwemmt werden können. Durch das Regenrückhaltebecken wird aufgrund der relativ großen spezifischen Volumen eine sehr gute Reinigungsleistung erzielt.

Die Berechnung der geplanten Beckenvolumen erfolgt auf der Grundlage der CAD Flächen- und Volumenermittlung. Der jeweiligen Oberfläche (ständiger Wasserspiegel des Dauerstaus) und

Beckenvolumen sind den beiliegenden Berechnungen zu entnehmen.
Das vorhandene Beckenvolumen verteilt sich auf die drei einzelnen Rückhaltebecken.

Die Verbindung der einzelnen Becken erfolgt mittels Rohrleitung DN 600 bis DN 800 . Dabei wird der Drosselabfluss des Oberen Beckens durch das untere Rückhaltebecken geleitet. Bei ansteigendem Niederschlagswasseranfall werden die Becken bis zum maximalen Wasserspiegel eingestaut. Die darüber liegenden Abflüsse werden über den Notüberlauf (Wehrschwelle im Drosselbauwerk) zum untenliegenden Becken abgeführt. Die Dammscharte (Böschungsneigung n $=1: 5)$ ist überfahrbar. Diese wird mit Wasserbaupflaster auf Beton befestigt. Die endgültige Regulierung der Ableitungsmenge erfolgt am Ende vom RRB 1 (Ablaufbauwerk). Die Zu- und Auslaufbereiche müssen aus hydraulischer Sicht gegen Erosion etc. gesichert werden. Das erfolgt mittels Steinsatz aus Bruchsteinen (Fugen mit Erdreich verfüllt) bzw. mit Wasserbaupflaster auf Beton.

Die technisch und wirtschaftlich günstigste Dichtungsart stellt im vorliegenden Fall eine mineralische Abdichtung aus den anstehenden tonigen Erdstoffen dar. Die Abdichtung mit einer Mindestdicke von 0,30 m erhält eine Schutzschicht aus lehmigem Kiessand bzw. nährstoffarmen Oberboden mit 0,20 m Stärke. Das Becken erhält eine Zufahrtsrampe. Für diese ist die Befestigung mit Schotterrasen vorgesehen. Der Zufahrtsbereich wird ebenfalls als Schotterrasen ausgebildet. Die teilweise erforderliche Dammschüttung (Böschungsneigung $n=1: 2$) erfolgt lagenweise mit anstehendem verdichtungsfähigen Material. Bis zum Erreichen des Stauziels beträgt die Einstauhöhe ca. 1,00 m. Als Freibord werden 0,50 m angesetzt.

Die wasserseitigen Böschungen des Erdbeckens werden mit 20 cm Oberboden angedeckt und begrünt. Der luftseitige Damm wird ebenfalls mit Oberboden versehen und eingegrünt. Auf der Dammkrone wird ein Zugangsweg als Schotterrasen erstell. Im Bereich des Drosselbauwerkes wird dieser als Wendeplatz aufgeweitet.

Die Ablaufregulierung erfolgt jeweils mit einem Bauwerk aus Stahlbeton. Die Regelung des Ablaufes von 18,0 l/s bzw. 41,0 l/s (18,0 + 23,0 l/s) erfolgt mit einer, im Bauwerk angeordneten Strahldrossel (fremdenergiefreie, wasserspiegelunabhängige Abflussregulierung) aus Edelstahl. Für Reinigungs- und Unterhaltungszwecke ist Absperrschieber, der von oben über ein Schiebergestänge bedient wird, angeordnet. Die Abdeckung des Bauwerkes erfolgt mit einem Gitterrost aus verzinktem Stahl mit integrierter klappbarer Einstiegsöffnung. Zur Absturzsicherung erfolgt die Montage eines Holzgeländers.

Vom Ablaufbauwerk erfolgt die Ableitung über einen Kanal DN 600 bzw. DN 800 aus Stahlbeton in Richtung Einleitungsstelle.

Qualitativer Nachweis der Regenwassereinleitung gemäß DWA Merkblatt M 153:

Entsprechend dem Merkblatt M 153 wird der qualitative Nachweis für die geplante Einleitung geführt. Dem Vorfluter werden $G=15$ Gewässerpunkte vergeben. Die Einzugsflächen werden entsprechend den Tabellen 2 und 3 des M 153 zugeordnet.

Für die vorliegende Maßnahme wird eine Gewässerbelastung von $B=8,1$ ermittelt. Diese liegt bereits unter dem Ansatz der Gewässerpunkte (E * G).

Nach den Vorlagen des M 153 ist keine weitere Behandlungsmaßnahme (Reinigung) gefordert. Das Rückhaltebecken gemäß ATV M 153 mit Dauerstau angesetzt (Typ D24c). Dadurch reduziert sich der Emissionswert nochmals auf 4,88.

Die Hydrotechnische Bemessung der Bauwerksteile, Gerinne und Rohrleitungen ist in Beilage Nr. 3 beigefügt.

Weitere Einzelheiten sind auch den beigefügten nachweisen und Planunterlagen zu entnehmen.

4.3 Straßenbau

Die verkehrliche Erschließung richtet sich nach den Vorgaben des Bebauungsplanes. Die vorliegende Erntwurfsplanung beinhaltet nur die innere verkehrstechnische Erschließung. Die Planung der Anbindung an die Kr BT s 5, einschließlich Kreisverkehrsplatz, Aufweitungen usw. erfolgt durch die Stadt Bayreuth.

Die Linienführung wird im Grund- und Aufriß sehr stark durch die vorhandene Topographie und die bestehende Bebauung bestimmt. Die Höhenlage wird so gewählt, dass die Gradiente möglichst geländegleich zum liegen kommt, bzw. ein Massenausgleich von Abtrag zu Auftrag erfolgen kann.

Die Fahrbahnen besitzen Breiten (brutto) von 5,50 m (Asphaltbreite 5,00 m). Die Anlieger- und Fußwege erhalten eine Breite (brutto) von 3,00 m (Asphaltbreite 2,50 m).Die Ausführung der Fahrbahnen und Wege ist in Asphaltbauweise geplant.

Die Mindestquerneigung min q beträgt 2,5 \%. Die Oberflächenentwässerung erfolgt mit Einläufen und Rohrleitungen, die an den Regenwasserkanal angebunden werden. Die Kofferentwässerung übernehmen Sickerleitungen.

Es werden Randeinfassungen aus Granit-Großpflastersteinen (höhenversetzte Anordnung als sog. „Homburger Kante" am Tiefen Rand als Entwässerungsrinne) geplant. Durch die Anordnung der Granitpflasterrinnen wird eine flexible Anbindung der zahlreichen Einfahrten und Eingänge erreicht. Die Gestaltung unterstreicht den hochwertigen Wohngebietscharakter. Das Material ist unempfindlich gegen mechanische Beanspruchungen (z. B. Winterdienst). Damit weirden gegen Randeinfassungen aus Beton eine höhere Nutzungsdauer und ein geringer Unterhaltungsaufwand erzielt.

Ermittlung der Dicke des frostsicheren Straßenaufbaues

Die anstehenden Bodenschichten in Höhe des Erdplanums entsprechen erfahrungsgemäß der Frostempfindlichkeitsklasse F3.

Weitere Einzelheiten sind den beiliegenden Planunterlagen zu entnehmen.

4.4 Kläranlage:

entfällt

5. Auswirkungen des Vorhabens:

5.1 Durch Einleiten aus der Kanalisation:

Durch die geplanten Regenrückhaltebecken wird ein Gewässerschutz nach den einschlägigen Vorschriften und Richtlinien erreicht und damit den entsprechenden gesetzlichen Anforderungen Rechnung getragen.

Die Zusammenstellung der Einleitung kann dem beiliegenden Formblatt nach Anlage 7.2.1 REWas entnommen werden.

5.2 Durch Einleiten aus der Kläranlage:

- entfällt -

6. Rechtsverhältnisse:

Für die geplante Maßnahme ist ein wasserrechtliches Erlaubnisverfahren zur Genehmigung der Einleitung von Niederschlagswasser gemäß Art. 15 „Bayerisches Wassergesetz" BayWG durchzuführen.

Privatrechtliche Regelungen, wie Grundstücksverhandlungen und die Eintragung von Grunddienstbarkeiten und Entschädigungen werden von der Stadt Bayreuth durchgeführt.

7. Kosten

Die Gesamtkosten der Baumaßnahme wurden mit der Kostenschätzung detailliert ermittelt.

Baukosten	$1.770 .000,00 €$
Nebenkosten	$180.000,00 €$
Gesamtkosten	$\mathbf{1 . 9 5 0 . 0 0 0 , 0 0} €$

Kosten für den ggf. erforderlichen Grunderwerb, Dienstbarkeiten etc. sind darin nicht enthalten.

8. Durchführung des Vorhabens:

Die geplante Maßnahme soll entsprechend der Finanzierung zeitnah durchgeführt werden.
Für die Bauausführung der Kanalisation, Regenrückhalteanlagen und dem Gewässer- und Straßenbau erfolgen Angebotseinholungen und Vergaben an leistungsfähige Fachfirmen.

9. Wartung und Verwaltung der Anlage:

Die Verkehrs- und Abwasseranlagen (späterer öffentlicher Bereich) einschließlich Regenrückhaltebecken werden gemäß vorliegendem Vorhaben- und Erschließungsplan nach Fertigstellung an die Stadt Bayreuth übergeben. Die Wartung und Verwaltung (Unterhaltung) der Bauwerke und der Entwässerungsanlagen obliegt dann der Stadt Bayreuth.

Aufgestellt:

Bayreuth, 18.04.2012
Geb

Anhang:

1.) Anlage 7.2.1 REWas
2.) Berechnungsplan

Zusammenstellung der Einleitungen
aus der Kanalisation in die Gewässer
von Regenüberlaufbauwerken bei Mischverfahren und Regenwasserauslässen bei Trennverfahren
(zu Abschnitt 5.1 der Erläuterung)

Entwässerungsbereich			Konstruktions- und Bemessungsmerkmale des Regenüberlaufbauwerks					Entlastungsoder	Gewässer	
Lfd. Nr der Einlei-tungsstelle	Be-zeichnung	Ortsteile, Lage Fläche des Einzugsgebietes (ha) Zum Abfluß beitragende Fläche Ared (ha)	Zulauf DN (mm) Gefälle Js Qvoll (I/s)	Schwellenhöhe (m) Schwellenlänge (m)	Weiterführender Schmutzwasserkanal (Drossel) DN (mm) Gefälle J_{s} Drossellänge (m)	Trok-ken-wetterabfluß (1/s)	$\begin{aligned} & \mathrm{Q}_{\text {krit }} \\ & (\mathrm{I} / \mathrm{s}) \end{aligned}$	DN (mm) Gefälle Js QRü (I/s) Qvoll (1/s)	Name Einleitungsstelle Niederschlagsgebiet F_{N} (km ${ }^{2}$) MNQ (1/s)	Bemerkung
1	2	3	4	5	6	7	8	9	10	11
1	Saas Saa- ser Berg	$\begin{aligned} & \text { Stadt Bayreuth } \\ & 4,565 \\ & 1,881 \end{aligned}$			Schieber $\begin{aligned} & \mathrm{Q}_{\mathrm{ab}}=23 \mathrm{I} / \mathrm{s} \\ & +5,0 \mathrm{l} / \mathrm{s} \end{aligned}$	-	-	$\begin{aligned} & 800 \\ & 44,7 \% \\ & 654 \\ & 3.022 \end{aligned}$	Namenloser Graben	
									Aufgestellt: Bayreuth, den (Unters	$8.104 .2012$

