

Verkehrsuntersuchung zum Industriepark Elsbachtal in Jüchen und Grevenbroich

Schlussbericht März 2020

Auftraggeber: RWE Power AG

Stüttgenweg 2 50935 Köln

Auftragnehmer: Brilon Bondzio Weiser

Ingenieurgesellschaft für Verkehrswesen mbH

Universitätsstraße 142

44799 Bochum

Tel.: 0234 / 97 66 000 Fax: 0234 / 97 66 0016 E-Mail: info@bbwgmbh.de

Bearbeitung: Dr.-Ing. Frank Weiser

Dipl.-Ing. Christina Knof Dipl.-Ing. Alexander Sillus

Projektnummer: 3.1058-2

Datum: März 2020

Inhaltsverzeichnis Seite 1 Ausgangssituation und Aufgabenstellung......3 2 Methodik4 2.1 2.2 2.2.1 Allgemeines 8 2.2.2 2.2.3 Auswertung11 Analyse des Verkehrsaufkommens12 3 Prognose des Verkehrsaufkommens13 4 4.1 4.2 4.2.1 4.2.2 4.3 Verkehrstechnischen Berechnungen......19 5 5.1 Knotenpunkt B 59 / A 46 AS Jüchen Nord (KP1)......21 Knotenpunkt B 59 / A46 AS Jüchen Süd (KP2)23 5.2 Knotenpunkt L 116 / AS Gustorf Süd (KP3).....23 5.3 Knotenpunkt L 116 / AS Gustorf Nord (KP4)24 5.4 Knotenpunkt B 59 / Anbindung GI-Gebiet (KP9)......25 5.5 5.6 Überprüfung der Funktionsfähigkeit mittels mikroskopischer Verkehrsflusssimulation.......28 6.1 Anschlussstellen Jüchen Nord (KP1) und Süd (KP2)......28 6.2 Bewertung der Rückstaulänge der A4631 6.3 Verkehrstechnischer Vorentwurf.......33 7 Zusammenfassung und gutachterliche Stellungnahme34 8 Literaturverzeichnis.......36

Erläuterungen zu den Anlagen für vorfahrtgeregelte Knotenpunkte42

1 Ausgangssituation und Aufgabenstellung

Die Städte Grevenbroich und Jüchen sowie die RWE Power AG und die Duisburger Hafen AG planen die Entwicklung des Industrieparks Elsbachtal in Jüchen und Grevenbroich südlich der Anschlussstelle Jüchen an der A 46.

Das o.g. Industriegebiet soll über eine planfreie Anbindung an die B 59 (Abstufung A 540) angebunden werden. Die folgende Abbildung zeigt die Lage des geplanten Vorhabens im Untersuchungsgebiet.

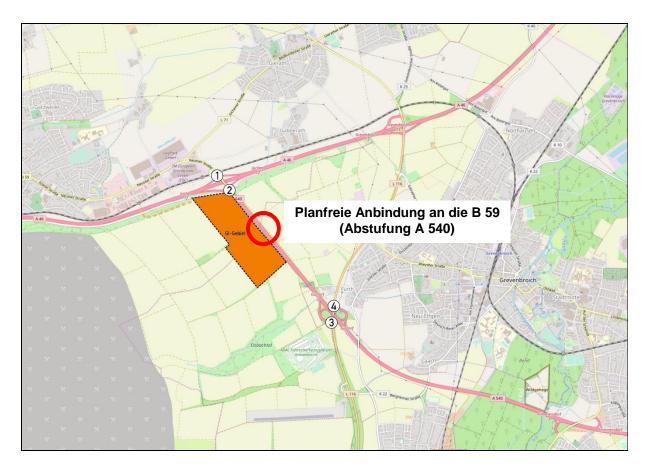


Abbildung 1: Lage des geplanten Vorhabens im Untersuchungsgebiet

Im Rahmen einer Verkehrsuntersuchung wurden die verkehrlichen Auswirkungen des o.g. Vorhabens untersucht und bewertet. Hierzu wurden die folgenden Arbeitsschritte durchgeführt:

- · Analyse des Verkehrsaufkommens
- Prognose des Verkehrsaufkommens (Prognose-Nullfall und Prognose-Planfall)
- Beurteilung der Verkehrsqualität gemäß HBS (Analyse, Prognose-Nullfall und Prognose-Planfall)
- Überprüfung der Funktionsfähigkeit des nördlichen und des südlichen Teilknotenpunktes an der AS Jüchen (A 46) mittels mikroskopischer Verkehrsflusssimulation für den Prognose-Planfall
- Verkehrstechnischer Vorentwurf für den Knotenpunkt zur Anbindung des geplanten Industriegebietes und der Anschlussstelle Jüchen Nord

2 Methodik

2.1 Nachweis der Qualität des Verkehrsablaufs gemäß HBS

Die Verkehrsqualität an Knotenpunkten und Strecken kann mit den Berechnungsverfahren aus dem Handbuch für die Bemessung von Straßenverkehrsanlagen (vgl. HBS, 2015) ermittelt werden

Autobahnknotenpunkte

Gemäß Richtlinien für die Anlage von Autobahnen (vgl. RAA, 2008) sind autobahnähnliche Straßen der Kategorie AS II (Entwurfsklasse EKA 2) nach der RAA zu planen, es gilt demzufolge das HBS, Teil Autobahnen.

Die Überprüfung und die Ermittlung der Verkehrsqualität an Knotenpunkten entlang der Autobahn können unter Anwendung der aktuellen Berechnungsverfahren der Kapitel A3 und A4 im Teil A aus dem HBS 2015 (vgl. HBS, 2015) durchgeführt werden.

Qualitätsstufe (QSV)	Auslastungsgrad x [-]				
Α	£ 0,30				
В	£ 0,55				
С	£ 0,75				
D	£ 0,90*				
E	£ 1,00				
F	> 1,00				

Tabelle 1: Qualitätsstufen des Verkehrsablaufs (QSV) in Abhängigkeit vom Auslastungsgrad (vgl. HBS, 2015)

(* 0,92 für (Teil-) Strecken mit einer Streckenbeeinflussungsanlage (SBA) bzw. Einfahrten des Typs E1 und E2 mit Zuflussregelung)

Die zur Bewertung des Verkehrsablaufes herangezogenen Qualitätsstufen (vgl. Tabelle 2) entsprechen den Empfehlungen gemäß HBS (vgl. HBS, 2015). Sie lassen sich wie folgt charakterisieren:

Stufe	Teilknotenpunkte entlang der Autobahn					
Α	Die Kraftfahrer werden äußerst selten von anderen beeinflusst. Der Auslastungsgrad ist sehr gering. Die Fahrer können ihre Geschwindigkeit weitgehend frei wählen und die notwendigen Fahrstreifenwechsel ungehindert durchführen. Der Verkehrsfluss ist frei.	sehr gut				
В	Es treten geringfügige Einflüsse durch andere Kraftfahrer auf, die das individuelle Fahrverhalten jedoch nur unwesentlich bestimmen. Der Auslastungsgrad ist gering. Die Fahrer können ihre Geschwindigkeit weitgehend frei wählen und die notwendigen Fahrstreifenwechsel weitgehend ungehindert durchführen. Der Verkehrsfluss ist nahezu frei.	gut				
С	Die Anwesenheit anderer Kraftfahrzeuge macht sich deutlich bemerkbar. Der Auslastungsgrad liegt im mittleren Bereich. Die individuellen Geschwindigkeiten sind nicht mehr frei wählbar. Fahrstreifenwechsel bedürfen der wechselseitigen Abstimmung mit anderen Kraftfahrern. Der Verkehrszustand ist stabil.	befriedi- gend				
D	Es treten ständige Interaktionen zwischen den Kraftfahrern auf, bis hin zu gegenseitigen Behinderungen. Der Auslastungsgrad ist hoch. Die individuelle Geschwindigkeitswahl ist erheblich eingeschränkt. Notwendige Fahrstreifenwechsel können nur nach sorgfältiger Abstimmung mit anderen Verkehrsteilnehmern durchgeführt werden. Der Verkehrszustand ist noch stabil.	ausrei- chend				
E	Die Kraftfahrzeuge bewegen sich weitgehend in Kolonnen. Notwendige Fahrstreifenwechsel können nur durchgeführt werden, wenn in den Sicherheitsabstand zwischen den Fahrzeugen auf dem benachbarten Fahrstreifen hineingefahren wird. Der Auslastungsgrad ist sehr hoch. Geringe oder kurzfristige Zunahmen der Verkehrsstärke können zu Staubildung und Stillstand führen. Bereits bei kleinen Unregelmäßigkeiten innerhalb der Verkehrsströme besteht die Gefahr eines Verkehrszusammenbruchs. Der Verkehrszustand ist instabil. Die Kapazität des Teilknotenpunktes wird erreicht.	mangelhaft				
F	Die zufließende Verkehrsstärke ist größer als die Kapazität. Der Verkehr bricht zusammen, d.h. es kommt oberhalb des Teilknotenpunktes zu Stillstand und Stau im Wechsel mit Stop-and-go-Verkehr. Die Situation löst sich erst nach einem deutlichen Rückgang der Verkehrsnachfrage wieder auf. Der Teilknotenpunkt ist überlastet.	ungenü- gend				

Tabelle 2: Beschreibung der Qualitätsstufen gemäß HBS (vgl. HBS 2015)

Knotenpunkte im untergeordneten Netz

Für den Kraftfahrzeugverkehr an außerörtlichen Knotenpunkten im untergeordneten Netz wird die Qualität des Verkehrsablaufs nach dem HBS 2015 Teil L (vgl. HBS 2015) ermittelt.

Dabei ist jedoch zu beachten, dass die angegebenen Verfahren von einer ungestörten zufälligen Ankunftsverteilung der Fahrzeuge ausgehen. Einflüsse durch benachbarte Knotenpunkte, wie z.B. durch die Pulkbildung an benachbarten Lichtsignalanlagen, bleiben bei diesen Berechnungen unberücksichtigt.

Sofern mit nennenswerten Wechselwirkungen zwischen einzelnen Knotenpunkten zu rechnen ist, sollte daher zusätzlich zu den analytischen Berechnungen die mikroskopische Verkehrsflusssimulation angewendet werden, um die Funktionsfähigkeit der Verkehrsanlagen zu überprüfen.

Knotenpunkte mit Lichtsignalanlage

Die Kapazität und die Qualität des Verkehrsablaufs der signalisierten Knotenpunkte wurden gemäß dem in Kapitel L4 im Teil L - Landstraßen des HBS dokumentierten Berechnungsverfahren ermittelt. Dazu wurde das Programm LISA+ verwendet.

Vorfahrtgeregelte Knotenpunkte

Die Kapazität und die Qualität des Verkehrsablaufs der vorfahrtgeregelten Knotenpunkte wurde gemäß dem Kapitel L5 im Teil L - Landstraßen des HBS mit dem Programm KNOBEL berechnet.

Qualität des Verkehrsablaufs

Für den Kraftfahrzeugverkehr wird die Qualität des Verkehrsablaufs in den einzelnen Zufahrten eines Knotenpunkts anhand der mittleren Wartezeit beurteilt und festgelegten Qualitätsstufen zugeordnet (vgl. Tabelle 3). An signalgesteuerten Knotenpunkten wird der Fahrstreifen mit der größten mittleren Wartezeit für die Einstufung des gesamten Knotenpunkts herangezogen, an vorfahrtgeregelten Knotenpunkten der Strom mit der größten mittleren Wartezeit und an Kreisverkehren die Zufahrt mit der größten mittleren Wartezeit.

Qualitätsstufe	Mittlere Wartezeit [s/Fz]			
(QSV)	Vorfahrtgeregelter Knotenpunkt	Kreuzung mit Lichtsignalanlage		
Α	£ 10	£ 20		
В	£ 20	£ 35 £ 50		
С	£ 30			
D	£ 45	£ 70		
E	> 45	> 70		
F	Sättigungsgrad > 1	Sättigungsgrad > 1		

Tabelle 3: Grenzwerte der mittleren Wartezeit für die Qualitätsstufen gemäß HBS (vgl. FGSV, 2015)

Die zur Bewertung des Verkehrsablaufes herangezogenen Qualitätsstufen entsprechen den Empfehlungen gemäß HBS 2015. Die Qualitätsstufen lassen sich wie folgt charakterisieren.

Stufe	Vorfahrtgeregelter Knotenpunkt	Kreuzung mit Lichtsignalanlage	Qualität des Ver- kehrsablaufs
Α	Die Mehrzahl der Verkehrsteilnehmer kann nahezu ungehindert den Knotenpunkt passieren. Die Wartezeiten sind sehr gering.	Die Wartezeiten sind für die jeweils betroffenen Verkehrsteilnehmer sehr kurz.	sehr gut
В	Die Abflussmöglichkeiten der wartepflichtigen Verkehrsströme werden vom bevorrechtigten Verkehr beeinflusst. Die dabei entstehenden Wartezeiten sind gering.	Die Wartezeiten sind für die jeweils betroffenen Verkehrsteilnehmer kurz. Alle während der Sperrzeit auf dem betrachteten Fahrstreifen ankommenden Kraftfahrzeuge können in der nach folgenden Freigabezeit weiterfahren.	gut
С	Die Verkehrsteilnehmer in den Nebenströmen müssen auf eine merkbare Anzahl von bevorrechtigten Verkehrsteilnehmern achten. Die Wartezeiten sind spürbar. Es kommt zur Bildung von Stau, der jedoch weder hinsichtlich seiner räumlichen Ausdehnung noch bezüglich der zeitlichen Dauer eine starke Beeinträchtigung darstellt.	Die Wartezeiten sind für die jeweils betroffenen Verkehrsteilnehmer spürbar. Nahezu alle während der Sperrzeit auf dem betrachteten Fahrstreifen ankommenden Kraftfahrzeuge können in der nachfolgenden Freigabezeit weiterfahren. Auf dem betrachteten Fahrstreifen tritt im Kfz-Verkehr am Ende der Freigabezeit nur gelegentlich ein Rückstau auf.	befriedigend
D	Die Mehrzahl der Verkehrsteilnehmer in den Nebenströmen muss Haltevorgänge, verbunden mit deutlichen Zeitverlusten, hinnehmen. Für einzelne Verkehrsteilnehmer können die Wartezeiten hohe Werte annehmen. Auch wenn sich vorübergehend ein merklicher Stau in einem Nebenstrom ergeben hat, bildet sich dieser wieder zurück. Der Verkehrszustand ist noch stabil.	Die Wartezeiten sind für die jeweils betroffenen Verkehrsteilnehmer beträchtlich. Auf dem betrachteten Fahrstreifen tritt im Kfz-Verkehr am Ende der Freigabezeit häufig ein Rückstau auf.	ausreichend
E	Es bilden sich Staus, die sich bei der vorhandenen Belastung nicht mehr abbauen. Die Wartezeiten nehmen sehr große und dabei stark streuende Werte an. Geringfügige Verschlechterungen der Einflussgrößen können zum Verkehrszusammenbruch (d.h. ständig zunehmende Staulänge) führen. Die Kapazität wird erreicht.	Die Wartezeiten sind für die jeweils betroffenen Verkehrsteilnehmer lang. Auf dem betrachteten Fahrstreifen tritt im Kfz-Verkehr am Ende der Freigabezeit in den meisten Umläufen ein Rückstau auf.	mangelhaft
F	Die Anzahl der Verkehrsteilnehmer, die in einem Verkehrsstrom dem Knotenpunkt je Zeiteinheit zufließen, ist über eine Stunde größer als die Kapazität für diesen Verkehrsstrom. Es bilden sich lange, ständig wachsende Staus mit besonders hohen Wartezeiten. Diese Situation löst sich erst nach einer deutlichen Abnahme der Verkehrsstärken im zufließenden Verkehr wieder auf. Der Knotenpunkt ist überlastet.	Die Wartezeiten sind für die jeweils betroffenen Verkehrsteilnehmer sehr lang. Auf dem betrachteten Fahrstreifen wird die Kapazität im Kfz-Verkehr überschritten. Der Rückstau wächst stetig. Die Kraftfahrzeuge müssen bis zur Weiterfahrt mehrfach vorrücken.	ungenügend

Tabelle 4: Beschreibung der Qualitätsstufen gemäß HBS (vgl. FGSV, 2015)

2.2 Mikroskopische Verkehrsflusssimulation

2.2.1 Allgemeines

Die Verkehrsflusssimulation wurde mit dem Programm VISSIM Version 5.40 der PTV AG durchgeführt. Dabei handelt es sich um ein mikroskopisches, zeitschrittorientiertes und verhaltensbasiertes Simulationsmodell.

Mit Hilfe dieses Programms können Verkehrsabläufe unter verschiedenen Randbedingungen (Fahrstreifenaufteilung, Verkehrszusammensetzung, Lichtsignalsteuerung, etc.) simuliert werden. So lassen sich alternative Planungsvarianten bereits vor der Umsetzung von baulichen und betrieblichen Maßnahmen prüfen und bewerten. Darüber hinaus können die Wechselwirkungen zwischen benachbarten Knotenpunkten in der Auswertung verkehrstechnischer Kennziffern (z.B. mittlere Verlustzeiten oder Rückstaulängen) berücksichtigt werden.

Ziel einer Simulationsstudie ist die Entwicklung eines nachprüfbaren, reproduzierbaren und fehlerfreien Modells. Dabei hängt der erforderliche Genauigkeitsgrad von der jeweiligen Aufgabenstellung ab. Hier gilt es meist, einen Kompromiss zwischen hinreichender Genauigkeit und notwendiger Abstraktion der Realität zu finden.

Aufgrund der Zufälligkeiten innerhalb der Simulation (z.B. Verteilung der Fahrzeugankünfte, Geschwindigkeiten und Richtungsentscheidungen) führen Simulationsläufe mit verschiedenen Startzufallszahlen zu unterschiedlichen Ergebnissen. Daher wurde jede Simulation mit 20 unterschiedlichen Startzufallszahlen durchgeführt.

Die ermittelten Kenngrößen der Verkehrsqualität (Reisezeiten, Verlustzeiten, Rückstaulängen, Verkehrsstärken) aller durchgeführten Simulationsläufe wurden anschließend gemittelt. Auf diese Weise ist sichergestellt, dass eventuelle Ausreißer, die sich durch eine ungünstige Kombination bestimmter Simulationsparameter ergeben, nicht zu stark ins Gewicht fallen. Stattdessen wird so ein gesichertes und stabiles Ergebnis erreicht.

Die Durchführung der Verkehrsflusssimulation erfolgte unter Berücksichtigung des Merkblatts "Hinweise zur mikroskopischen Verkehrsflusssimulation – Grundlagen und Anwendung" (vgl. FGSV, 2006).

2.2.2 Aufbau des Simulationsmodells

Ein Simulationsmodell besteht aus einem Netzmodell (Abbildung der Verkehrsinfrastruktur), der Verkehrsnachfrage und den vorhandenen Signalsteuerungen.

Netzmodell

Im vorliegenden Fall wurde das Netzmodell auf Grundlage von Orthofotos (maßstabsgerechte Luftbilder) erstellt. Es enthält alle erforderlichen Strecken mit den jeweiligen Eigenschaften (Radius, Längsneigung, Geschwindigkeitsverteilung, Vorfahrtregeln, Sättigungsverkehrsstärke, etc.). Die folgende Abbildung zeigt das fertige Netzmodell.

Abbildung 2: Netzmodell (blaue Streckenlinien)

Verkehrsnachfrage

Die maßgebende Verkehrsnachfrage für die zu prüfende Situation wurde in Form von Quelle-Ziel-Matrizen jeweils für den Pkw- und den Lkw-Verkehr für die Morgen- und die Nachmittagsspitzenstunde am Werktag zusammengefasst. Es wurden die für den Prognose-Planfall ermittelten Verkehrsbelastungen zugrunde gelegt.

Die Implementierung der Verkehrsnachfrage in das Modell erfolgte mithilfe von vorgegebenen Routen. Diese manuelle Vorgabe der Routen ermöglicht eine detaillierte Kontrolle der im Netz gefahrenen Wege.

Die in der Simulation dargestellten Fahrzeuge unterscheiden sich wie folgt:

Allgemeiner Verkehr (Prognose-Nullfall): schwarze Fahrzeuge

Neuverkehr Bauvorhaben: rote Fahrzeuge

Simulationszeitraum

Die Simulation erfolgt für die morgendliche sowie die nachmittägliche Spitzenstunde. Als Simulationszeitraum wurden für die Spitzenstunden insgesamt je 4.800 Sekunden (= 1:20 Std.) definiert. Der Simulationszeitraum setzt sich aus einem Vorlaufzeitraum (600 Sekunden = 10 min), dem eigentlichen Untersuchungszeitraum (3.600 Sekunden = 1 Std.) und einem Nachlaufzeitraum (600 Sekunden = 10 min) zusammen.

Nach Fertigstellung des Modells erfolgte eine Fehlerkontrolle. Anhand mehrerer Testläufe wurde u. a. mithilfe der Visualisierung die Plausibilität des Verkehrsablaufs geprüft und optimiert.

Knotenpunkte

Im Rahmen der Verkehrsflusssimulation wurden die signalisierten Knotenpunkte

- B 59 / A 46 AS Jüchen Nord (KP1),
- · B 59 / A 46 AS Jüchen Süd (KP2),

mit ihrer heutigen Bau- und Betriebsform (KP2) bzw. in ihrem geplanten Ausbaustand (KP1) dargestellt.

Die Lichtsignalanlagen an den untersuchten Knotenpunkten wurden mit koordinierten Festzeitprogrammen nachgebildet.

Kalibrierung

Jedes Simulationsmodell ist mit einem Satz veränderlicher Parameter versehen, die vom Benutzer eingestellt werden können. Die Kalibrierung stellt dabei den Vorgang dar, die veränderlichen Modellparameter so anzupassen, dass die Simulation so gut wie möglich die in der Realität beobachteten Verkehrsverhältnisse abbildet.

Als Einflussgrößen für das Fahrverhalten gelten die folgenden Parameter:

- Geschwindigkeitsverteilung (Pkw, Lkw)
- · Zeitlücken an Konfliktpunkten (z. B. an Knotenpunkten)
- · Sättigungsverkehrsstärke einer Strecke (z. B. Zeitbedarfswerte)

- · Fahrverhalten auf einer Strecke (z. B. Abstandsverhalten)
- Fahrverhalten an einer Lichtsignalanlage (z. B. Gelb- / Rotfahrer, Zeitbedarfswerte, Abstand)

Im Rahmen der Kalibrierung wurden zahlreiche Simulationsläufe mit unterschiedlichen Startzufallszahlen durchgeführt und statistisch ausgewertet.

Nach Abschluss der Kalibrierung lag ein bestmöglich angepasstes Simulationsmodell für den Untersuchungsbereich in den Spitzenstunden vor, das als Grundlage für eine detaillierte Variantenuntersuchung herangezogen werden konnte.

2.2.3 Auswertung

Bei der vorliegenden Simulationsuntersuchung war es notwendig, die zukünftige Situation qualitativ und quantitativ zu beurteilen. Dazu wurden die folgenden verkehrlichen Kenngrößen gemessen und ausgewertet:

Verkehrsstärken

Über die Definition von Messquerschnitten auf einer einzelnen Strecke kann an jeder Stelle im Netz eine Auswertung der Verkehrsstärken getrennt nach Fahrzeugarten in frei definierbaren Zeitabschnitten erfolgen. Somit lassen sich auf diesem Wege Kenngrößen wie Verkehrsstärke und Kapazität eines Fahrstreifens ableiten.

Reisezeiten

Bei der Messung der Reisezeiten werden die während eines Simulationslaufs auftretenden, mittleren Reisezeiten protokolliert. Dafür ist es erforderlich, an geeigneten Stellen im Streckennetz Querschnitte zu installieren. Es wird die durchschnittliche Fahrzeit vom Überfahren des ersten Querschnitts bis zum Überfahren des zweiten Querschnitts (einschließlich Haltezeiten) ermittelt.

Um einen sinnvollen Vergleich zwischen verschiedenen Verkehrsführungen oder Belastungsfällen durchführen zu können, müssen die Querschnitte zur Reisezeitmessung in allen Simulationen an derselben Stelle liegen.

Verlustzeiten

Mit Hilfe der Reisezeitmessung können auch Verlustzeiten ausgewertet werden. Eine Verlustzeitmessung ist dabei definiert als Kombination mehrerer Reisezeitmessungen. Dabei wird über alle betrachteten Fahrzeuge auf einem oder mehreren Streckenabschnitten der mittlere Zeitverlust gegenüber einer idealen Fahrt (ohne andere Fahrzeuge, ohne Signalisierung) ermittelt.

Die Verlustzeit ist von der Definition her nicht identisch mit der mittleren Wartezeit, die auf Basis der Warteschlangentheorie (z.B. in den Berechnungsverfahren aus dem HBS 2015) errechnet wird. Bei der Anordnung geeigneter Messquerschnitte können die mittleren Verlustzeiten aus der Simulation jedoch für die Bewertung der Verkehrsqualität gemäß den Grenzwerten aus dem HBS herangezogen werden. Der bedeutende Vorteil ist dabei die Berücksichtigung aller relevanten Einflüsse im Straßennetz.

3 Analyse des Verkehrsaufkommens

Das Verkehrsaufkommen im Untersuchungsgebiet wurde im Rahmen einer Verkehrszählung am Donnerstag, dem 30.10.2018 in den Zeiträumen von 6:00 bis 10:00 Uhr und von 15:00 bis 19:00 Uhr an den Knotenpunkten

- · B 59 / A 46 AS Jüchen Nord (KP1),
- B 59 / A 46 AS Jüchen Süd (KP2),
- L116 / AS Gustorf Süd (KP3) und
- L116 / AS Gustorf Nord (KP4)

ermittelt.

Die Auswertung der Zählung zeigte, dass (bei einer gleichzeitigen Betrachtung aller Zählstellen) die morgendliche Spitzenstunde zwischen 7:15 und 8:15 Uhr und die nachmittägliche Spitzenstunde zwischen 16:15 und 17:15 Uhr lag. Den Anlagen B-3 und B-4 sind die gezählten Verkehrsbelastungen (Analysefall) der einzelnen Ströme in der morgendlichen und der nachmittäglichen Spitzenstunde zu entnehmen.

4 Prognose des Verkehrsaufkommens

4.1 Allgemeine Entwicklungen

Prognosen zur allgemeinen Verkehrsentwicklung berücksichtigen Veränderungen in den städtischen und regionalen Verkehrsstrukturen. Die Auswirkungen dieser Veränderungen auf das Verkehrsaufkommen werden in Jüchen mit Hilfe eines Verkehrsmodells berechnet. Gemäß dem Verkehrskonzept Jüchen (vgl. IVV Aachen, 28.06 2018) ist im Untersuchungsgebiet bis 2030 mit einer allgemeinen Zunahme des Verkehrsaufkommens von etwa 6 % gegenüber heute zu rechnen.

Des Weiteren wurde zur Prognose der allgemeinen Entwicklungen die "Prognose der deutschlandweiten Verkehrsverflechtungen 2030" hinzugezogen. Dort ist die Entwicklung der Kfz-Fahrleistung nach Fahrzeugarten für das Jahr 2030 bezogen auf den Kreis Neuss angegeben. Bezogen auf das Jahr 2019 wird bis zum Jahr 2030 eine Zunahme der Fahrleistung im Kfz-Verkehr von 4,04 % prognostiziert.

In der vorliegenden Untersuchung wurde für den Prognosehorizont 2030 zur sicheren Seite hin eine allgemeine Zunahme des Verkehrsaufkommens um 10 % gegenüber dem heutigen Verkehrsaufkommen berücksichtigt (Prognose-Nullfall vgl. Anlagen B-5 und B-6).

4.2 Neuverkehr Industriegebiet

4.2.1 Methodik

Die Verkehrserzeugungsrechnung wurde auf der Grundlage der folgenden Quellen durchgeführt:

- Schätzung des Verkehrssaufkommens aus Kennwerten der Flächennutzung und des Verkehrs (vgl. Hessisches Landesamt für Straßen- und Verkehrswesen, 2000 und FGSV, 2006) bzw. Programm Ver_Bau (vgl. Bosserhoff, 2020)
- Angaben zum geplanten Nutzungskonzept der Städte Grevenbroich und Jüchen sowie der RWE Power AG und der Duisburger Hafen AG

Bei der Ermittlung des zukünftigen Verkehrsaufkommens wurde das aktuelle Strukturkonzept der Städte Grevenbroich und Jüchen sowie der RWE Power AG und der Duisburger Hafen AG berücksichtigt. Darin wird das Industriegebiet mit einer Fläche von etwa 42 ha Nettobauland ausgewiesen.

Die folgende Abbildung zeigt das Strukturkonzept des geplanten Vorhabens im Untersuchungsgebiet der der Städte Grevenbroich und Jüchen sowie der RWE Power AG und der Duisburger Hafen AG mit dem Stand Oktober 2019.

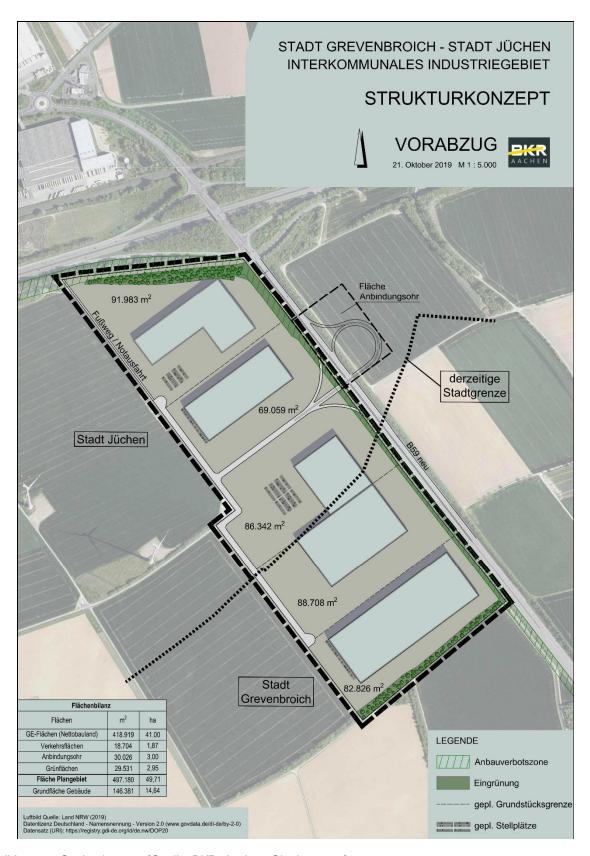


Abbildung 3: Strukturkonzept [Quelle: BKR, Aachen, Oktober 2019]

Bei der Berechnung des zu erwartenden Verkehrsaufkommens wurden die folgenden Verkehrsarten betrachtet:

- · Kunden- und Besucherverkehr,
- Beschäftigtenverkehr und
- · Wirtschaftsverkehr

Anschließend wurde eine Überlagerung des errechneten Neuverkehrs mit den Verkehrsbelastungen des Prognose-Nullfalls (Analysefall zuzüglich 10% allgemeiner Verkehrszunahme) vorgenommen.

4.2.2 Verkehrserzeugungsrechnung

Im Sinne einer worst-case Betrachtung wurde für das gesamte Industriegebiet (42 ha) eine verkehrsintensive Nutzung durch Logistikunternehmen angenommen.

Auf der Grundlage dieses Nutzungskonzeptes wurde in Anlehnung an die o.a. einschlägigen Veröffentlichungen eine Berechnung des zu erwartenden Verkehrsaufkommens durchgeführt.

Insgesamt (vgl. Tabelle 5) ergibt sich für den **Tag** das folgende Verkehrsaufkommen:

Quellverkehr: 2.978 Kfz / 24h (1260 SV / 24h)

Zielverkehr: 2.978 Kfz / 24h (1260 SV / 24h)

In der morgendlichen Spitzenstunde ergibt sich das folgende Verkehrsaufkommen:

Quellverkehr: 37 Kfz/h (21 SV/h)

Zielverkehr: 469 Kfz / h (197 SV / h)

In der **nachmittäglichen Spitzenstunde** ergibt sich das folgende Verkehrsaufkommen:

Quellverkehr: 378 Kfz / h (148 SV / h)

Zielverkehr: 301 Kfz / h (116 SV / h)

Es wird angenommen, dass sich der Neuverkehr des Industriegebietes wie folgt im angrenzenden Straßennetz verteilt:

· 35 % Richtung Westen (A 46)

10 % Richtung Süden (Abstufung A 540)

· 10 % Richtung Süden (L 116)

· 35 % Richtung Osten (A 46)

· 10 % Richtung Norden (B 59)

In Anlage B-7 ist die prozentuale Verteilung des Neuverkehrs des Industriegebietes dargestellt.

Die folgende Tabelle zeigt die Berechnungen des Neuverkehrs für das Industriegebiet.

Nutzung		Industriegebiet
Nettobauland	ha	42
Beschäftigtenverkehr		
- Beschäftigtenanzahl	Beschäftigte je ha	40
- MIV-Anteil		1,0
- Pkw-Besetzung		1,1
- Fahrten pro Beschäftigter und Tag		2,0
- Anwesenheitsanteil		0,85
Anzahl der Beschäftigtenfahrten	Kfz/24h	2.596
- Zielfahrten insgesamt	Kfz/24h	1.298
- Zielfahrten Morgenspitze (20,98%)	Kfz/h	272
- Zielfahrten Nachmittagsspitze (11,57%)	Kfz/h	150
- Quellfahrten insgesamt	Kfz/24h	1.298
- Quellfahrten Morgenspitze (1,25%)	Kfz/h	16
- Quellfahrten Nachmittagsspitze (14,16%)	Kfz/h	184
Kunden- / Besucherverkehr		
- Beschäftigtenanzahl	Beschäftigte je ha	40
- Fahrten pro Beschäftigter und Tag		0,5
Anzahl der Kundenfahrten	Kfz/24h	840
- Zielfahrten insgesamt	Kfz/24h	420
- Zielfahrten Morgenspitze (0,00%)	Kfz/h	0
- Zielfahrten Nachmittagsspitze (8,33%)	Kfz/h	35
- Quellfahrten insgesamt	Kfz/24h	420
- Quellfahrten Morgenspitze (0,00%)	Kfz/h	0
- Quellfahrten Nachmittagsspitze (10,99%)	Kfz/h	46
Lieferverkehr		
- Beschäftigtenanzahl	Beschäftigte je ha	40
- Fahrten pro Beschäftigter und Tag		1,5
Anzahl der Lieferverkehrsfahrten	Kfz/24h	2.520
- Zielfahrten insgesamt	Kfz/24h	1260
- Zielfahrten Morgenspitze (15,62)	Kfz/h	197
- Zielfahrten Nachmittagsspitze (9,18%)	Kfz/h	116
- Quellfahrten insgesamt	Kfz/24h	1260
- Quellfahrten Morgenspitze (1,66%)	Kfz/h	21
- Quellfahrten Nachmittagsspitze (11,74%)	Kfz/h	148

 Tabelle 5:
 Verkehrserzeugungsrechnung für das Industriegebiet

4.3 Prognose-Verkehrsbelastungen

Durch eine Überlagerung der Spitzenstundenbelastung des Analysefalls (vgl. Abschnitt 3) zzgl. 10 % zur Berücksichtigung einer allgemeinen Verkehrszunahme mit dem Neuverkehr des Industriegebietes ergeben sich die für die weiteren Arbeitsschritte maßgebenden Verkehrsbelastungen für den hier zu untersuchenden Prognose-Planfall 1 der morgendlichen und der nachmittäglichen Spitzenstunde (vgl. Anlagen B-8 und B-9).

Obwohl die vorliegende Untersuchung keinen Prognose-Planfall 2 berücksichtigt, wird die Bezeichnung des o.a. Prognose-Planfalls 1 aus bereits vorangegangenen Untersuchungen weitergeführt.

5 Verkehrstechnischen Berechnungen

In der nachfolgenden Tabelle sind die Verkehrsbelastungen an den untersuchten Knotenpunkten

- B 59 / A 46 AS Jüchen Nord (KP1),
- B 59 / A 46 AS Jüchen Süd (KP2),
- L 116 / AS Gustorf Süd (KP3),
- L 116 / AS Gustorf Nord (KP4) und
- B 59 / Anbindung GI-Gebiet (KP9)

im Analysefall gemäß Ziffer 3, im Prognose-Nullfall gemäß Ziffer 4.1 und im Prognose-Planfall 1 gemäß Ziffer 4.3 (jeweils Summe der Zufahrten) dargestellt, die den verkehrstechnischen Berechnungen zu Grunde gelegt wurden.

KP	Knotenpunkt	Analysfall		all Prognose- Nullfall		Prognosefall 1	
		MS	NMS	MS	NMS	MS	NMS
KP1	B 59 / A 46 AS Jüchen Nord	1.496	1.768	1.647	1.945	1.875	2.253
KP2	B 59 / A 46 AS Jüchen Süd	1.908	1.990	2.100	2.191	2.504	2.736
KP3	L 116 / AS Gustorf Süd	1.613	1.538	1.774	1.691	1.825	1.760
KP4	L 116 / AS Gustorf Nord	1.410	1.408	1.553	1.548	1.600	1.579
KP9	B 59 / Anbindung GI-Gebiet	-	-	-	-	2.302	2.577

Tabelle 6: Maßgebende Verkehrsbelastungen (Summe der Zufahrten) [Kfz/h]

Im Analysefall und im Prognose-Nullfall gelten die nachfolgenden Berechnungsergebnisse für die o.a. Knotenpunkte in ihrer heutigen Bau- und Betriebsform als signalisierte Knotenpunkte (KP1 und KP2) bzw. als vorfahrtgeregelte Knotenpunkte (KP3 und KP4) (vgl. auch Anlage B-2).

Im Prognose-Planfall 1 gelten die nachfolgenden Berechnungsergebnisse für die o.a. Knotenpunkte in ihrer heutigen Bau- und Betriebsform als signalisierte Knotenpunkte (KP1 und KP2) bzw. als vorfahrtgeregelte Knotenpunkte (KP3 und KP4) sowie für zusätzliche Varianten (KP1 und KP3) bzw. für die vier Teilknotenpunkte (KP9.1, KP9.2, KP9.3 und KP9.4) des neuen, planfreien Knotenpunktes 9.

Die signalisierten Knotenpunkte KP1 und KP2 werden jeweils verkehrsabhängig koordiniert betrieben. Die Umlaufzeiten der Knotenpunkte KP1 und KP2 sind variabel. Ein anerkanntes Berechnungsverfahren zur Bestimmung der Verkehrsqualität verkehrsabhängiger Signalsteuerungen existiert nicht. Die Berechnungen wurden daher ersatzweise für ein optimiertes Festzeitprogramm durchgeführt. Es ist davon auszugehen, dass dieses Festzeitprogramm eine brauchbare Annäherung an die sich vor Ort einstellende verkehrsabhängige Signalsteuerung darstellt.

In der nachfolgenden Tabelle sind die Ergebnisse der verkehrstechnischen Berechnungen für eine einzelne Betrachtung der untersuchten Knotenpunkte zusammengefasst (vgl. Anlagen V-1 bis V-116).

KP	Knotenpunkt		Analy	sefall	Р	0	PI	F1
			MS	NMS	MS	NMS	MS	NMS
	B 59 / A 46 AS Jüchen Nord	LSA	В	С	O	С	Е	F
KP1		Bestand			•		_	•
		LSA		В	В	В	С	С
		Ausbau						
KP2	B 59 / A 46 AS Jüchen Süd	LSA	В	В	В	В	В	С
141 2	2 co / / To / to duction odd	Bestand						
		Vorfahrt	Е	D	F	Е	F	F
KP3	L 116 / AS Gustorf Süd	Bestand	_	D	•	_	•	•
141 0		LSA	С	С	С	С	С	С
KP4	L 116 / AS Gustorf Nord	Vorfahrt	D	D	D	D	D	D
NP4	L 110 / AS Guston Nord	Bestand		U	U	U	U	U
KP9.1	B 59 / Anbindung GI-Gebiet (Rampe Nord – West)	planfrei	•	•	1	•	C	В
KP9.2	B 59 / Anbindung GI-Gebiet (Rampe Süd – West)	planfrei	1	1	1	-	В	A
KP9.3	B 59 / Anbindung GI-Gebiet (Rampe Süd – Ost)	planfrei	-	-	-	-	A	A
KP9.4	B 59 / Anbindung GI-Gebiet (Rampe Nord – Ost)	planfrei	•	•	•	-	Α	В

Tabelle 7: Ergebnisse der verkehrstechnischen Berechnungen

5.1 Knotenpunkt B 59 / A 46 AS Jüchen Nord (KP1)

Der Knotenpunkt B 59 / A 46 AS Jüchen Nord (KP1) wurde zunächst in seiner heutigen Bau- und Betriebsform als signalisierte Kreuzung mit zwei Geradeausfahrstreifen und einem Linksabbiegestreifen in der südlichen B 59, einem Rechts- und einem Linksabbiegestreifen in der Ausfahrrampe der A 46, zwei Geradeausfahrstreifen und einem Rechtsausfahrkeil in der nördlichen B 59 sowie einer einstreifigen Rampe zur A 46 untersucht.

Die verkehrstechnischen Berechnungen für den Analysefall zeigen, dass die derzeitige Verkehrsnachfrage in der Morgenspitzenstunde mit einer rechnerischen Verkehrsqualität der Stufe B ("gut") und in der Nachmittagsspitzenstunde mit einer rechnerischen Verkehrsqualität der Stufe C ("befriedigend") abgewickelt werden kann (vgl. Anlagen V-1 bis V-7).

In der südlichen B 59 beträgt der errechnete 95%-Rückstau auf dem Linksabbiegestreifen in der Morgenspitze rund 100 m und in der Nachmittagsspitze rund 130 m bei einem vorhandenen Stauraum von ca. 55 Metern. Hier ist eine zeitweise Überstauung des Linksabbiegestreifens nicht auszuschließen, welche jedoch bis zum Freigabeende in der Regel wieder abgebaut wird. Die mittlere Rückstaulänge bei Freigabeende der Signalgruppe für den Linksabbieger in der südlichen B 59 (SG 2L) beträgt am Nachmittag maximal 2 Kraftfahrzeuge, d.h. rund 12 m. Bei einem Gesamtauslastungsgrad des Knotenpunktes von maximal 0,50 am Nachmittag bestehen noch erhebliche Kapazitätsreserven (vgl. Anlagen V-4 und V-7).

Die verkehrstechnischen Berechnungen für den Prognose-Nullfall zeigen, dass die prognostizierte Verkehrsnachfrage in der Morgenspitzenstunde und in der Nachmittagsspitzenstunde mit einer rechnerischen Verkehrsqualität der Stufe C ("befriedigend") abgewickelt werden kann (vgl. Anlagen V-8 bis V-14).

Der maximale Rückstau auf dem Linksabbiegestreifen von der südlichen B 59 in Richtung A 46 erhöht sich in der Morgenspitze auf rund 110 m und in der Nachmittagsspitze auf rund 160 m (vgl. Anlagen V-11 und V-14). Die mittlere Rückstaulänge bei Freigabeende der Signalgruppe für den Linksabbieger in der südlichen B 59 (SG 2L) beträgt am Nachmittag maximal 5 Kraftfahrzeuge, d.h. rund 30 m. Bei einem Gesamtauslastungsgrad des Knotenpunktes von maximal 0,54 am Nachmittag bestehen noch Kapazitätsreserven.

Die verkehrstechnischen Berechnungen für den Prognose-Planfall 1 zeigen, dass die prognostizierte Verkehrsnachfrage in der Morgenspitzenstunde nur mit einer rechnerischen Verkehrsqualität der Stufe E ("mangelhaft") abgewickelt werden kann. In der Nachmittagsspitzenstunde kann der prognostizierte Verkehr nicht mehr leistungsfähig abgewickelt werden kann. Es wird eine Verkehrsqualität der Stufe F ("ungenügend") erreicht (vgl. Anlagen V-15 bis V-21).

Für einen auch unter den Verkehrsbelastungen des Prognose-Planfalls 1 leistungsfähigen Verkehrsablauf ist ein Umbau des nördlichen Teilknotenpunktes der Anschlussstelle Jüchen an der A 46 erforderlich. Statt den Verkehr wie bisher zweistreifig geradeaus in Richtung Norden (B59) zu führen, ist ein zweistreifiges Linksabbiegen in Richtung Westen (A 46) erforderlich. Die Fahrstreifenanzahl auf der Autobahnbrücke der A 46 entspricht dabei aber weiterhin der heutigen Fahrstreifenanzahl (5 Fahrstreifen). In der Rampe zur A 46 ist eine Aufweitung auf zwei Fahrstreifen auf einer Länge von 120 m erforderlich. Aufgrund der geplanten einstreifigen Verkehrsführung in Richtung Norden (B 59) kann auf die Signalisierung des Rechtabbiegers von der A 46 aus Richtung Osten in Richtung Norden (B 59) verzichtet werden.

Das Konzept sieht an dem nördlichen Teilknotenpunkt der Anschlussstelle Jüchen folgenden Ausbaustand vor (vgl. folgende Abbildung oder maßstäbliche Vorentwurfsskizze in Anlage E-1):

Rampe zur Einfahrt A 46 (West): 2 Fahrstreifen (L = 120 m)

B 59 (Süd):
 1 Geradeausfahrstreifen

2 Linksabbiegestreifen

Rampe von der Ausfahrt A 46 (Ost): 1 Rechtsabbiegestreifen

1 Linksabbiegestreifen

B 59 (Nord): 1 Rechtsabbiegestreifen (Ausfahrkeil)

2 Geradeausfahrstreifen

Abbildung 4: Darstellung nördlicher Teilknotenpunkt

Die verkehrstechnischen Berechnungen für den Analysefall und den Prognose-Nullfall zeigen, dass die vorhandene und die prognostizierte Verkehrsnachfrage in der Morgenspitzenstunde und in der Nachmittagsspitzenstunde mit einer rechnerischen Verkehrsqualität der Stufe B ("gut") abgewickelt werden kann (vgl. Anlagen V-22 bis V-28 und V-29 bis V-35).

Die verkehrstechnischen Berechnungen für den Prognosefall 1 zeigen, dass die prognostizierte Verkehrsnachfrage in der Morgenspitzenstunde und in der Nachmittagsspitzenstunde mit einer rechnerischen Verkehrsqualität der Stufe C ("befriedigend") abgewickelt werden kann (vgl. Anlagen V-36 bis V-42).

In der südlichen B 59 beträgt der errechnete 95%-Rückstau auf dem Linksabbiegestreifen in der Morgenspitze rund 70 m und in der Nachmittagsspitze rund 110 m bei einem vorhandenen Stauraum von ca. 110 Metern. Hier ist eine zeitweise Überstauung des Linksabbiegestreifens nicht auszuschließen, welche jedoch bis zum Freigabeende in der Regel wieder abgebaut wird. Die mittlere Rückstaulänge bei Freigabeende der Signalgruppe für die Linksabbieger in der südlichen B 59 (SG 2L) beträgt am Nachmittag

maximal 2 Kraftfahrzeuge, d.h. rund 12 m. Bei einem Gesamtauslastungsgrad des Knotenpunktes von maximal 0,54 am Nachmittag bestehen noch erhebliche Kapazitätsreserven (vgl. Anlagen V-39 und V-42).

5.2 Knotenpunkt B 59 / A46 AS Jüchen Süd (KP2)

Der Knotenpunkt B 59 / A46 AS Jüchen Süd (KP2) wurde in seiner heutigen Bau- und Betriebsform als signalisierte Kreuzung mit einem Rechts- und einem Linksabbiegestreifen in der Ausfahrrampe von der A 46, zwei Geradeausfahrstreifen und einem Rechtsabbiegestreifen in der südlichen B 59, zwei Geradeausfahrstreifen und einem Linksabbiegestreifen in der nördlichen B 59 sowie einer einstreifigen Einfahrrampe zur A 46 untersucht.

Die verkehrstechnischen Berechnungen für den Analysefall und den Prognose-Nullfall zeigen, dass die Verkehrsnachfrage in der Morgenspitzenstunde und in der Nachmittagsspitzenstunde mit einer rechnerischen Verkehrsqualität der Stufe B ("gut") abgewickelt werden kann (vgl. Anlagen V-43 bis V-49 und V-50 bis V-56).

Die verkehrstechnischen Berechnungen für den Prognosefall 1 zeigen, dass die prognostizierte Verkehrsnachfrage in der Morgenspitzenstunde mit einer rechnerischen Verkehrsqualität der Stufe B ("gut") und in der Nachmittagsspitzenstunde mit einer rechnerischen Verkehrsqualität der Stufe C ("befriedigend") abgewickelt werden kann. Bei einem Gesamtauslastungsgrad des Knotenpunktes von 0,40 am Morgen und 0,56 am Nachmittag bestehen noch erhebliche Kapazitätsreserven (vgl. Anlagen V-57 bis V-63).

5.3 Knotenpunkt L 116 / AS Gustorf Süd (KP3)

Der Knotenpunkt L 116 / AS Gustorf Süd (KP3) wurde zunächst in seiner heutigen Bau- und Betriebsform als vorfahrtgeregelte Einmündung (VZ 205 "Vorfahrt gewähren") mit einem Rechts- und einem Linksabbiegestreifen für den Kraftfahrzeugverkehr von der L 116 in Richtung A 540 und einer einstreifigen Ausfahrrampe von der A 540 untersucht.

Die verkehrstechnischen Berechnungen für den Analysefall zeigen, dass die derzeitige Verkehrsnachfrage in der Morgenspitzenstunde nur mit einer rechnerischen Verkehrsqualität der Stufe E ("mangelhaft") und in der Nachmittagsspitzenstunde mit einer rechnerischen Verkehrsqualität der Stufe D ("ausreichend") abgewickelt werden kann. Dies ist auf die hohe Auslastung der Linkseinbieger von der Anschlussstelle Gustorf in die nördliche L 116 zurückzuführen. Für diese Linkseinbieger treten am Morgen Wartezeiten von im Mittel 84 Sekunden auf (vgl. Anlagen V-64 bis V-67).

Im Prognose-Nullfall zeigen die verkehrstechnischen Berechnungen, dass die Verkehrsnachfrage in der Morgenspitzenstunde vorfahrtgeregelt nicht mehr leistungsfähig abgewickelt werden kann. Es wird eine Verkehrsqualität der Stufe F ("ungenügend") erreicht. Am Nachmittag wird eine rechnerische Verkehrsqualität der Stufe E ("mangelhaft") erreicht (vgl. Anlagen V-68 bis V-71).

Die verkehrstechnischen Berechnungen für den Prognose-Planfall 1 zeigen ebenfalls, dass die Verkehrsnachfrage in der Morgenspitzenstunde und in der Nachmittagsspitzenstunde vorfahrtgeregelt nicht mehr leistungsfähig abgewickelt werden kann. Es wird jeweils eine Verkehrsqualität der Stufe F ("ungenügend") erreicht (vgl. Anlagen V-72 bis V-75).

Zur Steigerung der Leistungsfähigkeit wird die Errichtung einer Lichtsignalanlage an dem Knotenpunkt L 116 / AS Gustorf Süd (KP3) mit folgendem Ausbaustand (vgl. Anlage V-76) empfohlen:

AS Gustorf Süd: 1 Rechtsabbiegestreifen

1 Linksabbiegestreifen (ggf. Ausbau erforderlich)

L 116 Süd: 1 Geradeausfahrstreifen

1 Linksabbiegestreifen

L 116 Nord: 1 Geradeausfahrstreifen

1 Rechtsabbiegestreifen

Den verkehrstechnischen Berechnungen wurde ein Festzeitprogramm mit einer Umlaufzeit von 90 Sekunden und einem 3-Phasensystem zugrunde gelegt.

Die verkehrstechnischen Berechnungen für den signalisierten Knotenpunkt L 116 / AS Gustorf Süd (KP3) zeigen, dass die Verkehrsnachfrage des Analysefalls, des Prognose-Nullfalls und des Prognose-Planfalls 1 in der Morgenspitzenstunde und in der Nachmittagsspitzenstunde mit einer rechnerischen Verkehrsqualität der Stufe C ("befriedigend") abgewickelt werden kann (vgl. Anlagen V-76 bis V-82, V-83 bis V-89 und V-90 bis V-96). Bei einem Gesamtauslastungsgrad des Knotenpunktes im Prognose-Planfall 1 von 0,61 am Morgen und 0,59 am Nachmittag bestehen noch größere Kapazitätsreserven (vgl. Anlagen V-93 und V-96).

5.4 Knotenpunkt L 116 / AS Gustorf Nord (KP4)

Der Knotenpunkt L 116 / AS Gustorf Nord (KP4) wurde in seiner heutigen Bau- und Betriebsform als vorfahrtgeregelte Einmündung (VZ 206 "Stop") mit einem Rechts- und einem Linksabbiegestreifen für den Kraftfahrzeugverkehr von der L 116 in Richtung A 540 und einer einstreifigen Ausfahrrampe von der A 540 untersucht.

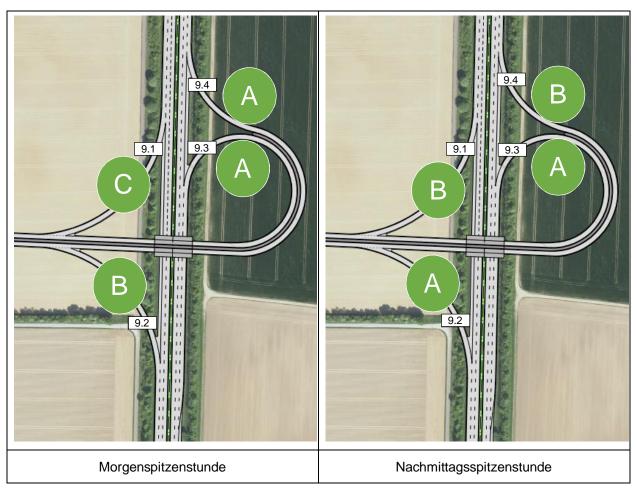
Die verkehrstechnischen Berechnungen für den Analysefall, den Prognose-Nullfall und den Prognose-Planfall 1 zeigen, dass die derzeitige Verkehrsnachfrage in der Morgenspitzenstunde und in der Nachmittagsspitzenstunde mit einer rechnerischen Verkehrsqualität der Stufe D ("ausreichend") abgewickelt werden kann. Für die Linkseinbieger von der von der Anschlussstelle Gustorf in die südliche L 116 treten am Morgen mittlere Wartezeiten von höchstens 43 Sekunden auf (vgl. Anlagen V-97 bis V-100, V-101 bis V-104 und V-105 bis V-108).

5.5 Knotenpunkt B 59 / Anbindung Gl-Gebiet (KP9)

Für den planfreien Knotenpunkt B 59 / Anbindung Gl-Gebiet (KP9) wurden für die folgenden vier Teilknotenpunkte

- KP9.1: Rampe Nord West (Ausfahrt aus Richtung Norden in Richtung Gl-Gebiet)
- KP9.2: Rampe Süd West (Einfahrt aus Richtung GI-Gebiet in Richtung Süden)
- KP9.3: Rampe Süd Ost (Ausfahrt aus Richtung Süden in Richtung GI-Gebiet)
- KP9.4: Rampe Nord Ost (Einfahrt aus Richtung Gl-Gebiet in Richtung Norden)

verkehrstechnische Berechnungen durchgeführt.


Für die Ausfahrten KP9.1 und KP9.3 und die Einfahrten KP9.2 und KP9.4 sind jeweils nur einstreifige Rampen notwendig. Ein leistungsfähiger Verkehrsablauf kann mit dem Verflechtungstyp V1-2 bzw. Einfahrttyp E1-2 und dem Ausfahrttyp A1-2 bzw. Verflechtungstyp V1-2 gewährleistet werden kann.

In den dazugehörigen Berechnungstabellen sind für jeden Teilknotenpunkt die entsprechenden Berechnungen dokumentiert. Es ist darauf hinzuweisen, dass in den Berechnungen zunächst nur berücksichtigt wurde, welche Ausbauform aus rein verkehrstechnischer Sicht erforderlich ist. Bei einem Knotenabstand kleiner als 600 m wurde ein Verflechtungsstreifen angesetzt.

Die verkehrstechnischen Berechnungen für den Prognose –Planfall 1 zeigen, dass die prognostizierte Verkehrsnachfrage in der Morgenspitzenstunde mindestens mit einer rechnerischen Verkehrsqualität der Stufe C ("befriedigend") und in der Nachmittagsspitzenstunde mindestens mit einer rechnerischen Verkehrsqualität der Stufe B ("gut") abgewickelt werden kann (vgl. Anlagen V-109 bis V-116).

In den nachfolgenden Abbildungen sind jeweils die Ergebnisse der verkehrstechnischen Berechnungen für die morgendliche und die nachmittägliche Spitzenstunde im Prognose-Planfall 1 für die neue planfreie Anschlussstelle (B 59 / Anbindung GI-Gebiet (KP9)) dargestellt. Alle vier Rampen sind einstreifig leistungsfähig.

Abbildung 5: Knotenpunkt B 59 / Anbindung Gl-Gebiet (KP9)

Verkehrsqualität gemäß HBS - Prognosefall-Planfall 1

5.6 Zusammenfassung der Ergebnisse

Die Knotenpunkte 2 und 4 sind im Bestand für die Abwicklung der Verkehrsbelastungen des Prognose-Planfalls 1 ausreichend leistungsfähig.

Am Knotenpunkt 1 kann im Prognose-Planfall 1 auf den zweiten Geradeausfahrstreifen in der südlichen Zufahrt der B 59 für den Verkehr von Süden nach Norden verzichtet werden, dafür wird aber eine zweistreifige Führung des Linksabbiegeverkehrs von Süden nach Westen (Richtung A 46) verbunden mit einer Aufweitung auf zwei Fahrstreifen in der Rampe zur A 46 erforderlich. Die Fahrstreifenanzahl auf der Autobahnbrücke der A 46 entspricht dabei aber weiterhin der heutigen Fahrstreifenanzahl (5 Fahrstreifen).

Am Knotenpunkt 3 ist bereits heute die Errichtung einer Lichtsignalanlage zu empfehlen. Im Prognose-Nullfall sowie im Prognose-Planfall 1 ist die Errichtung einer Lichtsignalanlage erforderlich.

Für den Knotenpunkt 9, welcher der Erschließung des GI-Gebietes dient, ist zur Abwicklung der Verkehrsbelastungen des Prognose-Planfalls 1 die Anbindung über eine planfreie Anschlussstelle vorgesehen. Alle vier Rampen sind einstreifig leistungsfähig. Das gleiche gilt für einstreifige Ein- und Ausfahrten bzw. für einstreifige Verflechtungsstrecken.

Mit den empfohlenen Maßnahmen kann an den Knotenpunkten 1, 2, 3, 4 und 9 im Prognose-Planfall 1 rechnerisch eine mindestens ausreichende Qualität (Stufe D) des Verkehrsablaufs erreicht werden.

Die signalisierten Knotenpunkte KP1 bis KP2 müssen verkehrsabhängig koordiniert betrieben werden. Um noch genauere Aussagen zur Verkehrsqualität und zu den erforderlichen Fahrstreifenlängen der koordinierten Knotenpunkte zu erzielen, wurde zusätzlich zu den analytischen Berechnungen eine mikroskopische Verkehrsflusssimulation auf der Grundlage des Prognose-Planfalls 1 erstellt.

6 Überprüfung der Funktionsfähigkeit mittels mikroskopischer Verkehrsflusssimulation

6.1 Anschlussstellen Jüchen Nord (KP1) und Süd (KP2)

Grundlage für die mikroskopische Verkehrsflusssimulation der Knotenpunkte

- B 59 / A 46 AS Jüchen Nord (KP1) und
- B 59 / A 46 AS Jüchen Süd (KP2)

sind der für den Knotenpunkt 1 vorgeschlagene Ausbau (vgl. Kap.5.1) und der für den Knotenpunkt 2 bestehende Ausbau (vgl. Kap.5.2) sowie die morgendlichen und nachmittäglichen Verkehrsbelastungen des Prognose-Planfalls 1 (vgl. Kap.4.3).

Mit Hilfe der Verkehrsflusssimulation wurden an dem nördlichen und an dem südlichen Teilknotenpunkt der Anschlussstelle Jüchen die Verlustzeiten für alle auftretenden Fahrtbeziehungen gemessen. Im Gegensatz zu den reinen Berechnungsergebnissen gemäß HBS berücksichtigen die Simulationsergebnisse auch die auftretenden gegenseitigen Wechselwirkungen, die durch die enge Nachbarschaft der einzelnen Knotenpunkte (z.B. Pulkbildung, Rückstaus, kurze Abbiegefahrstreifen) ausgelöst werden.

Im Rahmen der Simulation wurden zunächst die mittleren Verlustzeiten für die maßgebenden Knotenströme an den einzelnen Knotenpunkten ermittelt. Anschließend erfolgte in Anlehnung an das HBS die entsprechende Zuordnung in die jeweilige Verkehrsqualitätsstufe.

Nachfolgend sind die per Simulation ermittelten Verkehrsqualitäten an den untersuchten Knotenpunkten für die folgenden Belastungsfälle und den o.a. geplanten Ausbaustand dargestellt:

- Prognose-Planfall 1 f
 ür die Morgenspitzenstunde
- Prognose-Planfall 1 f
 ür die Nachmittagsspitzenstunde

Die Knotenpunktgeometrie und die zugrunde gelegten Festzeitprogramme für den nördlichen Teilknotenpunkt (KP1) sind in den Anlagen V-36 bis V-42 dargestellt.

Die Knotenpunktgeometrie und die zugrunde gelegten Festzeitprogramme für den südlichen Teilknotenpunkt (KP2) sind in den Anlagen V-57 bis V-63 dargestellt.

Morgenspitzenstunde

Die folgende Abbildung zeigt die Beurteilung der Verkehrsqualität an den untersuchten Knotenpunkten 1 und 2 für die geplante Situation im Prognose-Planfall 1 für die Morgenspitzenstunde. Die dargestellte Verkehrsqualität berücksichtigt die mit Hilfe der Verkehrsflusssimulation abzubildenden gegenseitigen Wechselwirkungen im Straßennetz.

Die Simulationsergebnisse zeigen, dass die Verkehrsbelastungen des Prognose-Planfalls 1 im geplanten Ausbaustand am **nördlichen Teilknotenpunkt** leistungsfähig und mit einer guten Verkehrsqualität (QSV B) abgewickelt werden können. Für die Linkseinbieger von Osten nach Süden treten mittlere Verlustzeiten von bis zu 30 Sekunden auf.

Am **südlichen Teilknotenpunkt** treten in der nördlichen Zufahrt (B 59) mittlere Verlustzeiten von bis zu 34 Sekunden für den Geradeausverkehr von Norden nach Süden auf. Dies entspricht ebenfalls guten Verkehrsqualität (QSV B).

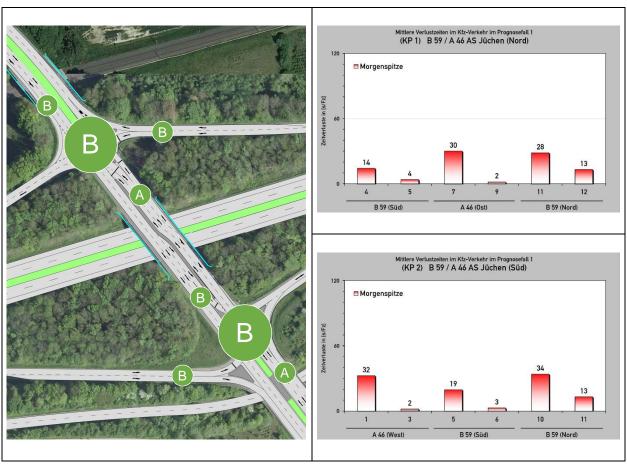


Abbildung 6: Verkehrsqualität in Anlehnung an das HBS - Morgenspitze im Prognosefall-Planfall 1

Nachmittagsspitzenstunde

Die folgende Abbildung zeigt die Beurteilung der Verkehrsqualität an den untersuchten Knotenpunkten für die geplante Situation im Prognose-Planfall 1 für die Nachmittagsspitzenstunde. Die dargestellte Verkehrsqualität berücksichtigt die mit Hilfe der Verkehrsflusssimulation abzubildenden gegenseitigen Wechselwirkungen im Straßennetz.

Die Simulationsergebnisse zeigen, dass die Verkehrsbelastungen des Prognose-Planfalls 1 im geplanten Ausbaustand am **nördlichen Teilknotenpunkt** auch am Nachmittag leistungsfähig mit einer guten Verkehrsqualität (QSV B) abgewickelt werden können. Es treten für den Linkseinbiegeverkehr von Osten nach Süden mittlere Verlustzeiten von bis zu 32 Sekunden auf.

Am **südlichen Teilknotenpunkt** treten in der nördlichen Zufahrt (B 59) mittlere Verlustzeiten von bis zu 36 Sekunden für den Geradeausverkehr von Norden nach Süden auf. Dies entspricht einer leistungsfähigen und befriedigenden Verkehrsqualität (QSV C).

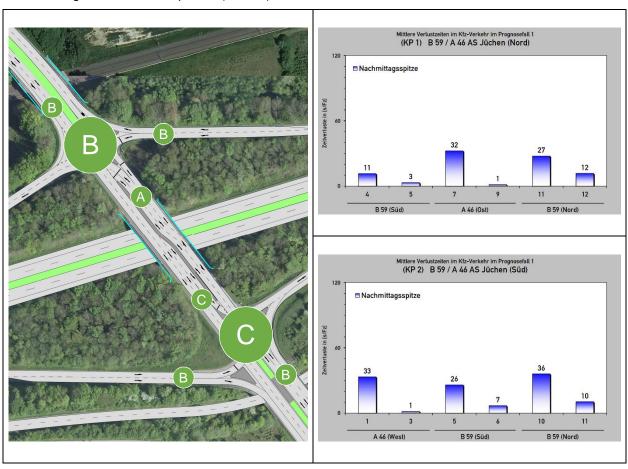


Abbildung 7: Verkehrsqualität in Anlehnung an das HBS - Nachmittagsspitze im Prognose-Planfall 1

6.2 Bewertung der Rückstaulänge der A46

Um die Rückstaufreiheit der **Ausfahrrampe** der A 46 aus Richtung Neuss vom signalisierten Knotenpunkt 1 in Richtung Hauptfahrbahn A 46 nachzuweisen, wurden in der Simulation die Rückstaulängen jeweils für die morgendlichen und nachmittäglichen Prognosebelastungen im Minutentakt über 20 Simulationsläufe erfasst. Hierbei wurden in der Ausfahrrampe auf einer Länge von 120 Metern ab Haltlinie zwei Fahrstreifen und auf einer Länge von 170 Metern ein Fahrstreifen zugrunde gelegt. Insgesamt ist die Ausfahrrampe bis zur baulichen Trenninselspitze rund 290 Meter lang.

Die folgenden Abbildungen zeigen die Auswertung der Rückstaulängen jeweils für die prognostizierte Morgen- und Nachmittagsspitzenstunde. Der Rückstau fällt stets geringer als 290 Meter aus. Morgens beträgt der Rückstau rund 190 Meter und nachmittags rund 130 Meter, d.h. ein Rückstau vom Knotenpunkt 1 auf die Hauptfahrbahn der A 46 kann mit ausreichender Sicherheit ausgeschlossen werden.

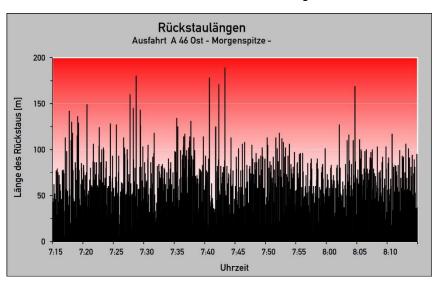


Abbildung 8: Rückstaulängen für die Morgenspitzenstunde im Prognose-Planfall 1

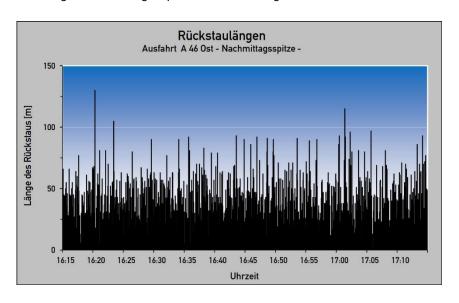


Abbildung 9: Rückstaulängen für die Nachmittagsspitzenstunde im Prognose-Planfall 1

6.3 Zusammenfassung der Ergebnisse

Mit Hilfe der mikroskopischen Verkehrsflusssimulation wurde die verkehrstechnische Funktionsfähigkeit der signalisierten Knotenpunkte

- B 59 / A 46 AS Jüchen Nord (KP1 mit Ausbau) und
- B 59 / A 46 AS Jüchen Süd (KP2)

für die zukünftigen Verkehrsbelastungen des Prognose-Planfalls 1 nachgewiesen.

Es wird darauf hingewiesen, dass die Signalsteuerungen an den einzelnen Knotenpunkten im Rahmen der vorliegenden Untersuchung nur mit Hilfe von Festzeitprogrammen abgebildet wurden. In der Realität können sich daher durch den Einsatz moderner verkehrsabhängiger Steuerungen noch etwas günstigere Kennwerte der Verkehrsqualität einstellen.

Abbildung 10: Ausschnitt aus der Simulation, typische Situation in der Nachmittagsspitzenstunde

Die o.a. Abbildung zeigt einen Ausschnitt (Screenshot, typische Situation in der Nachmittagsspitzenstunde) aus der Visualisierung der Simulation. Im Bereich der Anschlussstellen ist das Verkehrsaufkommen des geplanten Industriegebietes (rote Fahrzeuge) zu erkennen.

Abschließend ist festzustellen, dass die Machbarkeit des empfohlenen Ausbaustands unter verkehrsplanerischen Gesichtspunkten nachgewiesen werden konnte.

7 Verkehrstechnischer Vorentwurf

Im Rahmen der Verkehrsuntersuchung wurde eine maßstäbliche verkehrstechnische Skizze für den erforderlichen Ausbau des gesamten Streckenzuges im Prognose-Planfall 1 entlang der B 59 erstellt (vgl. Anlage E-1). Dem Plan sind der o.a. erforderliche Ausbau der Knotenpunkte

- B 59 / A 46 AS Jüchen Nord (KP1) und
- B 59 / Anbindung GI-Gebiet (KP9)

zu entnehmen.

8 Zusammenfassung und gutachterliche Stellungnahme

Die Städte Grevenbroich und Jüchen sowie die RWE Power AG und die Duisburger Hafen AG planen die Entwicklung des Industrieparks Elsbachtal in Jüchen und Grevenbroich südlich der Anschlussstelle Jüchen an der A 46.

Das o.g. Industriegebiet soll über einen planfreien Knotenpunkt in Form einer linksliegenden Trompete an die B 59 (Abstufung A 540) angebunden werden.

Die Brilon Bondzio Weiser GmbH wurde von der RWE Power AG damit beauftragt, im Rahmen einer Verkehrsuntersuchung die Realisierbarkeit dieses Vorhabens zu prüfen und die erforderlichen Maßnahmen zur Herstellung einer funktionsfähigen Verkehrserschließung zu ermitteln.

Zunächst wurde eine Verkehrszählung durchgeführt. Anschließend wurde unter Berücksichtigung der voraussichtlichen allgemeinen Verkehrsentwicklung sowie des zusätzlichen Verkehrsaufkommens der geplanten Flächen eine Schätzung des maßgebenden zukünftigen Verkehrsaufkommens (Prognose-Planfall) aufgestellt.

Unter Berücksichtigung der Verkehrsbelastungen des Analysefalls, des Prognose-Nullfalls und des Prognose-Planfalls wurde für die zu untersuchenden Knotenpunkte

- B 59 / A 46 AS Jüchen Nord (KP1),
- · B 59 / A 46 AS Jüchen Süd (KP2),
- L116 / AS Gustorf Süd (KP3),
- L116 / AS Gustorf Nord (KP4) und
- B 59 / Anbindung GI-Gebiet (KP9)

die Funktionsfähigkeit überprüft. Dabei wurden die Rechenverfahren des Handbuchs für die Bemessung von Straßenverkehrsanlagen HBS (vgl. FGSV, 2015) angewandt. Die Untersuchung kommt zu den folgenden Ergebnissen:

- Durch das geplante Vorhaben ist werktags mit einem zusätzlichen Verkehr von insgesamt rund 6.000 Kfz-Fahrten/Tag zu rechnen. In der maßgebenden Spitzenstunde am Morgen entspricht dies 37 Kfz/h im Quellverkehr bzw. 469 Kfz/h im Zielverkehr und in der maßgebenden Spitzenstunde am Nachmittag 378 Kfz/h im Quellverkehr bzw. 301 Kfz/h im Zielverkehr.
- Die Knotenpunkte 2 und 4 (s.o.) sind im Bestand für die Abwicklung der Verkehrsbelastungen des Prognose-Planfalls ausreichend leistungsfähig.
- Am Knotenpunkt 1 (s.o.) kann im Prognose-Planfall auf den zweiten Geradeausfahrstreifen in der südlichen Zufahrt der B 59 für den Verkehr von Süden nach Norden verzichtet werden, dafür wird aber eine zweistreifige Führung des Linksabbiegeverkehrs von Süden nach Westen (Richtung A 46) verbunden mit einer Aufweitung auf zwei Fahrstreifen in der Rampe zur A 46 erforderlich. Die Fahrstreifenanzahl auf der Autobahnbrücke der A 46 entspricht dabei aber weiterhin der heutigen Fahrstreifenanzahl (5 Fahrstreifen).
- Am Knotenpunkt 3 (s.o.) ist bereits heute die Errichtung einer Lichtsignalanlage zu empfehlen. Im Prognose-Nullfall sowie im Prognose-Planfall ist die Errichtung einer Lichtsignalanlage erforderlich.

- Die Erschließung des GI-Gebietes ist mit einem planfreien Knotenpunkt vorgesehen. Zur Abwicklung der Verkehrsbelastungen des Prognose-Planfalls sind einstreifige Ein- und Ausfahrten, Verflechtungsstrecken und Rampen ausreichend.
- Die verkehrstechnische Funktionsfähigkeit der signalisierten Knotenpunkte B 59 / A 46 AS Jüchen Nord (KP1) und B 59 / A 46 AS Jüchen Süd (KP2) wurde mit Hilfe der mikroskopischen Verkehrsflusssimulation für die Verkehrsbelastungen des Prognose-Planfalls nachgewiesen. Die Rückstaulängen sind unproblematisch.
- Im Rahmen der Verkehrsuntersuchung wurde eine maßstäbliche verkehrstechnische Skizze für den erforderlichen Ausbau der Knotenpunkte 1 und 9 entlang der B 59 erstellt.

Das geplante Vorhaben ist unter Berücksichtigung der empfohlenen Maßnahmen unter verkehrstechnischen Gesichtspunkten realisierbar. Die verkehrliche Erschließung des Vorhabens kann damit gesichert werden.

Brilon Bondzio Weiser Ingenieurgesellschaft für Verkehrswesen Bochum, März 2020

Literaturverzeichnis

Forschungsgesellschaft für Straßen- und Verkehrswesen (Hrsg.) (2008):

Richtlinien für die Anlage von Autobahnen (RAA). Köln.

Forschungsgesellschaft für Straßen- und Verkehrswesen (Hrsg.) (2015):

Handbuch für die Bemessung von Straßenverkehrsanlagen (HBS). Köln.

Forschungsgesellschaft für Straßen- und Verkehrswesen (Hrsg.) (2006):

Richtlinien für die Anlage von Stadtstraßen (RAST 06). Köln.

Bundesministerium für Verkehr und digitale Infrastruktur BMVI (Hrsg.) (2014):

Prognose der deutschlandweiten Verkehrsverflechtungen 2030. Berlin.

Bosserhoff, Dietmar(Hrsg.) (2019):

VER_Bau: Programm zur Abschätzung des Verkehrsaufkommens durch Vorhaben der Bauleitplanung. Gustavsburg.

Hessisches Landesamt für Straßen- und Verkehrswesen (Hrsg.) (2000):

Integration von Verkehrsplanung und räumlicher Planung. Heft 42 der Schriftenreihe der Hessischen Straßen- und Verkehrsverwaltung. Wiesbaden.

Forschungsgesellschaft für Straßen- und Verkehrswesen (Hrsg.) (2006):

Hinweise zur Schätzung des Verkehrsaufkommens von Gebietstypen. Köln.

Forschungsgesellschaft für Straßen- und Verkehrswesen (Hrsg.) (2006):

Hinweise zur mikroskopischen Verkehrsflusssimulation. Köln.

Ingenieurwesen für Verkehrswesen und Verfahrensentwicklung GmbH & Co. KG (Hrsg.) (2018)

Verkehrskonzept Jüchen, Variantenuntersuchung 2030. Aachen.

BKR Aachen (Hrsg.) (2019)

Stadt Grevenbroich - Stadt Jüchen. Interkommunales Industriegebiet. Strukturkonzept. Aachen

Anlagenverzeichnis

Verkehrsbelastungen

Anlage B-1: Untersuchungsraum sowie Lage des Vorhabens und der relevanten Knotenpunkte

Anlage B-2: Darstellung der Bau- und Betriebsform der Knotenpunkte

Anlage B-3: Verkehrsbelastungen im Analysefall 30.10.2018 in der Morgenspitze [Kfz/h] (SV/h)

Anlage B-4: Verkehrsbelastungen im Analysefall 30.10.2018 in der Nachmittagsspitze

[Kfz/h] (SV/h)

Anlage B-5: Verkehrsbelastungen im Prognose-Nullfall in der Morgenspitze [Kfz/h] (SV/h)

Anlage B-6: Verkehrsbelastungen im Prognose-Nullfall in der Nachmittagsspitze

[Kfz/h] (SV/h)

Anlage B-7: Verkehrsverteilung GI-Gebiet

Anlage B-8: Verkehrsbelastungen im Prognose-Planfall 1 in der Morgenspitze

[Kfz/h] (SV/h)

Anlage B-9: Verkehrsbelastungen im Prognose-Planfall 1 in der Nachmittagsspitze

[Kfz/h] (SV/h)

Verkehrstechnische Berechnungen

Knotenpunkt KP1: B 59 / A46 AS Jüchen Nord

Analysefall im Bestand

Anlage V-1: Knotendaten

Anlage V-2: Verkehrsbelastungen in der Morgenspitze

Anlage V-3: Signalzeitenplan in der Morgenspitze

Anlage V-4: Nachweis der Verkehrsqualität in der Morgenspitze

Anlage V-5: Verkehrsbelastungen in der Nachmittagsspitze

Anlage V-6: Signalzeitenplan in der Nachmittagsspitze

Anlage V-7: Nachweis der Verkehrsqualität in der Nachmittagsspitze

Prognose-Nullfall im Bestand

Anlage V-8: Knotendaten

Anlage V-9: Verkehrsbelastungen in der Morgenspitze

Anlage V-10: Signalzeitenplan in der Morgenspitze

Anlage V-11: Nachweis der Verkehrsqualität in der Morgenspitze

Anlage V-12: Verkehrsbelastungen in der Nachmittagsspitze

Anlage V-13: Signalzeitenplan in der Nachmittagsspitze

Anlage V-14: Nachweis der Verkehrsqualität in der Nachmittagsspitze

Prognose-Planfall 1 im Bestand

Anlage V-15: Knotendaten

Anlage V-16: Verkehrsbelastungen in der Morgenspitze

Anlage V-17: Signalzeitenplan in der Morgenspitze

Anlage V-18: Nachweis der Verkehrsqualität in der Morgenspitze

Anlage V-19: Verkehrsbelastungen in der Nachmittagsspitze

Anlage V-20: Signalzeitenplan in der Nachmittagsspitze

Anlage V-21: Nachweis der Verkehrsqualität in der Nachmittagsspitze

Analysefall mit Ausbau

Anlage V-22: Knotendaten

Anlage V-23: Verkehrsbelastungen in der Morgenspitze

Anlage V-24: Signalzeitenplan in der Morgenspitze

Anlage V-25: Nachweis der Verkehrsqualität in der Morgenspitze

Anlage V-26: Verkehrsbelastungen in der Nachmittagsspitze

Anlage V-27: Signalzeitenplan in der Nachmittagsspitze

Anlage V-28: Nachweis der Verkehrsqualität in der Nachmittagsspitze

Prognose-Nullfall mit Ausbau

Anlage V-29: Knotendaten

Anlage V-30: Verkehrsbelastungen in der Morgenspitze

Anlage V-31: Signalzeitenplan in der Morgenspitze

Anlage V-32: Nachweis der Verkehrsqualität in der Morgenspitze

Anlage V-33: Verkehrsbelastungen in der Nachmittagsspitze

Anlage V-34: Signalzeitenplan in der Nachmittagsspitze

Anlage V-35: Nachweis der Verkehrsqualität in der Nachmittagsspitze

Prognose-Planfall 1 mit Ausbau

Anlage V-36: Knotendaten

Anlage V-37: Verkehrsbelastungen in der Morgenspitze

Anlage V-38: Signalzeitenplan in der Morgenspitze

Anlage V-39: Nachweis der Verkehrsqualität in der Morgenspitze

Anlage V-40: Verkehrsbelastungen in der Nachmittagsspitze

Anlage V-41: Signalzeitenplan in der Nachmittagsspitze

Anlage V-42: Nachweis der Verkehrsqualität in der Nachmittagsspitze

Knotenpunkt KP2: B 59 / A46 AS Jüchen Süd

Analysefall im Bestand

Anlage V-43: Knotendaten

Anlage V-44: Verkehrsbelastungen in der Morgenspitze

Anlage V-45: Signalzeitenplan in der Morgenspitze

Anlage V-46: Nachweis der Verkehrsqualität in der Morgenspitze

Anlage V-47: Verkehrsbelastungen in der Nachmittagsspitze

Anlage V-48: Signalzeitenplan in der Nachmittagsspitze

Anlage V-49: Nachweis der Verkehrsqualität in der Nachmittagsspitze

Prognose-Nullfall im Bestand

Anlage V-50: Knotendaten

Anlage V-51: Verkehrsbelastungen in der Morgenspitze

Anlage V-52: Signalzeitenplan in der Morgenspitze

Anlage V-53: Nachweis der Verkehrsqualität in der Morgenspitze

Anlage V-54: Verkehrsbelastungen in der Nachmittagsspitze

Anlage V-55: Signalzeitenplan in der Nachmittagsspitze

Anlage V-56: Nachweis der Verkehrsqualität in der Nachmittagsspitze

Prognose-Planfall 1 im Bestand

Anlage V-57: Knotendaten

Anlage V-58: Verkehrsbelastungen in der Morgenspitze

Anlage V-59: Signalzeitenplan in der Morgenspitze

Anlage V-60: Nachweis der Verkehrsqualität in der Morgenspitze

Anlage V-61: Verkehrsbelastungen in der Nachmittagsspitze

Anlage V-62: Signalzeitenplan in der Nachmittagsspitze

Anlage V-63: Nachweis der Verkehrsqualität in der Nachmittagsspitze

Knotenpunkt KP3: L 116 / AS Gustorf Süd

Analysefall im Bestand

Anlage V-64: Verkehrsbelastungen in der Morgenspitze

Anlage V-65: Nachweis der Verkehrsqualität in der Morgenspitze

Anlage V-66: Verkehrsbelastungen in der Nachmittagsspitze

Anlage V-67: Nachweis der Verkehrsqualität in der Nachmittagsspitze

Prognose-Nullfall im Bestand

Anlage V-68: Verkehrsbelastungen in der Morgenspitze

Anlage V-69: Nachweis der Verkehrsqualität in der Morgenspitze Anlage V-70: Verkehrsbelastungen in der Nachmittagsspitze

Anlage V-71: Nachweis der Verkehrsqualität in der Nachmittagsspitze

Prognose-Planfall 1 im Bestand

Anlage V-72: Verkehrsbelastungen in der Morgenspitze

Anlage V-73: Nachweis der Verkehrsqualität in der Morgenspitze Anlage V-74: Verkehrsbelastungen in der Nachmittagsspitze

Anlage V-75: Nachweis der Verkehrsqualität in der Nachmittagsspitze

Analysefall mit LSA

Anlage V-76: Knotendaten

Anlage V-77: Verkehrsbelastungen in der Morgenspitze Anlage V-78:

Anlage V-79: Nachweis der Verkehrsqualität in der Morgenspitze Anlage V-80: Verkehrsbelastungen in der Nachmittagsspitze

Anlage V-81: Signalzeitenplan in der Nachmittagsspitze

Anlage V-82: Nachweis der Verkehrsqualität in der Nachmittagsspitze

Signalzeitenplan in der Morgenspitze

Prognose-Nullfall mit LSA

Knotendaten Anlage V-83:

Anlage V-84: Verkehrsbelastungen in der Morgenspitze

Anlage V-85: Signalzeitenplan in der Morgenspitze

Anlage V-86: Nachweis der Verkehrsqualität in der Morgenspitze Anlage V-87: Verkehrsbelastungen in der Nachmittagsspitze

Anlage V-88: Signalzeitenplan in der Nachmittagsspitze

Anlage V-89: Nachweis der Verkehrsqualität in der Nachmittagsspitze

Prognose-Planfall 1 mit LSA

Anlage V-90: Knotendaten

Anlage V-91: Verkehrsbelastungen in der Morgenspitze

Anlage V-92: Signalzeitenplan in der Morgenspitze

Anlage V-93: Nachweis der Verkehrsqualität in der Morgenspitze

Anlage V-94: Verkehrsbelastungen in der Nachmittagsspitze

Anlage V-95: Signalzeitenplan in der Nachmittagsspitze

Anlage V-96: Nachweis der Verkehrsqualität in der Nachmittagsspitze

Knotenpunkt KP4: L 116 / AS Gustorf Nord

Analysefall im Bestand

Anlage V-97: Verkehrsbelastungen in der Morgenspitze

Anlage V-98: Nachweis der Verkehrsqualität in der Morgenspitze

Anlage V-99: Verkehrsbelastungen in der Nachmittagsspitze

Anlage V-100: Nachweis der Verkehrsqualität in der Nachmittagsspitze

Prognose-Nullfall im Bestand

Anlage V-101: Verkehrsbelastungen in der Morgenspitze

Anlage V-102: Nachweis der Verkehrsqualität in der Morgenspitze Anlage V-103: Verkehrsbelastungen in der Nachmittagsspitze

Anlage V-104: Nachweis der Verkehrsqualität in der Nachmittagsspitze

Prognose-Planfall 1 im Bestand

Anlage V-105: Verkehrsbelastungen in der Morgenspitze

Anlage V-106: Nachweis der Verkehrsqualität in der Morgenspitze Anlage V-107: Verkehrsbelastungen in der Nachmittagsspitze

Anlage V-108: Nachweis der Verkehrsqualität in der Nachmittagsspitze

Knotenpunkt KP9: B 59 / Anbindung GI-Gebiet

Prognose-Planfall 1

A 1 1/400

Anlage V-109:	Nachweis der Verkehrsqualität in der Morgenspitze für die Rampe Nord – West
Anlage V-110:	Nachweis der Verkehrsqualität in der Nachmittagsspitze für die Rampe Nord – West
Anlage V-111:	Nachweis der Verkehrsqualität in der Morgenspitze für die Rampe Süd – West
Anlage V-112:	Nachweis der Verkehrsqualität in der Nachmittagsspitze für die Rampe Süd – West
Anlage V-113:	Nachweis der Verkehrsqualität in der Morgenspitze für die Rampe Süd – Ost
Anlage V-114:	Nachweis der Verkehrsqualität in der Nachmittagsspitze für die Rampe Süd – Ost
Anlage V-115:	Nachweis der Verkehrsqualität in der Morgenspitze für die Rampe Nord – Ost
Anlage V-116:	Nachweis der Verkehrsqualität in der Nachmittagsspitze für die Rampe Nord – Ost

Verkehrstechnische Skizze

Anlage E-1: Maßstäbliche verkehrstechnische Skizze für den Ausbau des Streckenzug mit den

Knotenpunkten 1, 2 und 9

Erläuterungen zu den Anlagen für vorfahrtgeregelte Knotenpunkte

Strom-Nr.: Nummer der Ströme

q-e-vorh: Vorhandene Verkehrsstärke in der Zufahrt [Pkw-E/h]

tg: Grenzzeitlücke der Ströme [s]

tf: Folgezeitlücke der Ströme [s]

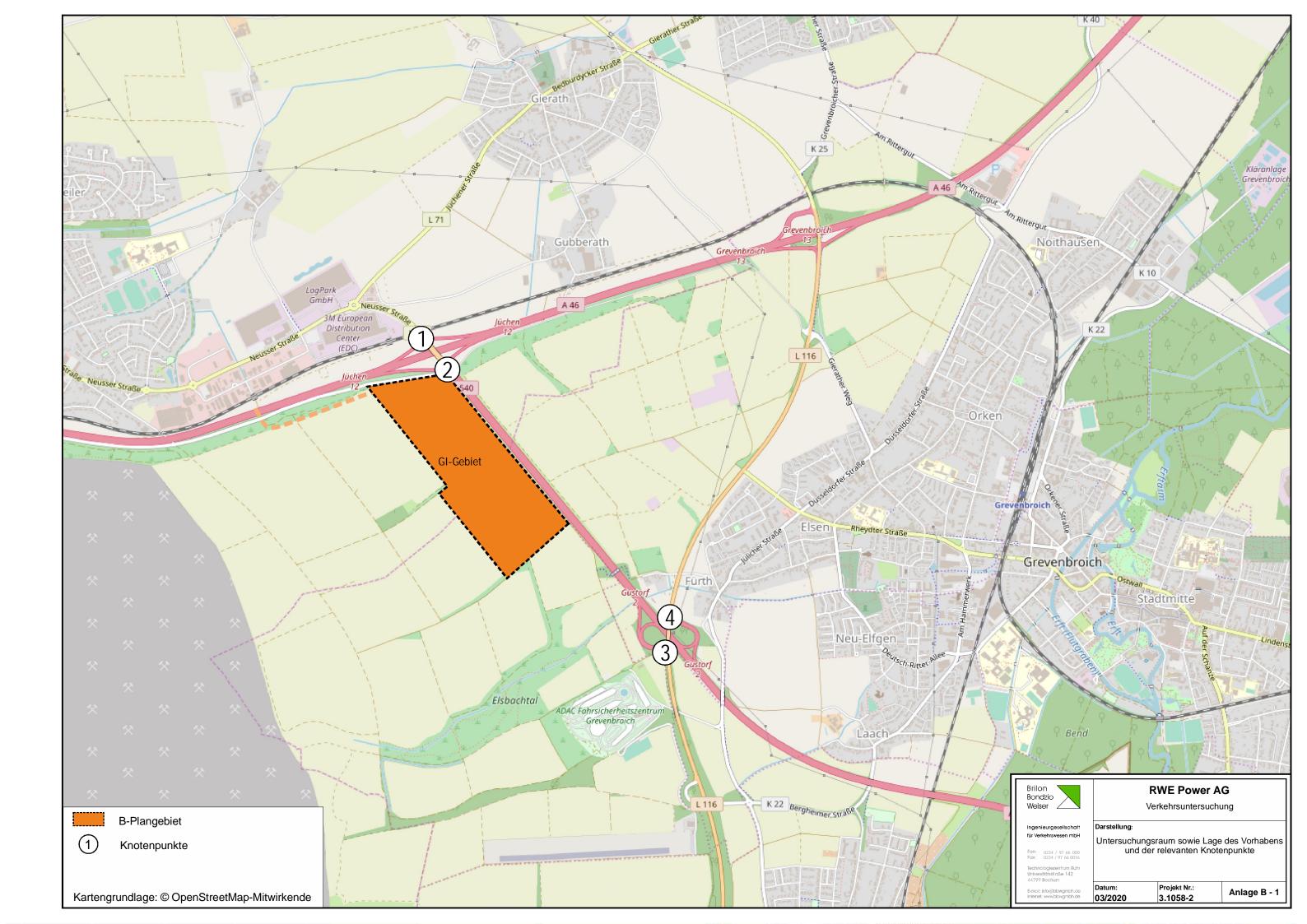
q-Haupt: Verkehrsstärke der bevorrechtigten Ströme [Kfz/h]

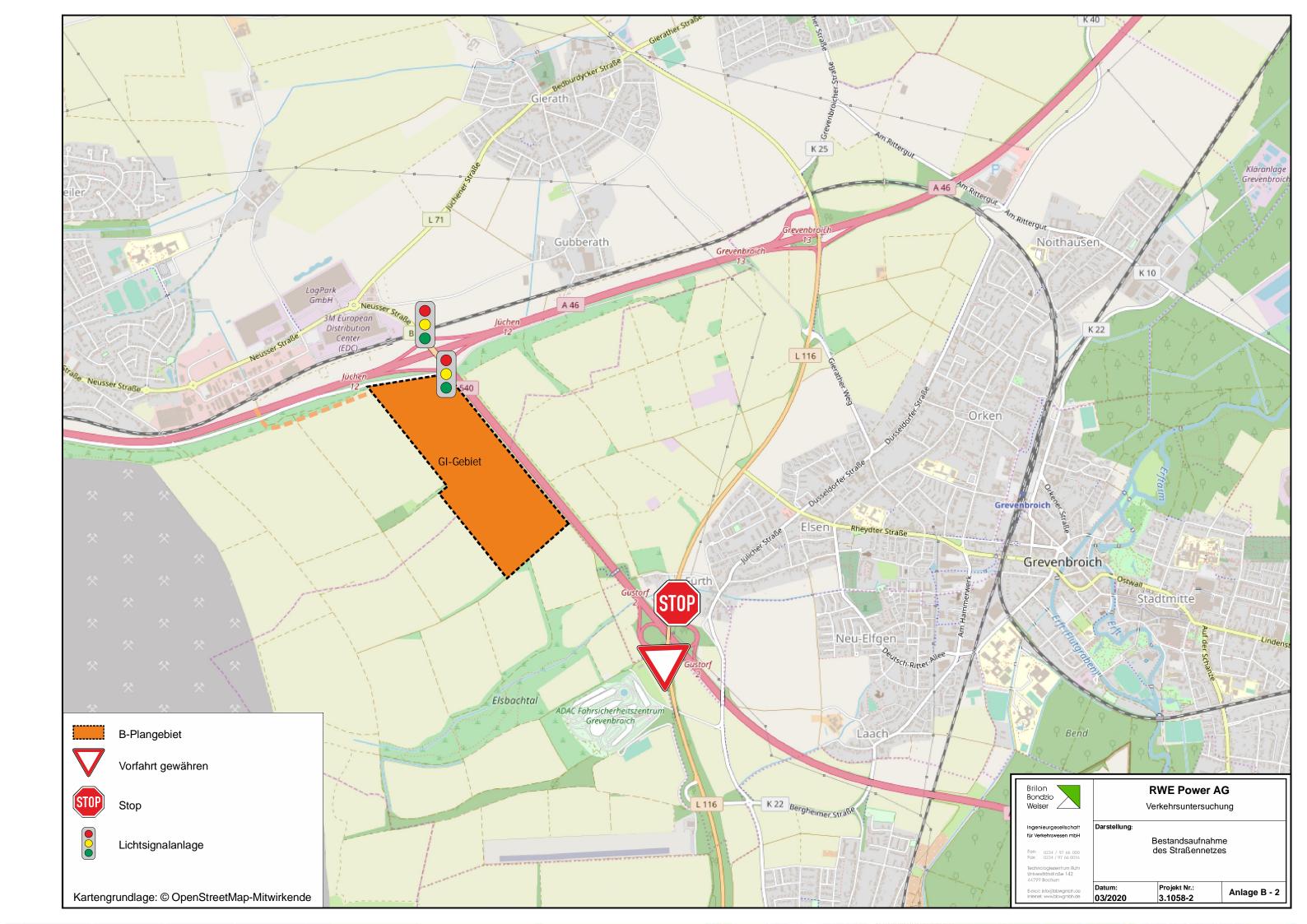
q-max: Kapazität der Ströme [Pkw-E/h]

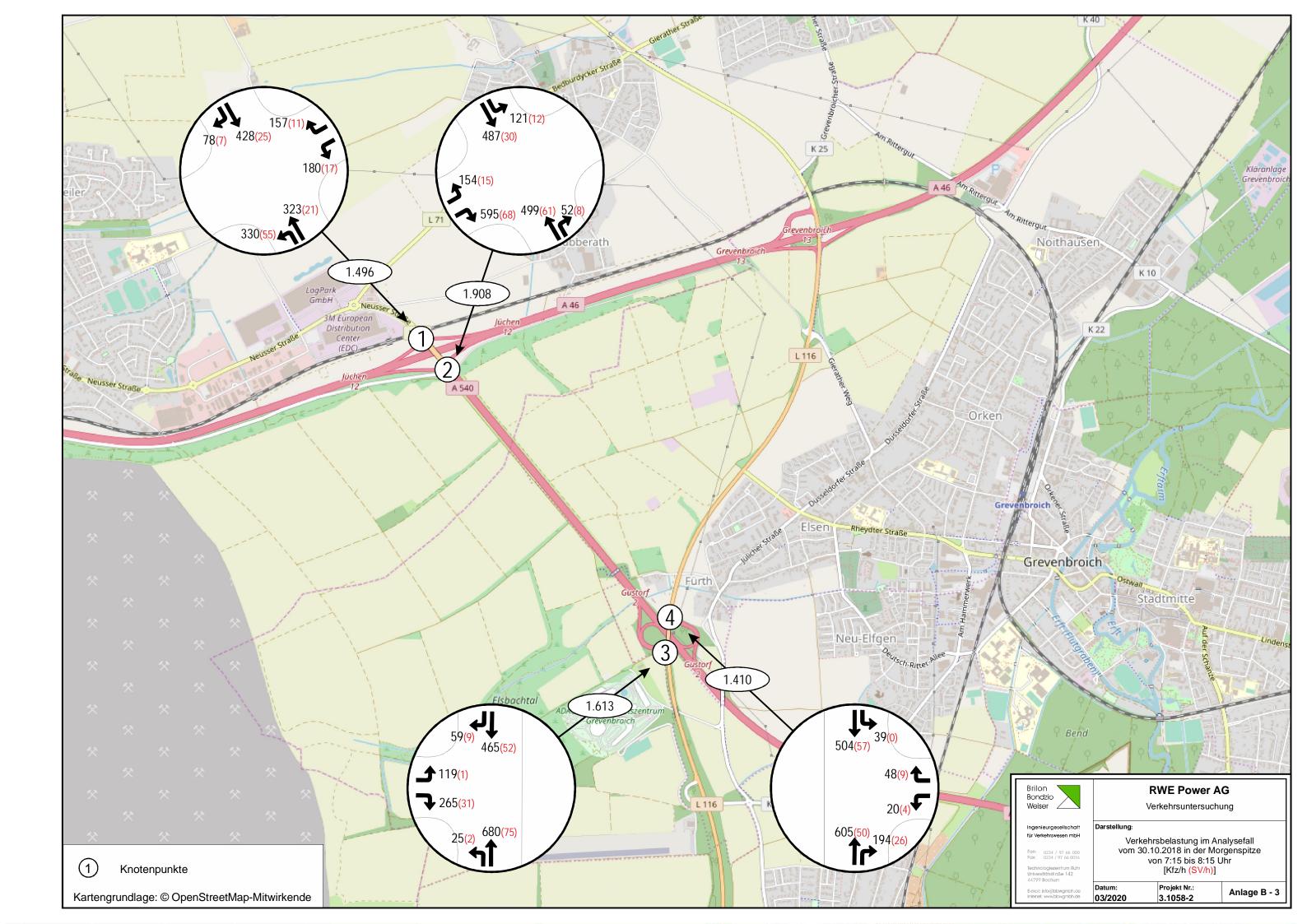
Misch: Kapazität der Mischströme [Pkw-E/h]

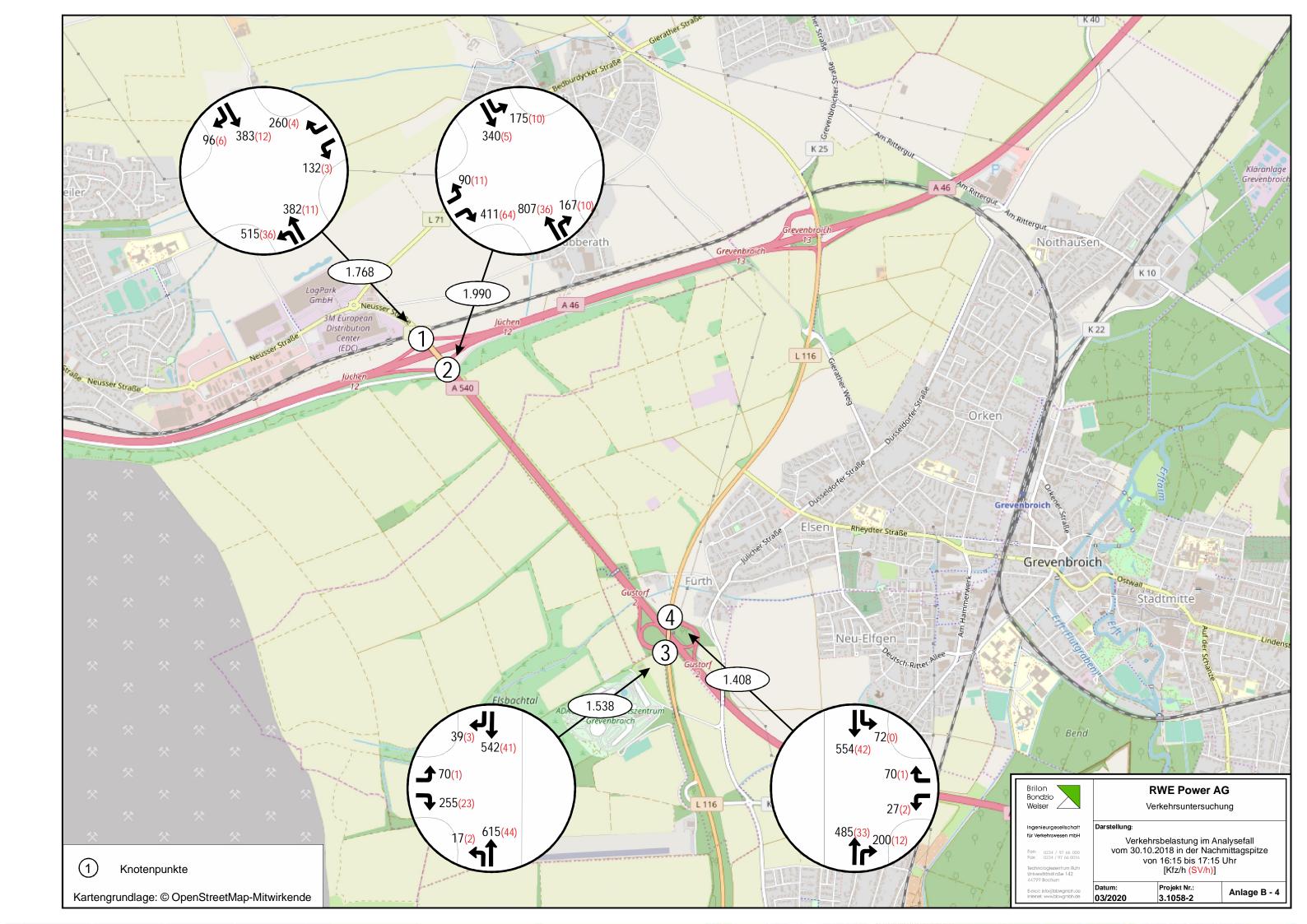
W: Mittlere Wartezeit pro Pkw-E [s]

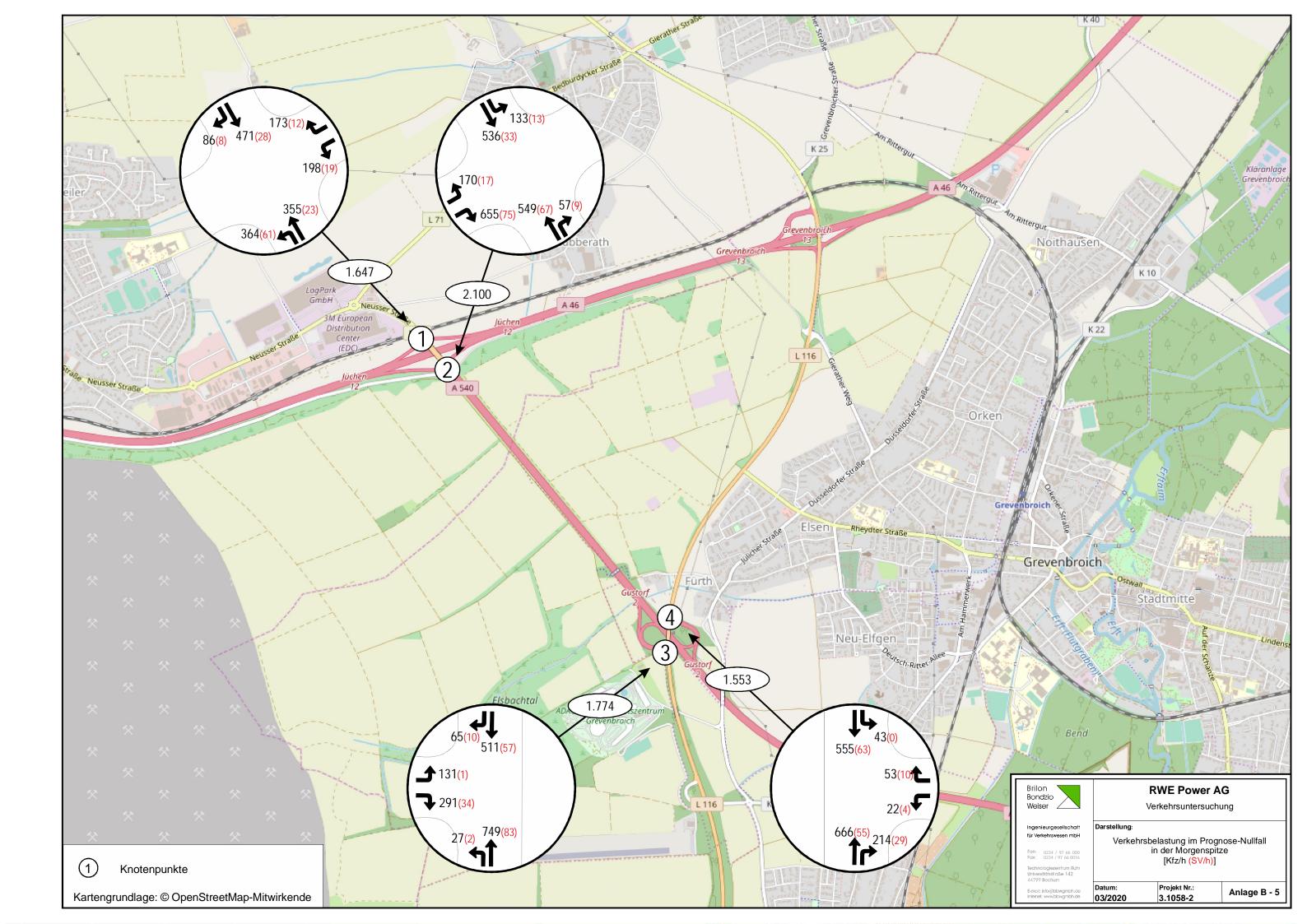
N-95.: Rückstaulänge, die zu 95% aller Zeit nicht überschritten [Pkw-E]

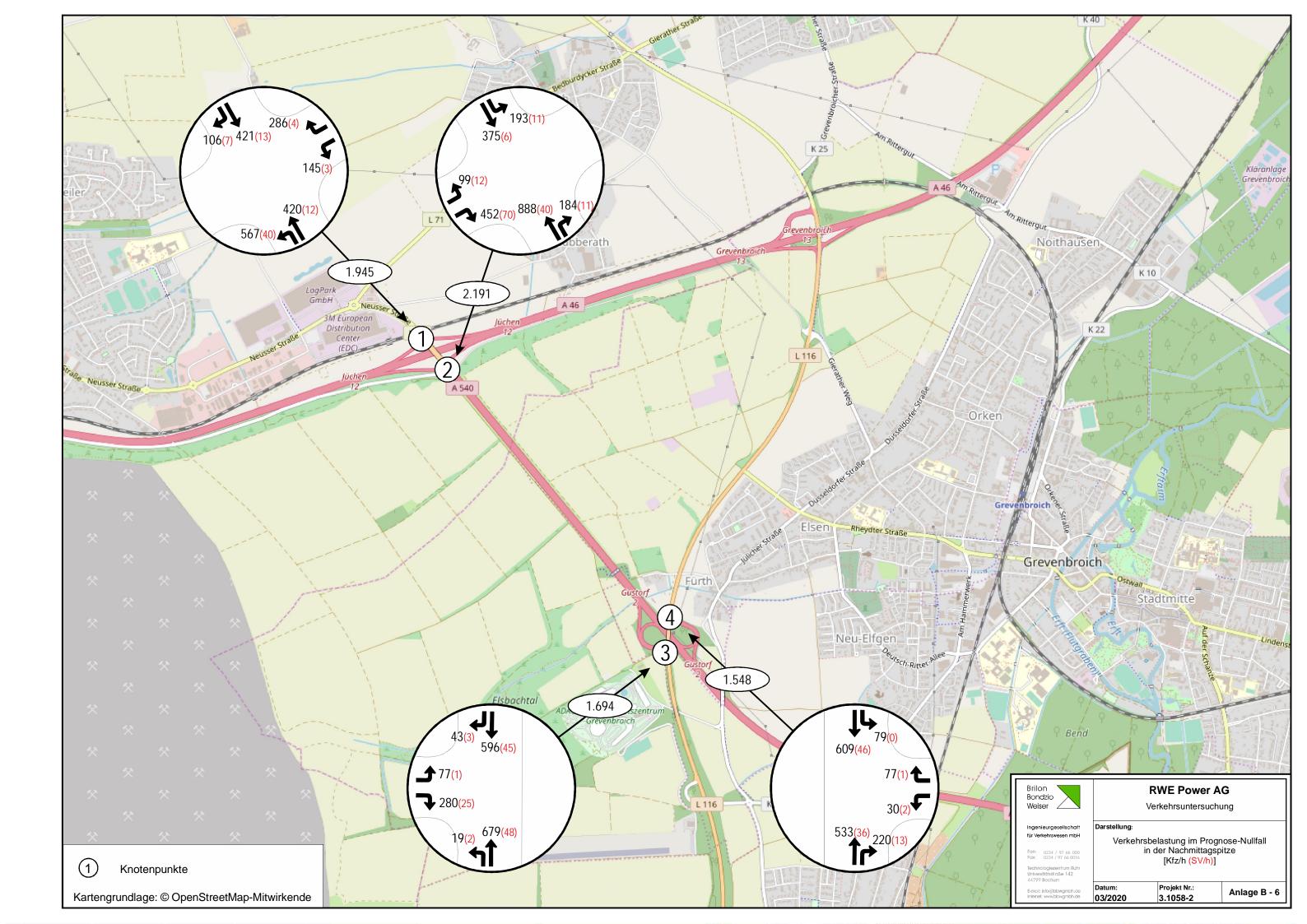

wird

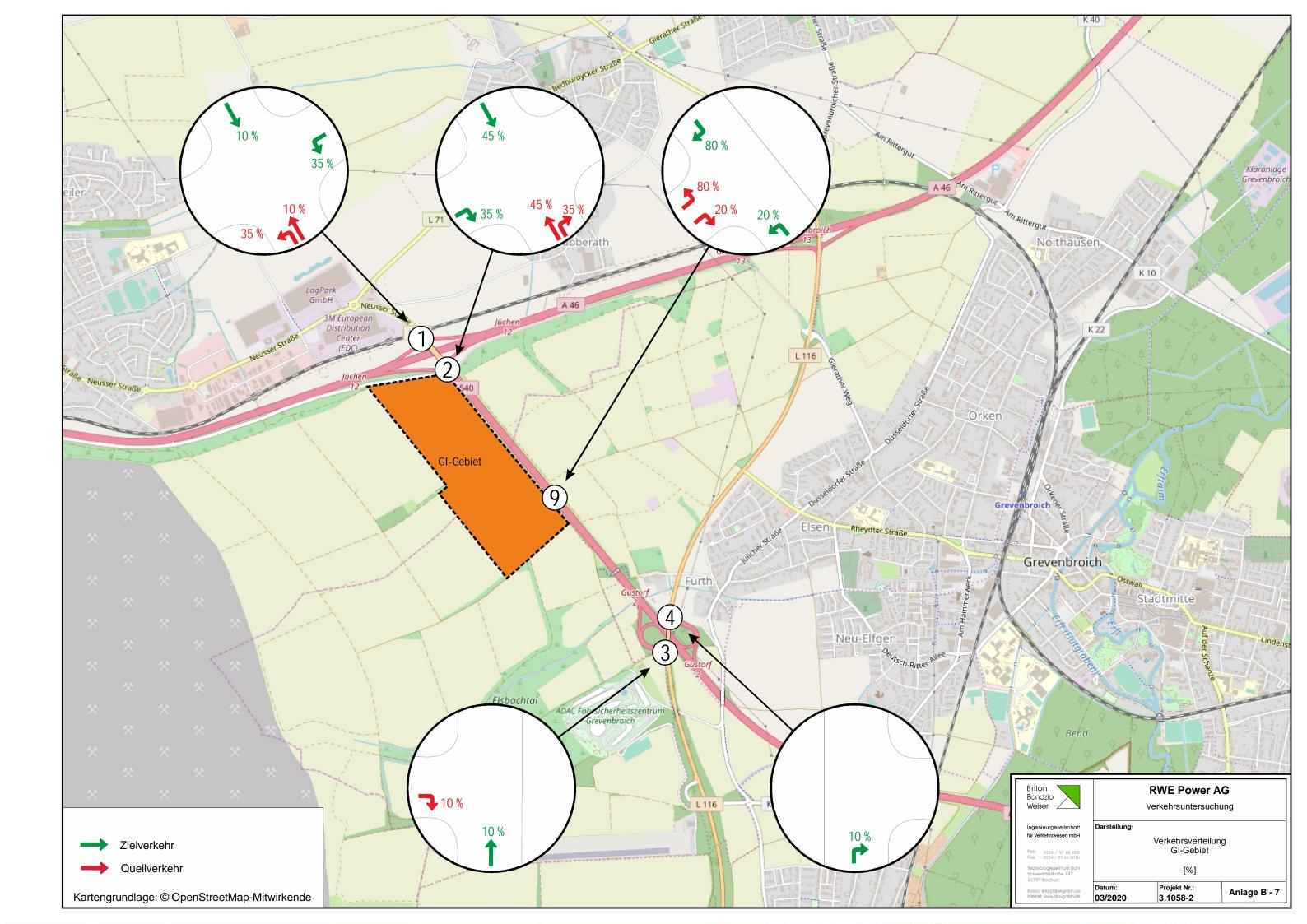

N-99.: Rückstaulänge, die zu 99% aller Zeit nicht überschritten [Pkw-E]

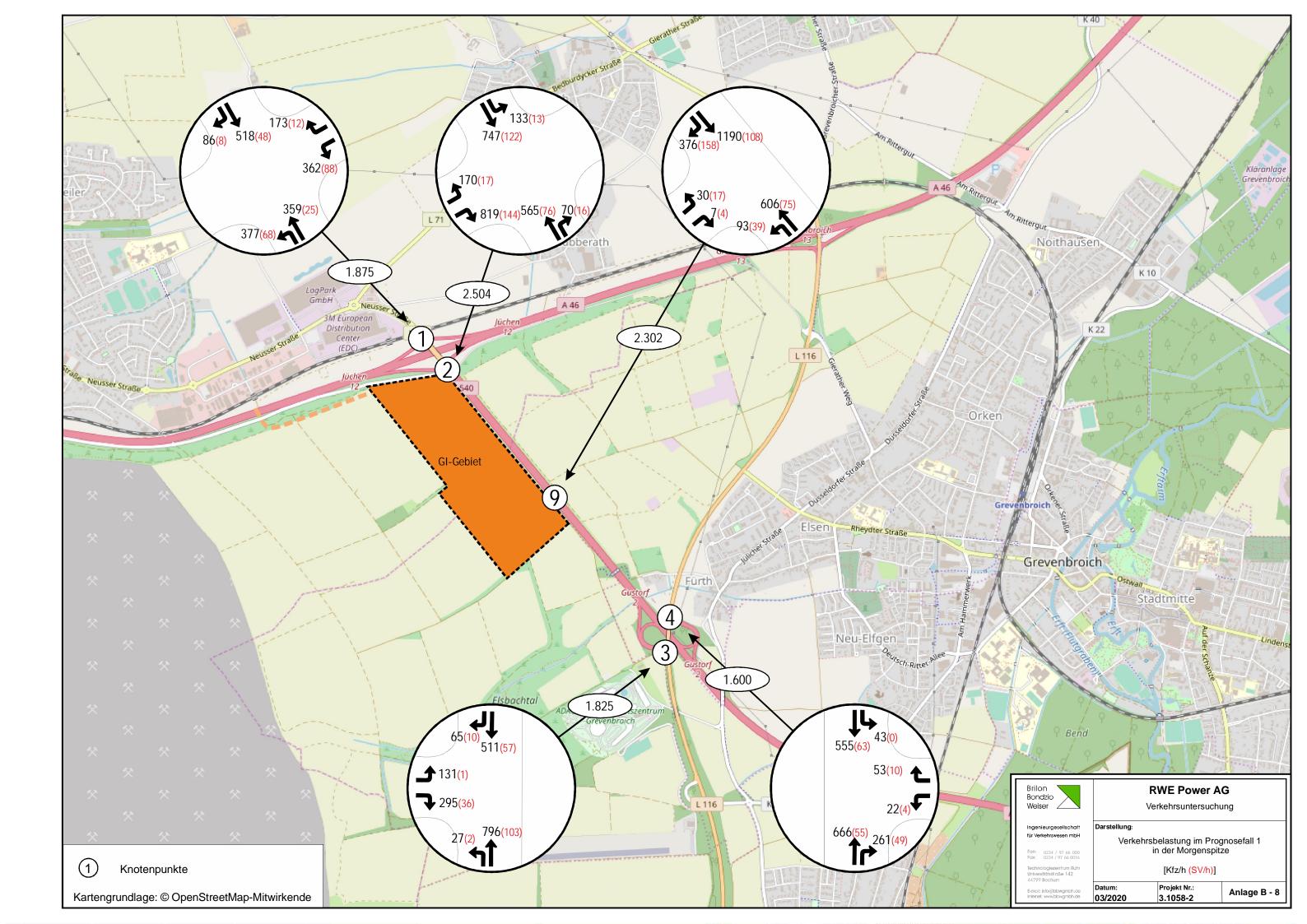

wird

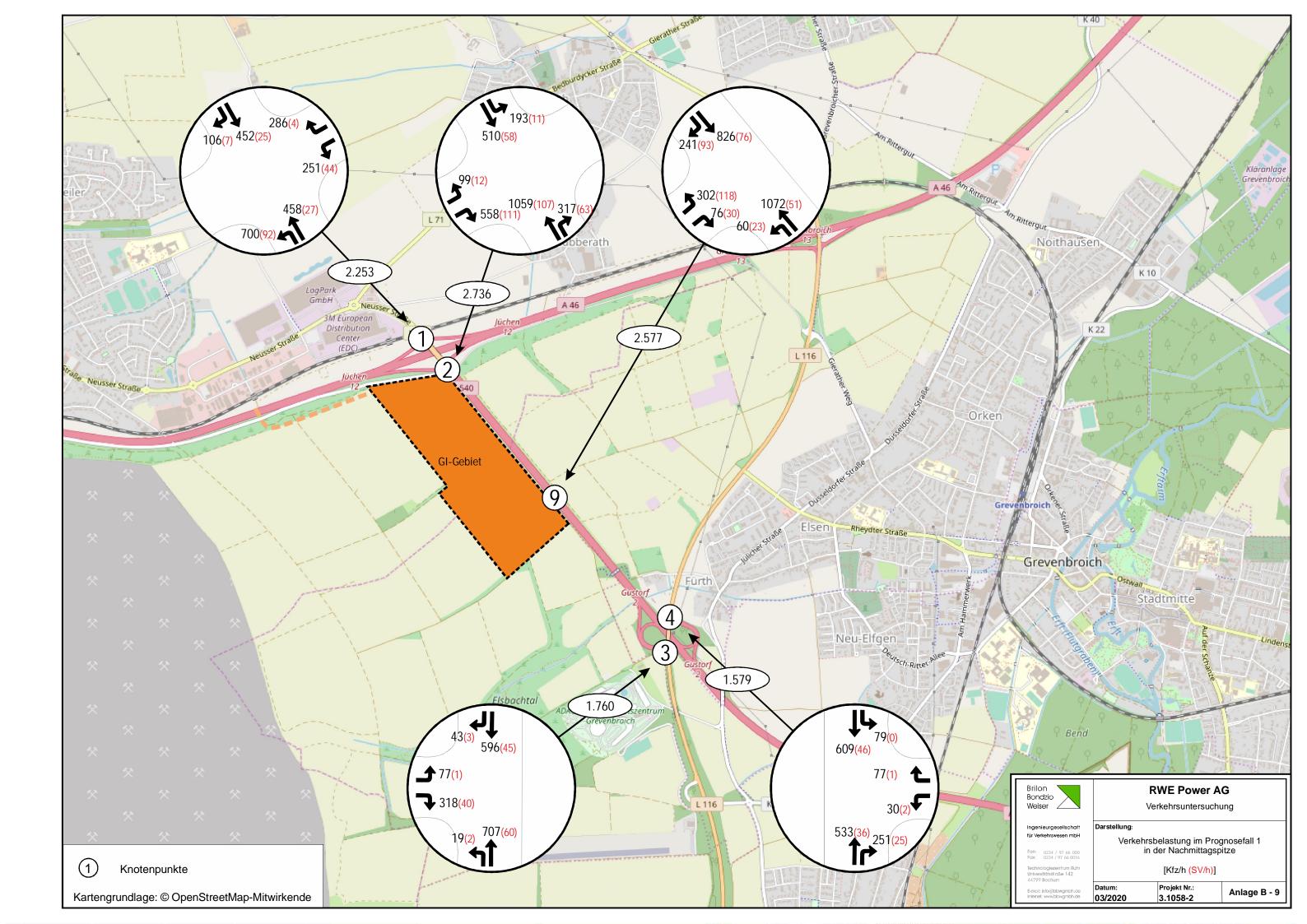

QSV: Qualitätsstufe des Verkehrsablaufs

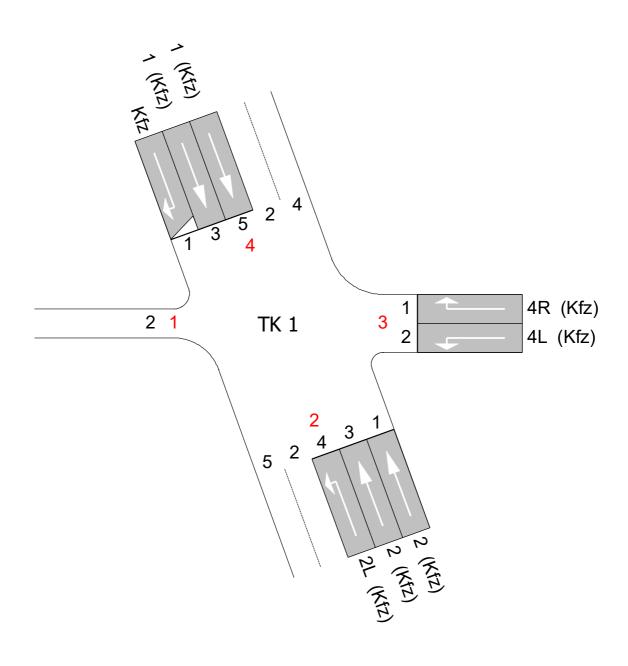

Anlagen



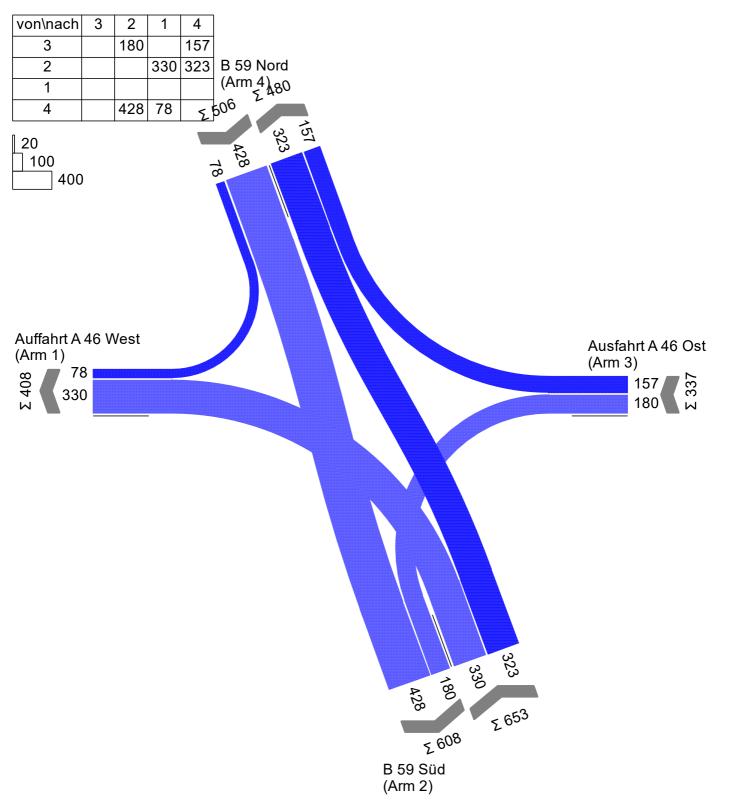








LISA



Projekt	Jüchen und Grevenbroich				
Knotenpunkt	KP1 - B 59 / A 46 AS Jüchen Nord				
Auftragsnr.	3.1058-2	Variante	01 - Bestand	Datum	05.02.2020
Bearbeiter	Ch. Knof	Abzeichnung		Blatt	

Strombelastungsplan

LISA

Analyse MS

Projekt	Jüchen und Grevenbroich				
Knotenpunkt	KP1 - B 59 / A 46 AS Jüchen Nord				
Auftragsnr.	3.1058-2	Variante	01 - Bestand	Datum	05.02.2020
Bearbeiter	Ch. Knof	Abzeichnung		Blatt	

Signalzeitenplan

LISA

SP4 (Analyse MS) TU=90 Signal-gruppe SG 0,50 89 23 23 2 0,14 2L 28 59 30 0,65 4L 0,48 63 21 6364 4R 63 85 21 HBS 2015 Signalzeitenplan (6:30 - 8:30) mit den Verkehrsbelastungen angepassten Grünzeiten gemäß verkehrsabhängiger Steuerung vom 13.11.1996 des Ingenieurbüros Geiger + Hamburgier GmbH Gelb Gruen

Projekt	Jüchen und Grevenbroich										
Knotenpunkt	KP1 - B 59 / A 46 AS Jüchen Nord										
Auftragsnr.	3.1058-2	Variante	01 - Bestand	Datum	05.02.2020						
Bearbeiter	Ch. Knof	Abzeichnung		Blatt							

HBS-Bewertung 2015

- 1 16 4

MIV - SP4 (Analyse MS) (TU=90) - Analyse MS (Friedrich)

Zuf	Fstr.Nr.	Symbol	SGR	tr [s]	ta [s]	ts [s]	fA	q [Kfz/h]	m [Kfz/U]	t ^B [s/Kfz]	qs [Kfz/h]	N мs,95>nк	nc [Kfz/U]	C [Kfz/h]	х	tw [s]	Nge [Kfz]	Nмs [Kfz]	NMS,95 [Kfz]	L× [m]	QSV	Bemerkung
	1	_	4R	21	22	69	0,244	157	3,925	1,989	1810	-	11	442	0,355	30,756	0,319	3,568	6,763	44,839	В	
3	2	↓	4L	21	22	69	0,244	180	4,500	2,364	1523	-	9	372	0,484	34,611	0,563	4,421	7,977	54,658	В	
	4	4	2L	30	31	60	0,344	330	8,250	2,419	1488	-	13	512	0,645	33,240	1,188	8,143	12,969	97,267	В	
2	3	•	2	58	59	32	0,656	162	4,050	1,967	1830	-	30	1195	0,136	6,112	0,088	1,618	3,769	24,717	Α	
	1	•	2	58	59	32	0,656	162	4,050	1,967	1830	-	30	1195	0,136	6,112	0,088	1,618	3,769	24,717	Α	
	1	لم																				
4	3	1	1	23	24	67	0,267	245	6,125	1,955	1841	-	12	490	0,500	32,348	0,605	5,786	9,854	64,209	В	
	5	1	1	23	24	67	0,267	245	6,125	1,955	1841	-	12	490	0,500	32,348	0,605	5,786	9,854	64,209	В	
Knotenpunktssummen: 1481 4696																						
Gewichtete Mittelwerte: 0,435 26,913																						
	TU = 90 s T = 3600 s Instationaritätsfaktor = 1,1																					

Zuf	Zufahrt	[-]
Fstr.Nr.	Fahrstreifen-Nummer	[-]
Symbol	Fahrstreifen-Symbol	[-]
SGR	Signalgruppe	[-]
t_{F}	Freigabezeit	[s]
t _A	Abflusszeit	[s]
ts	Sperrzeit	[s]
f _A	Abflusszeitanteil	[-]
q	Belastung	[Kfz/h]
m	Mittlere Anzahl eintreffender Kfz pro Umlauf	[Kfz/U]
t _B	Mittlerer Zeitbedarfswert	[s/Kfz]
qs	Sättigungsverkehrsstärke	[Kfz/h]
$N_{MS,95}$ > n_K	Kurzer Aufstellstreifen vorhanden	[-]
n_{C}	Abflusskapazität pro Umlauf	[Kfz/U]
С	Kapazität des Fahrstreifens	[Kfz/h]
x	Auslastungsgrad	[-]
t_W	Mittlere Wartezeit	[s]
N_{GE}	Mittlere Rückstaulänge bei Freigabeende	[Kfz]
N_{MS}	Mittlere Rückstaulänge bei Maximalstau	[Kfz]
$N_{MS,95}$	Rückstau bei Maximalstau, der mit einer stat. Sicherheit von 95% nicht überschritten wird	[Kfz]
L _x	Erforderliche Stauraumlänge	[m]
QSV	Qualitätsstufe des Verkehrsablaufs	[-]

Projekt	Jüchen und Grevenbroich				
Knotenpunkt	KP1 - B 59 / A 46 AS Jüchen Nord				
Auftragsnr.	3.1058-2	Variante	01 - Bestand	Datum	05.02.2020
Bearbeiter	Ch. Knof	Abzeichnung		Blatt	

Strombelastungsplan

L LISA

Analyse NMS

von\nach	3	2	1	4
3		132		260
2			515	382
1				
4		383	96	

Projekt	Jüchen und Grevenbroich				
Knotenpunkt	KP1 - B 59 / A 46 AS Jüchen Nord				
Auftragsnr.	3.1058-2	Variante	01 - Bestand	Datum	05.02.2020
Bearbeiter	Ch. Knof	Abzeichnung		Blatt	

Signalzeitenplan

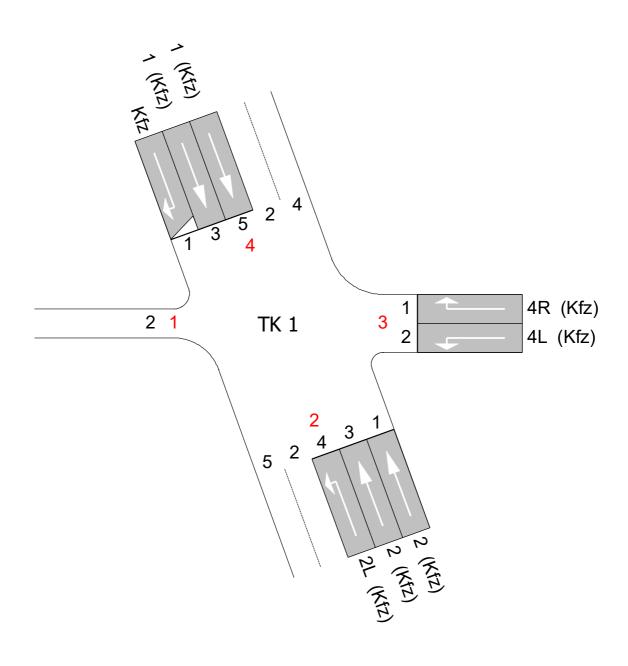
- 1 164

SP5 (Analyse NMS) TU=90 Signal-gruppe SG 0,49 89 21 21 2 0,16 2L 26 62 35 0,76 4L 0,37 18 4R 61 85 23 HBS 2015 Signalzeitenplan (15:00 - 19:00) mit den Verkehrsbelastungen angepassten Grünzeiten gemäß verkehrsabhängiger Steuerung vom 13.11.1996 des Ingenieurbüros Geiger + Hamburgier GmbH Gelb Gruen Rot

Projekt	Jüchen und Grevenbroich										
Knotenpunkt	KP1 - B 59 / A 46 AS Jüchen Nord										
Auftragsnr.	3.1058-2	Variante	01 - Bestand	Datum	05.02.2020						
Bearbeiter	Ch. Knof	Abzeichnung		Blatt							

HBS-Bewertung 2015

L 164

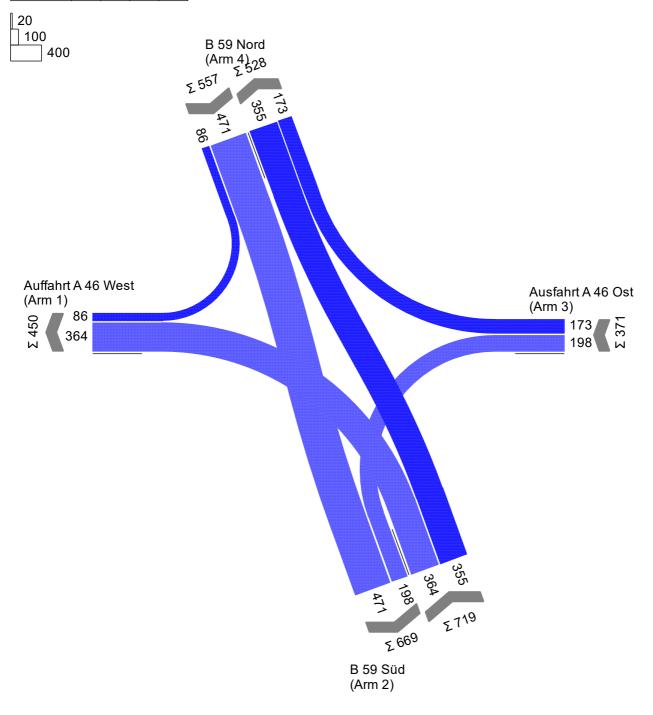

MIV - SP5 (Analyse NMS) (TU=90) - Analyse NMS (Friedrich)

Zuf	Fstr.Nr.	Symbol	SGR	tr [s]	tA [s]	ts [s]	fA	q [Kfz/h]	m [Kfz/U]	t ^B [s/Kfz]	qs [Kfz/h]	N мs,95>nк	n⊂ [Kfz/U]	C [Kfz/h]	х	tw [s]	Nge [Kfz]	Nмs [Kfz]	Nms,95 [Kfz]	L× [m]	QSV	Bemerkung
	1		4R	23	24	67	0,267	260	6,500	1,841	1955	-	13	522	0,498	32,024	0,600	6,095	10,270	63,037	В	
3	2	1	4L	18	19	72	0,211	132	3,300	2,140	1682	-	9	355	0,372	33,888	0,344	3,169	6,180	38,341	В	
	4	4	2L	35	36	55	0,400	515	12,875	2,138	1684	-	17	674	0,764	36,372	2,442	13,567	19,796	131,247	С	
2	3	1	2	56	57	34	0,633	191	4,775	1,885	1910	-	30	1214	0,157	7,038	0,104	2,050	4,471	28,087	Α	
	1	•	2	56	57	34	0,633	191	4,775	1,885	1910	-	30	1214	0,157	7,038	0,104	2,050	4,471	28,087	Α	
	1	لم																				
4	3	1	1	21	22	69	0,244	227	5,675	1,883	1912	-	12	467	0,486	33,565	0,569	5,437	9,381	58,875	В	
	5	1	1	21	22	69	0,244	227	5,675	1,883	1912	-	12	467	0,486	33,565	0,569	5,437	9,381	58,875	В	
Knotenpunktssummen: 1743 4913																						
	Gewichte	te Mittelw	erte:												0,489	28,375						
TU = 90 s T = 3600 s Instationaritätsfaktor = 1,1																						

Zuf	Zufahrt	[-]
Fstr.Nr.	Fahrstreifen-Nummer	[-]
Symbol	Fahrstreifen-Symbol	[-]
SGR	Signalgruppe	[-]
t _F	Freigabezeit	[s]
t _A	Abflusszeit	[s]
ts	Sperrzeit	[s]
f _A	Abflusszeitanteil	[-]
q	Belastung	[Kfz/h]
m	Mittlere Anzahl eintreffender Kfz pro Umlauf	[Kfz/U]
t _B	Mittlerer Zeitbedarfswert	[s/Kfz]
qs	Sättigungsverkehrsstärke	[Kfz/h]
$N_{MS,95}$ > n_K	Kurzer Aufstellstreifen vorhanden	[-]
n_{C}	Abflusskapazität pro Umlauf	[Kfz/U]
С	Kapazität des Fahrstreifens	[Kfz/h]
X	Auslastungsgrad	[-]
t_W	Mittlere Wartezeit	[s]
N_{GE}	Mittlere Rückstaulänge bei Freigabeende	[Kfz]
N_{MS}	Mittlere Rückstaulänge bei Maximalstau	[Kfz]
$N_{MS,95}$	Rückstau bei Maximalstau, der mit einer stat. Sicherheit von 95% nicht überschritten wird	[Kfz]
L _x	Erforderliche Stauraumlänge	[m]
QSV	Qualitätsstufe des Verkehrsablaufs	[-]

Projekt	Jüchen und Grevenbroich				
Knotenpunkt	KP1 - B 59 / A 46 AS Jüchen Nord				
Auftragsnr.	3.1058-2	Variante	01 - Bestand	Datum	05.02.2020
Bearbeiter	Ch. Knof	Abzeichnung		Blatt	

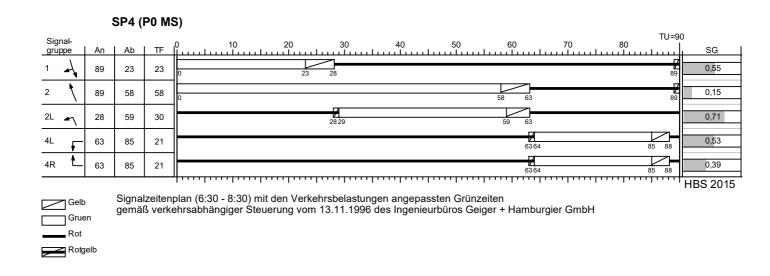
LISA


Projekt	Jüchen und Grevenbroich				
Knotenpunkt	KP1 - B 59 / A 46 AS Jüchen Nord				
Auftragsnr.	3.1058-2	Variante	01 - Bestand	Datum	05.02.2020
Bearbeiter	Ch. Knof	Abzeichnung		Blatt	

Strombelastungsplan

LISA

P0 MS


von\nach	3	2	1	4
3		198		173
2			364	355
1				
4		471	86	

Projekt	Jüchen und Grevenbroich				
Knotenpunkt	KP1 - B 59 / A 46 AS Jüchen Nord				
Auftragsnr.	3.1058-2	Variante	01 - Bestand	Datum	05.02.2020
Bearbeiter	Ch. Knof	Abzeichnung		Blatt	

Signalzeitenplan

L 164

Projekt	Jüchen und Grevenbroich				
Knotenpunkt	KP1 - B 59 / A 46 AS Jüchen Nord				
Auftragsnr.	3.1058-2	Variante	01 - Bestand	Datum	05.02.2020
Bearbeiter	Ch. Knof	Abzeichnung		Blatt	

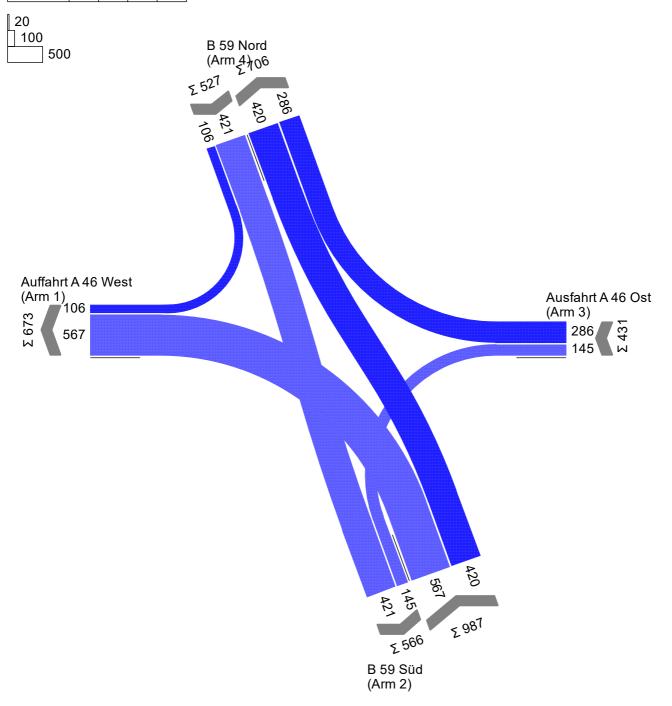
HBS-Bewertung 2015

- 1 16 4

MIV - SP4 (P0 MS) (TU=90) - P0 MS (Friedrich)

Zuf	Fstr.Nr.	Symbol	SGR	t _F [s]	ta [s]	ts [s]	fA	q [Kfz/h]	m [Kfz/U]	t _B [s/Kfz]	qs [Kfz/h]	N мs,95> n к	nc [Kfz/U]	C [Kfz/h]	х	tw [s]	Nge [Kfz]	Nмs [Kfz]	Nms,95 [Kfz]	Lx [m]	QSV	Bemerkung
	1	_ _	4R	21	22	69	0,244	173	4,325	1,987	1812	1	11	442	0,391	31,486	0,375	3,990	7,368	48,806	В	
3	2	Ţ	4L	21	22	69	0,244	198	4,950	2,368	1520	-	9	371	0,534	36,374	0,701	5,004	8,787	60,314	С	
	4	4	2L	30	31	60	0,344	364	9,100	2,421	1487	-	13	512	0,711	37,623	1,705	9,607	14,849	111,457	С	
2	3	*	2	58	59	32	0,656	178	4,450	1,967	1830	-	30	1196	0,149	6,197	0,098	1,795	4,061	26,632	Α	
	1	•	2	58	59	32	0,656	178	4,450	1,967	1830	-	30	1196	0,149	6,197	0,098	1,795	4,061	26,632	Α	
	1	لم																				
4	3	7	1	23	24	67	0,267	270	6,750	1,960	1837	-	12	490	0,551	33,925	0,759	6,560	10,892	71,168	В	
	5	1	1	23	24	67	0,267	270	6,750	1,960	1837	-	12	490	0,551	33,925	0,759	6,560	10,892	71,168	В	
	Knotenpu	ınktssumı	men:					1631						4697								
	Gewichte	te Mittelw	erte:												0,480	28,737						
TU = 90 s T = 3600 s Instationaritätsfaktor = 1,1																						

Zuf	Zufahrt	[-]
Fstr.Nr.	Fahrstreifen-Nummer	[-]
Symbol	Fahrstreifen-Symbol	[-]
SGR	Signalgruppe	[-]
t_{F}	Freigabezeit	[s]
t_A	Abflusszeit	[s]
ts	Sperrzeit	[s]
f _A	Abflusszeitanteil	[-]
q	Belastung	[Kfz/h]
m	Mittlere Anzahl eintreffender Kfz pro Umlauf	[Kfz/U]
t _B	Mittlerer Zeitbedarfswert	[s/Kfz]
qs	Sättigungsverkehrsstärke	[Kfz/h]
$N_{MS,95}>n_K$	Kurzer Aufstellstreifen vorhanden	[-]
nc	Abflusskapazität pro Umlauf	[Kfz/U]
С	Kapazität des Fahrstreifens	[Kfz/h]
X	Auslastungsgrad	[-]
t _W	Mittlere Wartezeit	[s]
N_{GE}	Mittlere Rückstaulänge bei Freigabeende	[Kfz]
N_{MS}	Mittlere Rückstaulänge bei Maximalstau	[Kfz]
$N_{MS,95}$	Rückstau bei Maximalstau, der mit einer stat. Sicherheit von 95% nicht überschritten wird	[Kfz]
L_x	Erforderliche Stauraumlänge	[m]
QSV	Qualitätsstufe des Verkehrsablaufs	[-]


Projekt	Jüchen und Grevenbroich				
Knotenpunkt	KP1 - B 59 / A 46 AS Jüchen Nord				
Auftragsnr.	3.1058-2	Variante	01 - Bestand	Datum	05.02.2020
Bearbeiter	Ch. Knof	Abzeichnung		Blatt	

Strombelastungsplan

L LISA

P0 NMS

von\nach	3	2	1	4
3		145		286
2			567	420
1				
4		421	106	

Projekt	Jüchen und Grevenbroich				
Knotenpunkt	KP1 - B 59 / A 46 AS Jüchen Nord				
Auftragsnr.	3.1058-2	Variante	01 - Bestand	Datum	05.02.2020
Bearbeiter	Ch. Knof	Abzeichnung		Blatt	

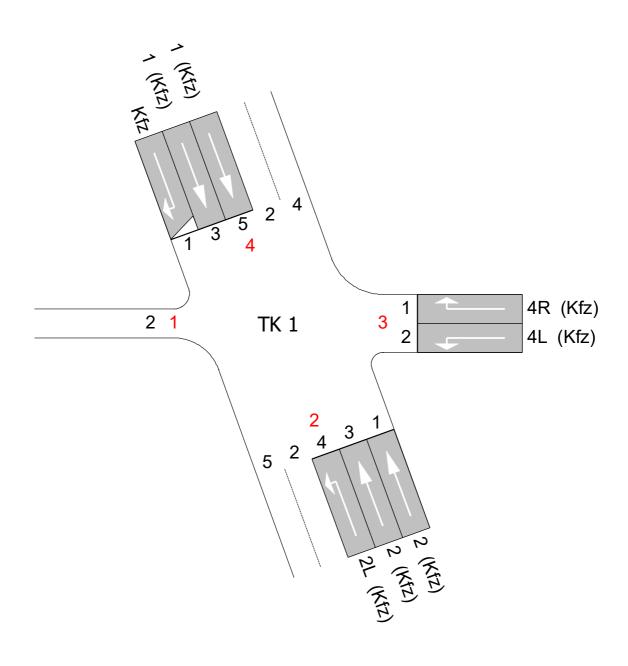
Signalzeitenplan

SP5 (P0 NMS) TU=90 Signal-gruppe SG 0,54 89 21 21 2 0,17 2L 26 62 35 0,84 4L 0,41 18 4R 61 85 23 HBS 2015 Signalzeitenplan (15:00 - 19:00) mit den Verkehrsbelastungen angepassten Grünzeiten gemäß verkehrsabhängiger Steuerung vom 13.11.1996 des Ingenieurbüros Geiger + Hamburgier GmbH Gelb Gruen

Projekt	Jüchen und Grevenbroich				
Knotenpunkt	KP1 - B 59 / A 46 AS Jüchen Nord				
Auftragsnr.	3.1058-2	Variante	01 - Bestand	Datum	05.02.2020
Bearbeiter	Ch. Knof	Abzeichnung		Blatt	

HBS-Bewertung 2015

L 164

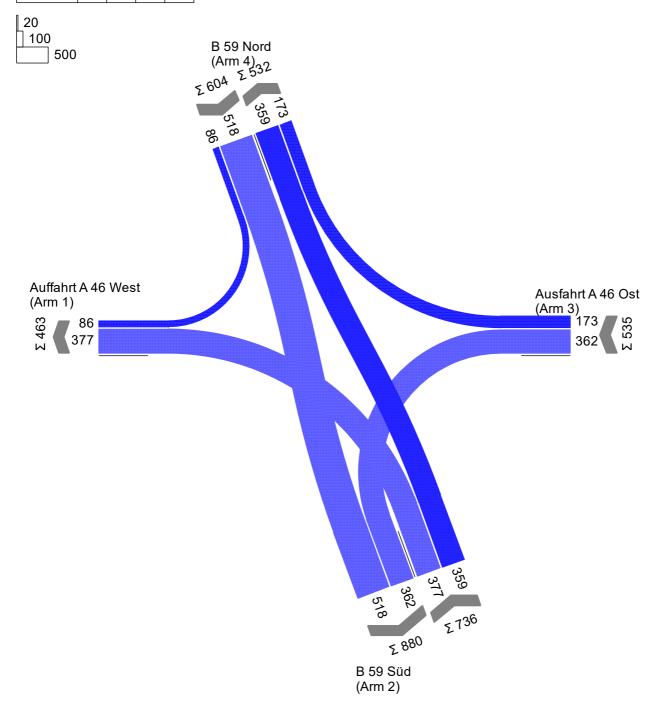

MIV - SP5 (P0 NMS) (TU=90) - P0 NMS (Friedrich)

Zuf	Fstr.Nr.	Symbol	SGR	tr [s]	tA [s]	ts [s]	fA	q [Kfz/h]	m [Kfz/U]	t _B [s/Kfz]	qs [Kfz/h]	N мs,95>nк	nc [Kfz/U]	C [Kfz/h]	х	tw [s]	Nge [Kfz]	N _{MS} [Kfz]	NMS,95 [Kfz]	L× [m]	QSV	Bemerkung
	1	_	4R	23	24	67	0,267	286	7,150	1,838	1959	1	13	523	0,547	33,448	0,746	6,883	11,320	69,346	В	
3	2	↓	4L	18	19	72	0,211	145	3,625	2,134	1687	-	9	356	0,407	34,710	0,402	3,531	6,709	41,502	В	
	4	4	2L	35	36	55	0,400	567	14,175	2,140	1682	-	17	673	0,842	49,702	4,725	17,549	24,634	163,471	С	
2	3	_	2	56	57	34	0,633	210	5,250	1,877	1918	-	30	1214	0,173	7,153	0,117	2,281	4,835	30,257	Α	
	1	1	2	56	57	34	0,633	210	5,250	1,877	1918	-	30	1214	0,173	7,153	0,117	2,281	4,835	30,257	Α	
	1	لم																				
4	3	1	1	21	22	69	0,244	251	6,275	1,886	1909	-	12	466	0,539	35,169	0,719	6,181	10,386	65,307	С	
	5	1	1	21	22	69	0,244	251	6,275	1,886	1909	-	12	466	0,539	35,169	0,719	6,181	10,386	65,307	С	
	Knotenpu	ınktssumı	men:					1920						4912								
	Gewichte	te Mittelw	erte:												0,540	33,041						
TU = 90 s T = 3600 s Instationaritätsfaktor = 1,1																						

Zuf	Zufahrt	[-]
Fstr.Nr.	Fahrstreifen-Nummer	[-]
Symbol	Fahrstreifen-Symbol	[-]
SGR	Signalgruppe	[-]
t _F	Freigabezeit	[s]
t _A	Abflusszeit	[s]
ts	Sperrzeit	[s]
f _A	Abflusszeitanteil	[-]
q	Belastung	[Kfz/h]
m	Mittlere Anzahl eintreffender Kfz pro Umlauf	[Kfz/U]
t _B	Mittlerer Zeitbedarfswert	[s/Kfz]
qs	Sättigungsverkehrsstärke	[Kfz/h]
$N_{MS,95}$ > n_K	Kurzer Aufstellstreifen vorhanden	[-]
n_{C}	Abflusskapazität pro Umlauf	[Kfz/U]
С	Kapazität des Fahrstreifens	[Kfz/h]
X	Auslastungsgrad	[-]
t_W	Mittlere Wartezeit	[s]
N_{GE}	Mittlere Rückstaulänge bei Freigabeende	[Kfz]
N_{MS}	Mittlere Rückstaulänge bei Maximalstau	[Kfz]
$N_{MS,95}$	Rückstau bei Maximalstau, der mit einer stat. Sicherheit von 95% nicht überschritten wird	[Kfz]
L _x	Erforderliche Stauraumlänge	[m]
QSV	Qualitätsstufe des Verkehrsablaufs	[-]

Projekt	Jüchen und Grevenbroich								
Knotenpunkt	KP1 - B 59 / A 46 AS Jüchen Nord								
Auftragsnr.	3.1058-2	Variante	01 - Bestand	Datum	05.02.2020				
Bearbeiter	Ch. Knof	Abzeichnung		Blatt					

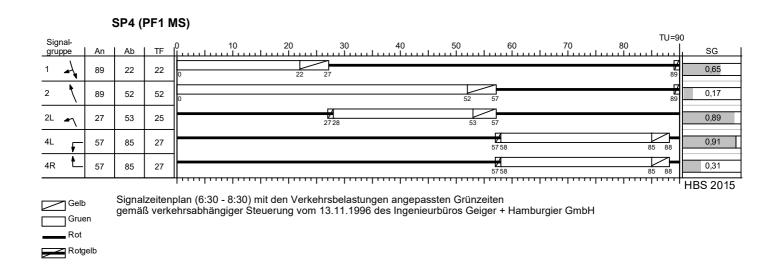
LISA


Projekt	Jüchen und Grevenbroich									
Knotenpunkt	KP1 - B 59 / A 46 AS Jüchen Nord									
Auftragsnr.	3.1058-2	Variante	01 - Bestand	Datum	05.02.2020					
Bearbeiter	Ch. Knof	Abzeichnung		Blatt						

Strombelastungsplan

LION

PF1 MS


von\nach	3	2	1	4
3		362		173
2			377	359
1				
4		518	86	

Projekt	Jüchen und Grevenbroich									
Knotenpunkt	KP1 - B 59 / A 46 AS Jüchen Nord									
Auftragsnr.	3.1058-2	Variante	01 - Bestand	Datum	05.02.2020					
Bearbeiter	Ch. Knof	Abzeichnung		Blatt						

Signalzeitenplan

LISA

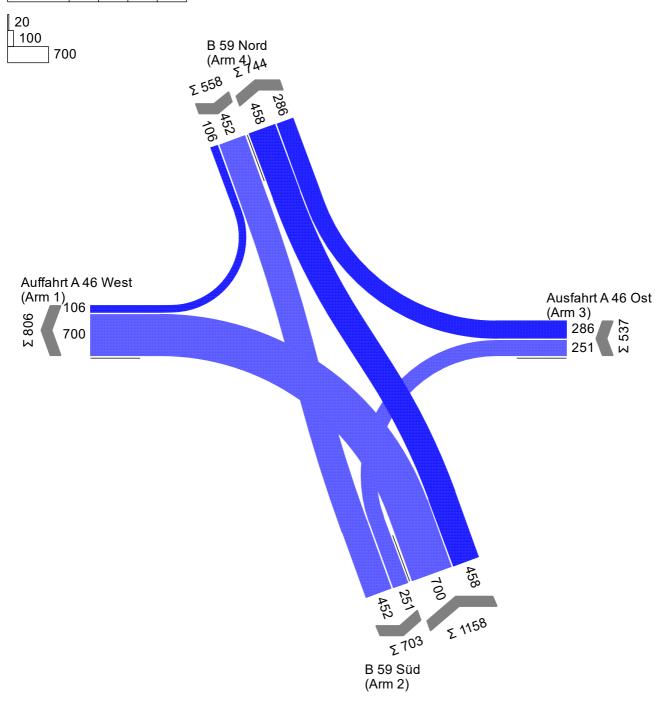
Projekt	Jüchen und Grevenbroich									
Knotenpunkt	KP1 - B 59 / A 46 AS Jüchen Nord									
Auftragsnr.	3.1058-2	Variante	01 - Bestand	Datum	05.02.2020					
Bearbeiter	Ch. Knof	Abzeichnung		Blatt						

HBS-Bewertung 2015

LISA

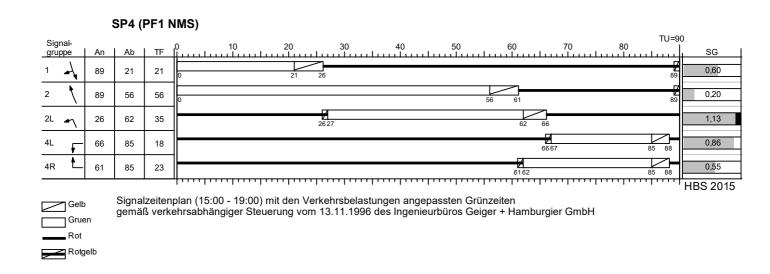
MIV - SP4 (PF1 MS) (TU=90) - PF1 MS (Friedrich)

Zuf	Fstr.Nr.	Symbol	SGR	t⊧ [s]	ta [s]	ts [s]	fA	q [Kfz/h]	m [Kfz/U]	t _B [s/Kfz]	qs [Kfz/h]	Nмs,95>nк	nc [Kfz/U]	C [Kfz/h]	х	tw [s]	Nge [Kfz]	Nмs [Kfz]	Nмs,95 [Kfz]	L _x [m]	QSV	Bemerkung
	1	_ _	4R	27	28	63	0,311	173	4,325	1,987	1812	-	14	564	0,307	25,238	0,254	3,548	6,734	44,606	В	
3	2	↓	4L	27	28	63	0,311	362	9,050	2,826	1274	-	10	396	0,914	101,791	7,914	16,626	23,522	192,645	Е	
	4	7	2L	25	26	65	0,289	377	9,425	2,459	1464	1	11	423	0,891	87,047	6,628	15,653	22,344	170,395	E	
2	3	•	2	52	53	38	0,589	180	4,500	1,980	1818	-	27	1067	0,169	8,827	0,114	2,168	4,658	30,743	А	
	1	1	2	52	53	38	0,589	180	4,500	1,980	1818	-	27	1067	0,169	8,827	0,114	2,168	4,658	30,743	А	
	1	لم																				
4	3	1	1	22	23	68	0,256	294	7,350	2,048	1758	-	11	450	0,653	39,781	1,234	7,800	12,523	85,507	С	
	5	<u> </u>	1	22	23	68	0,256	294	7,350	2,048	1758	-	11	450	0,653	39,781	1,234	7,800	12,523	85,507	С	
Knotenpunktssummen: 1860 4417																						
	Gewichtete Mittelwerte:														0,626	54,086						
	TU = 90 s T = 3600 s Instationaritätsfaktor = 1,1																					


Zuf	Zufahrt	[-]
Fstr.Nr.	Fahrstreifen-Nummer	[-]
Symbol	Fahrstreifen-Symbol	[-]
SGR	Signalgruppe	[-]
tr	Freigabezeit	[s]
tA	Abflusszeit	[s]
ts	Sperrzeit	[s]
fA	Abflusszeitanteil	[-]
q	Belastung	[Kfz/h]
m	Mittlere Anzahl eintreffender Kfz pro Umlauf	[Kfz/U]
t _B	Mittlerer Zeitbedarfswert	[s/Kfz]
qs	Sättigungsverkehrsstärke	[Kfz/h]
Nмs,95>nк	Kurzer Aufstellstreifen vorhanden	[-]
nc	Abflusskapazität pro Umlauf	[Kfz/U]
С	Kapazität des Fahrstreifens	[Kfz/h]
x	Auslastungsgrad	[-]
tw	Mittlere Wartezeit	[s]
Nge	Mittlere Rückstaulänge bei Freigabeende	[Kfz]
N _{MS}	Mittlere Rückstaulänge bei Maximalstau	[Kfz]
Nмs,95	Rückstau bei Maximalstau, der mit einer stat. Sicherheit von 95% nicht überschritten wird	[Kfz]
Lx	Erforderliche Stauraumlänge	[m]
QSV	Qualitätsstufe des Verkehrsablaufs	[-]

Projekt	Jüchen und Grevenbroich									
Knotenpunkt	KP1 - B 59 / A 46 AS Jüchen Nord									
Auftragsnr.	3.1058-2	Variante	01 - Bestand	Datum	05.02.2020					
Bearbeiter	Ch. Knof	Abzeichnung		Blatt						

LISA


PF1 NMS

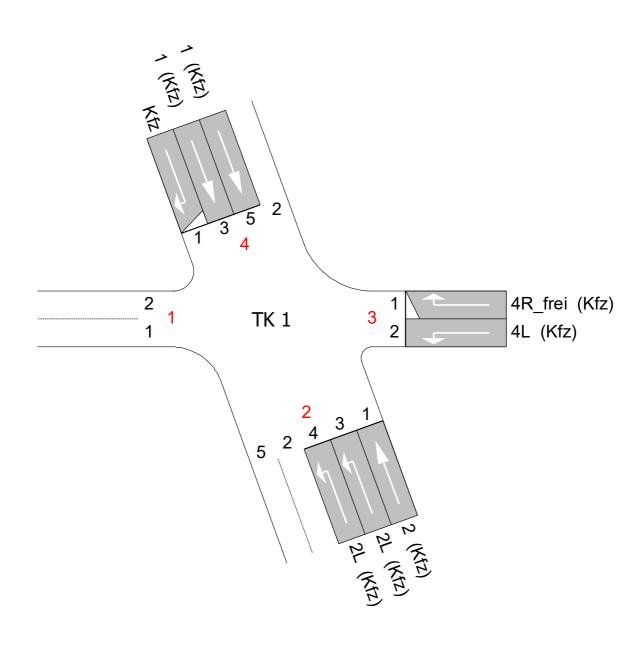
von\nach	3	2	1	4
3		251		286
2			700	458
1				
4		452	106	

Projekt	Jüchen und Grevenbroich				
Knotenpunkt	KP1 - B 59 / A 46 AS Jüchen Nord				
Auftragsnr.	3.1058-2	Variante	01 - Bestand	Datum	05.02.2020
Bearbeiter	Ch. Knof	Abzeichnung		Blatt	

- 1 16 4

Projekt	Jüchen und Grevenbroich				
Knotenpunkt	KP1 - B 59 / A 46 AS Jüchen Nord				
Auftragsnr.	3.1058-2	Variante	01 - Bestand	Datum	05.02.2020
Bearbeiter	Ch. Knof	Abzeichnung		Blatt	

LISA

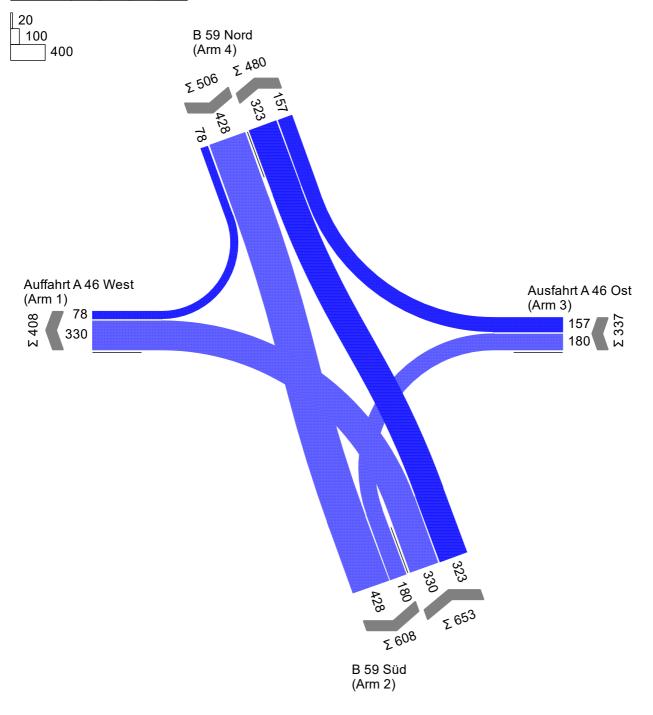

MIV - SP4 (PF1 NMS) (TU=90) - PF1 NMS (Friedrich)

Zuf	Fstr.Nr.	Symbol	SGR	tr [s]	ta [s]	ts [s]	fA	q [Kfz/h]	m [Kfz/U]	t ^B [s/Kfz]	qs [Kfz/h]	N мs,95>nк	nc [Kfz/U]	C [Kfz/h]	х	tw [s]	Nge [Kfz]	N _{MS} [Kfz]	NMS,95 [Kfz]	L× [m]	QSV	Bemerkung
	1	←	4R	23	24	67	0,267	286	7,150	1,838	1959	-	13	523	0,547	33,448	0,746	6,883	11,320	69,346	В	
3	2	₽	4L	18	19	72	0,211	251	6,275	2,614	1377	-	7	291	0,863	90,427	4,541	10,594	16,099	121,998	Е	
	4	4	2L	35	36	55	0,400	700	17,500	2,316	1554	-	16	622	1,125	289,210	45,304	62,804	76,207	547,319	F	
2	3	1	2	56	57	34	0,633	229	5,725	1,966	1831	-	29	1164	0,197	7,351	0,138	2,538	5,232	34,280	Α	
	1	•	2	56	57	34	0,633	229	5,725	1,966	1831	-	29	1164	0,197	7,351	0,138	2,538	5,232	34,280	Α	
	1	لم																				
4	3	1	1	21	22	69	0,244	268	6,700	1,951	1845	-	11	450	0,596	37,552	0,932	6,859	11,288	73,417	С	
	5	1	1	21	22	69	0,244	268	6,700	1,951	1845	-	11	450	0,596	37,552	0,932	6,859	11,288	73,417	С	
	Knotenpı	unktssum	men:		2231 4664																	
	Gewichte	te Mittelw	/erte:												0,704	115,735						
	TU = 90 s T = 3600 s Instationaritätsfaktor = 1,1																					

Zuf	Zufahrt	[-]
Fstr.Nr.	Fahrstreifen-Nummer	[-]
Symbol	Fahrstreifen-Symbol	[-]
SGR	Signalgruppe	[-]
t_{F}	Freigabezeit	[s]
t _A	Abflusszeit	[s]
ts	Sperrzeit	[s]
f _A	Abflusszeitanteil	[-]
q	Belastung	[Kfz/h]
m	Mittlere Anzahl eintreffender Kfz pro Umlauf	[Kfz/U]
t _B	Mittlerer Zeitbedarfswert	[s/Kfz]
qs	Sättigungsverkehrsstärke	[Kfz/h]
$N_{MS,95}>n_K$	Kurzer Aufstellstreifen vorhanden	[-]
$n_{\mathbb{C}}$	Abflusskapazität pro Umlauf	[Kfz/U]
С	Kapazität des Fahrstreifens	[Kfz/h]
X	Auslastungsgrad	[-]
t _W	Mittlere Wartezeit	[s]
N_{GE}	Mittlere Rückstaulänge bei Freigabeende	[Kfz]
N_{MS}	Mittlere Rückstaulänge bei Maximalstau	[Kfz]
$N_{MS,95}$	Rückstau bei Maximalstau, der mit einer stat. Sicherheit von 95% nicht überschritten wird	[Kfz]
L _x	Erforderliche Stauraumlänge	[m]
QSV	Qualitätsstufe des Verkehrsablaufs	[-]

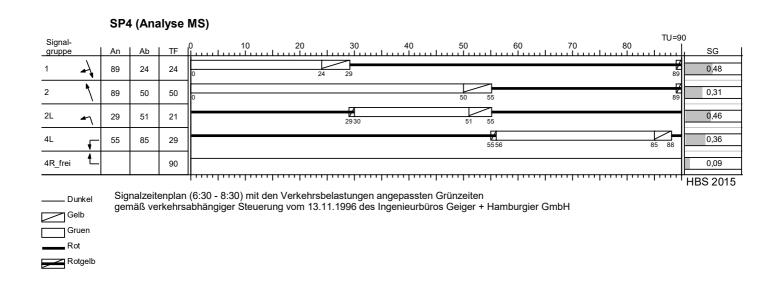
Projekt	Jüchen und Grevenbroich				
Knotenpunkt	KP1 - B 59 / A 46 AS Jüchen Nord				
Auftragsnr.	3.1058-2	Variante	01 - Bestand	Datum	05.02.2020
Bearbeiter	Ch. Knof	Abzeichnung		Blatt	

LISA



Projekt	Jüchen und Grevenbroich				
Knotenpunkt	KP1 - B 59 / A 46 AS Jüchen Nord				
Auftragsnr.	3.1058-2	Variante	02 - Ausbau	Datum	05.02.2020
Bearbeiter	Ch. Knof	Abzeichnung		Blatt	

LISA


Analyse MS

von\nach	3	2	1	4
3		180		157
2			330	323
1				
4		428	78	

Projekt	Jüchen und Grevenbroich				
Knotenpunkt	KP1 - B 59 / A 46 AS Jüchen Nord				
Auftragsnr.	3.1058-2	Variante	02 - Ausbau	Datum	05.02.2020
Bearbeiter	Ch. Knof	Abzeichnung		Blatt	

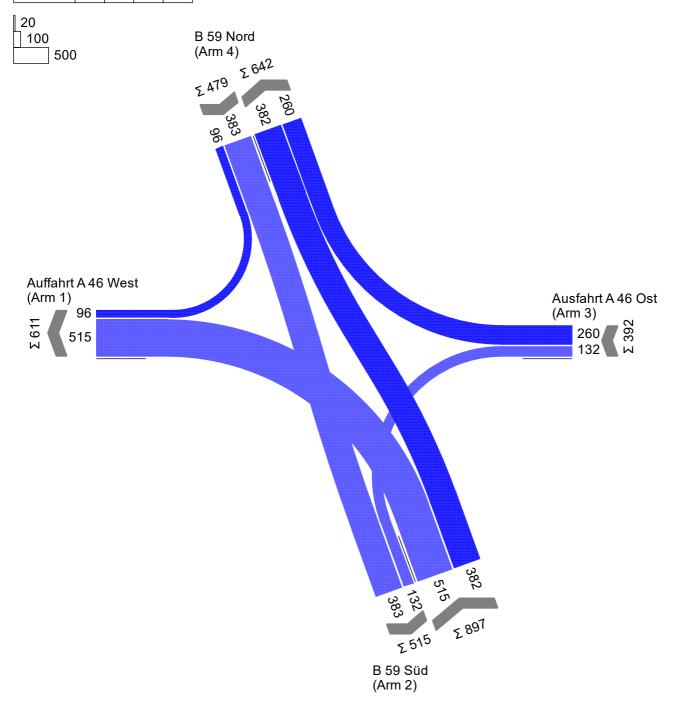
- 1 16 4

Projekt	Jüchen und Grevenbroich				
Knotenpunkt	KP1 - B 59 / A 46 AS Jüchen Nord				
Auftragsnr.	3.1058-2	Variante	02 - Ausbau	Datum	05.02.2020
Bearbeiter	Ch. Knof	Abzeichnung		Blatt	

L 164

MIV - SP4 (Analyse MS) (TU=90) - Analyse MS (Friedrich)

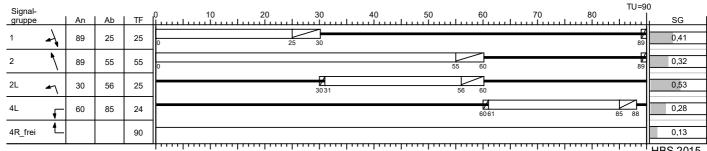
Zuf	Fstr.Nr.	Symbol	SGR	tr [s]	ta [s]	ts [s]	fA	q [Kfz/h]	m [Kfz/U]	t _B [s/Kfz]	qs [Kfz/h]	N мs,95>nк	nc [Kfz/U]	C [Kfz/h]	х	tw [s]	Nge [Kfz]	Nмs [Kfz]	NMS,95 [Kfz]	L× [m]	QSV	Bemerkung
	1	_	4R_frei	90	91	0	1,011	157	3,925	1,989	1810	-	46	1830	0,086	0,108	0,052	0,005	0,125	0,829	А	
3	2	·	4L	29	30	61	0,333	180	4,500	2,364	1523	-	13	507	0,355	24,969	0,319	3,723	6,986	47,868	В	
	4	4	2L	21	22	69	0,244	165	4,125	2,428	1483	-	9	363	0,455	33,850	0,496	4,004	7,388	55,632	В	
2	3	4	2L	21	22	69	0,244	165	4,125	2,428	1483	-	9	363	0,455	33,850	0,496	4,004	7,388	55,632	В	
	1	1	2	50	51	40	0,567	323	8,075	1,976	1822	-	26	1033	0,313	11,170	0,262	4,513	8,106	53,402	Α	
	1	لم																				
4	3	1	1	24	25	66	0,278	245	6,125	1,955	1841	-	13	511	0,479	30,957	0,553	5,655	9,677	63,055	В	
	5	1	1	24	25	66	0,278	245	6,125	1,955	1841	-	13	511	0,479	30,957	0,553	5,655	9,677	63,055	В	
Knotenpunktssummen: 1480 5118																						
	Gewich	ntete Mitte	elwerte:												0,381	23,283						
TU = 90 s T = 3600 s Instationaritätsfaktor = 1,1																						


Zuf	Zufahrt	[-]
Fstr.Nr.	Fahrstreifen-Nummer	[-]
Symbol	Fahrstreifen-Symbol	[-]
SGR	Signalgruppe	[-]
t _F	Freigabezeit	[s]
t _A	Abflusszeit	[s]
ts	Sperrzeit	[s]
fA	Abflusszeitanteil	[-]
q	Belastung	[Kfz/h]
m	Mittlere Anzahl eintreffender Kfz pro Umlauf	[Kfz/U]
t _B	Mittlerer Zeitbedarfswert	[s/Kfz]
qs	Sättigungsverkehrsstärke	[Kfz/h]
N _{MS,95} >n _K	Kurzer Aufstellstreifen vorhanden	[-]
n _C	Abflusskapazität pro Umlauf	[Kfz/U]
С	Kapazität des Fahrstreifens	[Kfz/h]
x	Auslastungsgrad	[-]
t _W	Mittlere Wartezeit	[s]
N_{GE}	Mittlere Rückstaulänge bei Freigabeende	[Kfz]
N_{MS}	Mittlere Rückstaulänge bei Maximalstau	[Kfz]
$N_{MS,95}$	Rückstau bei Maximalstau, der mit einer stat. Sicherheit von 95% nicht überschritten wird	[Kfz]
L _x	Erforderliche Stauraumlänge	[m]
QSV	Qualitätsstufe des Verkehrsablaufs	[-]

Projekt	Jüchen und Grevenbroich				
Knotenpunkt	KP1 - B 59 / A 46 AS Jüchen Nord				
Auftragsnr.	3.1058-2	Variante	02 - Ausbau	Datum	05.02.2020
Bearbeiter	Ch. Knof	Abzeichnung		Blatt	

LISA

Analyse NMS


von\nach	3	2	1	4
3		132		260
2			515	382
1				
4		383	96	

Projekt	Jüchen und Grevenbroich				
Knotenpunkt	KP1 - B 59 / A 46 AS Jüchen Nord				
Auftragsnr.	3.1058-2	Variante	02 - Ausbau	Datum	05.02.2020
Bearbeiter	Ch. Knof	Abzeichnung		Blatt	

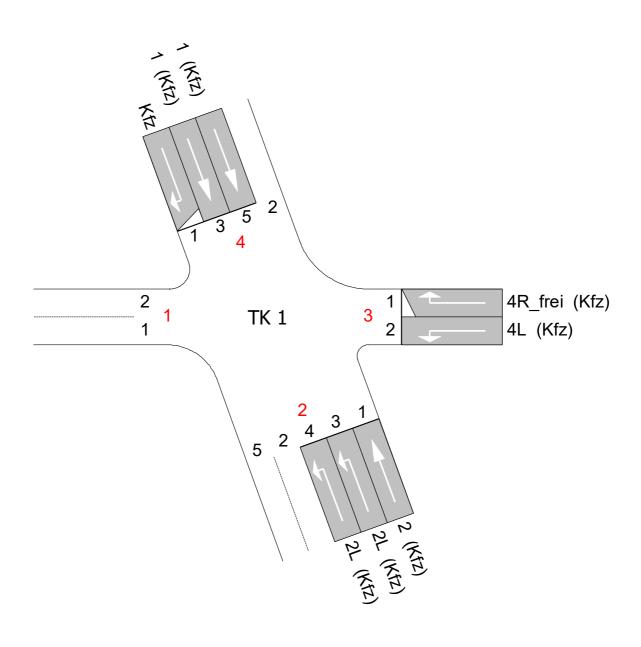
- 1 16 4

Dunkel
Gelb
Gruen
Rot
Rotgelb

Signalzeitenplan (15:00 - 19:00) mit den Verkehrsbelastungen angepassten Grünzeiten gemäß verkehrsabhängiger Steuerung vom 13.11.1996 des Ingenieurbüros Geiger + Hamburgier GmbH

Projekt	Jüchen und Grevenbroich				
Knotenpunkt	KP1 - B 59 / A 46 AS Jüchen Nord				
Auftragsnr.	3.1058-2	Variante	02 - Ausbau	Datum	05.02.2020
Bearbeiter	Ch. Knof	Abzeichnung		Blatt	

LISA

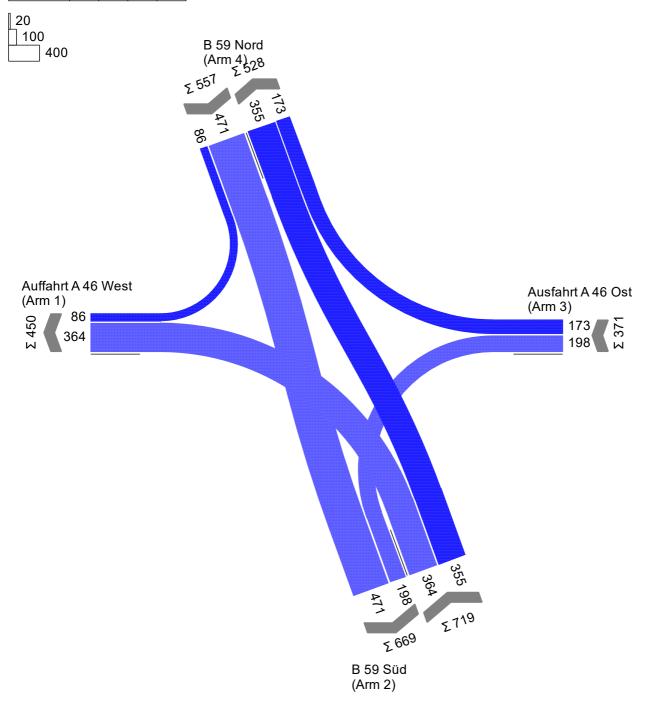

MIV - SP5 (Analyse NMS) (TU=90) - Analyse NMS (Friedrich)

Zuf	Fstr.Nr.	Symbol	SGR	tr [s]	ta [s]	ts [s]	fA	q [Kfz/h]	m [Kfz/U]	t _B [s/Kfz]	qs [Kfz/h]	N мs,95> n к	nc [Kfz/U]	C [Kfz/h]	х	tw [s]	Nge [Kfz]	Nмs [Kfz]	N _{MS,95} [Kfz]	L _x [m]	QSV	Bemerkung
	1	_	4R_frei	90	91	0	1,011	260	6,500	1,841	1955	-	49	1977	0,132	0,161	0,085	0,002	0,078	0,479	А	
3	2	Image: square of the property o	4L	24	25	66	0,278	132	3,300	2,140	1682	-	12	468	0,282	27,176	0,224	2,809	5,644	35,015	В	
	4	47	2L	25	26	65	0,289	258	6,450	2,138	1684	-	12	487	0,530	31,971	0,691	6,106	10,285	68,190	В	
2	3	47	2L	25	26	65	0,289	258	6,450	2,138	1684	-	12	487	0,530	31,971	0,691	6,106	10,285	68,190	В	
	1	•	2	55	56	35	0,622	382	9,550	1,877	1918	-	30	1193	0,320	8,846	0,271	4,778	8,475	53,037	А	
	1	لم																				
4	3	1	1	25	26	65	0,289	227	5,675	1,883	1912	-	14	553	0,410	28,469	0,409	4,986	8,762	54,990	В	
	5	1	1	25	26	65	0,289	227	5,675	1,883	1912	-	14	553	0,410	28,469	0,409	4,986	8,762	54,990	В	
	Knoter	npunktssu	ımmen:					1744						5718								
	Gewichtete Mittelwerte: 0,375 20,889 0,375 20,889																					
TU = 90 s T = 3600 s Instationaritätsfaktor = 1,1																						

Zuf	Zufahrt	[-]
Fstr.Nr.	Fahrstreifen-Nummer	[-]
Symbol	Fahrstreifen-Symbol	[-]
SGR	Signalgruppe	[-]
t _F	Freigabezeit	[s]
t _A	Abflusszeit	[s]
ts	Sperrzeit	[s]
f _A	Abflusszeitanteil	[-]
q	Belastung	[Kfz/h]
m	Mittlere Anzahl eintreffender Kfz pro Umlauf	[Kfz/U]
t _B	Mittlerer Zeitbedarfswert	[s/Kfz]
qs	Sättigungsverkehrsstärke	[Kfz/h]
$N_{MS,95}$ > n_K	Kurzer Aufstellstreifen vorhanden	[-]
n_{C}	Abflusskapazität pro Umlauf	[Kfz/U]
С	Kapazität des Fahrstreifens	[Kfz/h]
X	Auslastungsgrad	[-]
t _W	Mittlere Wartezeit	[s]
N_{GE}	Mittlere Rückstaulänge bei Freigabeende	[Kfz]
N_{MS}	Mittlere Rückstaulänge bei Maximalstau	[Kfz]
$N_{MS,95}$	Rückstau bei Maximalstau, der mit einer stat. Sicherheit von 95% nicht überschritten wird	[Kfz]
L _x	Erforderliche Stauraumlänge	[m]
QSV	Qualitätsstufe des Verkehrsablaufs	[-]

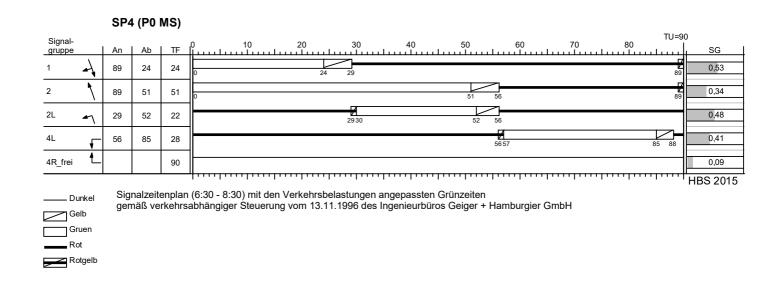
Projekt	Jüchen und Grevenbroich				
Knotenpunkt	KP1 - B 59 / A 46 AS Jüchen Nord				
Auftragsnr.	3.1058-2	Variante	02 - Ausbau	Datum	05.02.2020
Bearbeiter	Ch. Knof	Abzeichnung		Blatt	

LISA



Projekt	Jüchen und Grevenbroich				
Knotenpunkt	KP1 - B 59 / A 46 AS Jüchen Nord				
Auftragsnr.	3.1058-2	Variante	02 - Ausbau	Datum	05.02.2020
Bearbeiter	Ch. Knof	Abzeichnung		Blatt	

LISA


P0 MS

von\nach	3	2	1	4
3		198		173
2			364	355
1				
4		471	86	

Projekt	Jüchen und Grevenbroich				
Knotenpunkt	KP1 - B 59 / A 46 AS Jüchen Nord				
Auftragsnr.	3.1058-2	Variante	02 - Ausbau	Datum	05.02.2020
Bearbeiter	Ch. Knof	Abzeichnung		Blatt	

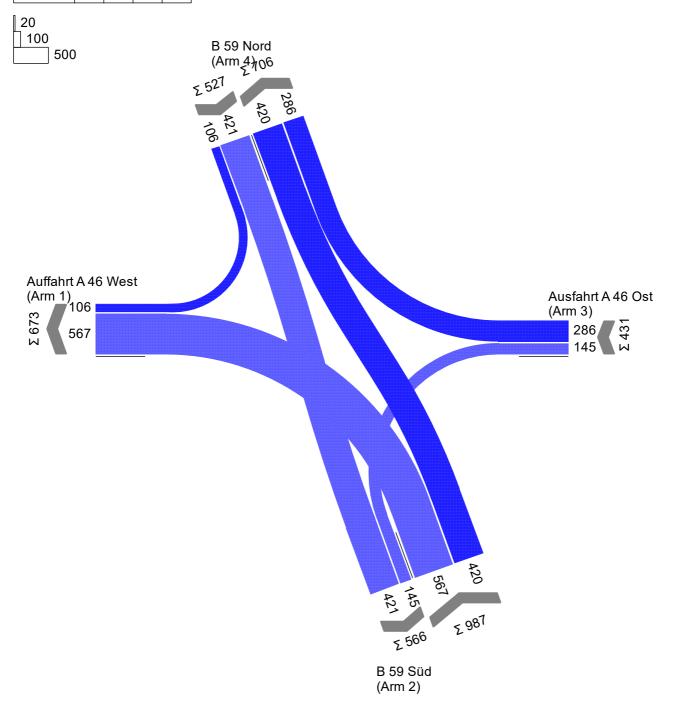
- 1 16 4

Projekt	Jüchen und Grevenbroich				
Knotenpunkt	KP1 - B 59 / A 46 AS Jüchen Nord				
Auftragsnr.	3.1058-2	Variante	02 - Ausbau	Datum	05.02.2020
Bearbeiter	Ch. Knof	Abzeichnung		Blatt	

- 1 16 4

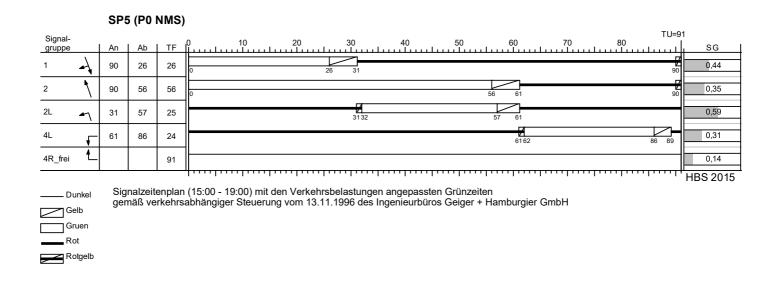
MIV - SP4 (P0 MS) (TU=90) - P0 MS (Friedrich)

Zuf	Fstr.Nr.	Symbol	SGR	tr [s]	ta [s]	ts [s]	fA	q [Kfz/h]	m [Kfz/U]	t _B [s/Kfz]	qs [Kfz/h]	N мs,95> n к	nc [Kfz/U]	C [Kfz/h]	х	tw [s]	Nge [Kfz]	Nмs [Kfz]	Nms,95 [Kfz]	L _x [m]	QSV	Bemerkung
	1	_	4R_frei	90	91	0	1,011	173	4,325	1,987	1812	-	46	1832	0,094	0,120	0,058	0,005	0,125	0,828	Α	
3	2	Image: square of the property o	4L	28	29	62	0,322	198	4,950	2,368	1520	-	12	489	0,405	26,733	0,400	4,259	7,749	53,189	В	
	4	4	2L	22	23	68	0,256	182	4,550	2,413	1492	1	10	381	0,478	33,569	0,549	4,406	7,956	59,527	В	
2	3	47	2L	22	23	68	0,256	182	4,550	2,413	1492	-	10	381	0,478	33,569	0,549	4,406	7,956	59,527	В	
	1	1	2	51	52	39	0,578	355	8,875	1,975	1823	-	26	1054	0,337	10,956	0,294	4,945	8,706	57,303	Α	
	1	لم																				
4	3	1	1	24	25	66	0,278	270	6,750	1,960	1837	-	13	511	0,528	32,319	0,685	6,397	10,675	69,750	В	
	5	1	1	24	25	66	0,278	270	6,750	1,960	1837	-	13	511	0,528	32,319	0,685	6,397	10,675	69,750	В	
	Knoter	npunktssu	mmen:					1630						5159								
	Gewichtete Mittelwerte: 0,414 23,849																					
TU = 90 s T = 3600 s Instationaritätsfaktor = 1,1												•										


Zuf	Zufahrt	[-]
Fstr.Nr.	Fahrstreifen-Nummer	[-]
Symbol	Fahrstreifen-Symbol	[-]
SGR	Signalgruppe	[-]
t _F	Freigabezeit	[s]
t _A	Abflusszeit	[s]
ts	Sperrzeit	[s]
f _A	Abflusszeitanteil	[-]
q	Belastung	[Kfz/h]
m	Mittlere Anzahl eintreffender Kfz pro Umlauf	[Kfz/U]
t _B	Mittlerer Zeitbedarfswert	[s/Kfz]
qs	Sättigungsverkehrsstärke	[Kfz/h]
$N_{MS,95}>n_K$	Kurzer Aufstellstreifen vorhanden	[-]
n_{C}	Abflusskapazität pro Umlauf	[Kfz/U]
С	Kapazität des Fahrstreifens	[Kfz/h]
X	Auslastungsgrad	[-]
t _W	Mittlere Wartezeit	[s]
N_{GE}	Mittlere Rückstaulänge bei Freigabeende	[Kfz]
N_{MS}	Mittlere Rückstaulänge bei Maximalstau	[Kfz]
$N_{MS,95}$	Rückstau bei Maximalstau, der mit einer stat. Sicherheit von 95% nicht überschritten wird	[Kfz]
L_x	Erforderliche Stauraumlänge	[m]
QSV	Qualitätsstufe des Verkehrsablaufs	[-]

Projekt	Jüchen und Grevenbroich				
Knotenpunkt	KP1 - B 59 / A 46 AS Jüchen Nord				
Auftragsnr.	3.1058-2	Variante	02 - Ausbau	Datum	05.02.2020
Bearbeiter	Ch. Knof	Abzeichnung		Blatt	

LISA


P0 NMS

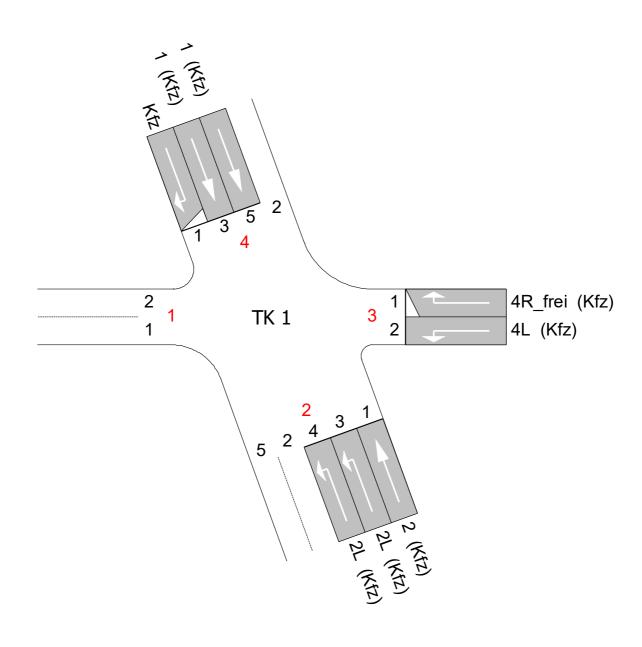
von\nach	3	2	1	4
3		145		286
2			567	420
1				
4		421	106	

Projekt	Jüchen und Grevenbroich				
Knotenpunkt	KP1 - B 59 / A 46 AS Jüchen Nord				
Auftragsnr.	3.1058-2	Variante	02 - Ausbau	Datum	05.02.2020
Bearbeiter	Ch. Knof	Abzeichnung		Blatt	

- 1 164

Projekt	Jüchen und Grevenbroich				
Knotenpunkt	KP1 - B 59 / A 46 AS Jüchen Nord				
Auftragsnr.	3.1058-2	Variante	02 - Ausbau	Datum	05.02.2020
Bearbeiter	Ch. Knof	Abzeichnung		Blatt	

LUSA

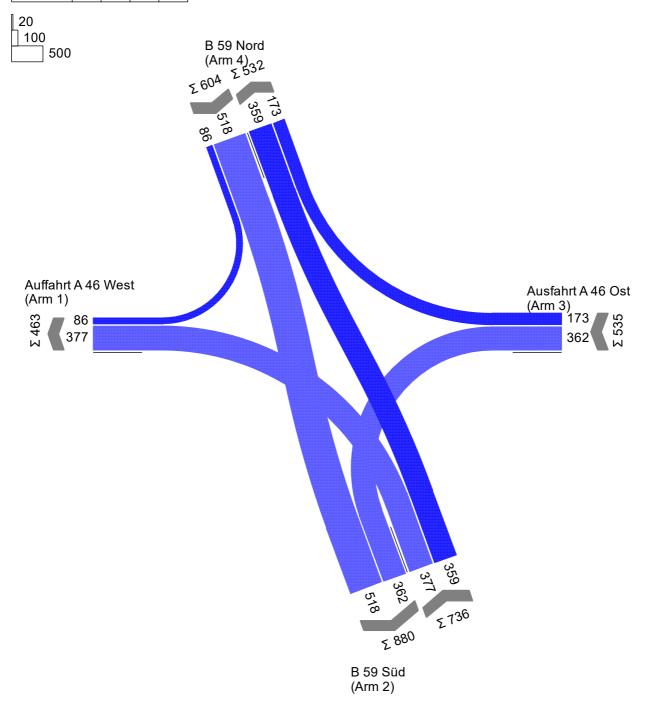

MIV - SP5 (P0 NMS) (TU=91) - P0 NMS (Friedrich)

Zuf	Fstr.Nr.	Symbol	SGR	tr [s]	ta [s]	ts [s]	fA	q [Kfz/h]	m [Kfz/U]	t _B [s/Kfz]	qs [Kfz/h]	N мs,95> n к	nc [Kfz/U]	C [Kfz/h]	х	tw [s]	Nge [Kfz]	Nмs [Kfz]	Nms,95 [Kfz]	L _x [m]	QSV	Bemerkung
	1	_	4R_frei	91	92	0	1,011	286	7,229	1,838	1959	ı	50	1981	0,144	0,177	0,094	0,001	0,054	0,331	Α	
3	2	Image: square of the property o	4L	24	25	67	0,275	145	3,665	2,134	1687	-	12	464	0,313	28,201	0,262	3,170	6,181	38,236	В	
	4	4	2L	25	26	66	0,286	284	7,179	2,140	1682	1	12	481	0,590	34,700	0,908	7,074	11,572	76,792	В	
2	3	47	2L	25	26	66	0,286	284	7,179	2,140	1682	-	12	481	0,590	34,700	0,908	7,074	11,572	76,792	В	
	1	1	2	56	57	35	0,626	420	10,617	1,877	1918	-	30	1201	0,350	9,088	0,313	5,398	9,327	58,368	Α	
	1	لم																				
4	3	1	1	26	27	65	0,297	251	6,345	1,886	1909	-	14	567	0,443	28,896	0,473	5,609	9,614	60,453	В	
	5	1	1	26	27	65	0,297	251	6,345	1,886	1909	-	14	567	0,443	28,896	0,473	5,609	9,614	60,453	В	
	Knoter	npunktssu	mmen:					1921						5742								
	Gewichtete Mittelwerte: 0,412 21,953																					
	TU = 91 s T = 3600 s Instationaritätsfaktor = 1,1								•													

Zuf	Zufahrt	[-]
Fstr.Nr.	Fahrstreifen-Nummer	[-]
Symbol	Fahrstreifen-Symbol	[-]
SGR	Signalgruppe	[-]
t _F	Freigabezeit	[s]
t _A	Abflusszeit	[s]
ts	Sperrzeit	[s]
f _A	Abflusszeitanteil	[-]
q	Belastung	[Kfz/h]
m	Mittlere Anzahl eintreffender Kfz pro Umlauf	[Kfz/U]
t _B	Mittlerer Zeitbedarfswert	[s/Kfz]
qs	Sättigungsverkehrsstärke	[Kfz/h]
$N_{MS,95}$ > n_K	Kurzer Aufstellstreifen vorhanden	[-]
n_{C}	Abflusskapazität pro Umlauf	[Kfz/U]
С	Kapazität des Fahrstreifens	[Kfz/h]
X	Auslastungsgrad	[-]
t _W	Mittlere Wartezeit	[s]
N_{GE}	Mittlere Rückstaulänge bei Freigabeende	[Kfz]
N_{MS}	Mittlere Rückstaulänge bei Maximalstau	[Kfz]
$N_{MS,95}$	Rückstau bei Maximalstau, der mit einer stat. Sicherheit von 95% nicht überschritten wird	[Kfz]
L _x	Erforderliche Stauraumlänge	[m]
QSV	Qualitätsstufe des Verkehrsablaufs	[-]

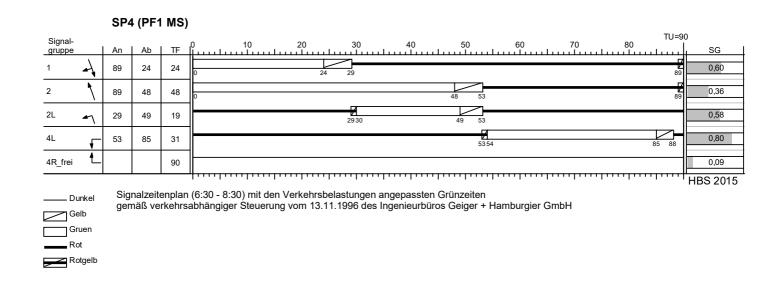
Projekt	Jüchen und Grevenbroich				
Knotenpunkt	KP1 - B 59 / A 46 AS Jüchen Nord				
Auftragsnr.	3.1058-2	Variante	02 - Ausbau	Datum	05.02.2020
Bearbeiter	Ch. Knof	Abzeichnung		Blatt	

LISA



Projekt	Jüchen und Grevenbroich				
Knotenpunkt	KP1 - B 59 / A 46 AS Jüchen Nord				
Auftragsnr.	3.1058-2	Variante	02 - Ausbau	Datum	05.02.2020
Bearbeiter	Ch. Knof	Abzeichnung		Blatt	

LISA


PF1 MS

von\nach	3	2	1	4
3		362		173
2			377	359
1				
4		518	86	

Projekt	Jüchen und Grevenbroich				
Knotenpunkt	KP1 - B 59 / A 46 AS Jüchen Nord				
Auftragsnr.	3.1058-2	Variante	02 - Ausbau	Datum	05.02.2020
Bearbeiter	Ch. Knof	Abzeichnung		Blatt	

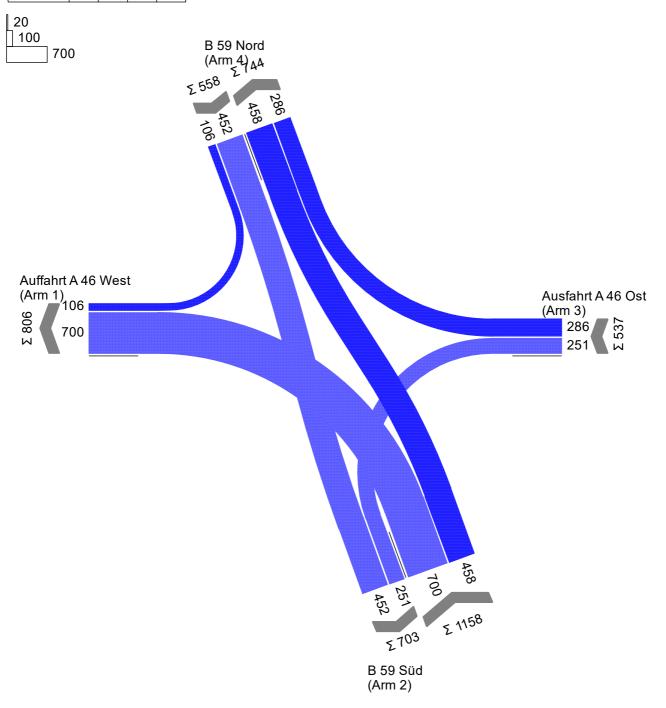
- 1 164

Projekt	Jüchen und Grevenbroich				
Knotenpunkt	KP1 - B 59 / A 46 AS Jüchen Nord				
Auftragsnr.	3.1058-2	Variante	02 - Ausbau	Datum	05.02.2020
Bearbeiter	Ch. Knof	Abzeichnung		Blatt	

LISA

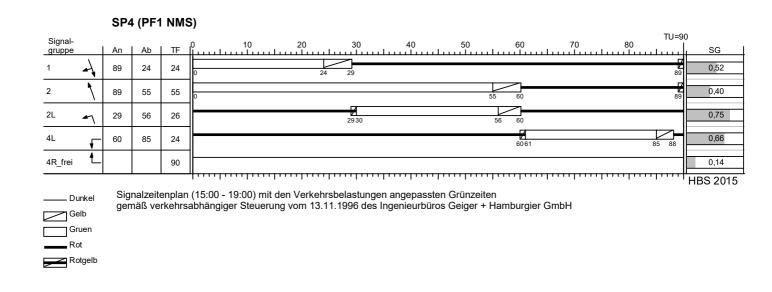
MIV - SP4 (PF1 MS) (TU=90) - PF1 MS (Friedrich)

Zuf	Fstr.Nr.	Symbol	SGR	tr [s]	tA [s]	ts [s]	fA	q [Kfz/h]	m [Kfz/U]	t ^B [s/Kfz]	qs [Kfz/h]	N мs,95> n к	nc [Kfz/U]	C [Kfz/h]	х	tw [s]	NGE [Kfz]	N _{MS} [Kfz]	NMS,95 [Kfz]	L× [m]	QSV	Bemerkung
	1	←	4R_frei	90	91	0	1,011	173	4,325	1,987	1812	-	46	1832	0,094	0,120	0,058	0,005	0,125	0,828	Α	
3	2	Ţ	4L	31	32	59	0,356	362	9,050	2,826	1274	-	11	454	0,797	49,852	3,001	11,138	16,782	137,445	С	
	4	4	2L	19	20	71	0,222	189	4,725	2,457	1465	-	8	325	0,582	40,883	0,867	5,088	8,903	67,841	С	
2	3	4	2L	19	20	71	0,222	189	4,725	2,457	1465	-	8	325	0,582	40,883	0,867	5,088	8,903	67,841	С	
	1	1	2	48	49	42	0,544	359	8,975	1,987	1812	-	25	986	0,364	12,883	0,333	5,436	9,379	62,126	Α	
	1	لم																				
4	3	1	1	24	25	66	0,278	294	7,350	2,048	1758	-	12	489	0,601	35,201	0,956	7,327	11,905	81,287	С	
	5	1	1	24	25	66	0,278	294	7,350	2,048	1758	-	12	489	0,601	35,201	0,956	7,327	11,905	81,287	С	
	Knoter	npunktssu	mmen:					1860						4900								
	Gewich	ntete Mitte	elwerte:												0,542	31,637						
	TU = 90 s T = 3600 s Instationaritätsfaktor = 1,1																					


Zufahrt Fahrstreifen-Nummer Fahrstreifen-Symbol Signalgruppe Freigabezeit Abflusszeit Sperrzeit Abflusszeitanteil Belastung Mittlere Anzahl eintreffender Kfz pro Umlauf Mittlerer Zeitbedarfswert Sättigungsverkehrsstärke Kurzer Aufstellstreifen vorhanden Abflusskapazität pro Umlauf Kapazität des Fahrstreifens Auslastungsgrad Mittlere Wartezeit Mittlere Rückstaulänge bei Freigabeende Mittlere Rückstaulänge bei Maximalstau Rückstau bei Maximalstau, der mit einer stat. Sicherheit von 95% nicht überschritten wird	[-] [-] [-] [-] [-] [-] [-] [-] [-] [-]
Rückstau bei Maximalstau, der mit einer stat. Sicherheit von 95% nicht überschritten wird Erforderliche Stauraumlänge	
	Fahrstreifen-Nummer Fahrstreifen-Symbol Signalgruppe Freigabezeit Abflusszeit Sperrzeit Abflusszeitanteil Belastung Mittlere Anzahl eintreffender Kfz pro Umlauf Mittlerer Zeitbedarfswert Sättigungsverkehrsstärke Kurzer Aufstellstreifen vorhanden Abflusskapazität pro Umlauf Kapazität des Fahrstreifens Auslastungsgrad Mittlere Wartezeit Mittlere Rückstaulänge bei Freigabeende Mittlere Rückstaulänge bei Maximalstau Rückstau bei Maximalstau, der mit einer stat. Sicherheit von 95% nicht überschritten wird

Projekt	Jüchen und Grevenbroich				
Knotenpunkt	KP1 - B 59 / A 46 AS Jüchen Nord				
Auftragsnr.	3.1058-2	Variante	02 - Ausbau	Datum	05.02.2020
Bearbeiter	Ch. Knof	Abzeichnung		Blatt	

LISA


PF1 NMS

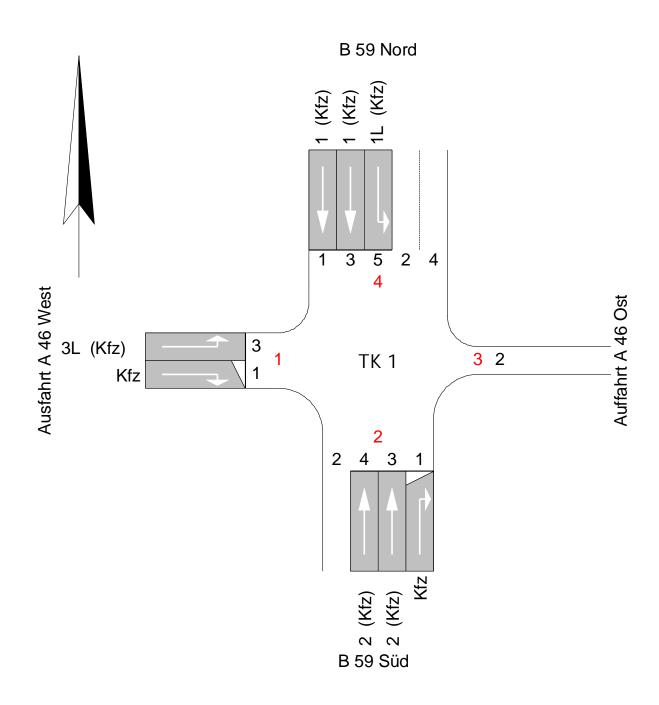
von\nach	3	2	1	4
3		251		286
2			700	458
1				
4		452	106	

Projekt	Jüchen und Grevenbroich				
Knotenpunkt	KP1 - B 59 / A 46 AS Jüchen Nord				
Auftragsnr.	3.1058-2	Variante	02 - Ausbau	Datum	05.02.2020
Bearbeiter	Ch. Knof	Abzeichnung		Blatt	

- 1 16 4

Projekt	Jüchen und Grevenbroich				
Knotenpunkt	KP1 - B 59 / A 46 AS Jüchen Nord				
Auftragsnr.	3.1058-2	Variante	02 - Ausbau	Datum	05.02.2020
Bearbeiter	Ch. Knof	Abzeichnung		Blatt	

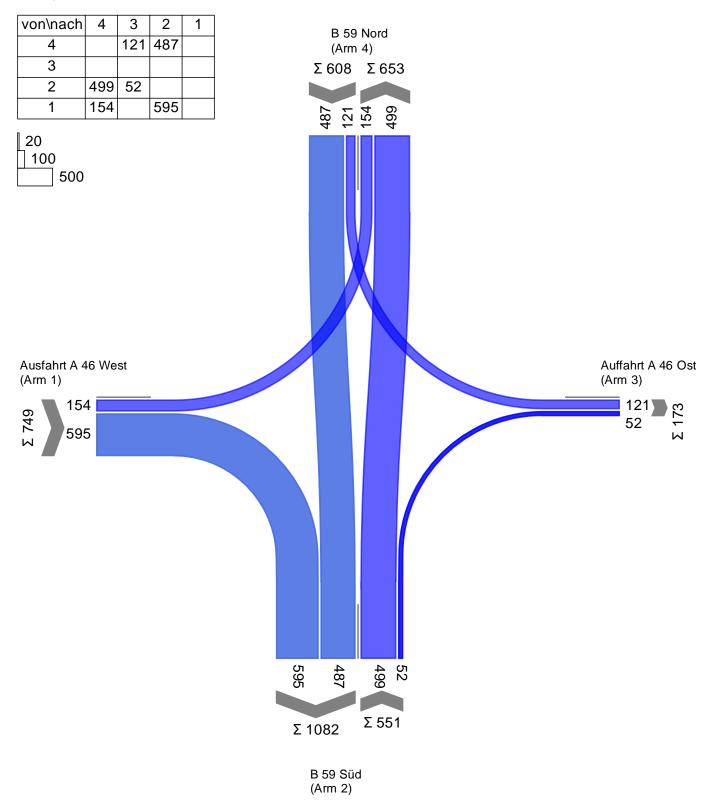
LISA


MIV - SP4 (PF1 NMS) (TU=90) - PF1 NMS (Friedrich)

Zuf	Fstr.Nr.	Symbol	SGR	tr [s]	tA [s]	ts [s]	fA	q [Kfz/h]	m [Kfz/U]	t _B [s/Kfz]	qs [Kfz/h]	N мs,95> n к	nc [Kfz/U]	C [Kfz/h]	х	tw [s]	Nge [Kfz]	Nмs [Kfz]	NMS,95 [Kfz]	L× [m]	QSV	Bemerkung
	1	_	4R_frei	90	91	0	1,011	286	7,150	1,838	1959	-	50	1981	0,144	0,177	0,094	0,002	0,078	0,478	Α	
3	2	Ţ	4L	24	25	66	0,278	251	6,275	2,614	1377	-	10	383	0,655	40,326	1,239	6,778	11,181	84,730	С	
	4	47	2L	26	27	64	0,300	350	8,750	2,316	1554	-	12	466	0,751	45,258	2,174	10,080	15,450	110,962	С	
2	3	47	2L	26	27	64	0,300	350	8,750	2,316	1554	-	12	466	0,751	45,258	2,174	10,080	15,450	110,962	С	
	1	1	2	55	56	35	0,622	458	11,450	1,958	1839	-	29	1144	0,400	9,793	0,392	6,154	10,349	67,558	А	
	1	لم																				
4	3	1	1	24	25	66	0,278	268	6,700	1,951	1845	-	13	513	0,522	32,121	0,667	6,326	10,580	68,812	В	
	5	1	1	24	25	66	0,278	268	6,700	1,951	1845	-	13	513	0,522	32,121	0,667	6,326	10,580	68,812	В	
	Knoter	npunktssu	mmen:					2231						5466								
	Gewich	ntete Mitte	elwerte:												0,535	28,487						
	TU = 90 s T = 3600 s Instationaritätsfaktor = 1,1																					

Zuf Fstr.Nr. Symbol SGR	Zufahrt Fahrstreifen-Nummer Fahrstreifen-Symbol Signalgruppe	[-] [-] [-] [-]
t _F	Freigabezeit	[s]
t _A	Abflusszeit	[s]
ts	Sperrzeit	[s]
f _A	Abflusszeitanteil	[-]
q	Belastung	[Kfz/h]
m	Mittlere Anzahl eintreffender Kfz pro Umlauf	[Kfz/U]
t _B	Mittlerer Zeitbedarfswert	[s/Kfz]
qs	Sättigungsverkehrsstärke	[Kfz/h]
$N_{MS,95}>n_K$	Kurzer Aufstellstreifen vorhanden	[-]
n_{C}	Abflusskapazität pro Umlauf	[Kfz/U]
С	Kapazität des Fahrstreifens	[Kfz/h]
X	Auslastungsgrad	[-]
t _W	Mittlere Wartezeit	[s]
N_{GE}	Mittlere Rückstaulänge bei Freigabeende	[Kfz]
N_{MS}	Mittlere Rückstaulänge bei Maximalstau	[Kfz]
$N_{MS.95}$	Rückstau bei Maximalstau, der mit einer stat. Sicherheit von 95% nicht überschritten wird	[Kfz]
L _x	Erforderliche Stauraumlänge	[m]
QSV	Qualitätsstufe des Verkehrsablaufs	[-]

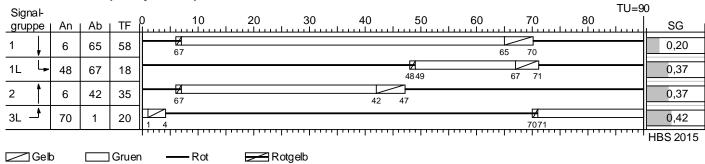
Projekt	Jüchen und Grevenbroich				
Knotenpunkt	KP1 - B 59 / A 46 AS Jüchen Nord				
Auftragsnr.	3.1058-2	Variante	02 - Ausbau	Datum	05.02.2020
Bearbeiter	Ch. Knof	Abzeichnung		Blatt	


LISA

Projekt	Jüchen und Grevenbroich				
Knotenpunkt	KP2 - B 59 / A 46 AS Jüchen Süd				
Auftragsnr.	3.1058-2	Variante	01 - Bestand	Datum	10.10.2019
Bearbeiter	Ch. Knof	Signum		Anlage	

LISA

Analyse MS



Projekt	Jüchen und Grevenbroich				
Knotenpunkt	KP2 - B 59 / A 46 AS Jüchen Süd				
Auftragsnr.	3.1058-2	Variante	01 - Bestand	Datum	10.10.2019
Bearbeiter	Ch. Knof	Signum		Anlage	

Gelb

SP4 (Analyse MS)

Gruen

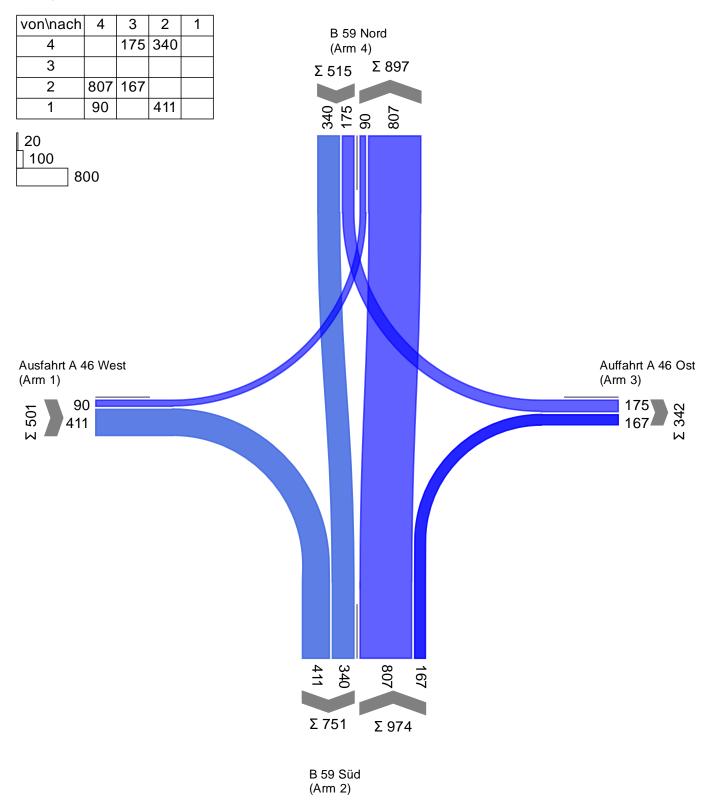
Signalzeitenplan (6:30 - 8:30) den Verbelastungen angepasst auf der Grundlage der Signalplanung vom 13.11.1996 und Zwischenzeiten vom 20.08.2015 des Ingenieurbüros Geiger + Hamburgier GmbH

Rotgelb

Projekt	Jüchen und Grevenbroich				
Knotenpunkt	KP2 - B 59 / A 46 AS Jüchen Süd				
Auftragsnr.	3.1058-2	Variante	01 - Bestand	Datum	10.10.2019
Bearbeiter	Ch. Knof	Signum		Anlage	

LISA

MIV - SP4 (Analyse MS) (TU=90) - Analyse MS

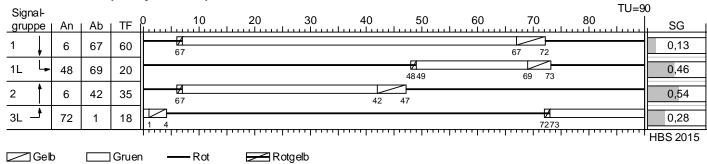

Zuf	Fstr.Nr.	Symbol	SGR	tr [s]	ta [s]	ts [s]	fA	q [Kfz/h]	m [Kfz/U]	t _B [s/Kfz]	qs [Kfz/h]	NMS,95>nK	nc [Kfz/U]	C [Kfz/h]	х	tw [s]	Nge [Kfz]	N _{MS} [Kfz]	NMS,95 [Kfz]	Lx [m]	QSV	Bemerkung
	1	 	1	58	59	32	0,656	244	6,100	1,966	1831	-	30	1201	0,203	6,575	0,144	2,565	5,274	34,555	Α	
4	3	1	1	58	59	32	0,656	244	6,100	1,966	1831	-	30	1201	0,203	6,575	0,144	2,565	5,274	34,555	Α	
	5	L.	1L	18	19	72	0,211	121	3,025	2,316	1554	-	8	328	0,369	34,111	0,340	2,928	5,822	40,137	В	
	4	1	2	35	36	55	0,400	250	6,250	2,124	1695	-	17	676	0,370	20,835	0,342	4,743	8,426	59,656	В	
2	3	1	2	35	36	55	0,400	250	6,250	2,124	1695	-	17	676	0,370	20,835	0,342	4,743	8,426	59,656	В	
	1																					
	3		3L	20	21	70	0,233	154	3,850	2,310	1558	-	9	363	0,424	33,679	0,434	3,711	6,969	47,919	В	
1	1	7																				
	Knotenpu	ınktssum	men:					1263						4445								
	Gewichtete Mittelwerte:														0,312	18,163						
	TU = 90 s $T = 3600 s$ Instationaritätsfaktor = 1,1																					

Zuf	Zufahrt	[]
		[-]
Fstr.Nr.	Fahrstreifen-Nummer	[-]
Symbol	Fahrstreifen-Symbol	[-]
SGR	Signalgruppe	[-]
t _F	Freigabezeit	[s]
t _A	Abflusszeit	[s]
ts	Sperrzeit	[s]
f _A	Abflusszeitanteil	[-]
q	Belastung	[Kfz/h]
m	Mittlere Anzahl eintreffender Kfz pro Umlauf	[Kfz/U]
t _B	Mittlerer Zeitbedarfswert	[s/Kfz]
qs	Sättigungsverkehrsstärke	[Kfz/h]
$N_{MS,95} > n_K$	Kurzer Aufstellstreifen vorhanden	[-]
n_{C}	Abflusskapazität pro Umlauf	[Kfz/U]
С	Kapazität des Fahrstreifens	[Kfz/h]
x	Auslastungsgrad	[-]
t _W	Mittlere Wartezeit	[s]
N_{GE}	Mittlere Rückstaulänge bei Freigabeende	[Kfz]
N_{MS}	Mittlere Rückstaulänge bei Maximalstau	[Kfz]
$N_{MS,95}$	Rückstau bei Maximalstau, der mit einer stat. Sicherheit von 95% nicht überschritten wird	[Kfz]
L_x	Erforderliche Stauraumlänge	[m]
QSV	Qualitätsstufe des Verkehrsablaufs	[-]

Projekt	Jüchen und Grevenbroich				
Knotenpunkt	KP2 - B 59 / A 46 AS Jüchen Süd				
Auftragsnr.	3.1058-2	Variante	01 - Bestand	Datum	10.10.2019
Bearbeiter	Ch. Knof	Signum		Anlage	

LISA

Analyse NMS



Projekt	Jüchen und Grevenbroich				
Knotenpunkt	KP2 - B 59 / A 46 AS Jüchen Süd				
Auftragsnr.	3.1058-2	Variante	01 - Bestand	Datum	10.10.2019
Bearbeiter	Ch. Knof	Signum		Anlage	

Brilon Bondzio Weiser Ingenieurgesellschaft für Verkehrswesen mbH

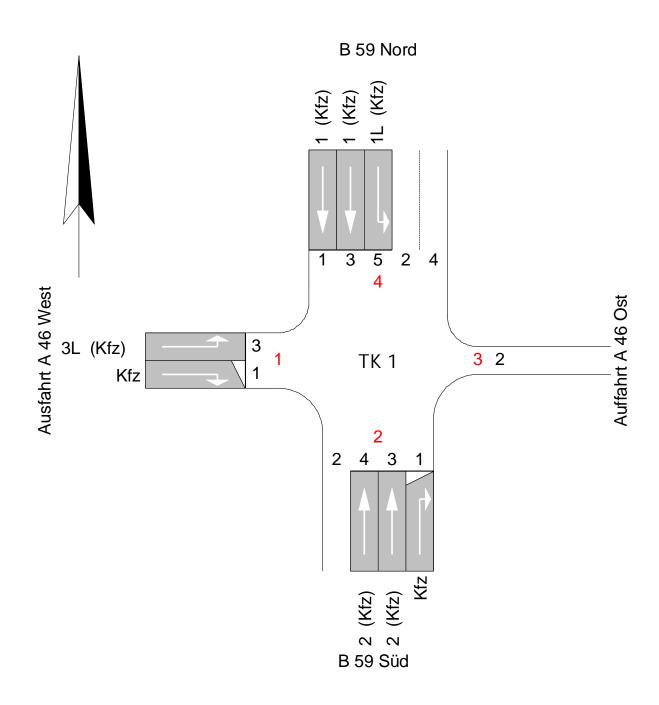
-1164

SP5 (Analyse NMS)

Signalzeitenplan (15:00 - 19:00) den Verbelastungen angepasst auf der Grundlage der Signalplanung vom 13.11.1996 und Zwischenzeiten vom 20.08.2015 des Ingenieurbüros Geiger + Hamburgier GmbH

Projekt	Jüchen und Grevenbroich				
Knotenpunkt	KP2 - B 59 / A 46 AS Jüchen Süd				
Auftragsnr.	3.1058-2	Variante	01 - Bestand	Datum	10.10.2019
Bearbeiter	Ch. Knof	Signum		Anlage	

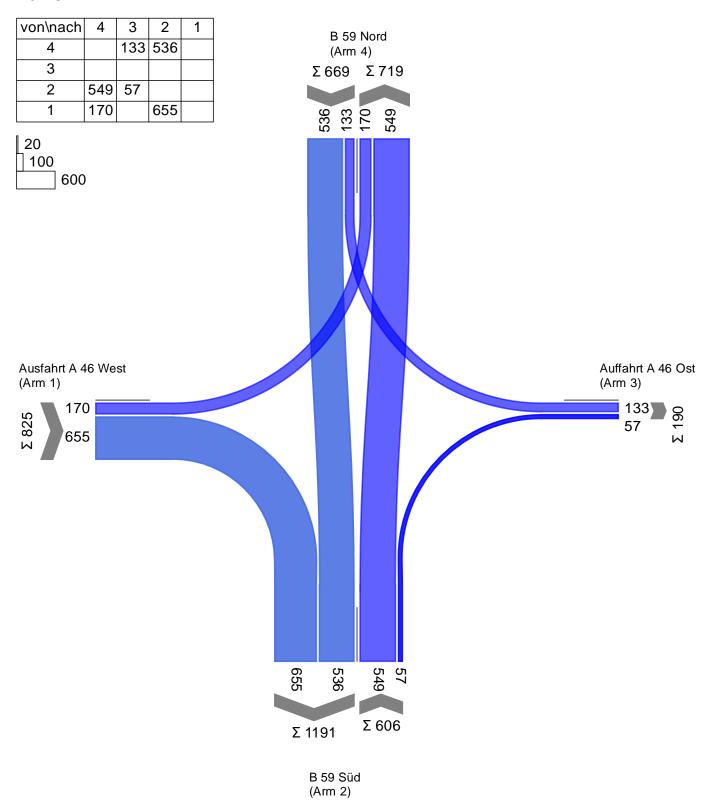
-1164


MIV - SP5 (Analyse NMS) (TU=90) - Analyse NMS

Zuf	Fstr.Nr.	Symbol	SGR	t ^F [S]	t ^A [s]	ts [s]	fA	q [Kfz/h]	m [Kfz/U]	t ^B [s/Kfz]	qs [Kfz/h]	N MS,95> n K	nc [Kfz/U]	C [Kfz/h]	х	tw [s]	N _{GE} [Kfz]	Nms [Kfz]	NMS,95 [Kfz]	L× [m]	QSV	Bemerkung
	1		1	60	61	30	0,678	170	4,250	1,832	1965	-	33	1327	0,128	5,331	0,082	1,581	3,708	22,648	Α	
4	3		1	60	61	30	0,678	170	4,250	1,832	1965	-	33	1327	0,128	5,331	0,082	1,581	3,708	22,648	Α	
	5	Ļ	1L	20	21	70	0,233	175	4,375	2,189	1645	-	10	383	0,457	34,337	0,501	4,257	7,746	50,473	В	
	4	1	2	35	36	55	0,400	404	10,100	1,921	1874	-	19	750	0,539	24,119	0,722	8,448	13,364	85,556	В	
2	3	1	2	35	36	55	0,400	404	10,100	1,921	1874	-	19	750	0,539	24,119	0,722	8,448	13,364	85,556	В	
	1	_																				
	3	_	3L	18	19	72	0,211	90	2,250	2,385	1509	-	8	318	0,283	32,339	0,225	2,113	4,571	32,445	В	
1	1	7																				
	Knotenpu	ınktssumı	men:					1413						4855								
	Gewichtete Mittelwerte:														0,414	21,387						
	TU = 90 s T = 3600 s Instationaritätsfaktor = 1,1																					

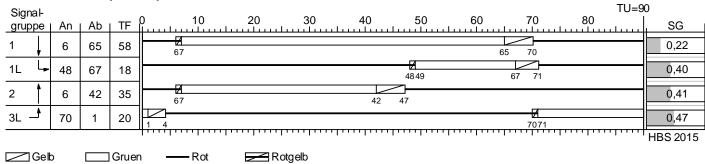
Zuf	Zufahrt	[-]
Fstr.Nr.	Fahrstreifen-Nummer	[-]
Symbol	Fahrstreifen-Symbol	[-]
SGR	Signalgruppe	[-]
t _F	Freigabezeit	[s]
t _A	Abflusszeit	[s]
ts	Sperrzeit	[s]
f _A	Abflusszeitanteil	[-]
q	Belastung	[Kfz/h]
m	Mittlere Anzahl eintreffender Kfz pro Umlauf	[Kfz/U]
t _B	Mittlerer Zeitbedarfswert	[s/Kfz]
qs	Sättigungsverkehrsstärke	[Kfz/h]
$N_{MS,95} > n_K$	Kurzer Aufstellstreifen vorhanden	[-]
n _C	Abflusskapazität pro Umlauf	[Kfz/U]
С	Kapazität des Fahrstreifens	[Kfz/h]
x	Auslastungsgrad	[-]
t _W	Mittlere Wartezeit	[s]
Nge	Mittlere Rückstaulänge bei Freigabeende	[Kfz]
N_{MS}	Mittlere Rückstaulänge bei Maximalstau	[Kfz]
$N_{MS,95}$	Rückstau bei Maximalstau, der mit einer stat. Sicherheit von 95% nicht überschritten wird	[Kfz]
L _x	Erforderliche Stauraumlänge	[m]
QSV	Qualitätsstufe des Verkehrsablaufs	[-]

Projekt	Jüchen und Grevenbroich				
Knotenpunkt	KP2 - B 59 / A 46 AS Jüchen Süd				
Auftragsnr.	3.1058-2	Variante	01 - Bestand	Datum	10.10.2019
Bearbeiter	Ch. Knof	Signum		Anlage	


LISA

Projekt	Jüchen und Grevenbroich				
Knotenpunkt	KP2 - B 59 / A 46 AS Jüchen Süd				
Auftragsnr.	3.1058-2	Variante	01 - Bestand	Datum	10.10.2019
Bearbeiter	Ch. Knof	Signum		Anlage	

LISA


P0 MS

Projekt	Jüchen und Grevenbroich				
Knotenpunkt	KP2 - B 59 / A 46 AS Jüchen Süd				
Auftragsnr.	3.1058-2	Variante	01 - Bestand	Datum	10.10.2019
Bearbeiter	Ch. Knof	Signum		Anlage	

Brilon Bondzio Weiser Ingenieurgesellschaft für Verkehrswesen mbH

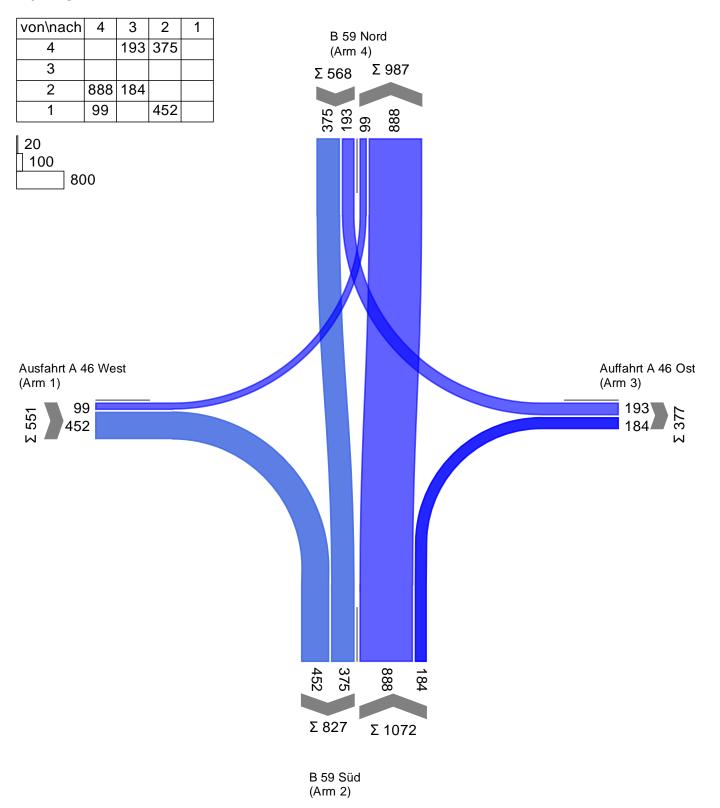
LISA

Signalzeitenplan (6:30 - 8:30) den Verbelastungen angepasst auf der Grundlage der Signalplanung vom 13.11.1996 und Zwischenzeiten vom 20.08.2015 des Ingenieurbüros Geiger + Hamburgier GmbH

Projekt	Jüchen und Grevenbroich				
Knotenpunkt	KP2 - B 59 / A 46 AS Jüchen Süd				
Auftragsnr.	3.1058-2	Variante	01 - Bestand	Datum	10.10.2019
Bearbeiter	Ch. Knof	Signum		Anlage	

LISA

MIV - SP4 (P0 MS) (TU=90) - P0 MS

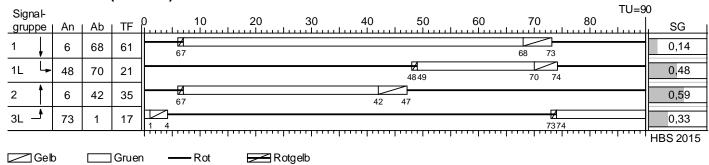

Zuf	Fstr.Nr.	Symbol	SGR	tr [s]	ta [s]	ts [s]	fA	q [Kfz/h]	m [Kfz/U]	t _B [s/Kfz]	qs [Kfz/h]	NMS,95>nK	nc [Kfz/U]	C [Kfz/h]	х	tw [s]	Nge [Kfz]	N _{MS} [Kfz]	NMS,95 [Kfz]	Lx [m]	QSV	Bemerkung
4	1	 	1	58	59	32	0,656	268	6,700	1,962	1835	-	30	1201	0,223	6,724	0,162	2,862	5,723	37,428	Α	
	3	1	1	58	59	32	0,656	268	6,700	1,962	1835	-	30	1201	0,223	6,724	0,162	2,862	5,723	37,428	Α	
	5	L.	1L	18	19	72	0,211	133	3,325	2,312	1557	-	8	329	0,404	34,968	0,397	3,265	6,321	43,501	В	
2	4	1	2	35	36	55	0,400	275	6,875	2,124	1695	-	17	676	0,407	21,501	0,404	5,331	9,236	65,391	В	
	3	1	2	35	36	55	0,400	275	6,875	2,124	1695	-	17	676	0,407	21,501	0,404	5,331	9,236	65,391	В	
	1	[+																				
	3	_	3L	20	21	70	0,233	170	4,250	2,318	1553	-	9	362	0,470	35,000	0,530	4,191	7,653	52,806	В	
1	1	¬,																				
	Knotenpunktssummen:							1389						4445								
	Gewichtete Mittelwerte:														0,343	18,740						
				TU	= 90	s T=	= 3600 s	Instati	onaritäts	faktor =	1,1											

Zuf	Zufahrt	[-]
Fstr.Nr.	Fahrstreifen-Nummer	[-]
Symbol	Fahrstreifen-Symbol	[-]
SGR	Signalgruppe	[-]
t _F	Freigabezeit	[s]
t _A	Abflusszeit	[s]
ts	Sperzeit	[s]
f _A	Abflusszeitanteil	[-]
q	Belastung	[Kfz/h]
m	Mittlere Anzahl eintreffender Kfz pro Umlauf	[Kfz/U]
t _B	Mittlerer Zeitbedarfswert	[s/Kfz]
qs	Sättigungsverkehrsstärke	[Kfz/h]
N _{MS,95} >n _K	Kurzer Aufstellstreifen vorhanden	[-]
n _C	Abflusskapazität pro Umlauf	[Kfz/U]
С	Kapazität des Fahrstreifens	[Kfz/h]
X	Auslastungsgrad	[-]
t _W	Mittlere Wartezeit	[s]
N_{GE}	Mittlere Rückstaulänge bei Freigabeende	[Kfz]
N_{MS}	Mittlere Rückstaulänge bei Maximalstau	[Kfz]
$N_{MS,95}$	Rückstau bei Maximalstau, der mit einer stat. Sicherheit von 95% nicht überschritten wird	[Kfz]
L_x	Erforderliche Stauraumlänge	[m]
QSV	Qualitätsstufe des Verkehrsablaufs	[-]

Projekt	Jüchen und Grevenbroich									
Knotenpunkt	KP2 - B 59 / A 46 AS Jüchen Süd									
Auftragsnr.	3.1058-2	Variante	01 - Bestand	Datum	10.10.2019					
Bearbeiter	Ch. Knof	Signum		Anlage						

L

P0 NMS


Projekt	Jüchen und Grevenbroich									
Knotenpunkt	KP2 - B 59 / A 46 AS Jüchen Süd									
Auftragsnr.	3.1058-2	Variante	01 - Bestand	Datum	10.10.2019					
Bearbeiter	Ch. Knof	Signum		Anlage						

Signalzeitenplan

Brilon Bondzio Weiser Ingenieurgesellschaft für Verkehrswesen mbH

SP5 (P0 NMS)

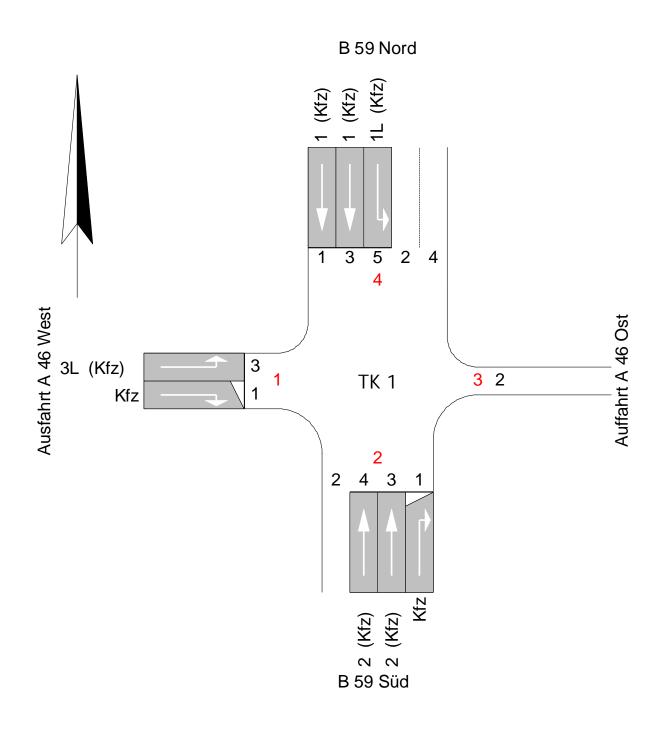
Gruen

Signalzeitenplan (15:00 - 19:00) den Verbelastungen angepasst auf der Grundlage der Signalplanung vom 13.11.1996 und Zwischenzeiten vom 20.08.2015 des Ingenieurbüros Geiger + Hamburgier GmbH

Projekt	Jüchen und Grevenbroich				
Knotenpunkt	KP2 - B 59 / A 46 AS Jüchen Süd				
Auftragsnr.	3.1058-2	Variante	01 - Bestand	Datum	10.10.2019
Bearbeiter	Ch. Knof	Signum		Anlage	

HBS-Bewertung 2015

LISA

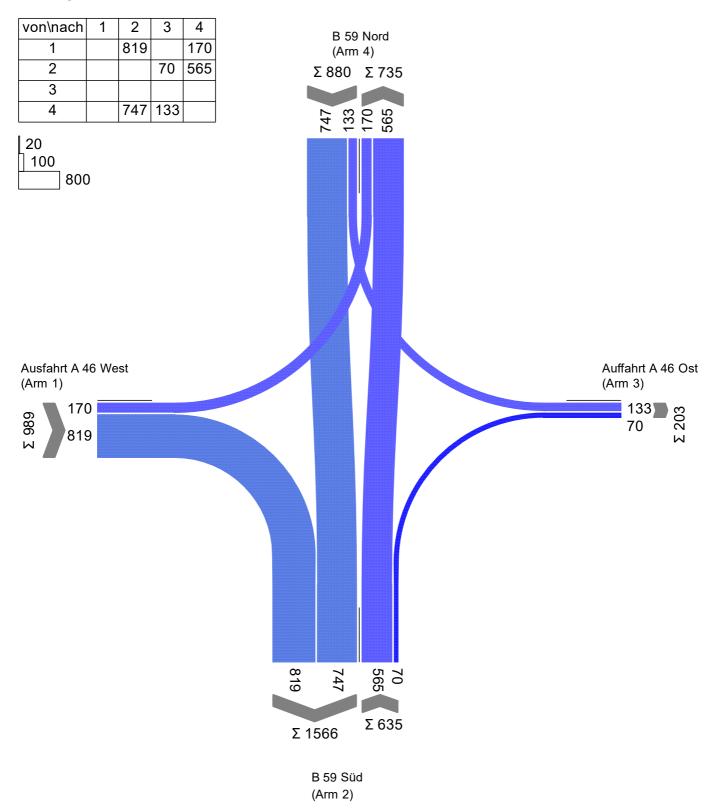

MIV - SP5 (P0 NMS) (TU=90) - P0 NMS

Zuf	Fstr.Nr.	Symbol	SGR	t ^F [S]	t ^A [s]	ts [s]	fA	q [Kfz/h]	m [Kfz/U]	t ^B [s/Kfz]	qs [Kfz/h]	N MS,95> n K	nc [Kfz/U]	C [Kfz/h]	х	tw [s]	N _{GE} [Kfz]	Nms [Kfz]	NMS,95 [Kfz]	L× [m]	QSV	Bemerkung
	1		1	61	62	29	0,689	188	4,700	1,843	1953	-	34	1346	0,140	5,060	0,091	1,709	3,920	24,084	Α	
4	3		1	61	62	29	0,689	188	4,700	1,843	1953	-	34	1346	0,140	5,060	0,091	1,709	3,920	24,084	Α	
	5	Ļ	1L	21	22	69	0,244	193	4,825	2,187	1646	-	10	402	0,480	34,092	0,554	4,686	8,347	54,339	В	
	4	1	2	35	36	55	0,400	444	11,100	1,922	1873	-	19	749	0,593	25,694	0,927	9,658	14,914	95,569	В	
2	3	1	2	35	36	55	0,400	444	11,100	1,922	1873	-	19	749	0,593	25,694	0,927	9,658	14,914	95,569	В	
	1	_																				
	3	_	3L	17	18	73	0,200	99	2,475	2,383	1511	-	8	302	0,328	34,172	0,281	2,400	5,020	35,602	В	
1	1	7																				
	Knotenpu	ınktssumı	men:					1556						4894								
	Gewichte	te Mittelw	erte:												0,453	22,289						
				TU	= 90	s T=	= 3600 s	Instati	onaritäts	faktor =	1,1											

Zuf	Zufahrt	[-]
Fstr.Nr.	Fahrstreifen-Nummer	[-]
Symbol	Fahrstreifen-Symbol	[-]
SGR	Signalgruppe	[-]
t _F	Freigabezeit	[s]
tA	Abflusszeit	[s]
ts	Sperrzeit	[s]
f _A	Abflusszeitanteil	[-]
q	Belastung	[Kfz/h]
m	Mittlere Anzahl eintreffender Kfz pro Umlauf	[Kfz/U]
t _B	Mittlerer Zeitbedarfswert	[s/Kfz]
qs	Sättigungsverkehrsstärke	[Kfz/h]
$N_{MS,95}$ > n_K	Kurzer Aufstellstreifen vorhanden	[-]
n _C	Abflusskapazität pro Umlauf	[Kfz/U]
С	Kapazität des Fahrstreifens	[Kfz/h]
X	Auslastungsgrad	[-]
t _W	Mittlere Wartezeit	[s]
Nge	Mittlere Rückstaulänge bei Freigabeende	[Kfz]
N_{MS}	Mittlere Rückstaulänge bei Maximalstau	[Kfz]
$N_{MS,95}$	Rückstau bei Maximalstau, der mit einer stat. Sicherheit von 95% nicht überschritten wird	[Kfz]
L _x	Erforderliche Stauraumlänge	[m]
QSV	Qualitätsstufe des Verkehrsablaufs	[-]

Projekt	Jüchen und Grevenbroich				
Knotenpunkt	KP2 - B 59 / A 46 AS Jüchen Süd				
Auftragsnr.	3.1058-2	Variante	01 - Bestand	Datum	10.10.2019
Bearbeiter	Ch. Knof	Signum		Anlage	

LISA

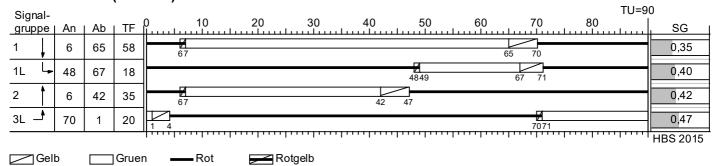


Projekt	Jüchen und Grevenbroich				
Knotenpunkt	KP2 - B 59 / A 46 AS Jüchen Süd				
Auftragsnr.	3.1058-2	Variante	01 - Bestand	Datum	06.02.2020
Bearbeiter	Ch. Knof	Signum		Anlage	

Strombelastungsplan

LISA

PF1 MS



Projekt	Jüchen und Grevenbroich				
Knotenpunkt	KP2 - B 59 / A 46 AS Jüchen Süd				
Auftragsnr.	3.1058-2	Variante	01 - Bestand	Datum	06.02.2020
Bearbeiter	Ch. Knof	Abzeichnung		Blatt	

Signalzeitenplan

LISA

SP4 (PF1 MS)

Signalzeitenplan (6:30 - 8:30) den Verbelastungen angepasst auf der Grundlage der Signalplanung vom 13.11.1996 und Zwischenzeiten vom 20.08.2015 des Ingenieurbüros Geiger + Hamburgier GmbH

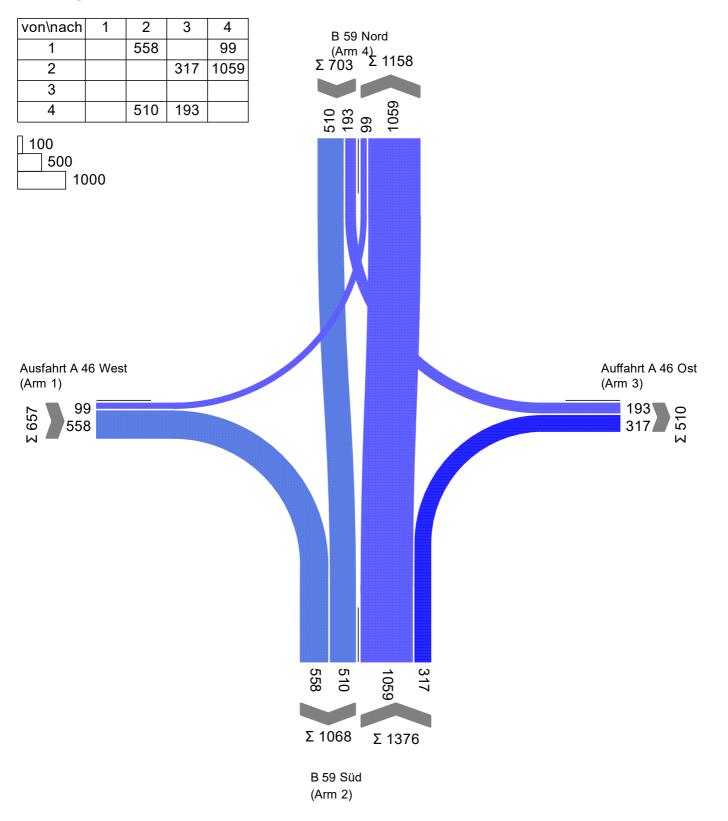
Projekt	Jüchen und Grevenbroich				
Knotenpunkt	KP2 - B 59 / A 46 AS Jüchen Süd				
Auftragsnr.	3.1058-2	Variante	01 - Bestand	Datum	06.02.2020
Bearbeiter	Ch. Knof	Abzeichnung		Blatt	

HBS-Bewertung 2015

LISA

MIV - SP4 (PF1 MS) (TU=90) - PF1 MS

Zuf	Fstr.Nr.	Symbol	SGR	tr [s]	tA [s]	ts [s]	fA	q [Kfz/h]	m [Kfz/U]	t ^B [s/Kfz]	qs [Kfz/h]	Nмs,95>nк	n∈ [Kfz/U]	C [Kfz/h]	х	tw [s]	Nge [Kfz]	N _{MS} [Kfz]	NMS,95 [Kfz]	L× [m]	QSV	Bemerkung
1	3	1	3L	20	21	70	0,233	170	4,250	2,318	1553	-	9	362	0,470	35,000	0,530	4,191	7,653	52,806	В	
'	1	ſŤ																				
	4		2	35	36	55	0,400	283	7,075	2,153	1672	-	17	667	0,424	21,857	0,435	5,547	9,530	68,387	В	
2	3	1	2	35	36	55	0,400	283	7,075	2,153	1672	-	17	667	0,424	21,857	0,435	5,547	9,530	68,387	В	
	1	1																				
	1		1	58	59	32	0,656	374	9,350	2,241	1606	-	26	1054	0,355	8,035	0,320	4,513	8,106	60,552	Α	
4	3	←	1	58	59	32	0,656	374	9,350	2,241	1606	-	26	1054	0,355	8,035	0,320	4,513	8,106	60,552	Α	
	5	1	1L	18	19	72	0,211	133	3,325	2,312	1557	-	8	329	0,404	34,968	0,397	3,265	6,321	43,501	В	
	Knotenpu	ınktssumı	men:					1617						4133								
Gewichtete Mittelwerte: 0,395 17,923								17,923														
	TU = 90 s T = 3600 s Instationaritätsfaktor = 1,1																					

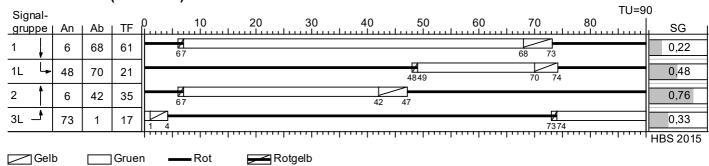

Zuf	Zufahrt	[-]
Fstr.Nr.	Fahrstreifen-Nummer	[-]
Symbol	Fahrstreifen-Symbol	[-]
SGR	Signalgruppe	[-]
t_{F}	Freigabezeit	[s]
t _A	Abflusszeit	[s]
ts	Sperrzeit	[s]
f _A	Abflusszeitanteil	[-]
q	Belastung	[Kfz/h]
m	Mittlere Anzahl eintreffender Kfz pro Umlauf	[Kfz/U]
t _B	Mittlerer Zeitbedarfswert	[s/Kfz]
qs	Sättigungsverkehrsstärke	[Kfz/h]
$N_{MS,95}$ > n_K	Kurzer Aufstellstreifen vorhanden	[-]
n_{C}	Abflusskapazität pro Umlauf	[Kfz/U]
С	Kapazität des Fahrstreifens	[Kfz/h]
x	Auslastungsgrad	[-]
t_W	Mittlere Wartezeit	[s]
N_{GE}	Mittlere Rückstaulänge bei Freigabeende	[Kfz]
N_{MS}	Mittlere Rückstaulänge bei Maximalstau	[Kfz]
$N_{MS,95}$	Rückstau bei Maximalstau, der mit einer stat. Sicherheit von 95% nicht überschritten wird	[Kfz]
L _x	Erforderliche Stauraumlänge	[m]
QSV	Qualitätsstufe des Verkehrsablaufs	[-]

Projekt	Jüchen und Grevenbroich				
Knotenpunkt	KP2 - B 59 / A 46 AS Jüchen Süd				
Auftragsnr.	3.1058-2	Variante	01 - Bestand	Datum	06.02.2020
Bearbeiter	Ch. Knof	Abzeichnung		Blatt	

Strombelastungsplan

LIS

PF1 NMS



Projekt	Jüchen und Grevenbroich				
Knotenpunkt	KP2 - B 59 / A 46 AS Jüchen Süd				
Auftragsnr.	3.1058-2	Variante	01 - Bestand	Datum	06.02.2020
Bearbeiter	Ch. Knof	Abzeichnung		Blatt	

Signalzeitenplan

- 1 10 4

SP5 (PF1 NMS)

Signalzeitenplan (15:00 - 19:00) den Verbelastungen angepasst auf der Grundlage der Signalplanung vom 13.11.1996 und Zwischenzeiten vom 20.08.2015 des Ingenieurbüros Geiger + Hamburgier GmbH

Projekt	Jüchen und Grevenbroich				
Knotenpunkt	KP2 - B 59 / A 46 AS Jüchen Süd				
Auftragsnr.	3.1058-2	Variante	01 - Bestand	Datum	06.02.2020
Bearbeiter	Ch. Knof	Abzeichnung		Blatt	

HBS-Bewertung 2015

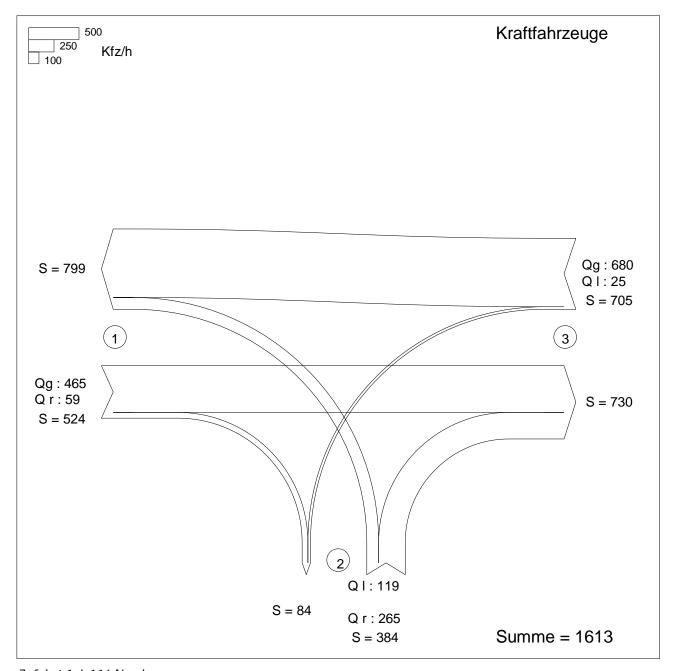
L LISA

MIV - SP5 (PF1 NMS) (TU=90) - PF1 NMS

Zuf	Fstr.Nr.	Symbo	ol S	GR	tr [s]	ta [s]	ts [s]	fA	q [Kfz/h]	m [Kfz/U]	t _B [s/Kfz]	qs [Kfz/h]	N мs,95>nк	n∈ [Kfz/U]	C [Kfz/h]	х	tw [s]	Nge [Kfz]	Nмs [Kfz]	NMS,95 [Kfz]	L× [m]	QSV	Bemerkung
	3		3	3L	17	18	73	0,200	99	2,475	2,383	1511	1	8	302	0,328	34,172	0,281	2,400	5,020	35,602	В	
1	1	7																					
	4	1		2	35	36	55	0,400	530	13,250	2,070	1739	-	17	694	0,764	36,017	2,446	13,895	20,199	139,373	С	
2	3	1		2	35	36	55	0,400	530	13,250	2,070	1739	-	17	694	0,764	36,017	2,446	13,895	20,199	139,373	С	
	1																						
	1	ļ		1	61	62	29	0,689	255	6,375	2,108	1708	1	29	1177	0,217	5,598	0,157	2,488	5,156	36,226	Α	
4	3	 		1	61	62	29	0,689	255	6,375	2,108	1708	1	29	1177	0,217	5,598	0,157	2,488	5,156	36,226	Α	
	5	Ļ		1L	21	22	69	0,244	193	4,825	2,187	1646	-	10	402	0,480	34,092	0,554	4,686	8,347	54,339	В	
	Knotenpu	ınktssur	nme	en:					1862						4446								
	Gewichte	te Mitte	lwer	te:												0,562	27,388						
					TU	= 90	s T:	= 3600 s	Instati	onaritäts	faktor =	1,1											

Zuf	Zufahrt	[-]
Fstr.Nr.	Fahrstreifen-Nummer	[-]
Symbol	Fahrstreifen-Symbol	[-]
SGR	Signalgruppe	[-]
t_{F}	Freigabezeit	[s]
t _A	Abflusszeit	[s]
ts	Sperrzeit	[s]
f _A	Abflusszeitanteil	[-]
q	Belastung	[Kfz/h]
m	Mittlere Anzahl eintreffender Kfz pro Umlauf	[Kfz/U]
t _B	Mittlerer Zeitbedarfswert	[s/Kfz]
qs	Sättigungsverkehrsstärke	[Kfz/h]
$N_{MS,95}$ > n_K	Kurzer Aufstellstreifen vorhanden	[-]
n_{C}	Abflusskapazität pro Umlauf	[Kfz/U]
С	Kapazität des Fahrstreifens	[Kfz/h]
x	Auslastungsgrad	[-]
t_W	Mittlere Wartezeit	[s]
N_{GE}	Mittlere Rückstaulänge bei Freigabeende	[Kfz]
N_{MS}	Mittlere Rückstaulänge bei Maximalstau	[Kfz]
$N_{MS,95}$	Rückstau bei Maximalstau, der mit einer stat. Sicherheit von 95% nicht überschritten wird	[Kfz]
L _x	Erforderliche Stauraumlänge	[m]
QSV	Qualitätsstufe des Verkehrsablaufs	[-]

Projekt	Jüchen und Grevenbroich				
Knotenpunkt	KP2 - B 59 / A 46 AS Jüchen Süd				
Auftragsnr.	3.1058-2	Variante	01 - Bestand	Datum	06.02.2020
Bearbeiter	Ch. Knof	Abzeichnung		Blatt	


Verkehrsfluss-Diagramm in Form einer Einmündung

Projekt : 3,1058-2 Jüchen und Grevenbroich

Knotenpunkt: KP3 - L 116 / AS Gustorf Süd

Stunde : MS

Datei : KP3_HBS_ANALYSE_MS.kob

Zufahrt 1: L 116 Nord Zufahrt 2: AS Gustorf West Zufahrt 3: L116 Süd

KNOBEL Version 7.1.14

HBS 2015, Kapitel L5: Landstraßen: Knotenpunkte ohne Lichtsignalanlage

Projekt : 3,1058-2 Jüchen und Grevenbroich

Knotenpunkt: KP3 - L 116 / AS Gustorf Süd

Stunde : MS

Datei : KP3_HBS_ANALYSE_MS.kob

Strom	Strom	q-vorh	tg	tf	q-Haupt	q-max	Misch-	W	N-90	N-95	N-99	QSV
-Nr.		[PWE/h]	[s]	[s]	[Fz/h]	[PWE/h]	strom	[s]	[Pkw-E]	[Pkw-E]	[Pkw-E]	
2	—	517				1800						А
3	—	68				1116		4,0	1	1	1	А
Misch-H												
4	₹	120	7,4	3,4	1170	159		84,1	6	7	10	E
6	_	296	7,3	3,1	465	553		15,6	3	4	6	В
Misch-N		416				450	4 + 6	78,7	15	18	23	E
8	←	755				1800						А
7	V	27	6,4	2,9	465	655		6,2	1	1	1	А
Misch-H		782				3600	7 + 8	1,4	1	1	2	А

Qualitätsstufe des Verkehrsablaufs für den gesamten Knotenpunkt

Lage des Knotenpunkte : Außerorts + außerhalb eines Ballungsgebiets

Alle Einstellungen nach : HBS 2015

Strassennamen:

Hauptstrasse: L 116 Nord

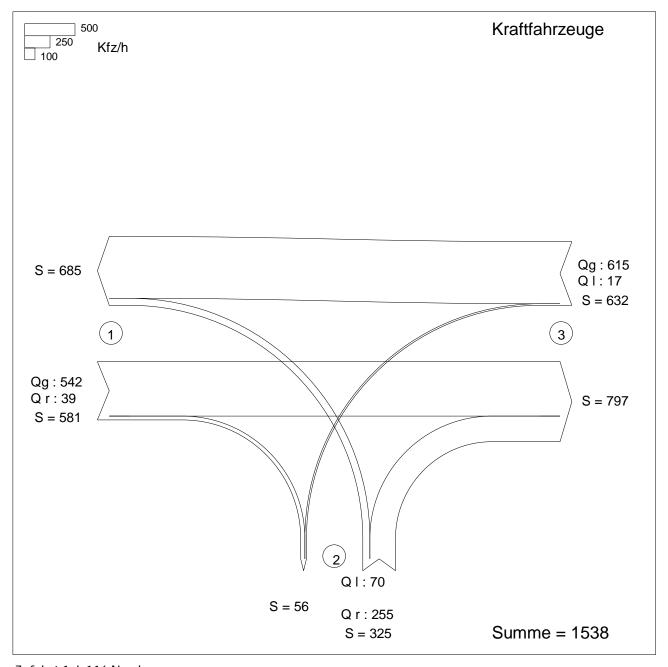
L116 Süd

Nebenstrasse: AS Gustorf West

HBS 2015 L5

Ε

KNOBEL Version 7.1.14


Verkehrsfluss-Diagramm in Form einer Einmündung

Projekt : 3,1058-2 Jüchen und Grevenbroich

Knotenpunkt: KP3 - L 116 / AS Gustorf Süd

Stunde : NMS

Datei : KP3_HBS_ANALYSE_NMS.kob

Zufahrt 1: L 116 Nord Zufahrt 2: AS Gustorf West Zufahrt 3: L116 Süd

KNOBEL Version 7.1.14

HBS 2015, Kapitel L5: Landstraßen: Knotenpunkte ohne Lichtsignalanlage

Projekt : 3,1058-2 Jüchen und Grevenbroich

Knotenpunkt: KP3 - L 116 / AS Gustorf Süd

Stunde : NMS

Datei : KP3_HBS_ANALYSE_NMS.kob

Strom	Strom	q-vorh	tg	tf	q-Haupt	q-max	Misch-	W	N-90	N-95	N-99	QSV
-Nr.		[PWE/h]	[s]	[s]	[Fz/h]	[PWE/h]	strom	[s]	[Pkw-E]	[Pkw-E]	[Pkw-E]	
2	→	583				1800						А
3	—	42				1130		3,6	1	1	1	А
Misch-H												
4	₹	71	7,4	3,4	1174	160		40,8	2	3	4	D
6	_	278	7,3	3,1	542	489		18,5	3	4	6	В
Misch-N		349				483	4 + 6	28,0	6	8	11	С
8	→	659				1800						А
7	V	19	6,4	2,9	542	589		7,1	1	1	1	А
Misch-H		678				3600	7 + 8	1,3	1	1	2	А

Qualitätsstufe des Verkehrsablaufs für den gesamten Knotenpunkt

Lage des Knotenpunkte : Außerorts + außerhalb eines Ballungsgebiets

Alle Einstellungen nach : HBS 2015

Strassennamen:

Hauptstrasse: L 116 Nord

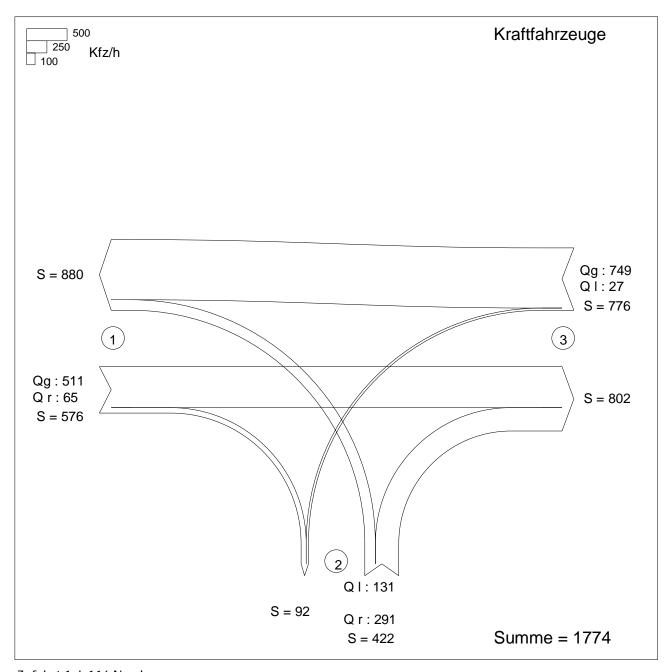
L 116 Süd

Nebenstrasse: AS Gustorf West

HBS 2015 L5

D

KNOBEL Version 7.1.14


Verkehrsfluss-Diagramm in Form einer Einmündung

Projekt : 3,1058-2 Jüchen und Grevenbroich

Knotenpunkt: KP3 - L 116 / AS Gustorf Süd

Stunde : MS

Datei : KP3_HBS_P0_MS.kob

Zufahrt 1: L 116 Nord Zufahrt 2: AS Gustorf West Zufahrt 3: L116 Süd

KNOBEL Version 7.1.14

HBS 2015, Kapitel L5: Landstraßen: Knotenpunkte ohne Lichtsignalanlage

Projekt : 3,1058-2 Jüchen und Grevenbroich

Knotenpunkt: KP3 - L 116 / AS Gustorf Süd

Stunde : MS

Datei : KP3_HBS_P0_MS.kob

Strom	Strom	q-vorh	tg	tf	q-Haupt	q-max	Misch-	W	N-90	N-95	N-99	QSV
-Nr.		[PWE/h]	[s]	[s]	[Fz/h]	[PWE/h]	strom	[s]	[Pkw-E]	[Pkw-E]	[Pkw-E]	
2	→	568				1800						А
3	—	75				1112		4,0	1	1	1	А
Misch-H												
4	★	132	7,4	3,4	1287	131		254,5	13	15	18	F
6	-	325	7,3	3,1	511	513		21,1	4	5	8	С
Misch-N		457				385	4 + 6	402,0	45	47	52	F
8	←	832				1800						А
7	▼	29	6,4	2,9	511	615		6,6	1	1	1	А
Misch-H		861				3600	7 + 8	1,5	1	1	2	А

Qualitätsstufe des Verkehrsablaufs für den gesamten Knotenpunkt

Lage des Knotenpunkte : Außerorts + außerhalb eines Ballungsgebiets

Alle Einstellungen nach : HBS 2015

Strassennamen:

Hauptstrasse: L 116 Nord

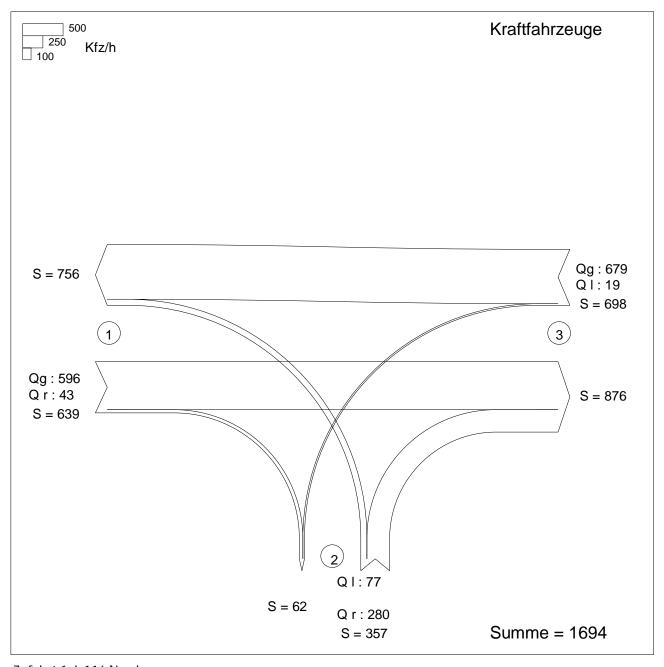
L116 Süd

Nebenstrasse: AS Gustorf West

HBS 2015 L5

F

KNOBEL Version 7.1.14


Verkehrsfluss-Diagramm in Form einer Einmündung

Projekt : 3,1058-2 Jüchen und Grevenbroich

Knotenpunkt: KP3 - L 116 / AS Gustorf Süd

Stunde : NMS

Datei : KP3_HBS_P0_NMS.kob

Zufahrt 1: L 116 Nord Zufahrt 2: AS Gustorf West Zufahrt 3: L116 Süd

KNOBEL Version 7.1.14

HBS 2015, Kapitel L5: Landstraßen: Knotenpunkte ohne Lichtsignalanlage

Projekt : 3,1058-2 Jüchen und Grevenbroich

Knotenpunkt: KP3 - L 116 / AS Gustorf Süd

Stunde : NMS

Datei : KP3_HBS_P0_NMS.kob

Strom	Strom	q-vorh	tg	tf	q-Haupt	q-max	Misch-	W	N-90	N-95	N-99	QSV
-Nr.		[PWE/h]	[s]	[s]	[Fz/h]	[PWE/h]	strom	[s]	[Pkw-E]	[Pkw-E]	[Pkw-E]	
2	→	641				1800						А
3	—	46				1127		3,6	1	1	1	А
Misch-H												
4	₹	78	7,4	3,4	1294	131		66,5	4	4	6	E
6	-	305	7,3	3,1	596	448		26,8	5	6	9	С
Misch-N		383				424	4 + 6	71,7	13	16	21	E
8	←	727				1800						А
7	▼	21	6,4	2,9	596	547		7,6	1	1	1	А
Misch-H		748				3600	7 + 8	1,4	1	1	2	А

Qualitätsstufe des Verkehrsablaufs für den gesamten Knotenpunkt

Lage des Knotenpunkte : Außerorts + außerhalb eines Ballungsgebiets

Alle Einstellungen nach : HBS 2015

Strassennamen:

Hauptstrasse: L 116 Nord

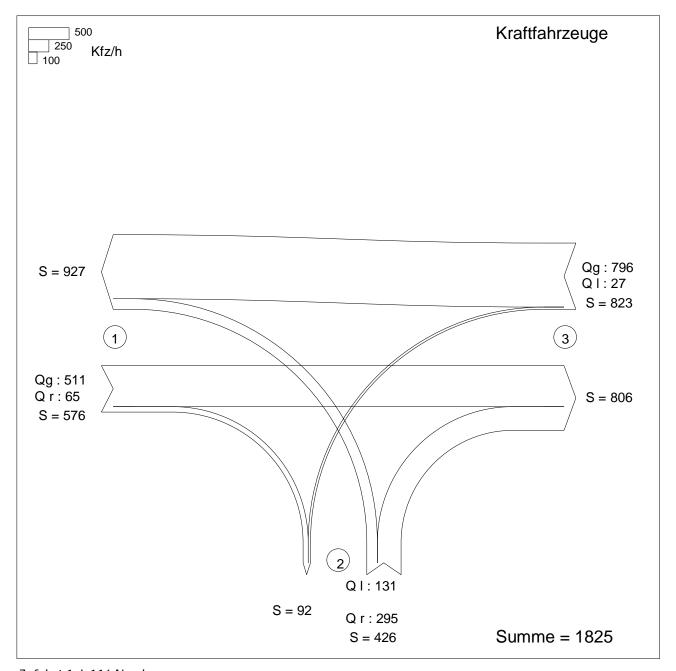
L 116 Süd

Nebenstrasse: AS Gustorf West

HBS 2015 L5

Ε

KNOBEL Version 7.1.14


Verkehrsfluss-Diagramm in Form einer Einmündung

Projekt : 3,1058-2 Jüchen und Grevenbroich

Knotenpunkt: KP3 - L 116 / AS Gustorf Süd

Stunde : MS

Datei : KP3_HBS_P1_MS.kob

Zufahrt 1: L 116 Nord Zufahrt 2: AS Gustorf West Zufahrt 3: L116 Süd

KNOBEL Version 7.1.14

HBS 2015, Kapitel L5: Landstraßen: Knotenpunkte ohne Lichtsignalanlage

Projekt : 3,1058-2 Jüchen und Grevenbroich

Knotenpunkt: KP3 - L 116 / AS Gustorf Süd

Stunde : MS

Datei : KP3_HBS_P1_MS.kob

Strom	Strom	q-vorh	tg	tf	q-Haupt	q-max	Misch-	W	N-90	N-95	N-99	QSV
-Nr.		[PWE/h]	[s]	[s]	[Fz/h]	[PWE/h]	strom	[s]	[Pkw-E]	[Pkw-E]	[Pkw-E]	
2	—	568				1800						А
3	—	75				1112		4,0	1	1	1	А
Misch-H												
4	₹	132	7,4	3,4	1334	122		354,6	15	17	21	F
6	_	331	7,3	3,1	511	513		21,8	4	6	8	С
Misch-N		463				368	4 + 6	522,4	53	56	61	F
8	←	899				1800						А
7	V	29	6,4	2,9	511	615		6,6	1	1	1	А
Misch-H		928				3600	7 + 8	1,5	1	2	2	А

Qualitätsstufe des Verkehrsablaufs für den gesamten Knotenpunkt

Lage des Knotenpunkte : Außerorts + außerhalb eines Ballungsgebiets

Alle Einstellungen nach : HBS 2015

Strassennamen:

Hauptstrasse: L 116 Nord

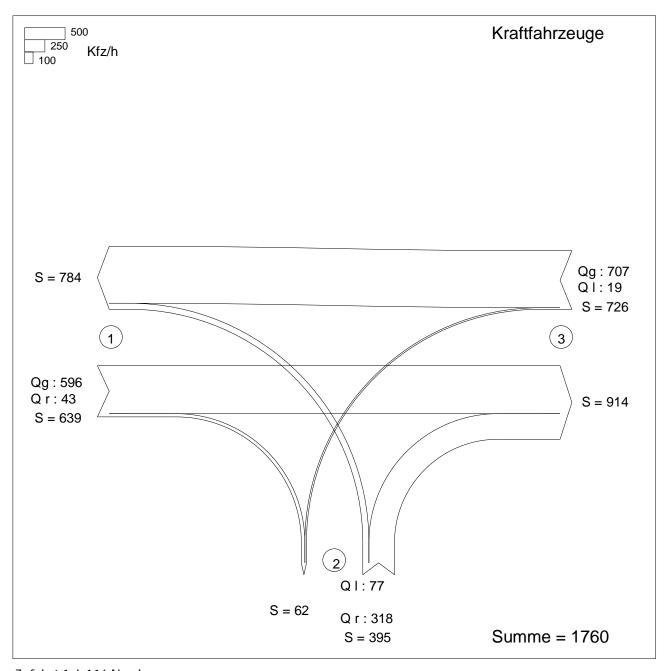
L116 Süd

Nebenstrasse: AS Gustorf West

HBS 2015 L5

F

KNOBEL Version 7.1.14


Verkehrsfluss-Diagramm in Form einer Einmündung

Projekt : 3,1058-2 Jüchen und Grevenbroich

Knotenpunkt: KP3 - L 116 / AS Gustorf Süd

Stunde : NMS

Datei : KP3_HBS_P1_NMS.kob

Zufahrt 1: L 116 Nord Zufahrt 2: AS Gustorf West Zufahrt 3: L116 Süd

KNOBEL Version 7.1.14

HBS 2015, Kapitel L5: Landstraßen: Knotenpunkte ohne Lichtsignalanlage

Projekt : 3,1058-2 Jüchen und Grevenbroich

Knotenpunkt: KP3 - L 116 / AS Gustorf Süd

Stunde : NMS

Datei : KP3_HBS_P1_NMS.kob

Strom	Strom	q-vorh	tg	tf	q-Haupt	q-max	Misch-	W	N-90	N-95	N-99	QSV
-Nr.		[PWE/h]	[s]	[s]	[Fz/h]	[PWE/h]	strom	[s]	[Pkw-E]	[Pkw-E]	[Pkw-E]	
2		641				1800						А
3	—	46				1127		3,6	1	1	1	А
Misch-H												
4	▼	78	7,4	3,4	1322	126		73,8	4	5	7	E
6	₽	358	7,3	3,1	596	448		41,9	8	10	14	D
Misch-N		436				431	4 + 6	149,6	23	26	32	F
8	←	767				1800						А
7	V	21	6,4	2,9	596	547		7,6	1	1	1	А
Misch-H		788				3600	7 + 8	1,4	1	1	2	А

Qualitätsstufe des Verkehrsablaufs für den gesamten Knotenpunkt

Lage des Knotenpunkte : Außerorts + außerhalb eines Ballungsgebiets

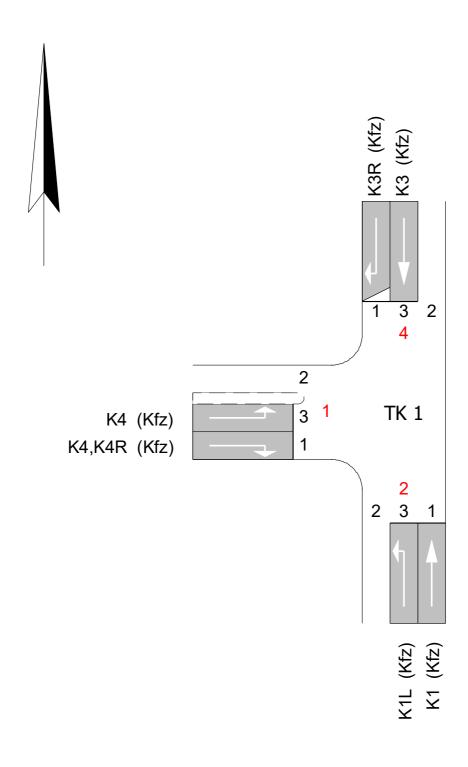
Alle Einstellungen nach : HBS 2015

Strassennamen:

Hauptstrasse: L 116 Nord

L 116 Süd

Nebenstrasse: AS Gustorf West

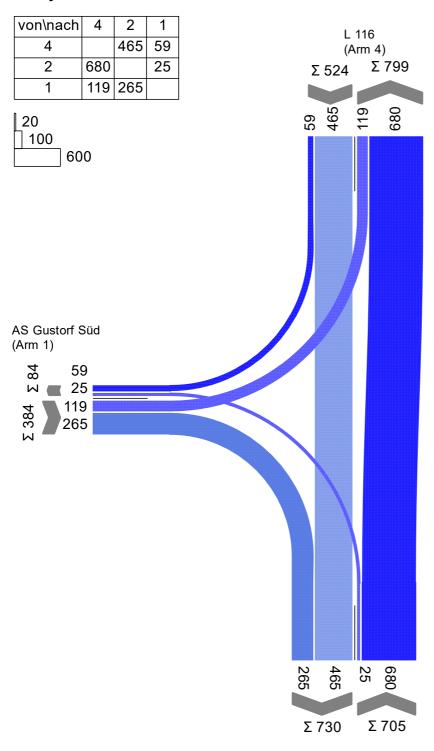

HBS 2015 L5

F

KNOBEL Version 7.1.14

Knotendaten

1167

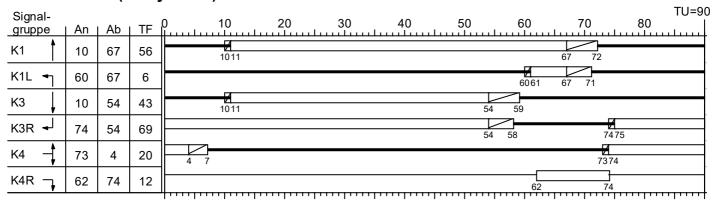


Projekt	Jüchen und Grevenbroich				
Knotenpunkt	KP3 - L 116 / AS Gustorf Süd				
Auftragsnr.	3.1058-2	Variante	01 - Planung LSA	Datum	06.02.2020
Bearbeiter	Ch. Knof	Abzeichnung		Blatt	

Strombelastungsplan

LISA

Analyse MS


L 116 (Arm 2)

Projekt	Jüchen und Grevenbroich				
Knotenpunkt	KP3 - L 116 / AS Gustorf Süd				
Auftragsnr.	3.1058-2	Variante	01 - Planung LSA	Datum	06.02.2020
Bearbeiter	Ch. Knof	Abzeichnung		Blatt	

Signalzeitenplan

LISA

SP1 (Analyse MS)

----- Dunkel

Dieses Festzeitprogramm darf nicht geschaltet werden. Die Zwischenzeiten wurden geschätzt.

Gelb

Gruen

Rot

Rotgelb

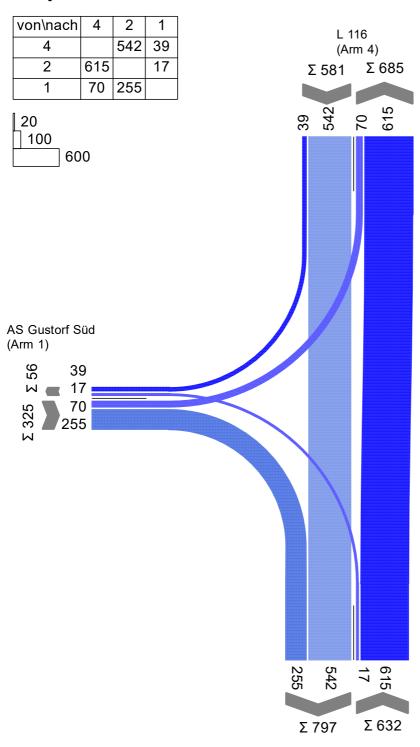
Projekt	Jüchen und Grevenbroich				
Knotenpunkt	KP3 - L 116 / AS Gustorf Süd				
Auftragsnr.	3.1058-2	Variante	01 - Planung LSA	Datum	06.02.2020
Bearbeiter	Ch. Knof	Abzeichnung		Blatt	

HBS-Bewertung 2015

LUSA

MIV - SP1 (Analyse MS) (TU=90) - Analyse MS

Zuf	Fstr.Nr.	Symbol	SGR	tr [s]	ta [s]	ts [s]	fA	q [Kfz/h]	m [Kfz/U]	t _B [s/Kfz]	qs [Kfz/h]	Nмs,95>nк	nc [Kfz/U]	C [Kfz/h]	х	tw [s]	Nge [Kfz]	Nмs [Kfz]	N _{MS,95} [Kfz]	L _x [m]	QSV	Bemerkung
	1	—	K3R	69	70	21	0,778	59	1,475	2,478	1453	-	28	1130	0,052	2,407	0,030	0,371	1,401	10,331	А	
4	3		K3	43	44	47	0,489	465	11,625	2,102	1713	-	21	838	0,555	19,465	0,777	8,930	13,984	98,000	Α	
	3	•	K1L	6	7	84	0,078	25	0,625	2,258	1594	-	3	124	0,202	42,989	0,142	0,727	2,169	14,576	С	
2	1	1	K1	56	57	34	0,633	680	17,000	2,097	1717	-	27	1087	0,626	13,659	1,093	11,427	17,144	119,837	Α	
	3	1	K4	20	21	70	0,233	119	2,975	2,042	1763	-	10	411	0,290	30,441	0,234	2,681	5,450	33,125	В	
Ľ	1	۲	K4, K4R	32	33	58	0,367	265	6,625	2,369	1520	1	14	558	0,475	25,341	0,543	5,622	9,632	67,906	В	
	Knote	npunktssı	ummen:					1613						4148								
	Gewic	htete Mit	telwerte:												0,528	18,533						
				TU	= 90	s T:	= 3600 s	Instati	onaritäts	faktor =	1,1											

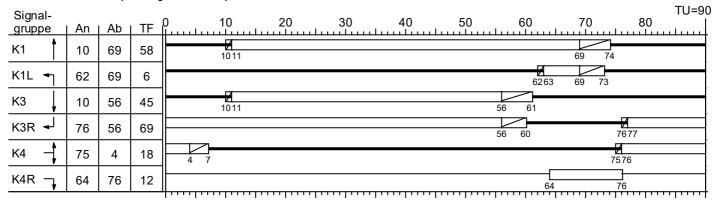

Zuf	Zufahrt	[-]
Fstr.Nr.	Fahrstreifen-Nummer	[-]
Symbol	Fahrstreifen-Symbol	[-]
SGR	Signalgruppe	[-]
t _F	Freigabezeit	[s]
t _A	Abflusszeit	[s]
ts	Sperrzeit	[s]
f _A	Abflusszeitanteil	[-]
q	Belastung	[Kfz/h]
m	Mittlere Anzahl eintreffender Kfz pro Umlauf	[Kfz/U]
t _B	Mittlerer Zeitbedarfswert	[s/Kfz]
qs	Sättigungsverkehrsstärke	[Kfz/h]
N _{MS,95} >n _K	Kurzer Aufstellstreifen vorhanden	[-]
n _C	Abflusskapazität pro Umlauf	[Kfz/U]
С	Kapazität des Fahrstreifens	[Kfz/h]
x	Auslastungsgrad	[-]
t_{VV}	Mittlere Wartezeit	[s]
N_{GE}	Mittlere Rückstaulänge bei Freigabeende	[Kfz]
N_{MS}	Mittlere Rückstaulänge bei Maximalstau	[Kfz]
$N_{MS,95}$	Rückstau bei Maximalstau, der mit einer stat. Sicherheit von 95% nicht überschritten wird	[Kfz]
L _x	Erforderliche Stauraumlänge	[m]
QSV	Qualitätsstufe des Verkehrsablaufs	[-]

Projekt	Jüchen und Grevenbroich				
Knotenpunkt	KP3 - L 116 / AS Gustorf Süd				
Auftragsnr.	3.1058-2	Variante	01 - Planung LSA	Datum	06.02.2020
Bearbeiter	Ch. Knof	Abzeichnung		Blatt	

Strombelastungsplan

LISA

Analyse NMS


L 116 (Arm 2)

Projekt	Jüchen und Grevenbroich				
Knotenpunkt	KP3 - L 116 / AS Gustorf Süd				
Auftragsnr.	3.1058-2	Variante	01 - Planung LSA	Datum	06.02.2020
Bearbeiter	Ch. Knof	Abzeichnung		Blatt	

Signalzeitenplan

LISA

SP1 (Analyse NMS)

—— Dunkel

Dieses Festzeitprogramm darf nicht geschaltet werden. Die Zwischenzeiten wurden geschätzt.

Gelb

Gruen

Rot

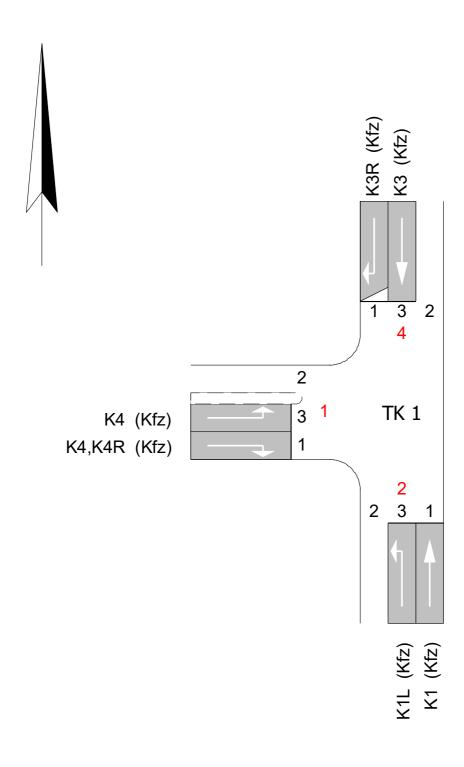
Rotgelb

Projekt	Jüchen und Grevenbroich				
Knotenpunkt	KP3 - L 116 / AS Gustorf Süd				
Auftragsnr.	3.1058-2	Variante	01 - Planung LSA	Datum	06.02.2020
Bearbeiter	Ch. Knof	Abzeichnung		Blatt	

HBS-Bewertung 2015

LISA

MIV - SP1 (Analyse NMS) (TU=90) - Analyse NMS

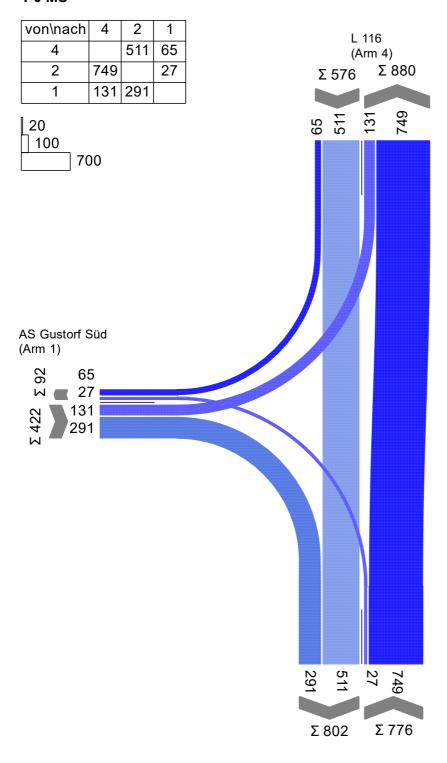

Zuf	Fstr.Nr.	Symbol	SGR	tr [s]	ta [s]	ts [s]	fA	q [Kfz/h]	m [Kfz/U]	t _B [s/Kfz]	qs [Kfz/h]	Nмs,95>nк	nc [Kfz/U]	C [Kfz/h]	х	tw [s]	Nge [Kfz]	Nмs [Kfz]	Nмs,95 [Kfz]	Lx [m]	QSV	Bemerkung
	1	4	K3R	69	70	21	0,778	39	0,975	2,248	1601	-	31	1246	0,031	2,325	0,018	0,240	1,069	7,152	А	
4	3	↓	K3	45	46	45	0,511	542	13,550	2,003	1797	-	23	918	0,590	18,997	0,916	10,402	15,857	105,893	Α	
	3	•	K1L	6	7	84	0,078	17	0,425	2,371	1518	-	3	118	0,144	41,556	0,094	0,490	1,674	11,812	С	
2	1	†	K1	58	59	32	0,656	615	15,375	1,993	1806	-	30	1185	0,519	10,085	0,662	8,681	13,664	90,756	Α	
	3		K4	18	19	72	0,211	70	1,750	2,058	1749	-	9	369	0,190	30,471	0,132	1,570	3,689	22,599	В	
'	1	-	K4, K4R	30	31	60	0,344	255	6,375	2,288	1573	-	14	541	0,471	26,662	0,534	5,525	9,500	64,695	В	
	Knote	npunktss	ummen:					1538						4377								
	Gewic	htete Mit	telwerte:												0,505	17,053						
				TU	= 90	s T:	= 3600 s	Instati	onaritäts	faktor =	1,1											

Zuf	Zufahrt	[-]
Fstr.Nr.	Fahrstreifen-Nummer	[-]
Symbol	Fahrstreifen-Symbol	[-]
SGR	Signalgruppe	[-]
t _F	Freigabezeit	[s]
t _A	Abflusszeit	[s]
ts	Sperrzeit	[s]
f _A	Abflusszeitanteil	[-]
q	Belastung	[Kfz/h]
m	Mittlere Anzahl eintreffender Kfz pro Umlauf	[Kfz/U]
t _B	Mittlerer Zeitbedarfswert	[s/Kfz]
qs	Sättigungsverkehrsstärke	[Kfz/h]
$N_{MS,95} > n_K$	Kurzer Aufstellstreifen vorhanden	[-]
n _C	Abflusskapazität pro Umlauf	[Kfz/U]
С	Kapazität des Fahrstreifens	[Kfz/h]
X	Auslastungsgrad	[-]
t _W	Mittlere Wartezeit	[s]
N_{GE}	Mittlere Rückstaulänge bei Freigabeende	[Kfz]
N_{MS}	Mittlere Rückstaulänge bei Maximalstau	[Kfz]
$N_{MS,95}$	Rückstau bei Maximalstau, der mit einer stat. Sicherheit von 95% nicht überschritten wird	[Kfz]
L _x	Erforderliche Stauraumlänge	[m]
QSV	Qualitätsstufe des Verkehrsablaufs	[-]

Projekt	Jüchen und Grevenbroich				
Knotenpunkt	KP3 - L 116 / AS Gustorf Süd				
Auftragsnr.	3.1058-2	Variante	01 - Planung LSA	Datum	06.02.2020
Bearbeiter	Ch. Knof	Abzeichnung		Blatt	

Knotendaten

- I ISA

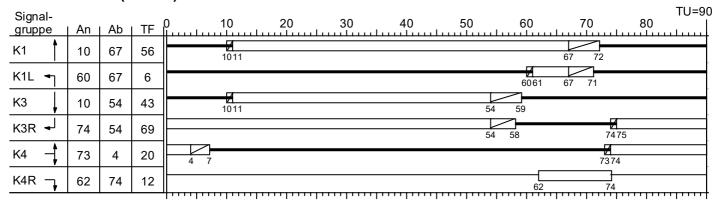


Projekt	Jüchen und Grevenbroich				
Knotenpunkt	KP3 - L 116 / AS Gustorf Süd				
Auftragsnr.	3.1058-2	Variante	01 - Planung LSA	Datum	06.02.2020
Bearbeiter	Ch. Knof	Abzeichnung		Blatt	

Strombelastungsplan

LISA

P0 MS


L 116 (Arm 2)

Projekt	Jüchen und Grevenbroich				
Knotenpunkt	KP3 - L 116 / AS Gustorf Süd				
Auftragsnr.	3.1058-2	Variante	01 - Planung LSA	Datum	06.02.2020
Bearbeiter	Ch. Knof	Abzeichnung		Blatt	

Signalzeitenplan

LISA

SP1 (P0 MS)

----- Dunkel

Dieses Festzeitprogramm darf nicht geschaltet werden. Die Zwischenzeiten wurden geschätzt.

Gelb

Gruen

Rot

Rot Rotgelb

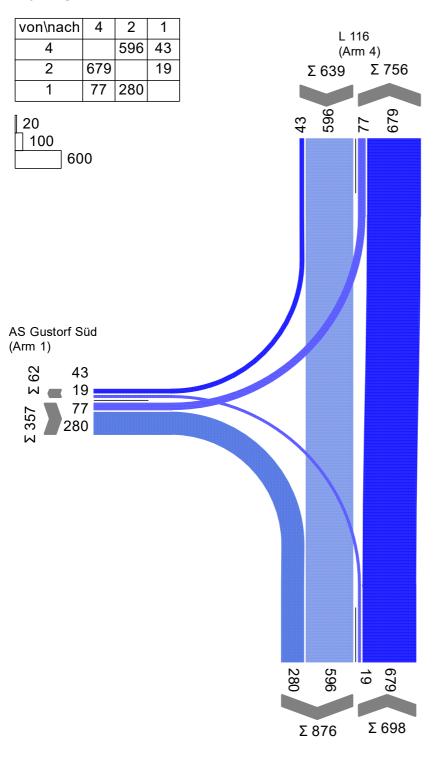
Projekt	Jüchen und Grevenbroich				
Knotenpunkt	KP3 - L 116 / AS Gustorf Süd				
Auftragsnr.	3.1058-2	Variante	01 - Planung LSA	Datum	06.02.2020
Bearbeiter	Ch. Knof	Abzeichnung		Blatt	

HBS-Bewertung 2015

L,,,,,

MIV - SP1 (P0 MS) (TU=90) - P0 MS

Zuf	Fstr.Nr.	Symbol	SGR	t _F [s]	ta [s]	ts [s]	fA	q [Kfz/h]	m [Kfz/U]	t _B [s/Kfz]	qs [Kfz/h]	Nмs,95>nк	nc [Kfz/U]	C [Kfz/h]	х	tw [s]	Nge [Kfz]	Nмs [Kfz]	NMS,95 [Kfz]	L _x [m]	QSV	Bemerkung
	1	←	K3R	69	70	21	0,778	65	1,625	2,482	1450	-	28	1128	0,058	2,432	0,034	0,412	1,498	11,064	Α	
4	3		K3	43	44	47	0,489	511	12,775	2,101	1713	ı	21	838	0,610	21,071	1,007	10,310	15,740	110,211	В	
2	3	₣	K1L	6	7	84	0,078	27	0,675	2,240	1607	1	3	125	0,216	43,373	0,155	0,788	2,289	15,258	C	
	1	•	K1	56	57	34	0,633	749	18,725	2,099	1715	1	27	1086	0,690	15,876	1,543	13,744	20,014	140,018	Α	
1	3	⁴ ๅ	K4	20	21	70	0,233	131	3,275	2,038	1766	1	10	411	0,319	30,955	0,269	2,983	5,904	35,814	В	
Ľ	1	۲	K4, K4R	32	33	58	0,367	291	7,275	2,369	1520	1	14	558	0,522	26,614	0,668	6,364	10,630	74,942	В	
Knotenpunktssummen: 1774 4146																						
	Gewic	htete Mit	telwerte:												0,582	20,173						
				TU	= 90	s T=	= 3600 s	Instati	onaritäts	faktor =	1,1											

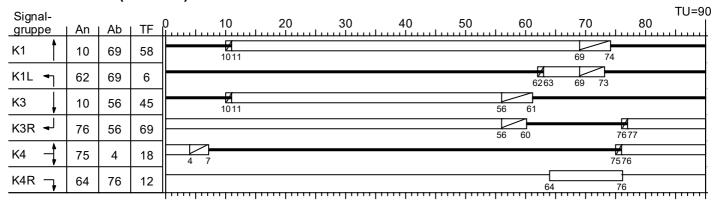

Zuf Fstr.Nr. Symbol SGR t t t q q m t s NNs.99>nK	Zufahrt Fahrstreifen-Nummer Fahrstreifen-Symbol Signalgruppe Freigabezeit Abflusszeit Sperrzeit Abflusszeitanteil Belastung Mittlere Anzahl eintreffender Kfz pro Umlauf Mittlerer Zeitbedarfswert Sättigungsverkehrsstärke Kurzer Aufstellstreifen vorhanden	[-] [-] [-] [s] [s] [s] [-] [Kfz/h] [Kfz/U] [s/Kfz]
n _C C	Abflusskapazität pro Umlauf Kapazität des Fahrstreifens	[Kfz/U] [Kfz/h]
x	Auslastungsgrad	[-]
t _W	Mittlere Wartezeit	[s]
N_{GE}	Mittlere Rückstaulänge bei Freigabeende	[Kfz]
N_{MS}	Mittlere Rückstaulänge bei Maximalstau	[Kfz]
$N_{MS,95}$	Rückstau bei Maximalstau, der mit einer stat. Sicherheit von 95% nicht überschritten wird	[Kfz]
L _x	Erforderliche Stauraumlänge	[m]
QSV	Qualitätsstufe des Verkehrsablaufs	[-]

Projekt	Jüchen und Grevenbroich				
Knotenpunkt	KP3 - L 116 / AS Gustorf Süd				
Auftragsnr.	3.1058-2	Variante	01 - Planung LSA	Datum	06.02.2020
Bearbeiter	Ch. Knof	Abzeichnung		Blatt	

Strombelastungsplan

LISA

P0 NMS



L	116	3
(Α	١rm	2)

Projekt	Jüchen und Grevenbroich				
Knotenpunkt	KP3 - L 116 / AS Gustorf Süd				
Auftragsnr.	3.1058-2	Variante	01 - Planung LSA	Datum	06.02.2020
Bearbeiter	Ch. Knof	Abzeichnung		Blatt	

Signalzeitenplan

SP1 (P0 NMS)

– Dunkel

Dieses Festzeitprogramm darf nicht geschaltet werden. Die Zwischenzeiten wurden geschätzt.

Gelb

Gruen

Rot

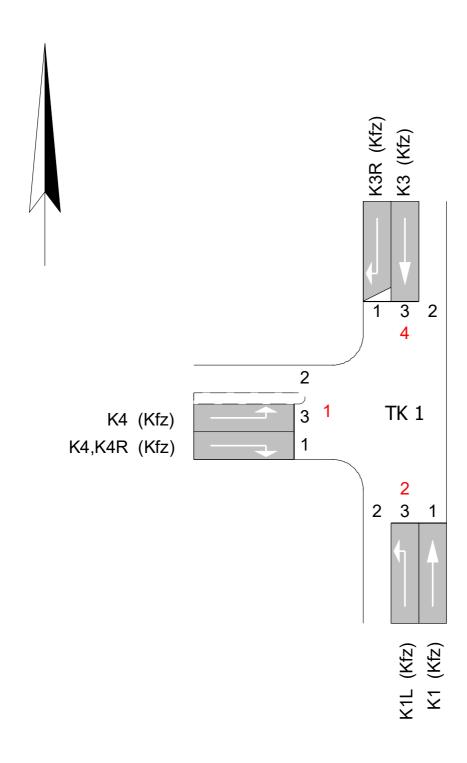
Rotgelb

Projekt	Jüchen und Grevenbroich				
Knotenpunkt	KP3 - L 116 / AS Gustorf Süd				
Auftragsnr.	3.1058-2	Variante	01 - Planung LSA	Datum	06.02.2020
Bearbeiter	Ch. Knof	Abzeichnung		Blatt	

HBS-Bewertung 2015

L 164

MIV - SP1 (P0 NMS) (TU=90) - P0 NMS

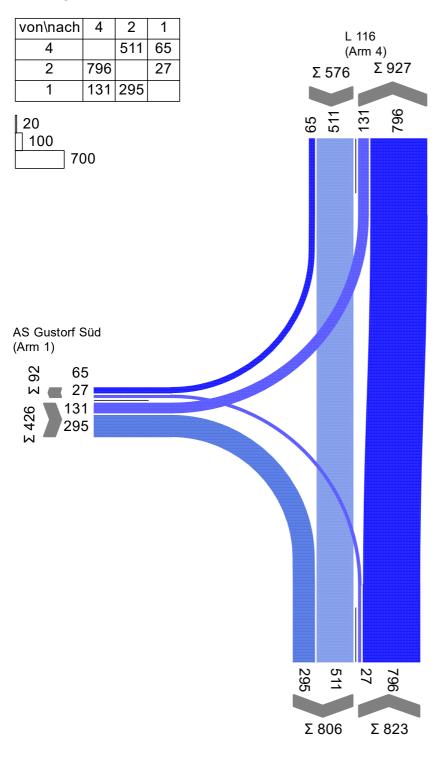

Zuf	Fstr.Nr.	Symbol	SGR	t _F [s]	ta [s]	ts [s]	fA	q [Kfz/h]	m [Kfz/U]	t _B [s/Kfz]	qs [Kfz/h]	Nмs,95>nк	nc [Kfz/U]	C [Kfz/h]	х	tw [s]	Nge [Kfz]	Nмs [Kfz]	N _{MS,95} [Kfz]	L _x [m]	QSV	Bemerkung
	1	←	K3R	69	70	21	0,778	43	1,075	2,228	1616	-	31	1257	0,034	2,332	0,019	0,264	1,133	7,512	Α	
4	3	←	К3	45	46	45	0,511	596	14,900	2,003	1797	-	23	918	0,649	20,916	1,228	12,129	18,019	120,331	В	
	3	→	K1L	6	7	84	0,078	19	0,475	2,335	1542	-	3	120	0,158	41,881	0,105	0,548	1,800	12,506	С	
2	1		K1	58	59	32	0,656	679	16,975	1,991	1808	-	30	1186	0,573	11,103	0,847	10,203	15,605	103,555	Α	
1	3	_ +	K4	18	19	72	0,211	77	1,925	2,054	1753	ı	9	370	0,208	30,739	0,148	1,737	3,966	24,248	В	
	1	7	K4, K4R	30	31	60	0,344	280	7,000	2,286	1575	1	14	542	0,517	27,891	0,653	6,238	10,462	71,183	В	
Knotenpunktssummen:								1694						4393								
	Gewichtete Mittelwerte:														0,556	18,345						
	TU = 90 s T = 3600 s Instationaritätsfaktor = 1,1																					

Zuf	Zufahrt	[-]
Fstr.Nr.	Fahrstreifen-Nummer	[-]
Symbol	Fahrstreifen-Symbol	[-]
SGR	Signalgruppe	[-]
t⊨	Freigabezeit	[s]
t _A	Abflusszeit	[s]
ts	Sperrzeit	[s]
f _A	Abflusszeitanteil	[-]
q	Belastung	[Kfz/h]
m	Mittlere Anzahl eintreffender Kfz pro Umlauf	[Kfz/U]
t _B	Mittlerer Zeitbedarfswert	[s/Kfz]
qs	Sättigungsverkehrsstärke	[Kfz/h]
$N_{MS,95}$ > n_K	Kurzer Aufstellstreifen vorhanden	[-]
n _C	Abflusskapazität pro Umlauf	[Kfz/U]
С	Kapazität des Fahrstreifens	[Kfz/h]
X	Auslastungsgrad	[-]
t _W	Mittlere Wartezeit	[s]
N_{GE}	Mittlere Rückstaulänge bei Freigabeende	[Kfz]
N_{MS}	Mittlere Rückstaulänge bei Maximalstau	[Kfz]
$N_{MS,95}$	Rückstau bei Maximalstau, der mit einer stat. Sicherheit von 95% nicht überschritten wird	[Kfz]
L _x	Erforderliche Stauraumlänge	[m]
QSV	Qualitätsstufe des Verkehrsablaufs	[-]

Projekt	Jüchen und Grevenbroich				
Knotenpunkt	KP3 - L 116 / AS Gustorf Süd				
Auftragsnr.	3.1058-2	Variante	01 - Planung LSA	Datum	06.02.2020
Bearbeiter	Ch. Knof	Abzeichnung		Blatt	

Knotendaten

LISA

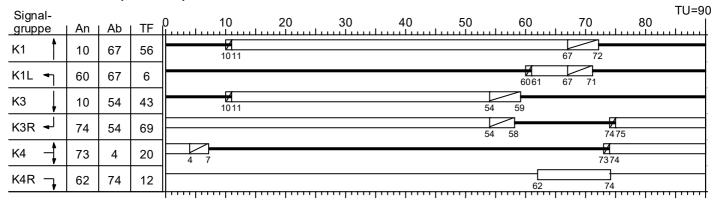


Projekt	Jüchen und Grevenbroich				
Knotenpunkt	KP3 - L 116 / AS Gustorf Süd				
Auftragsnr.	3.1058-2	Variante	01 - Planung LSA	Datum	05.02.2020
Bearbeiter	Ch. Knof	Abzeichnung		Blatt	

Strombelastungsplan

LISA

PF1 MS


L 116 (Arm 2)

Projekt	Jüchen und Grevenbroich				
Knotenpunkt	KP3 - L 116 / AS Gustorf Süd				
Auftragsnr.	3.1058-2	Variante	01 - Planung LSA	Datum	05.02.2020
Bearbeiter	Ch. Knof	Abzeichnung		Blatt	

Signalzeitenplan

LISA

SP1 (PF1 MS)

----- Dunkel

Dieses Festzeitprogramm darf nicht geschaltet werden. Die Zwischenzeiten wurden geschätzt.

Gelb

Gruen

----Rot

Rotgelb

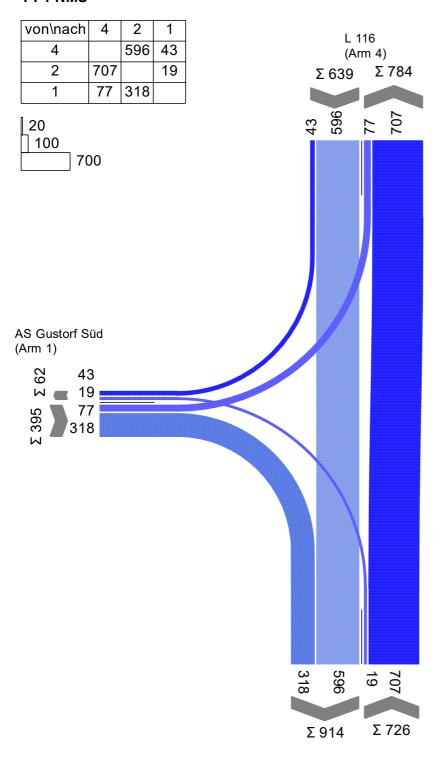
Projekt	Jüchen und Grevenbroich				
Knotenpunkt	KP3 - L 116 / AS Gustorf Süd				
Auftragsnr.	3.1058-2	Variante	01 - Planung LSA	Datum	05.02.2020
Bearbeiter	Ch. Knof	Abzeichnung		Blatt	

HBS-Bewertung 2015

LISA

MIV - SP1 (PF1 MS) (TU=90) - PF1 MS

Zuf	Fstr.Nr.	Symbol	SGR	tr [s]	ta [s]	ts [s]	fA	q [Kfz/h]	m [Kfz/U]	t _B [s/Kfz]	qs [Kfz/h]	Nмs,95>nк	nc [Kfz/U]	C [Kfz/h]	х	tw [s]	Nge [Kfz]	Nмs [Kfz]	N _{MS,95} [Kfz]	L _x [m]	QSV	Bemerkung
	1	←	K3R	69	70	21	0,778	65	1,625	2,482	1450	-	28	1128	0,058	2,432	0,034	0,412	1,498	11,064	Α	
4	3		K3	43	44	47	0,489	511	12,775	2,101	1713	ı	21	838	0,610	21,071	1,007	10,310	15,740	110,211	В	
	3	₣	K1L	6	7	84	0,078	27	0,675	2,240	1607	1	3	125	0,216	43,373	0,155	0,788	2,289	15,258	U	
2	1	•	K1	56	57	34	0,633	796	19,900	2,149	1675	1	27	1060	0,751	19,290	2,278	16,199	23,006	164,815	Α	
1	3	⁴ ๅ	K4	20	21	70	0,233	131	3,275	2,038	1766	ı	10	411	0,319	30,955	0,269	2,983	5,904	35,814	В	
	1		K4, K4R	32	33	58	0,367	295	7,375	2,385	1509	-	14	554	0,532	26,942	0,698	6,499	10,810	76,729	В	
	Knote	npunktssı	ummen:					1825						4116								
Gewichtete Mittelwerte: 0,613 21,									21,619													
TU = 90 s T = 3600 s Instationaritätsfaktor = 1,1																						

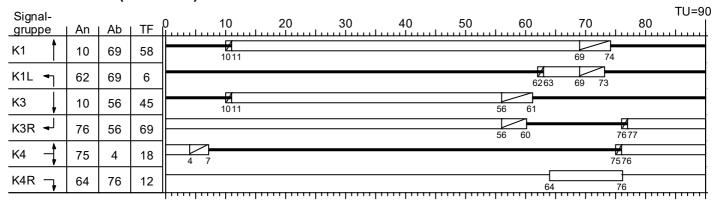

Zuf	Zufahrt	[-]
Fstr.Nr.	Fahrstreifen-Nummer	[-]
Symbol	Fahrstreifen-Symbol	[-]
SGR	Signalgruppe	[-]
t _F	Freigabezeit	[s]
t _A	Abflusszeit	[s]
ts	Sperrzeit	[s]
f _A	Abflusszeitanteil	[-]
q	Belastung	[Kfz/h]
m	Mittlere Anzahl eintreffender Kfz pro Umlauf	[Kfz/U]
t _B	Mittlerer Zeitbedarfswert	[s/Kfz]
qs	Sättigungsverkehrsstärke	[Kfz/h]
$N_{MS,95} > n_K$	Kurzer Aufstellstreifen vorhanden	[-]
n _C	Abflusskapazität pro Umlauf	[Kfz/U]
С	Kapazität des Fahrstreifens	[Kfz/h]
X	Auslastungsgrad	[-]
t_{VV}	Mittlere Wartezeit	[s]
N_{GE}	Mittlere Rückstaulänge bei Freigabeende	[Kfz]
N_{MS}	Mittlere Rückstaulänge bei Maximalstau	[Kfz]
$N_{MS,95}$	Rückstau bei Maximalstau, der mit einer stat. Sicherheit von 95% nicht überschritten wird	[Kfz]
L _x	Erforderliche Stauraumlänge	[m]
QSV	Qualitätsstufe des Verkehrsablaufs	[-]

Projekt	Jüchen und Grevenbroich				
Knotenpunkt	KP3 - L 116 / AS Gustorf Süd				
Auftragsnr.	3.1058-2	Variante	01 - Planung LSA	Datum	05.02.2020
Bearbeiter	Ch. Knof	Abzeichnung		Blatt	

Strombelastungsplan

LISA

PF1 NMS


L 116 (Arm 2)

Projekt	Jüchen und Grevenbroich				
Knotenpunkt	KP3 - L 116 / AS Gustorf Süd				
Auftragsnr.	3.1058-2	Variante	01 - Planung LSA	Datum	05.02.2020
Bearbeiter	Ch. Knof	Abzeichnung		Blatt	

Signalzeitenplan

- 1 16 4

SP1 (PF1 NMS)

----- Dunkel

Dieses Festzeitprogramm darf nicht geschaltet werden. Die Zwischenzeiten wurden geschätzt.

Gelb

Gruen

----Rot

Rotgelb

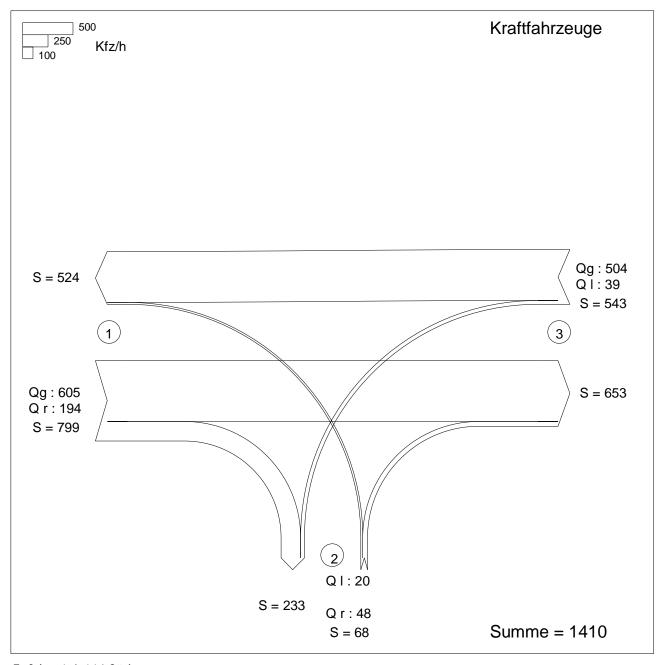
Projekt	Jüchen und Grevenbroich				
Knotenpunkt	KP3 - L 116 / AS Gustorf Süd				
Auftragsnr.	3.1058-2	Variante	01 - Planung LSA	Datum	05.02.2020
Bearbeiter	Ch. Knof	Abzeichnung		Blatt	

HBS-Bewertung 2015

LISA

MIV - SP1 (PF1 NMS) (TU=90) - PF1 NMS

Zuf	Fstr.Nr.	Symbol	SGR	tr [s]	ta [s]	ts [s]	fA	q [Kfz/h]	m [Kfz/U]	t _B [s/Kfz]	qs [Kfz/h]	Nмs,95>nк	nc [Kfz/U]	C [Kfz/h]	х	tw [s]	Nge [Kfz]	Nмs [Kfz]	Nмs,95 [Kfz]	L _x [m]	QSV	Bemerkung
	1	←	K3R	69	70	21	0,778	43	1,075	2,228	1616	-	31	1257	0,034	2,332	0,019	0,264	1,133	7,512	Α	
4	3	—	K3	45	46	45	0,511	596	14,900	2,003	1797	-	23	918	0,649	20,916	1,228	12,129	18,019	120,331	В	
	3	1	K1L	6	7	84	0,078	19	0,475	2,335	1542	-	3	120	0,158	41,881	0,105	0,548	1,800	12,506	С	
2	1	1	K1	58	59	32	0,656	707	17,675	2,029	1774	-	29	1164	0,607	11,929	0,996	11,099	16,733	113,149	А	
	3	1	K4	18	19	72	0,211	77	1,925	2,054	1753	-	9	370	0,208	30,739	0,148	1,737	3,966	24,248	В	
	1		K4, K4R	30	31	60	0,344	318	7,950	2,397	1502	-	13	517	0,615	31,691	1,024	7,639	12,313	87,841	В	
	Knote	npunktssı	ummen:					1760						4346								
Gewichtete Mittelwerte: 0,586 19,455																						
TU = 90 s T = 3600 s Instationaritätsfaktor = 1,1																						


Zuf	Zufahrt	[-]
Fstr.Nr.	Fahrstreifen-Nummer	[-]
Symbol	Fahrstreifen-Symbol	[-]
SGR	Signalgruppe	[-]
t _F	Freigabezeit	[s]
t _A	Abflusszeit	[s]
ts	Sperrzeit	[s]
f _A	Abflusszeitanteil	[-]
q	Belastung	[Kfz/h]
m	Mittlere Anzahl eintreffender Kfz pro Umlauf	[Kfz/U]
t _B	Mittlerer Zeitbedarfswert	[s/Kfz]
qs	Sättigungsverkehrsstärke	[Kfz/h]
N _{MS,95} >n _K	Kurzer Aufstellstreifen vorhanden	[-]
n _C	Abflusskapazität pro Umlauf	[Kfz/U]
С	Kapazität des Fahrstreifens	[Kfz/h]
x	Auslastungsgrad	[-]
t _W	Mittlere Wartezeit	[s]
N_{GE}	Mittlere Rückstaulänge bei Freigabeende	[Kfz]
N_{MS}	Mittlere Rückstaulänge bei Maximalstau	[Kfz]
$N_{MS,95}$	Rückstau bei Maximalstau, der mit einer stat. Sicherheit von 95% nicht überschritten wird	[Kfz]
L _x	Erforderliche Stauraumlänge	[m]
QSV	Qualitätsstufe des Verkehrsablaufs	[-]

Projekt	Jüchen und Grevenbroich				
Knotenpunkt	KP3 - L 116 / AS Gustorf Süd				
Auftragsnr.	3.1058-2	Variante	01 - Planung LSA	Datum	05.02.2020
Bearbeiter	Ch. Knof	Abzeichnung		Blatt	

Projekt : 3,1058-2 Jüchen und Grevenbroich Knotenpunkt : KP4 - L 116 / AS Gustorf Nord

Stunde : MS

Datei : KP4_HBS_ANALYSE_MS.kob

Zufahrt 1: L 116 Süd Zufahrt 2: AS Gustorf Ost Zufahrt 3: L 116 Nord

KNOBEL Version 7.1.14

Projekt : 3,1058-2 Jüchen und Grevenbroich

Knotenpunkt: KP4 - L 116 / AS Gustorf Nord

Stunde : MS

Datei : KP4_HBS_ANALYSE_MS.kob

Strom	Strom	q-vorh	tg	tf	q-Haupt	q-max	Misch-	W	N-90	N-95	N-99	QSV
-Nr.		[PWE/h]	[s]	[s]	[Fz/h]	[PWE/h]	strom	[s]	[Pkw-E]	[Pkw-E]	[Pkw-E]	
2	—	655				1800						А
3	—	220				1091		4,7	1	1	2	А
Misch-H												
4	₹	24	7,4	3,8	1148	152		33,7	1	1	1	D
6	_	57	7,3	3,7	605	389		12,9	1	1	1	В
Misch-N												
8	←	561				1800						А
7	V	39	6,4	2,9	605	540		7,2	1	1	1	А
Misch-H		600				3600	7 + 8	1,3	1	1	1	А

Qualitätsstufe des Verkehrsablaufs für den gesamten Knotenpunkt

Lage des Knotenpunkte : Außerorts + außerhalb eines Ballungsgebiets

Alle Einstellungen nach : HBS 2015

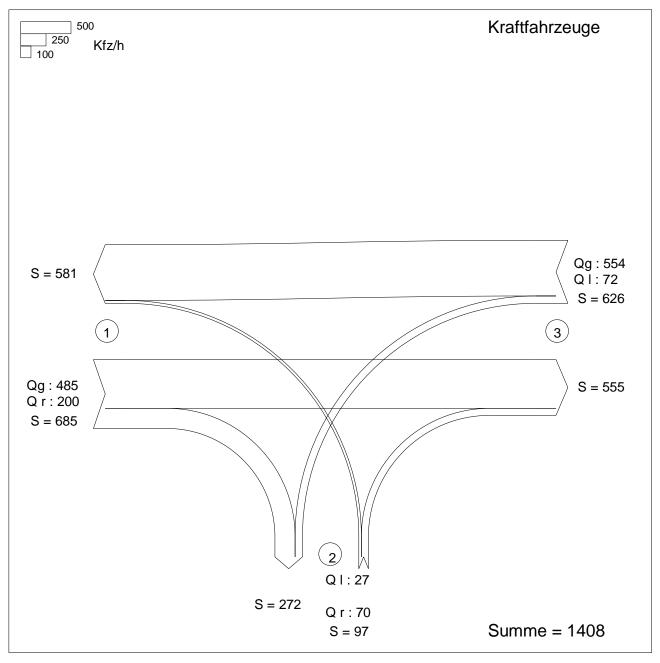
Strassennamen:

Hauptstrasse: L 116 Süd

L 116 Nord

Nebenstrasse: AS Gustorf Ost

HBS 2015 L5


D

KNOBEL Version 7.1.14

Projekt : 3,1058-2 Jüchen und Grevenbroich Knotenpunkt : KP4 - L 116 / AS Gustorf Nord

Stunde : NMS

Datei : KP4_HBS_ANALYSE_NMS.kob

Zufahrt 1: L 116 Süd Zufahrt 2: AS Gustorf Ost Zufahrt 3: L 116 Nord

KNOBEL Version 7.1.14

Projekt : 3,1058-2 Jüchen und Grevenbroich

Knotenpunkt: KP4 - L 116 / AS Gustorf Nord

Stunde : NMS

Datei : KP4_HBS_ANALYSE_NMS.kob

Strom	Strom	q-vorh	tg	tf	q-Haupt	q-max	Misch-	W	N-90	N-95	N-99	QSV
-Nr.		[PWE/h]	[s]	[s]	[Fz/h]	[PWE/h]	strom	[s]	[Pkw-E]	[Pkw-E]	[Pkw-E]	
2	—	518				1800						А
3	—	212				1035		4,6	1	1	2	А
Misch-H												
4	₹	29	7,4	3,8	1111	154		30,9	1	1	2	D
6	_	71	7,3	3,7	485	467		9,2	1	1	1	А
Misch-N		100				413	4 + 6	11,9	1	1	2	В
8	←	596				1800						А
7	V	72	6,4	2,9	485	637		6,4	1	1	1	А
Misch-H		668				3600	7 + 8	1,3	1	1	2	А

Qualitätsstufe des Verkehrsablaufs für den gesamten Knotenpunkt

Lage des Knotenpunkte : Außerorts + außerhalb eines Ballungsgebiets

Alle Einstellungen nach : HBS 2015

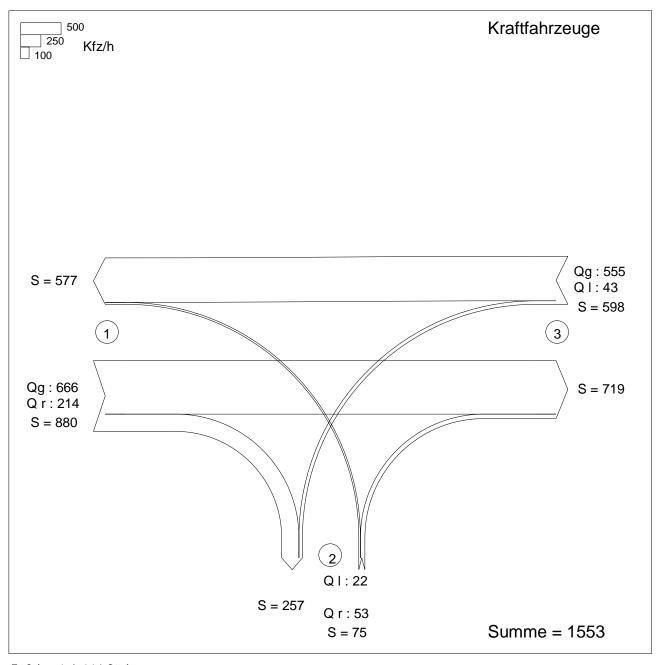
Strassennamen:

Hauptstrasse: L 116 Süd

L 116 Nord

Nebenstrasse: AS Gustorf Ost

HBS 2015 L5


KNOBEL Version 7.1.14

Brilon Bondzio Weiser Ingenieurgesellschaft für Verkehrswesen mbH

Projekt : 3,1058-2 Jüchen und Grevenbroich Knotenpunkt : KP4 - L 116 / AS Gustorf Nord

Stunde : MS

Datei : KP4_HBS_P0_MS.kob

Zufahrt 1: L 116 Süd Zufahrt 2: AS Gustorf Ost Zufahrt 3: L 116 Nord

KNOBEL Version 7.1.14

Projekt : 3,1058-2 Jüchen und Grevenbroich

Knotenpunkt: KP4 - L 116 / AS Gustorf Nord

Stunde : MS

Datei : KP4_HBS_P0_MS.kob

Strom	Strom	q-vorh	tg	tf	q-Haupt	q-max	Misch-	W	N-90	N-95	N-99	QSV
-Nr.		[PWE/h]	[s]	[s]	[Fz/h]	[PWE/h]	strom	[s]	[Pkw-E]	[Pkw-E]	[Pkw-E]	
2		721				1800						А
3	→	243				1084		4,9	1	1	2	А
Misch-H												
4	▼	26	7,4	3,8	1264	125		42,7	1	1	2	D
6	₽	63	7,3	3,7	666	355		14,7	1	1	1	В
Misch-N		89				326	4 + 6	18,0	1	2	2	В
8	←	618				1800						А
7	V	43	6,4	2,9	666	497		7,9	1	1	1	А
Misch-H		661				3600	7 + 8	1,4	1	1	2	А

Qualitätsstufe des Verkehrsablaufs für den gesamten Knotenpunkt

Lage des Knotenpunkte : Außerorts + außerhalb eines Ballungsgebiets

Alle Einstellungen nach : HBS 2015

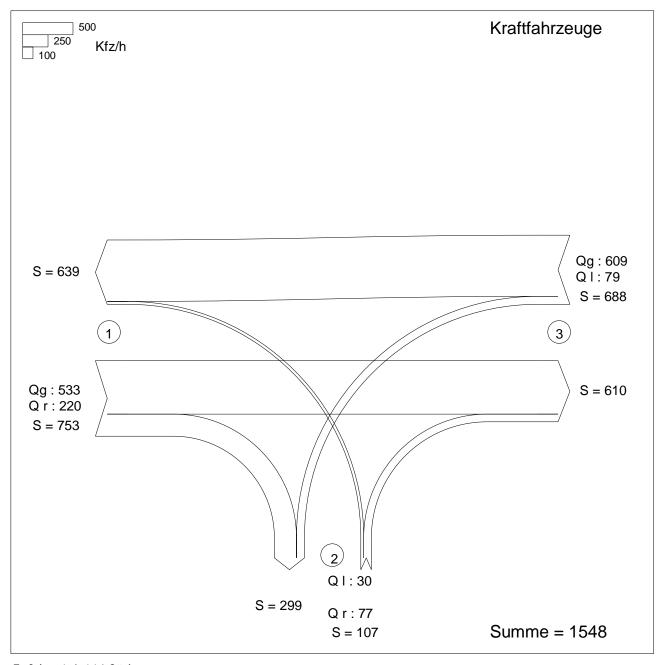
Strassennamen:

Hauptstrasse: L 116 Süd

L 116 Nord

Nebenstrasse: AS Gustorf Ost

HBS 2015 L5


KNOBEL Version 7.1.14

Brilon Bondzio Weiser Ingenieurgesellschaft für Verkehrswesen mbH

Projekt : 3,1058-2 Jüchen und Grevenbroich Knotenpunkt : KP4 - L 116 / AS Gustorf Nord

Stunde : NMS

Datei : KP4_HBS_P0_NMS.kob

Zufahrt 1: L 116 Süd Zufahrt 2: AS Gustorf Ost Zufahrt 3: L 116 Nord

KNOBEL Version 7.1.14

Projekt : 3,1058-2 Jüchen und Grevenbroich

Knotenpunkt: KP4 - L 116 / AS Gustorf Nord

Stunde : NMS

Datei : KP4_HBS_P0_NMS.kob

Strom	Strom	q-vorh	tg	tf	q-Haupt	q-max	Misch-	W	N-90	N-95	N-99	QSV
-Nr.		[PWE/h]	[s]	[s]	[Fz/h]	[PWE/h]	strom	[s]	[Pkw-E]	[Pkw-E]	[Pkw-E]	
2	—	569				1800						А
3	—	233				1024		4,8	1	1	2	А
Misch-H												
4	₹	32	7,4	3,8	1221	127		40,2	1	1	2	D
6	_	78	7,3	3,7	533	434		10,2	1	1	2	В
Misch-N		110				356	4 + 6	15,0	2	2	3	В
8	←	655				1800						А
7	V	79	6,4	2,9	533	597		7,0	1	1	1	А
Misch-H		734				3600	7 + 8	1,3	1	1	2	А

Qualitätsstufe des Verkehrsablaufs für den gesamten Knotenpunkt

Lage des Knotenpunkte : Außerorts + außerhalb eines Ballungsgebiets

Alle Einstellungen nach : HBS 2015

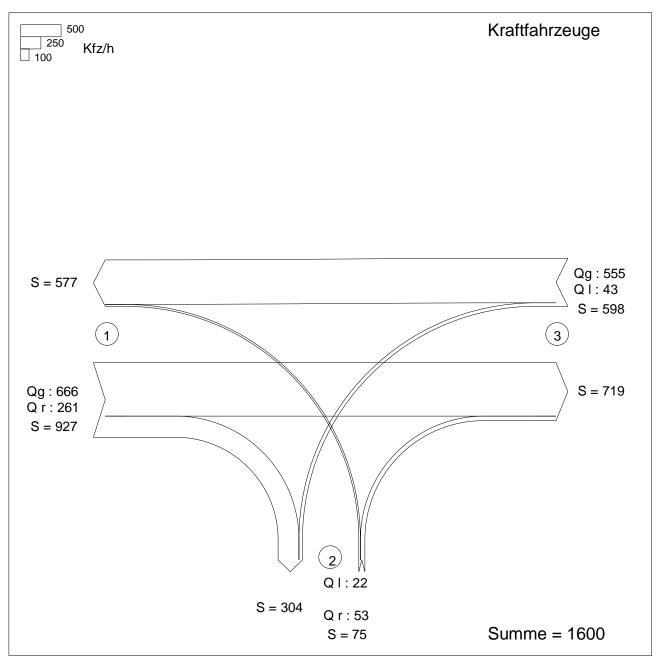
Strassennamen:

Hauptstrasse: L 116 Süd

L 116 Nord

Nebenstrasse: AS Gustorf Ost

HBS 2015 L5


KNOBEL Version 7.1.14

Brilon Bondzio Weiser Ingenieurgesellschaft für Verkehrswesen mbH

Projekt : 3,1058-2 Jüchen und Grevenbroich Knotenpunkt : KP4 - L 116 / AS Gustorf Nord

Stunde : MS

Datei : KP4_HBS_PF1_MS.kob

Zufahrt 1: L 116 Süd

Zufahrt 2: AS Gustorf Ost Zu-

fahrt 3: L 116 Nord

KNOBEL Version 7.1.14

Projekt : 3,1058-2 Jüchen und Grevenbroich

Knotenpunkt: KP4 - L 116 / AS Gustorf Nord

Stunde : MS

Datei : KP4_HBS_PF1_MS.kob

Strom	Strom	q-vorh	tg	tf	q-Haupt	q-max	Misch-	W	N-90	N-95	N-99	QSV
-Nr.		[PWE/h]	[s]	[s]	[Fz/h]	[PWE/h]	strom	[s]	[Pkw-E]	[Pkw-E]	[Pkw-E]	
2	—	721				1800						А
3	—	310				1084		5,5	1	2	2	А
Misch-H												
4	₹	26	7,4	3,8	1264	125		42,7	1	1	2	D
6	_	63	7,3	3,7	666	355		14,7	1	1	1	В
Misch-N		89				326	4 + 6	18,0	1	2	2	В
8	←	618				1800						А
7	V	43	6,4	2,9	666	497		7,9	1	1	1	А
Misch-H		661				3600	7 + 8	1,4	1	1	2	А

Qualitätsstufe des Verkehrsablaufs für den gesamten Knotenpunkt

Lage des Knotenpunkte : Außerorts + außerhalb eines Ballungsgebiets

Alle Einstellungen nach : HBS 2015

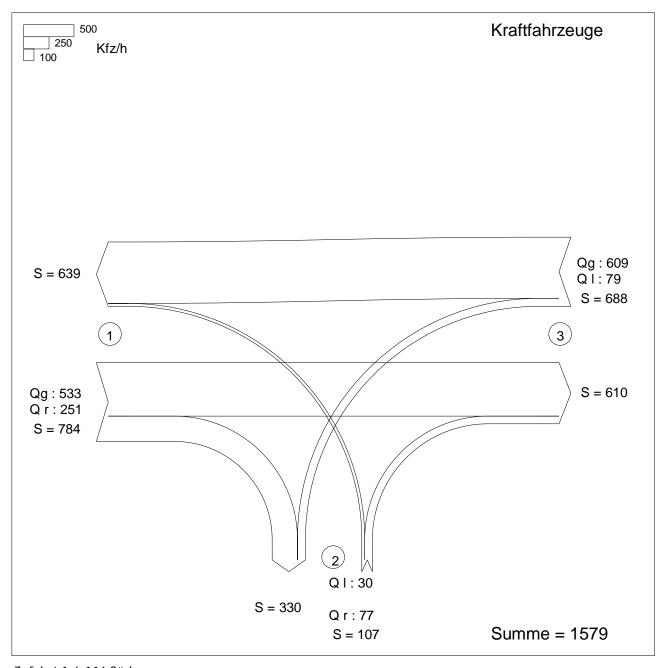
Strassennamen:

Hauptstrasse: L 116 Süd

L 116 Nord

Nebenstrasse: AS Gustorf Ost

HBS 2015 L5


KNOBEL Version 7.1.14

Brilon Bondzio Weiser Ingenieurgesellschaft für Verkehrswesen mbH

Projekt : 3,1058-2 Jüchen und Grevenbroich Knotenpunkt : KP4 - L 116 / AS Gustorf Nord

Stunde : NMS

Datei : KP4_HBS_PF1_NMS.kob

Zufahrt 1: L 116 Süd

Zufahrt 2: AS Gustorf Ost Zu-

fahrt 3: L 116 Nord

KNOBEL Version 7.1.14

Projekt : 3,1058-2 Jüchen und Grevenbroich

Knotenpunkt: KP4 - L 116 / AS Gustorf Nord

Stunde : NMS

Datei : KP4_HBS_PF1_NMS.kob

Strom	Strom	q-vorh	tg	tf	q-Haupt	q-max	Misch-	W	N-90	N-95	N-99	QSV
-Nr.		[PWE/h]	[s]	[s]	[Fz/h]	[PWE/h]	strom	[s]	[Pkw-E]	[Pkw-E]	[Pkw-E]	
2		569				1800						А
3	*	276				1024		5,3	1	2	2	А
Misch-H												
4	₹	32	7,4	3,8	1221	127		40,2	1	1	2	D
6	₽	78	7,3	3,7	533	434		10,2	1	1	2	В
Misch-N		110				356	4 + 6	15,0	2	2	3	В
8	←	655				1800						А
7	V	79	6,4	2,9	533	597		7,0	1	1	1	А
Misch-H		734				3600	7 + 8	1,3	1	1	2	А

Qualitätsstufe des Verkehrsablaufs für den gesamten Knotenpunkt

Lage des Knotenpunkte : Außerorts + außerhalb eines Ballungsgebiets

Alle Einstellungen nach : HBS 2015

Strassennamen:

Hauptstrasse: L 116 Süd

L 116 Nord

Nebenstrasse: AS Gustorf Ost

HBS 2015 L5

KNOBEL Version 7.1.14

Brilon Bondzio Weiser Ingenieurgesellschaft für Verkehrswesen mbH

			Qualität des Ver	kehrsablau	fs an planfre		enpunkten osefall 1		
		Planfall: Planfreier Knotenpunkt:			A9 C1		en und Grever	phroich	
		Teiknotenpunkt:			AS GI)-1	IDIOICII	
Teik	note	npunktart:					echtung		
Тур							/1-2		
MS				I	II	III	IV	V	QSV Min
			Haupt / Verteilerf	ahrbahn ober	halb des Teilk	notens			
l.		Bemessungsverkehrsstärke:	[Kfz/h]	747					
5		SV-Anteil (oberhalb):	[%]	16,3%					
3		Steigung	[%]	<2%					
		maßgebende Verkehrsstärke:	[PKW-E/h]	869					
3 I		Anzahl der Fahrstreifen	[-]	2					Α
)		Funktion und Lage	[-]	innerh. BR					
0		Geschwindigkeitsbeschränkung	[km/h]	80					
1		Auslastungsgrad	[-]	0,20					
2		erreichbare Qualitätsstufe	QSV [-]	Α					
				-f-hd- \/-	-11				
3	Г	Bemessungsverkehrsstärke:	[Kfz/h]	sfahrende Ve 376	rkenrsstrome				
4		SV-Anteil (Einfahrt):	[%]	42,0%					
5		Steigung	[%]	<2%					
5 II		maßgebende Verkehrsstärke:	[PKW-E/h]	534			1		Α
7		Anzahl der Fahrstreifen	[-]	1					
8		Auslastungsgrad	[-]	0,3			1		
9		erreichbare Qualitätsstufe	QSV [-]	A					
•	•	•	•	•			•	•	
_			Rampe ei	nfahrende Ve	kehrsströme		1		
0		Bemessungsverkehrsstärke:	[Kfz/h]	819					
1		SV-Anteil (Einfahrt):	[%]	17,6%					
2		Steigung	[%]	<2%				<u> </u>	_
3 III		maßgebende Verkehrsstärke:	[PKW-E/h]	963				1	В
4		Anzahl der Fahrstreifen	[-]	1					
5		Auslastungsgrad	[-]	0,53				1	
			QSV [-]	В				1	
6	<u> </u>	erreichbare Qualitätsstufe	[40.1]				1		
6	_	erreicribare Qualitatssture			preich		L		
			A	usfädelungsbo	ereich				
7		erreichbare Qualitätsstufe			ereich				
	_		QSV [-]	usfädelungsbo					
	<u> </u>	erreichbare Qualitätsstufe	QSV [-]						
7			QSV [-]	usfädelungsbe					
7		erreichbare Qualitätsstufe Bemessungsverkehrsstärke: SV-Anteil (Einfahrt):	QSV [-] Ve [Kfz/h] [%]	erflechtungsbr 1566 17,0%					С
7 8 9 IV		erreichbare Qualitätsstufe Bemessungsverkehrsstärke:	QSV [-] Ve	usfädelungsbo erflechtungsbo 1566					C
7 8 9 IV		erreichbare Qualitätsstufe Bemessungsverkehrsstärke: SV-Anteil (Einfahrt):	QSV [-] Ve [Kfz/h] [%] QSV [-]	erflechtungsbr 1566 17,0%	ereich				С
7 8 9 IV		erreichbare Qualitätsstufe Bemessungsverkehrsstärke: SV-Anteil (Einfahrt): erreichbare Qualitätsstufe	QSV [-] Ve [Kfz/h] [%] QSV [-]	erflechtungsbe 1566 17,0%	ereich				С
7 8 9 IV		erreichbare Qualitätsstufe Bemessungsverkehrsstärke: SV-Anteil (Einfahrt):	QSV [-] Ve [Kfz/h] [%] QSV [-]	erflechtungsbe 1566 17,0%	ereich				С
7 8 9 IV		erreichbare Qualitätsstufe Bemessungsverkehrsstärke: SV-Anteil (Einfahrt): erreichbare Qualitätsstufe erreichbare Qualitätsstufe	QSV [-] Ve [Kfz/h] [%] QSV [-]	erflechtungsbei 1566 17,0% C	ereich	terhalb des	Teilknotens		С
7 8 9 IV		erreichbare Qualitätsstufe Bemessungsverkehrsstärke: SV-Anteil (Einfahrt): erreichbare Qualitätsstufe erreichbare Qualitätsstufe Qualität des V	QSV [-] Ve [Kfz/h] [%] QSV [-] E QSV [-]	erflechtungsbe 1566 17,0% C	ereich	terhalb des	Teilknotens		С
7 7 8 8 8 9 9 IV		erreichbare Qualitätsstufe Bemessungsverkehrsstärke: SV-Anteil (Einfahrt): erreichbare Qualitätsstufe erreichbare Qualitätsstufe Qualität des Von	QSV [-] Ve [Kfz/h] [%] QSV [-] E QSV [-]	erflechtungsbe 1566 17,0% C c infädelungsbe Haupt-/ Verteil 1.190	ereich	terhalb des	Teilknotens		С
7 7		erreichbare Qualitätsstufe Bemessungsverkehrsstärke: SV-Anteil (Einfahrt): erreichbare Qualitätsstufe erreichbare Qualitätsstufe Qualität des Volumenssungsverkehrsstärke: SV-Anteil (unterhalb):	QSV [-] Ve [Kfz/h] [%] QSV [-] E QSV [-]	erflechtungsbe 1566 17,0% C c infädelungsbe 1.190 9,1%	ereich	terhalb des	Teilknotens		С
7 7		erreichbare Qualitätsstufe Bemessungsverkehrsstärke: SV-Anteil (Einfahrt): erreichbare Qualitätsstufe erreichbare Qualitätsstufe Qualität des Von	QSV [-] Ve [Kfz/h] [%] QSV [-] E QSV [-] erkehrsablaufs der I [Kfz/h] [%]	erflechtungsbe 1566 17,0% C c infädelungsbe Haupt-/ Verteil 1.190	ereich	terhalb des	Teilknotens		С
7	155A	erreichbare Qualitätsstufe Bemessungsverkehrsstärke: SV-Anteil (Einfahrt): erreichbare Qualitätsstufe erreichbare Qualitätsstufe Qualität des Volumenssungsverkehrsstärke: SV-Anteil (unterhalb): Steigung	QSV [-] Ve [Kfz/h] [%] QSV [-] E QSV [-] erkehrsablaufs der I [Kfz/h] [%]	erflechtungsbe 1566 17,0% C infädelungsbe 1.190 9,1% <2%	ereich	terhalb des	Teilknotens		C
7 7	H55A	erreichbare Qualitätsstufe Bemessungsverkehrsstärke: SV-Anteil (Einfahrt): erreichbare Qualitätsstufe erreichbare Qualitätsstufe Qualität des Vi Bemessungsverkehrsstärke: SV-Anteil (unterhalb): Steigung maßgebende Verkehrsstärke:	QSV [-] Ve [Kfz/h] [%] QSV [-] E QSV [-] erkehrsablaufs der I [Kfz/h] [%]	erflechtungsbe 1566 17,0% C infädelungsbe 1.190 9,1% <2% 1298	ereich	terhalb des	Teilknotens		
7 7	H55A	erreichbare Qualitätsstufe Bemessungsverkehrsstärke: SV-Anteil (Einfahrt): erreichbare Qualitätsstufe erreichbare Qualitätsstufe Qualität des V. Bemessungsverkehrsstärke: SV-Anteil (unterhalb): Steigung maßgebende Verkehrsstärke: Anzahl der Fahrstreifen	QSV [-] Ve [Kfz/h] [%] QSV [-] E QSV [-] erkehrsablaufs der I [Kfz/h] [%]	erflechtungsberfle	ereich	terhalb des	Teilknotens		
7 7	H55A	erreichbare Qualitätsstufe Bemessungsverkehrsstärke: SV-Anteil (Einfahrt): erreichbare Qualitätsstufe erreichbare Qualitätsstufe Qualität des V. Bemessungsverkehrsstärke: SV-Anteil (unterhalb): Steigung maßgebende Verkehrsstärke: Anzahl der Fahrstreifen Funktion und Lage	QSV [-] Ve [Kfz/h] [%] QSV [-] E QSV [-] erkehrsablaufs der I [Kfz/h] [%] [%] [%] [PKW-E/h] [-]	erflechtungsbe 1566 17,0% C infädelungsbe 1.190 9,1% <2% 1298 2 innerh. BR	ereich	sterhalb des	Teilknotens		
7 7	H55A	erreichbare Qualitätsstufe Bemessungsverkehrsstärke: SV-Anteil (Einfahrt): erreichbare Qualitätsstufe erreichbare Qualitätsstufe Qualität des V. Bemessungsverkehrsstärke: SV-Anteil (unterhalb): Steigung maßgebende Verkehrsstärke: Anzahl der Fahrstreifen Funktion und Lage Geschwindigkeitsbeschränkung	QSV [-] Ve [Kfz/h] [%] QSV [-] E QSV [-] erkehrsablaufs der I [Kfz/h] [%] [%] [%] [PKW-E/h] [-]	erflechtungsbe 1566 17,0% C Infädelungsbe 1.190 9,1% <2% 1298 2 innerh. BR 80	ereich	terhalb des	Teilknotens		
7 7	H55A	erreichbare Qualitätsstufe Bemessungsverkehrsstärke: SV-Anteil (Einfahrt): erreichbare Qualitätsstufe erreichbare Qualitätsstufe Qualität des Vormensensensensensensensensensensensensense	QSV [-] Ve [Kfz/h] [%] QSV [-]	### Company of the co	ereich erfahrbahn un				
1	H55A	erreichbare Qualitätsstufe Bemessungsverkehrsstärke: SV-Anteil (Einfahrt): erreichbare Qualitätsstufe erreichbare Qualitätsstufe Qualität des Vormensensensensensensensensensensensensense	Ai OSV [-] Ve [Kfz/h] [%] OSV [-] E OSV [-] E OSV [-] E OSV [-] OSV [-] OS	### Company of the co	ereich erfahrbahn un				
7 7	H55A	erreichbare Qualitätsstufe Bemessungsverkehrsstärke: SV-Anteil (Einfahrt): erreichbare Qualitätsstufe erreichbare Qualitätsstufe Qualität des Vormensensensensensensensensensensensensense	QSV [-] Ve [Kfz/h] [%] QSV [-]	### Company of the co	ereich erfahrbahn un				
1	H55A	erreichbare Qualitätsstufe Bemessungsverkehrsstärke: SV-Anteil (Einfahrt): erreichbare Qualitätsstufe Pualität des Von Bemessungsverkehrsstärke: SV-Anteil (unterhalb): Steigung maßgebende Verkehrsstärke: Anzahl der Fahrstreifen Funktion und Lage Geschwindigkeitsbeschränkung Auslastungsgrad erreichbare Qualitätsstufe	Ar	erflechtungsbe 1566 17,0% C infädelungsbe 4aupt-/ Verteil 1.190 9,1% <2% 1298 2 innerh. BR 80 0,30 A es Teilknoten C	ereich erfahrbahn un	tungskombi			
7 7	H55A	erreichbare Qualitätsstufe Bemessungsverkehrsstärke: SV-Anteil (Einfahrt): erreichbare Qualitätsstufe Pualität des Von Bemessungsverkehrsstärke: SV-Anteil (unterhalb): Steigung maßgebende Verkehrsstärke: Anzahl der Fahrstreifen Funktion und Lage Geschwindigkeitsbeschränkung Auslastungsgrad erreichbare Qualitätsstufe	Ar	erflechtungsbe 1566 17,0% C infädelungsbe 4aupt-/ Verteil 1.190 9,1% <2% 1298 2 innerh. BR 80 0,30 A es Teilknoten C	ereich erfahrbahn un	tungskombi	inationen		
1	H5SA	erreichbare Qualitätsstufe Bemessungsverkehrsstärke: SV-Anteil (Einfahrt): erreichbare Qualitätsstufe Pualität des Von Bemessungsverkehrsstärke: SV-Anteil (unterhalb): Steigung maßgebende Verkehrsstärke: Anzahl der Fahrstreifen Funktion und Lage Geschwindigkeitsbeschränkung Auslastungsgrad erreichbare Qualitätsstufe	Ar	erflechtungsbe 1566 17,0% C infädelungsbe 4aupt-/ Verteil 1.190 9,1% <2% 1298 2 innerh. BR 80 0,30 A es Teilknoten C	ereich erfahrbahn un	tungskombi			
1	H55A	erreichbare Qualitätsstufe Bemessungsverkehrsstärke: SV-Anteil (Einfahrt): erreichbare Qualitätsstufe erreichbare Qualitätsstufe Qualität des Vereichbare (Unterhalb): Steigun maßgebende Verkehrsstärke: Anzahl der Fahrstreifen Funktion und Lage Geschwindigkeitsbeschränkung Auslastungsgrad erreichbare Qualitätsstufe Qualität des Gereichbare Qualitätsstufe	OSV [-] Vec [Kfz/h] [%] OSV [-] OSV [-] OSV [-	erflechtungsbe 1566 17,0% C infädelungsbe 4aupt-/ Verteil 1.190 9,1% <2% 1298 2 innerh. BR 80 0,30 A es Teilknoten C	ereich erfahrbahn un	tungskombi	inationen		
1 I I I I I I I I I I I I I I I I I I I	H55A	erreichbare Qualitätsstufe Bemessungsverkehrsstärke: SV-Anteil (Einfahrt): erreichbare Qualitätsstufe erreichbare Qualitätsstufe Qualität des Vereichbare (Unterhalb): Steigun maßgebende Verkehrsstärke: Anzahl der Fahrstreifen Funktion und Lage Geschwindigkeitsbeschränkung Auslastungsgrad erreichbare Qualitätsstufe Qualität des Gereichbare Qualitätsstufe	OSV [-] Vec [Kfz/h] [%] OSV [-] OSV [-]	erflechtungsbe 1566 17,0% C infädelungsbe 4aupt-/ Verteil 1.190 9,1% <2% 1298 2 innerh. BR 80 0,30 A es Teilknoten C	ereich erfahrbahn un	tungskombi	inationen		

			Qualität des Ver	kehrsablau	is an planfr		•		
		Planfall: Planfreier Knotenpunkt:			40.0		osefall 1	ahraiah	
		Teiknotenpunkt:			AS G		en und Grever	nbroich	
Teik	onote	npunktart:					echtung		
Typ:		npunktart.					/1-2		
NMS				ı	II	III	IV	V	QSV Min
			Haupt / Verteilerf	ahrbahn ober	halb des Teilk	notens	<u> </u>		
		Bemessungsverkehrsstärke:	[Kfz/h]	510					
;		SV-Anteil (oberhalb):	[%]	11,4%					
i		Steigung	[%]	<2%					
		maßgebende Verkehrsstärke:	[PKW-E/h]	568					
1		Anzahl der Fahrstreifen	[-]	2					Α
)		Funktion und Lage	[-]	innerh. BR					
)		Geschwindigkeitsbeschränkung	[km/h]	80					
1		Auslastungsgrad	[-]	0,13					
2		erreichbare Qualitätsstufe	QSV [-]	Α					
	•								
			Rampe au	ısfahrende Ve	rkehrsströme				
3		Bemessungsverkehrsstärke:	[Kfz/h]	241					
4		SV-Anteil (Einfahrt):	[%]	38,6%					
5		Steigung	[%]	<2%					
3 II	I	maßgebende Verkehrsstärke:	[PKW-E/h]	334					Α
7	I	Anzahl der Fahrstreifen	[-]	1					
3	I	Auslastungsgrad	[-]	0,19					
9	1	erreichbare Qualitätsstufe	QSV [-]	A					
		•							
			Rampe ei	nfahrende Ve	kehrsströme				
)		Bemessungsverkehrsstärke:	[Kfz/h]	558					
1		SV-Anteil (Einfahrt):	[%]	19,9%					
2		Steigung	[%]	<2%					
3 III		maßgebende Verkehrsstärke:	[PKW-E/h]	669					В
4		Anzahl der Fahrstreifen	[-]	1					
			[-]						
5		Auslastungsgrad	1[7]	0,37					
5 6		Auslastungsgrad erreichbare Qualitätsstufe	QSV [-]	0,37 B					
_									
_			QSV [-]		ereich				
_		erreichbare Qualitätsstufe	QSV [-]	В	ereich				
6			QSV [-]	В	ereich				
6		erreichbare Qualitätsstufe	QSV [-] QSV [-]	B usfädelungsb					
7		erreichbare Qualitätsstufe erreichbare Qualitätsstufe	QSV [-] At	B usfädelungsbe erflechtungsb					
7	 	erreichbare Qualitätsstufe erreichbare Qualitätsstufe Bemessungsverkehrsstärke:	QSV [-] Au QSV [-] Ve	B usfädelungsbe erflechtungsbe 1068					
7 B IV		erreichbare Qualitätsstufe erreichbare Qualitätsstufe	QSV [-] At	B usfädelungsbe erflechtungsb					
7		erreichbare Qualitätsstufe erreichbare Qualitätsstufe Bemessungsverkehrsstärke:	QSV [-] Au QSV [-] Ve	B usfädelungsbe erflechtungsbe 1068					В
7 B IV		erreichbare Qualitätsstufe erreichbare Qualitätsstufe Bemessungsverkehrsstärke: SV-Anteil (Einfahrt):	QSV [-] QSV [-] Ve [Kfz/h] [%]	B usfädelungsberflechtungsberfl					В
7 B IV		erreichbare Qualitätsstufe erreichbare Qualitätsstufe Bemessungsverkehrsstärke: SV-Anteil (Einfahrt):	QSV [-] QSV [-] Ve [Kfz/h] [%] QSV [-]	B usfädelungsberflechtungsberfl	ereich				В
7 B IV		erreichbare Qualitätsstufe erreichbare Qualitätsstufe Bemessungsverkehrsstärke: SV-Anteil (Einfahrt): erreichbare Qualitätsstufe	OSV [-] At OSV [-] Ve [Kfz/h] [%] OSV [-]	B usfädelungsbr erflechtungsbr 1068 15,8% B	ereich				В
7 3 IV		erreichbare Qualitätsstufe erreichbare Qualitätsstufe Bemessungsverkehrsstärke: SV-Anteil (Einfahrt):	QSV [-] QSV [-] Ve [Kfz/h] [%] QSV [-]	B usfädelungsbr erflechtungsbr 1068 15,8% B	ereich				В
7 3 IV		erreichbare Qualitätsstufe erreichbare Qualitätsstufe Bemessungsverkehrsstärke: SV-Anteil (Einfahrt): erreichbare Qualitätsstufe erreichbare Qualitätsstufe	OSV [-] At OSV [-] Ve OSV [-] OSV [-] Ei OSV [-]	B usfädelungsbe erflechtungsbe 1068 15,8% B	ereich	nterhall de-	Taillenotess		В
7 7 8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		erreichbare Qualitätsstufe erreichbare Qualitätsstufe Bemessungsverkehrsstärke: SV-Anteil (Einfahrt): erreichbare Qualitätsstufe erreichbare Qualitätsstufe	QSV [-] Au QSV [-] Ve [Kfz/h] [%] QSV [-] Ei QSV [-]	B usfädelungsbe erflechtungsbe 1068 15,8% B infädelungsbe	ereich	nterhalb des	Teilknotens		В
7 7		erreichbare Qualitätsstufe erreichbare Qualitätsstufe Bemessungsverkehrsstärke: SV-Anteil (Einfahrt): erreichbare Qualitätsstufe erreichbare Qualitätsstufe Qualität des V Bemessungsverkehrsstärke:	OSV [-]	B usfädelungsbe rflechtungsbe 1068 15,8% B infädelungsbe Haupt-/ Verteil 826	ereich	nterhalb des	Teilknotens		В
7 7 7 1 1 1 1 2 2 3 3 3 3 3 3 3 3 3 4 3 4 4 4 4 4 4 4		erreichbare Qualitätsstufe erreichbare Qualitätsstufe Bemessungsverkehrsstärke: SV-Anteil (Einfahrt): erreichbare Qualitätsstufe erreichbare Qualitätsstufe Qualität des V Bemessungsverkehrsstärke: SV-Anteil (unterhalb):	OSV [-]	B usfädelungsbe 1068 15,8% B infädelungsbe Haupt-/ Verteil 826 8,2%	ereich	nterhalb des	Teilknotens		В
7 7		erreichbare Qualitätsstufe erreichbare Qualitätsstufe Bemessungsverkehrsstärke: SV-Anteil (Einfahrt): erreichbare Qualitätsstufe erreichbare Qualitätsstufe Qualität des V Bemessungsverkehrsstärke: SV-Anteil (unterhalb): Steigung	OSV [-]	B usfädelungsbe 1068 15,8% B infädelungsbe Haupt-/ Verteil 826 8,2% <2%	ereich	nterhalb des	Teilknotens		В
77	A5:	erreichbare Qualitätsstufe erreichbare Qualitätsstufe Bemessungsverkehrsstärke: SV-Anteil (Einfahrt): erreichbare Qualitätsstufe erreichbare Qualitätsstufe Qualität des V Bemessungsverkehrsstärke: SV-Anteil (unterhalb): Steigung maßgebende Verkehrsstärke:	OSV [-]	B usfädelungsbe 1068 15,8% B infädelungsbe 44 44 45 46 46 47 47 47 47 47 47 47 47 47 47 47 47 47	ereich	nterhalb des	Teilknotens		
77	H55A	erreichbare Qualitätsstufe erreichbare Qualitätsstufe Bemessungsverkehrsstärke: SV-Anteil (Einfahrt): erreichbare Qualitätsstufe erreichbare Qualitätsstufe Qualität des V Bemessungsverkehrsstärke: SV-Anteil (unterhalb): Steigung maßgebende Verkehrsstärke: Anzahl der Fahrstreifen	OSV [-]	B usfädelungsbe 1068 15,8% B infädelungsbe 4826 8,2% <2% 894 2	ereich	nterhalb des	Teilknotens		В
77	H55A	erreichbare Qualitätsstufe erreichbare Qualitätsstufe Bemessungsverkehrsstärke: SV-Anteil (Einfahrt): erreichbare Qualitätsstufe erreichbare Qualitätsstufe Qualität des V Bemessungsverkehrsstärke: SV-Anteil (unterhalb): Steigung maßgebende Verkehrsstärke: Anzahl der Fahrstreifen Funktion und Lage	OSV [-] Au OSV [-] Ve [Kfz/h] [%] OSV [-] Ei OSV [-] erkehr-sablaufs der H [Kfz/h] [%] [%] [%] [-]	B ausfädelungsbe 1068 15,8% B infädelungsbe 426 8,2% <2% 894 2 innerh. BR	ereich	nterhalb des	Teilknotens		
7 7 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	H55A	erreichbare Qualitätsstufe erreichbare Qualitätsstufe Bemessungsverkehrsstärke: SV-Anteil (Einfahrt): erreichbare Qualitätsstufe erreichbare Qualitätsstufe Qualität des V Bemessungsverkehrsstärke: SV-Anteil (unterhalb): Steigung maßgebende Verkehrsstärke: Anzahl der Fahrstreifen Funktion und Lage Geschwindigkeitsbeschränkung	OSV [-] Au OSV [-] Ve [Kfz/h] [%] OSV [-] Ei OSV [-] erkehr-sablaufs der H [Kfz/h] [%] [%] [%] [%] [PKW-E/h] [-]	B usfädelungsbe 1068 15,8% B infädelungsbe 4826 8,2% <2% 894 2 innerh. BR 80	ereich	nterhalb des	Teilknotens		
7 7 7	H55A	erreichbare Qualitätsstufe erreichbare Qualitätsstufe Bemessungsverkehrsstärke: SV-Anteil (Einfahrt): erreichbare Qualitätsstufe erreichbare Qualitätsstufe Qualität des V Bemessungsverkehrsstärke: SV-Anteil (unterhalb): Steigung maßgebende Verkehrsstärke: Anzahl der Fahrstreifen Funktion und Lage Geschwindigkeitsbeschränkung Auslastungsgrad	OSV [-] At OSV [-] Ve OSV [-] OSV [-] OSV [-	B usfädelungsbe 1068 15,8% B infädelungsbe 4826 8,2% <2% 894 2 innerh. BR 80 0,21	ereich	nterhalb des	Teilknotens		
7 7 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	H55A	erreichbare Qualitätsstufe erreichbare Qualitätsstufe Bemessungsverkehrsstärke: SV-Anteil (Einfahrt): erreichbare Qualitätsstufe erreichbare Qualitätsstufe Qualität des V Bemessungsverkehrsstärke: SV-Anteil (unterhalb): Steigung maßgebende Verkehrsstärke: Anzahl der Fahrstreifen Funktion und Lage Geschwindigkeitsbeschränkung	OSV [-] Au OSV [-] Ve [Kfz/h] [%] OSV [-] Ei OSV [-] erkehr-sablaufs der H [Kfz/h] [%] [%] [%] [%] [PKW-E/h] [-]	B usfädelungsbe 1068 15,8% B infädelungsbe 4826 8,2% <2% 894 2 innerh. BR 80	ereich	nterhalb des	Teilknotens		
7 7 7	H55A	erreichbare Qualitätsstufe erreichbare Qualitätsstufe Bemessungsverkehrsstärke: SV-Anteil (Einfahrt): erreichbare Qualitätsstufe erreichbare Qualitätsstufe Qualität des V Bemessungsverkehrsstärke: SV-Anteil (unterhalb): Steigung maßgebende Verkehrsstärke: Anzahl der Fahrstreifen Funktion und Lage Geschwindigkeitsbeschränkung Auslastungsgrad erreichbare Qualitätsstufe	QSV [-] At QSV [-] Ve [Kfz/h] [%] QSV [-] Ei QSV [-] Ei [Kfz/h] [%] [%] [%] [%] [%] [PKW-E/h] [-] [km/h] [-] QSV [-] QSV [-]	B usfädelungsbe 1068 15,8% B infädelungsbe 4aupt-/ Verteil 826 8,2% <2% 894 2 innerh. BR 80 0,21 A	reich erfahrbahn ui				
7	H55A	erreichbare Qualitätsstufe erreichbare Qualitätsstufe Bemessungsverkehrsstärke: SV-Anteil (Einfahrt): erreichbare Qualitätsstufe erreichbare Qualitätsstufe Qualität des V Bemessungsverkehrsstärke: SV-Anteil (unterhalb): Steigung maßgebende Verkehrsstärke: Anzahl der Fahrstreifen Funktion und Lage Geschwindigkeitsbeschränkung Auslastungsgrad erreichbare Qualitätsstufe	OSV [-] At OSV [-] Ve OSV [-] OSV [-] OSV [-	B usfädelungsbe 1068 15,8% B infädelungsbe 4aupt-/ Verteil 826 8,2% <2% 894 2 innerh. BR 80 0,21 A	reich erfahrbahn ui				
7 7 7	H55A	erreichbare Qualitätsstufe erreichbare Qualitätsstufe Bemessungsverkehrsstärke: SV-Anteil (Einfahrt): erreichbare Qualitätsstufe erreichbare Qualitätsstufe Qualität des V Bemessungsverkehrsstärke: SV-Anteil (unterhalb): Steigung maßgebende Verkehrsstärke: Anzahl der Fahrstreifen Funktion und Lage Geschwindigkeitsbeschränkung Auslastungsgrad erreichbare Qualitätsstufe	QSV [-] At QSV [-] Ve [Kfz/h] [%] QSV [-] Ei QSV [-] Ei [Kfz/h] [%] [%] [%] [%] [%] [PKW-E/h] [-] [km/h] [-] QSV [-] QSV [-]	B usfädelungsbe 1068 15,8% B infädelungsbe 4aupt-/ Verteil 826 8,2% <2% 894 2 innerh. BR 80 0,21 A	reich erfahrbahn ui				
7	H55A	erreichbare Qualitätsstufe erreichbare Qualitätsstufe Bemessungsverkehrsstärke: SV-Anteil (Einfahrt): erreichbare Qualitätsstufe erreichbare Qualitätsstufe Qualität des V Bemessungsverkehrsstärke: SV-Anteil (unterhalb): Steigung maßgebende Verkehrsstärke: Anzahl der Fahrstreifen Funktion und Lage Geschwindigkeitsbeschränkung Auslastungsgrad erreichbare Qualitätsstufe	QSV [-] Ve [Kfz/h] [%] QSV [-] Ei QSV [-] erkehrsablaufs der H [Kfz/h] [%] [PKW-E/h] [-] [km/h] [-] QSV [-]	Busfädelungsberflechtungsberfle	reich erfahrbahn ui				
7	H55A	erreichbare Qualitätsstufe erreichbare Qualitätsstufe Bemessungsverkehrsstärke: SV-Anteil (Einfahrt): erreichbare Qualitätsstufe erreichbare Qualitätsstufe Qualität des V Bemessungsverkehrsstärke: SV-Anteil (unterhalb): Steigung maßgebende Verkehrsstärke: Anzahl der Fahrstreifen Funktion und Lage Geschwindigkeitsbeschränkung Auslastungsgrad erreichbare Qualitätsstufe	OSV [-] At OSV [-] OSV [-] OSV	Busfädelungsberflechtungsberfle	reich reich erfahrbahn ur	stungskombi			
7	H55A	erreichbare Qualitätsstufe erreichbare Qualitätsstufe Bemessungsverkehrsstärke: SV-Anteil (Einfahrt): erreichbare Qualitätsstufe erreichbare Qualitätsstufe Qualität des V Bemessungsverkehrsstärke: SV-Anteil (unterhalb): Steigung maßgebende Verkehrsstärke: Anzahl der Fahrstreifen Funktion und Lage Geschwindigkeitsbeschränkung Auslastungsgrad erreichbare Qualitätsstufe	OSV [-] At OSV [-] OSV [-] OSV	B ausfädelungsberflechtungsber	reich reich erfahrbahn ur	stungskombi	nationen		
7	H55A	erreichbare Qualitätsstufe erreichbare Qualitätsstufe Bemessungsverkehrsstärke: SV-Anteil (Einfahrt): erreichbare Qualitätsstufe erreichbare Qualitätsstufe Qualität des V Bemessungsverkehrsstärke: SV-Anteil (unterhalb): Steigung maßgebende Verkehrsstärke: Anzahl der Fahrstreifen Funktion und Lage Geschwindigkeitsbeschränkung Auslastungsgrad erreichbare Qualitätsstufe	OSV [-]	B ausfädelungsberflechtungsber	reich reich erfahrbahn ur	stungskombi			
7	H55A	erreichbare Qualitätsstufe Bemessungsverkehrsstärke: SV-Anteil (Einfahrt): erreichbare Qualitätsstufe Pulität des V Bemessungsverkehrsstärke: SV-Anteil (unterhalb): Steigung maßgebende Verkehrsstärke: Anzahl der Fahrstreifen Funktion und Lage Geschwindigkeitsbeschränkung Auslastungsgrad erreichbare Qualitätsstufe Qualität de erreichbare Qualitätsstufe	OSV [-] At OSV [-] OSV [-] OSV	B ausfädelungsberflechtungsber	reich reich erfahrbahn ur	stungskombi	nationen		
7	H55A	erreichbare Qualitätsstufe Bemessungsverkehrsstärke: SV-Anteil (Einfahrt): erreichbare Qualitätsstufe Pulität des V Bemessungsverkehrsstärke: SV-Anteil (unterhalb): Steigung maßgebende Verkehrsstärke: Anzahl der Fahrstreifen Funktion und Lage Geschwindigkeitsbeschränkung Auslastungsgrad erreichbare Qualitätsstufe Qualität de erreichbare Qualitätsstufe	OSV [-]	B ausfädelungsberflechtungsber	reich reich erfahrbahn ur	stungskombi	nationen		

			Erreichbare Q	ualität des Ve	rkehrsablau	fs an planfı	reien Knote	npunkten		
			Planfall:					sefall 1		
			Planfreier Knotenpunkt: Teiknotenpunkt:			AS G		nen und Grev	enbroich	
1	Tei	iknote	enpunktart:					fahrt		
2	Тур					1	E	1-2	,	
3	MS	3				=	III	IV	V	QSV Min
4			Bemessungsverkehrsstärke:	[Kfz/h]	1.190	halb des Teill	knotens			
5			SV-Anteil (oberhalb):	[%]	9,0%					
6			Steigung	[%]	<2%					
7	١.		maßgebende Verkehrsstärke:	[PKW-E/h]	1297					Δ.
9			Anzahl der Fahrstreifen	[-]	2					Α
10			Funktion und Lage Geschwindigkeitsbeschränkung	[-] [km/h]	innerh. BR 100					
11			Auslastungsgrad	[-]	0,30					
12			erreichbare Qualitätsstufe	QSV [-]	Α					
13			Bemessungsverkehrsstärke:	Rampe au [Kfz/h]	usfahrende Ve	kenrsströme				
14			SV-Anteil (Einfahrt):	[%]						
15			Steigung	[%]						
16	II		maßgebende Verkehrsstärke:	[PKW-E/h]						
17 18			Anzahl der Fahrstreifen	[-]						
19			Auslastungsgrad erreichbare Qualitätsstufe	[-] QSV [-]			-			
<u> </u>	_			120.[]						
				Rampe e	infahrende Ve	rkehrsströme	1			
20			Bemessungsverkehrsstärke:	[Kfz/h]	7					
21			SV-Anteil (Einfahrt):	[%]	57,0%					
23	III		Steigung maßgebende Verkehrsstärke:	[%] [PKW-E/h]	<2% 11					Α
24			Anzahl der Fahrstreifen	[-]	1					^
25			Auslastungsgrad	[-]	0,01					
26		Ļ	erreichbare Qualitätsstufe	QSV [-]	Α					
					usfädelungsb	oroich				
27					usraderungsb	ereich				
<u>-</u> '			erreichbare Qualitätsstufe	QSV [-]						
				V	erflechtungsb	ereich				
28			Bemessungsverkehrsstärke:	[Kfz/h]						
29	IV	/	SV-Anteil (Einfahrt):	[%]						
30			erreichbare Qualitätsstufe	QSV [-]						
	1			E	infädelungsbe	ereich		1		
31			erreichbare Qualitätsstufe	QSV [-]	В					В
32	1	1	Qualität des Verk			lerfahrbahn u	nterhalb des	Teilknotens		
33			Bernessungsverkehrsstärke: SV-Anteil (unterhalb):	[Kfz/h] [%]	1.197 9,3%					
34			Steigung	[%]	<2%					
35			maßgebende Verkehrsstärke:	[PKW-E/h]	1308					
36	٧		Anzahl der Fahrstreifen	[-]	2					Α
37			Funktion und Lage	n. 43	innerh. BR		-			
39			Geschwindigkeitsbeschränkung Auslastungsgrad	[km/h] [-]	100 0,31			<u> </u>		
40	L		erreichbare Qualitätsstufe	QSV [-]	A					
\vdash	1		Qualität des V	erkehrsablaufs o	les Teilknoten	s für die Bela	stungskombi	nationen		
41			erreichbare Qualitätsstufe	QSV [-]	В					
-	Γ			Maßgebende	Qualität des	Verkehrsabla	ufs			
42			erreichbare Qualitätsstufe	QSV [-]				В		
D. C.	_		CITOTOLISTIC Qualitationality	[QUV [*]	I .					
Brilor Bond Weise	zio									
		sellscho								
		sellscho esen mb								

			Erreichbare Q	ualität des Ve	rkehrsablau	fs an planfı	reien Knote	npunkten		
			Planfall:					sefall 1		
			Planfreier Knotenpunkt:			AS G	I-Gebiet Jüch	nen und Grev I-2	renbroich	
1	Teik	knote	Teiknotenpunkt: enpunktart:					fahrt		
2	Тур							1-2		
3	NMS	S			I	II	III	IV	V	QSV Min
4		Т		Haupt / Verteiler		halb des Teill	knotens	1	I	
5			Bernessungsverkehrsstärke: SV-Anteil (oberhalb):	[Kfz/h] [%]	826 8,2%					
6			Steigung	[%]	<2%					
7			maßgebende Verkehrsstärke:	[PKW-E/h]	894					
8	1		Anzahl der Fahrstreifen	[-]	2					Α
9			Funktion und Lage	[-]	innerh. BR					
10			Geschwindigkeitsbeschränkung	[km/h]	100					
12			Auslastungsgrad erreichbare Qualitätsstufe	[-] QSV [-]	0,21 A					
		-	erreichbare Qualitatssture	Q3V [-]	A			I	<u>I</u>	
				Rampe a	usfahrende Ve	erkehrsströme)			
13			Bemessungsverkehrsstärke:	[Kfz/h]						
14			SV-Anteil (Einfahrt):	[%]		-	-		-	
15 16	П		Steigung	[%]		-	-		-	
17	"		maßgebende Verkehrsstärke: Anzahl der Fahrstreifen	[PKW-E/h] [-]						
18			Auslastungsgrad	[-]						
19	L	L	erreichbare Qualitätsstufe	QSV [-]						
				·						
		_	T		infahrende Ve	rkehrsströme	· · · · · · · · · · · · · · · · · · ·	1	1	
20			Bemessungsverkehrsstärke:	[Kfz/h] [%]	76 39,5%					
22			SV-Anteil (Einfahrt): Steigung	[%]	39,5% <2%					
23	Ш		maßgebende Verkehrsstärke:	[PKW-E/h]	106					Α
24			Anzahl der Fahrstreifen	[-]	1					
25			Auslastungsgrad	[-]	0,06					
26		Ļ	erreichbare Qualitätsstufe	QSV [-]	Α					
					usfädelungsb	oroigh				
27					daraderungab	ereicii				
			erreichbare Qualitätsstufe	QSV [-]						
				V	erflechtungsb	ereich				
28			Bemessungsverkehrsstärke:	[Kfz/h]						
29	IV		SV-Anteil (Einfahrt):	[%]						
30			erreichbare Qualitätsstufe	QSV [-]						
				•	•				•	
				E	infädelungsbe	ereich		ı	1	
31			erreichbare Qualitätsstufe	QSV [-]	Α					Α
20		T	Qualität des Verk		1	lerfahrbahn u	nterhalb des	Teilknotens		
32			Bemessungsverkehrsstärke:	[Kfz/h]	902				1	
34			SV-Anteil (unterhalb): Steigung	[%]	10,8%					
35			maßgebende Verkehrsstärke:	[PKW-E/h]	1000					
36	٧		Anzahl der Fahrstreifen	[-]	2					Α
37			Funktion und Lage		innerh. BR					
38			Geschwindigkeitsbeschränkung	[km/h]	100	-	-		-	
39 40			Auslastungsgrad erreichbare Qualitätsstufe	[-] QSV [-]	0,23 A				1	
.5			orrororibare Qualitatosture	[40 v [-]	М	ı	1	ı	1	
			Qualität des V	erkehrsablaufs o	des Teilknoten	s für die Bela	stungskombi	nationen		
41			erreichbare Qualitätsstufe	QSV [-]	Α					
			on olonbaro aqualitatostato	[~~·[-]		I.	L	1	1	
				Maßgebende	Qualität des	Verkehrsabla	ufs			
42		_						Α		
			erreichbare Qualitätsstufe	QSV [-]				- ,		
Brilor Bond:										
Weise										
Ingenie für Verke										

Ь—			Erreichbare Qu	alität des Ver	kehrsablau	fs an planfr	eien Knote	npunkten		
			Planfall:					sefall 1		
			Planfreier Knotenpunkt: Teiknotenpunkt:			AS G		nen und Grev	enbroich	
1	Teik	knote	enpunktart:					sfahrt		
2	Тур:					1	A	1-2		
3	MS				<u> </u>	=	III	IV	V	QSV Min
4		I	Bemessungsverkehrsstärke:	[Kfz/h]	699	halb des Teili	knotens			
5			SV-Anteil (oberhalb):	[%]	16,3%					
6			Steigung	[%]	<2%					
7			maßgebende Verkehrsstärke:	[PKW-E/h]	813					
9	ı		Anzahl der Fahrstreifen	[-]	2					Α
10			Funktion und Lage Geschwindigkeitsbeschränkung	[-] [km/h]	innerh. BR 100					
11			Auslastungsgrad	[-]	0,19					
12			erreichbare Qualitätsstufe	QSV [-]	Α					
12		Т	T		usfahrende Ve	rkehrsströme	1	1		
13			Bernessungsverkehrsstärke: SV-Anteil (Einfahrt):	[Kfz/h] [%]	93 41,9%					
15			Steigung	[%]	41,9% <2%					
16	II		maßgebende Verkehrsstärke:	[PKW-E/h]	132					Α
17			Anzahl der Fahrstreifen	[-]	1				_	
18 19			Auslastungsgrad	[-]	0,07	1	 		-	
19			erreichbare Qualitätsstufe	QSV [-]	Α	<u> </u>	<u> </u>	I	I .	
				Rampe e	infahrende Ve	rkehrsströme				
20			Bemessungsverkehrsstärke:	[Kfz/h]						
21			SV-Anteil (Einfahrt):	[%]						
22			Steigung	[%]						
23 24	III		maßgebende Verkehrsstärke:	[PKW-E/h]						
25			Anzahl der Fahrstreifen Auslastungsgrad	[-] [-]						
26			erreichbare Qualitätsstufe	QSV [-]						
				Α	usfädelungsb	ereich	1	T		_
27										Α
			erreichbare Qualitätsstufe	QSV [-]	Α					A
_			erreichbare Qualitätsstufe						<u> </u>	A
20				V	A erflechtungsb	ereich	I	1	<u> </u>	
28	n/		Bemessungsverkehrsstärke:	V([Kfz/h]		ereich				A
29	IV		Bemessungsverkehrsstärke: SV-Anteil (Einfahrt):	[Kfz/h]		ereich				
	IV		Bemessungsverkehrsstärke:	V([Kfz/h]		ereich				
29	IV		Bemessungsverkehrsstärke: SV-Anteil (Einfahrt):	(Kfz/h) [%] QSV [-]	erflechtungsb					
30	IV		Bemessungsverkehrsstärke: SV-Anteil (Einfahrt): erreichbare Qualitätsstufe	V([Kfz/h] [%] QSV [-]						
29	IV		Bemessungsverkehrsstärke: SV-Anteil (Einfahrt):	(Kfz/h) [%] QSV [-]	erflechtungsb					
30	IV		Bemessungsverkehrsstärke: SV-Anteil (Einfahrt): erreichbare Qualitätsstufe erreichbare Qualitätsstufe	V. [Kfz/h] [%] QSV [-] E	erflechtungsb	ereich	nterhalb des	Teilknotens		
30	IV		Bemessungsverkehrsstärke: SV-Anteil (Einfahrt): erreichbare Qualitätsstufe	V. [Kfz/h] [%] QSV [-] E	erflechtungsb	ereich	nterhalb des	Teilknotens		
31 32 33	IV		Bemessungsverkehrsstärke: SV-Anteil (Einfahrt): erreichbare Qualitätsstufe erreichbare Qualitätsstufe Qualität des Verke	[Kfz/h] [%] QSV [-] E QSV [-]	erflechtungsb infädelungsbe Haupt-/ Vertei	ereich	nterhalb des	Teilknotens		
31 32 33 34	IV		Bemessungsverkehrsstärke: SV-Anteil (Einfahrt): erreichbare Qualitätsstufe erreichbare Qualitätsstufe Qualität des Verke Bemessungsverkehrsstärke: SV-Anteil (unterhalb): Steigung	Vi [Kfz/h] [%] QSV [-] E QSV [-] Chrsablaufs der [Kfz/h] [%] [%] [%] [%]	infädelungsbe Haupt-/ Vertei 606 12,4% <2%	ereich	nterhalb des	Teilknotens		
31 32 33 34 35			Bemessungsverkehrsstärke: SV-Anteil (Einfahrt): erreichbare Qualitätsstufe erreichbare Qualitätsstufe Qualität des Verke Bemessungsverkehrsstärke: SV-Anteil (unterhalb): Steigung maßgebende Verkehrsstärke:	Vi [Kfz/h] [%] QSV [-] E QSV [-] C C C C C C C C C	Haupt-/ Vertei 606 12,4% <2% 681	ereich	nterhalb des	Teilknotens		
31 32 33 34 35 36	IV V		Bemessungsverkehrsstärke: SV-Anteil (Einfahrt): erreichbare Qualitätsstufe erreichbare Qualitätsstufe Qualität des Verke Bemessungsverkehrsstärke: SV-Anteil (unterhalb): Steigung maßgebende Verkehrsstärke: Anzahl der Fahrstreifen	Vi [Kfz/h] [%] QSV [-] E QSV [-] Chrsablaufs der [Kfz/h] [%] [%] [%] [%]	Haupt-/ Vertei 606 12,4% <2% 681 2	ereich	nterhalb des	Teilknotens		A
31 32 33 34 35			Bemessungsverkehrsstärke: SV-Anteil (Einfahrt): erreichbare Qualitätsstufe erreichbare Qualitätsstufe Qualität des Verke Bemessungsverkehrsstärke: SV-Anteil (unterhalb): Steigung maßgebende Verkehrsstärke: Anzahl der Fahrstreifen Funktion und Lage	Vi [Kfz/h] [%] QSV [-] E QSV [-] C C C C C C C C C	Haupt-/ Vertei 606 12,4% <2% 681	ereich	nterhalb des	Teilknotens		
31 32 33 34 35 36 37			Bemessungsverkehrsstärke: SV-Anteil (Einfahrt): erreichbare Qualitätsstufe erreichbare Qualitätsstufe Qualität des Verke Bemessungsverkehrsstärke: SV-Anteil (unterhalb): Steigung maßgebende Verkehrsstärke: Anzahl der Fahrstreifen	Vi [Kfz/h] [%] QSV [-] E QSV [-] C C C C C C C C C	Haupt-/ Vertei 606 12,4% <2% 681 2 innerh. BR	ereich	nterhalb des	Teilknotens		
31 32 33 34 35 36 37 38			Bemessungsverkehrsstärke: SV-Anteil (Einfahrt): erreichbare Qualitätsstufe erreichbare Qualitätsstufe Qualität des Verke Bemessungsverkehrsstärke: SV-Anteil (unterhalb): Steigung maßgebende Verkehrsstärke: Anzahl der Fahrstreifen Funktion und Lage Geschwindigkeitsbeschränkung	Vi [Kfz/h] [%] QSV [-] E QSV [-]	Haupt-/ Vertei 606 12,4% <2% 681 2 innerh. BR 100	ereich	nterhalb des	Teilknotens		
31 31 32 33 34 35 36 37 38 39			Bemessungsverkehrsstärke: SV-Anteil (Einfahrt): erreichbare Qualitätsstufe erreichbare Qualitätsstufe Qualität des Verket Bemessungsverkehrsstärke: SV-Anteil (unterhalb): Steigung maßgebende Verkehrsstärke: Anzahl der Fahrstreifen Funktion und Lage Geschwindigkeitsbeschränkung Auslastungsgrad erreichbare Qualitätsstufe	Ktz/h] (%] QSV [-] E QSV [-] (Ktz/h] (%] (%] (%] (PKW-E/h] (-] (km/h] (-] QSV [-] (QSV [-] (MT/h) (-) (QSV [-] (MT/h) (-) (QSV [-] (MT/h) (-) (QSV [-] (MT/h) (-) (QSV [-] (MT/h) (-) (QSV [-] (MT/h) (-) (QSV [-] (MT/h) (-) (QSV [-] (MT/h) (-) (QSV [-] (MT/h) (-) (QSV [-] (MT/h) (-) (QSV [-] (MT/h) (-) (QSV [-] (MT/h) (-) (QSV [-] (MT/h) (-) (QSV [-] (MT/h) (-	Haupt-/ Vertei 606 12,4% <2% 681 2 innerh. BR 100 0,16 A	ereich lerfahrbahn u				
31 31 32 33 34 35 36 37 38 39 40			Bemessungsverkehrsstärke: SV-Anteil (Einfahrt): erreichbare Qualitätsstufe erreichbare Qualitätsstufe Qualität des Verket Bemessungsverkehrsstärke: SV-Anteil (unterhalb): Steigung maßgebende Verkehrsstärke: Anzahl der Fahrstreifen Funktion und Lage Geschwindigkeitsbeschränkung Auslastungsgrad erreichbare Qualitätsstufe	Vi [Kfz/h] [%] QSV [-] E QSV [-]	Haupt-/ Vertei 606 12,4% <2% 681 2 innerh. BR 100 0,16 A	ereich lerfahrbahn u				
31 31 32 33 34 35 36 37 38 39			Bemessungsverkehrsstärke: SV-Anteil (Einfahrt): erreichbare Qualitätsstufe erreichbare Qualitätsstufe Qualität des Verket Bemessungsverkehrsstärke: SV-Anteil (unterhalb): Steigung maßgebende Verkehrsstärke: Anzahl der Fahrstreifen Funktion und Lage Geschwindigkeitsbeschränkung Auslastungsgrad erreichbare Qualitätsstufe	Ktz/h] (%] QSV [-] E QSV [-] (Ktz/h] (%] (%] (%] (PKW-E/h] (-] (km/h] (-] QSV [-] (QSV [-] (MT/h) (-) (QSV [-] (MT/h) (-) (QSV [-] (MT/h) (-) (QSV [-] (MT/h) (-) (QSV [-] (MT/h) (-) (QSV [-] (MT/h) (-) (QSV [-] (MT/h) (-) (QSV [-] (MT/h) (-) (QSV [-] (MT/h) (-) (QSV [-] (MT/h) (-) (QSV [-] (MT/h) (-) (QSV [-] (MT/h) (-) (QSV [-] (MT/h) (-) (QSV [-] (MT/h) (-	Haupt-/ Vertei 606 12,4% <2% 681 2 innerh. BR 100 0,16 A	ereich lerfahrbahn u				
31 31 32 33 34 35 36 37 38 39 40			Bemessungsverkehrsstärke: SV-Anteil (Einfahrt): erreichbare Qualitätsstufe erreichbare Qualitätsstufe Qualität des Verket Bemessungsverkehrsstärke: SV-Anteil (unterhalb): Steigung maßgebende Verkehrsstärke: Anzahl der Fahrstreifen Funktion und Lage Geschwindigkeitsbeschränkung Auslastungsgrad erreichbare Qualitätsstufe	(Kfz/h] (%]	Haupt-/ Vertei 606 12,4% <2% 681 2 innerh. BR 100 0,16 A	ereich lerfahrbahn u	stungskombi			
32 33 34 35 36 37 38 39 40			Bemessungsverkehrsstärke: SV-Anteil (Einfahrt): erreichbare Qualitätsstufe erreichbare Qualitätsstufe Qualität des Verket Bemessungsverkehrsstärke: SV-Anteil (unterhalb): Steigung maßgebende Verkehrsstärke: Anzahl der Fahrstreifen Funktion und Lage Geschwindigkeitsbeschränkung Auslastungsgrad erreichbare Qualitätsstufe	(Kfz/h] (%]	Haupt-/ Vertei 606 12,4% <2% 681 2 innerh. BR 100 0,16 A	ereich lerfahrbahn u	stungskombi	nationen		
31 31 32 33 34 35 36 37 38 39 40			Bemessungsverkehrsstärke: SV-Anteil (Einfahrt): erreichbare Qualitätsstufe Pulität des Verketsteinen (Unterhalb): Steigung maßgebende Verkehrsstärke: Anzahl der Fahrstreifen Funktion und Lage Geschwindigkeitsbeschränkung Auslastungsgrad erreichbare Qualitätsstufe Qualität des Verketstärke: Anzahl der Fahrstreifen Funktion und Lage Geschwindigkeitsbeschränkung Auslastungsgrad erreichbare Qualitätsstufe	(Kfz/h) (%]	Haupt-/ Vertei 606 12,4% <2% 681 2 innerh. BR 100 0,16 A	ereich lerfahrbahn u	stungskombi			
31 32 33 34 35 36 37 38 39 40	v		Bemessungsverkehrsstärke: SV-Anteil (Einfahrt): erreichbare Qualitätsstufe erreichbare Qualitätsstufe Qualität des Verket Bemessungsverkehrsstärke: SV-Anteil (unterhalb): Steigung maßgebende Verkehrsstärke: Anzahl der Fahrstreifen Funktion und Lage Geschwindigkeitsbeschränkung Auslastungsgrad erreichbare Qualitätsstufe	(Kfz/h] (%]	Haupt-/ Vertei 606 12,4% <2% 681 2 innerh. BR 100 0,16 A	ereich lerfahrbahn u	stungskombi	nationen		
31 32 33 34 35 36 37 38 39 40	V		Bemessungsverkehrsstärke: SV-Anteil (Einfahrt): erreichbare Qualitätsstufe Pulität des Verketsteinen (Unterhalb): Steigung maßgebende Verkehrsstärke: Anzahl der Fahrstreifen Funktion und Lage Geschwindigkeitsbeschränkung Auslastungsgrad erreichbare Qualitätsstufe Qualität des Verketstärke: Anzahl der Fahrstreifen Funktion und Lage Geschwindigkeitsbeschränkung Auslastungsgrad erreichbare Qualitätsstufe	(Kfz/h) (%]	Haupt-/ Vertei 606 12,4% <2% 681 2 innerh. BR 100 0,16 A	ereich lerfahrbahn u	stungskombi	nationen		
31 32 33 34 35 36 37 38 39 40 41	V		Bemessungsverkehrsstärke: SV-Anteil (Einfahrt): erreichbare Qualitätsstufe Qualität des Verke Bemessungsverkehrsstärke: SV-Anteil (unterhalb): Steigung maßgebende Verkehrsstärke: Anzahl der Fahrstreifen Funktion und Lage Geschwindigkeitsbeschränkung Auslastungsgrad erreichbare Qualitätsstufe Qualität des Verkenstärke: Qualität des Verkenstärke: Qualität des Verkenstärke: Qualität des Verkenstärke: Qualität des Verkenstärke: Qualität des Verkenstärke: Qualität des Verkenstärke: Qualität des Verkenstärke:	(Kfz/h) (%]	Haupt-/ Vertei 606 12,4% <2% 681 2 innerh. BR 100 0,16 A	ereich lerfahrbahn u	stungskombi	nationen		

Section			Erreichbare Qua	lität des Ver	kehrsablau	fs an planfr	eien Knote	npunkten		
Table conception:			Planfall:				Progno	sefall 1		
Secretary power in the property of the propert			Planfreier Knotenpunkt:			AS G		_	enbroich	
Secretario production II	-		Teiknotenpunkt:				9	-3		
Benessungsvertersvisides	_		punktart:							
Superior continues Superio									I I	001/ Min
Barnessurgonekatrosidade	3 NMS	5						IV	V	QSV WIII
Segregal (Section 19)	4				1	naib des Telli	thotens			
Selection and contributed and an activation and activation activation and activation and activation activation and activation activation and activation activati	5									
Autoritory agreement of the Control	6									
Section of Sections of Control of Section	7									
Enrichment and Lage C	8 I									Α
Accidentantique de la composition de la composit	9		Funktion und Lage							
	10				100					
Rampe austahrende Verhahrsströme Rampe	11		Auslastungsgrad	[-]	0,29					
Semessungsverkehrstärker SKSch 50	12		erreichbare Qualitätsstufe	QSV [-]	Α					
Semessungsverkehrstärker SKSch 50										
SV-Annel (Einfahre) Siegung Beging	₄₀ 1					rkehrsströme	<u> </u>			
Subjuncy Clip Color Co	13	Ì				1		1		
Interpretation Proceedings Proceeding Proceding Procedin	14 15	Ì							 	
Avzahl der Fahrssterfen 1-1 1 1 1 1 1 1 1 1	_					 				۸
Ausfabstungsgrad	17	Ì							 	^
Periorbane Qualitätsstufe	18	Ì				<u> </u>		<u> </u>		
Rampe sinfahrende Verkehrsströme (Ktzh)	19	Ì								
Bemessungsverkehrsstärke: [Ktzht] Sidgung		-								
Bemessungsverkehrsstärke: [Ktzht] Sidgung				Rampe ei	infahrende Ve	rkehrsströme				
SV-Anteil (Einfahrt): Seigung	20		Bemessungsverkehrsstärke:							
Steigung PS	21									
Ausfadderungsparad (22		Steigung	[%]						
Ausfädelungsbereich Ausfädelungsbereich			maßgebende Verkehrsstärke:	[PKW-E/h]						
Ausfädelungsbereich Ausfädelungsbereich Ausfädelungsbereich Verflechtungsbereich Verflechtungsbereich Verflechtungsbereich SV-Anteil (Einfahr): % SV-Anteil (Einfahr): % Einfädelungsbereich Einfädelungsbereich Cualitätsstufe QSV [-] Cualitätsstufe QSV [-] Cualität des Verkehrsablaufs der Haupt-/ Verteilerfahrbahn unterhalb des Teilknotens Bemessungsverkehnstärke: (Kfz/h) 1.072 SV-Anteil (unterhalb): % SV-Anteil (u	24		Anzahl der Fahrstreifen	[-]						
Ausfädelungsbereich erreichbare Qualitätsstufe SV-Anteil (Einfahrt): [%]	25									
Verflechtungsbereich	26	<u> </u>	erreichbare Qualitätsstufe	QSV [-]						
Verflechtungsbereich										
Verflechtungsbereich	.			A A	ustädelungsb	ereich				A
Bernessungsverkehrsstärke: [Kfzh] SV-Anteil (Einfahrt): [%] SV-Anteil (Einfahrt):	27		erreichbare Qualitätsstufe	QSV [-]	Α					Α
Bernessungsverkehrsstärke: [Kfzh] SV-Anteil (Einfahrt): [%] SV-Anteil (Einfahrt):										
SV-Anteil (Einfahrt): %	20	1			erflechtungsb	ereich I	1			
Einfädelungsbereich GSV [-]	28									
Finfâdelungsbereich	- 10		SV-Anteil (Einfahrt):	[%]						
Comparison Com	30		erreichbare Qualitätsstufe	QSV [-]						
Comparison Com										
Qualität des Verkehrsablaufs der Haupt-/ Verteilerfahrbahn unterhalb des Teilknotens Calcabilität des Verkehrsablaufs der Haupt-/ Verteilerfahrbahn unterhalb des Teilknotens Calcabilität des Verkehrsablaufs der Haupt-/ Verteilerfahrbahn unterhalb des Teilknotens Calcabilität des Verkehrsablaufs der Haupt-/ Verteilerfahrbahn unterhalb des Teilknotens Calcabilität des Verkehrsablaufs des Teilknotens für die Belastungskombinationen Calcabilität des Verkehrsablaufs des Verkehrsablaufs Calcabilität des Verkehrsablau	1			E	infädelungsbe	ereich	1			
Qualität des Verkehrsablaufs der Haupt-/ Verteilerfahrbahn unterhalb des Teilknotens Bemessungsverkehrsstärke: (Ktz/h) 1.072	31		erreichbare Qualitätsstufe	QSV [-]						
Bemessungsverkehrsstärke: [Kfz/h] 1.072 SV-Anteil (unterhalb): [%] 4.8% Steigung [%] <2% maßgebende Verkehrsstärke: [PKW-E/h] 1123 Anzahl der Fahrstreifen [-] 2 Funktion und Lage Geschwindigkeitsbeschränkung [km/h] 100 Auslastungsgrad [-] 0.27 erreichbare Qualitätsstufe QSV [-] A Qualität des Verkehrsablaufs des Teilknotens für die Belastungskombinationen Maßgebende Qualität des Verkehrsablaufs Maßgebende Qualität des Verkehrsablaufs A On Ond Odzio					L					
SV-Anteil (unterhalb): SV-Anteil (unterhalb): Steigung [%] 4,8% Steigung [maßgebende Verkehrsstärke: [PKW-E/h] 1123 Anzahl der Fahrstreifen [-] 2 Funktion und Lage Geschwindigkeitsbeschränkung [km/h] 100 Auslastungsgrad [-] 0,27 erreichbare Qualitätsstufe QSV [-] A Maßgebende Qualität des Verkehrsablaufs Maßgebende Qualität des Verkehrsablaufs A Maßgebende Qualität des Verkehrsablaufs A On Ondzio			Qualität des Verkeh	rsablaufs der l	Haupt-/ Verteil	lerfahrbahn ui	nterhalb des	Teilknotens		
Steigung Steigung (%) <2%	32		Bemessungsverkehrsstärke:	[Kfz/h]	1.072					
Maßgebende Verkehrsstärke: [PKW-E/h] 1123	33	Ì	SV-Anteil (unterhalb):	[%]	4,8%					
Anzahl der Fahrstreifen [-] 2 Anzahl	34	Ì	Steigung	[%]	<2%					
Funktion und Lage innerh. BR	35		maßgebende Verkehrsstärke:	[PKW-E/h]	1123					_
Geschwindigkeitsbeschränkung		Ì	Anzahl der Fahrstreifen	[-]	2					Α
Auslastungsgrad [-] 0.27 Auslastungsgrad QSV [-] A QSV [-] A Q	37	Ì							<u> </u>	
QSV [-] A Qualität des Verkehrsablaufs des Teilknotens für die Belastungskombinationen Gualitätsstufe QSV [-] A Maßgebende Qualität des Verkehrsablaufs Maßgebende Qualität des Verkehrsablaufs A On odzio	38					-				
Qualität des Verkehrsablaufs des Teilknotens für die Belastungskombinationen erreichbare Qualitätsstufe QSV [-] A Maßgebende Qualität des Verkehrsablaufs erreichbare Qualitätsstufe QSV [-] A erreichbare Qualitätsstufe QSV [-]	39 40	Ì								
Maßgebende Qualität des Verkehrsablaufs erreichbare Qualitätsstufe QSV [-] A Maßgebende Qualität des Verkehrsablaufs QSV [-] A	10	1	erreichbare Qualitatsstufe	usv [-]	А	<u> </u>	<u> </u>	<u> </u>		
Maßgebende Qualität des Verkehrsablaufs erreichbare Qualitätsstufe QSV [-] A Maßgebende Qualität des Verkehrsablaufs QSV [-] A			Qualität das Verb	ohreahlaufe 4	es Teilknoton	s für die Polo	stungekombi:	nationen		
Maßgebende Qualität des Verkehrsablaufs Perreichbare Qualitätsstufe QSV [-] A Maßgebende Qualität des Verkehrsablaufs QSV [-] A	44		Quantat des Verk	cili saviauis 0	es renkrioten	o rui uie bela	atungaKOMDII	auonen		
erreichbare Qualitätsstufe QSV [-] On ndzio liser	41		erreichbare Qualitätsstufe	QSV [-]	Α	<u> </u>				
erreichbare Qualitätsstufe QSV [-] On ndzio liser										
erreichbare Qualitätsstufe QSV [-] on odzio Isier	1			Maßgebende	Qualität des	Verkehrsablau	ufs			
erreichbare Qualitätsstufe QSV [-] on odzio Isier	42			1				Α		
ndzio Ser			erreichbare Qualitätsstufe	QSV [-]						
iser	rilon									
nnieurgesellschaft Herinderbeweien mbH	ondzio leiser <u></u>									
The state of the s	penieurgesells	ellschaft								
	erkehrsweser	en mbH								

		Planfall:	Qualität des Ver	kehrsablau	fs an planfr		enpunkten osefall 1		
		Planfreier Knotenpunkt:			A9 G		hen und Grev	renhroich	
		Teiknotenpunkt:			AS G		nen una Grev)-4	CHUIUIUII	
Teik	knote	npunktart:					echtung		
Тур							/1-2		
MS				I	II	III	IV	V	QSV Min
			Haupt / Verteilerf	ahrbahn ober	halb des Teilk	notens			
		Bemessungsverkehrsstärke:	[Kfz/h]	606					
		SV-Anteil (oberhalb):	[%]	12,4%					
		Steigung	[%]	<2%					
_		maßgebende Verkehrsstärke:	[PKW-E/h]	681					_
1		Anzahl der Fahrstreifen	[-]	2					Α
		Funktion und Lage	[-]	innerh. BR					
)		Geschwindigkeitsbeschränkung	[km/h]	80					
<u> </u>		Auslastungsgrad	[-]	0,16					
2		erreichbare Qualitätsstufe	QSV [-]	Α					
			Pampa au	sfahrende Ve	rkahreetröma				
3	Τ	Bemessungsverkehrsstärke:	[Kfz/h]	70	Keniissiionie				
1		SV-Anteil (Einfahrt):	[%]	22,9%					
5		Steigung	[%]	<2%			1		
5 II		maßgebende Verkehrsstärke:	[PKW-E/h]	86					Α
7		Anzahl der Fahrstreifen	[-]	1					
8		Auslastungsgrad	[-]	0,05					
9		erreichbare Qualitätsstufe	QSV [-]	Α					
			Rampe ei	nfahrende Ver	kehrsströme	-	1		
)		Bemessungsverkehrsstärke:	[Kfz/h]	30			1		
1		SV-Anteil (Einfahrt):	[%]	56,7%					
2		Steigung	[%]	<2%					
3 111		maßgebende Verkehrsstärke:	[PKW-E/h]	47					Α
4		Anzahl der Fahrstreifen	[-]	1					
5									
6		Auslastungsgrad	[-]	0,03					
6		Auslastungsgrad erreichbare Qualitätsstufe	[-] QSV [-]	0,03 A					
6	<u></u>		QSV [-]	Α	vroich				
			QSV [-]		ereich				
7			QSV [-]	Α	ereich				
		erreichbare Qualitätsstufe	QSV [-]	Ausfädelungsbe					
7		erreichbare Qualitätsstufe erreichbare Qualitätsstufe	QSV [-] QSV [-]	Ausfädelungsberflechtungsberflechtungsber					
7		erreichbare Qualitätsstufe erreichbare Qualitätsstufe Bemessungsverkehrsstärke:	QSV [-] Au QSV [-] Ve	A usfädelungsbe erflechtungsbe 636					
7 3 3 IV		erreichbare Qualitätsstufe erreichbare Qualitätsstufe	QSV [-] QSV [-]	Ausfädelungsberflechtungsberflechtungsber					
7 3 3 IV		erreichbare Qualitätsstufe erreichbare Qualitätsstufe Bemessungsverkehrsstärke:	QSV [-] Au QSV [-] Ve	A usfädelungsbe erflechtungsbe 636					A
7 3 3 IV		erreichbare Qualitätsstufe erreichbare Qualitätsstufe Bemessungsverkehrsstärke: SV-Anteil (Einfahrt):	QSV [-] QSV [-] Ve [Ktz/h] [%] QSV [-]	A usfädelungsbe erflechtungsbe 636 14,5% A	ereich				Α
7 3 1V 0		erreichbare Qualitätsstufe erreichbare Qualitätsstufe Bemessungsverkehrsstärke: SV-Anteil (Einfahrt):	QSV [-] QSV [-] Ve [Ktz/h] [%] QSV [-]	A usfädelungsbe erflechtungsbe 636 14,5%	ereich				A
7 3 1V 0		erreichbare Qualitätsstufe erreichbare Qualitätsstufe Bemessungsverkehrsstärke: SV-Anteil (Einfahrt):	QSV [-] QSV [-] Ve [Ktz/h] [%] QSV [-]	A usfädelungsbe erflechtungsbe 636 14,5% A	ereich				A
7 3 1V 0		erreichbare Qualitätsstufe erreichbare Qualitätsstufe Bemessungsverkehrsstärke: SV-Anteil (Einfahrt): erreichbare Qualitätsstufe erreichbare Qualitätsstufe	OSV [-] At OSV [-] Ve [Kfz/h] [%] OSV [-] Ei	A usfädelungsbe erflechtungsbe 636 14,5% A	reich				A
7 7 8 8 8 9 1V		erreichbare Qualitätsstufe erreichbare Qualitätsstufe Bemessungsverkehrsstärke: SV-Anteil (Einfahrt): erreichbare Qualitätsstufe erreichbare Qualitätsstufe	OSV [-] Au OSV [-] Ve [Kfz/h] [%] OSV [-] Ei OSV [-]	A usfädelungsbe erflechtungsbe 636 14,5% A infädelungsbe	reich	nterhalb des	Teilknotens		A
7 7		erreichbare Qualitätsstufe erreichbare Qualitätsstufe Bemessungsverkehrsstärke: SV-Anteil (Einfahrt): erreichbare Qualitätsstufe erreichbare Qualitätsstufe Qualität des V Bemessungsverkehrsstärke:	OSV [-] Au OSV [-] Ve [Kfz/h] [%] OSV [-] Ei OSV [-] erkehrsablaufs der H [Kfz/h]	A usfädelungsbe erflechtungsbe 636 14,5% A infädelungsbe Haupt-/ Verteil 566	reich	nterhalb des	Teilknotens		A
N		erreichbare Qualitätsstufe erreichbare Qualitätsstufe Bemessungsverkehrsstärke: SV-Anteil (Einfahrt): erreichbare Qualitätsstufe erreichbare Qualitätsstufe Qualität des V Bemessungsverkehrsstärke: SV-Anteil (unterhalb):	OSV [-] Au OSV [-] Ve [Kfz/h] [%] OSV [-] Ei OSV [-] erkehrsablaufs der H [Kfz/h] [%]	A asfädelungsbe erflechtungsbe 636 14,5% A infädelungsbe taupt-/ Verteil 566 13,4%	reich	nterhalb des	Teilknotens		A
7 7 IV		erreichbare Qualitätsstufe erreichbare Qualitätsstufe Bemessungsverkehrsstärke: SV-Anteil (Einfahrt): erreichbare Qualitätsstufe erreichbare Qualitätsstufe Qualität des V Bemessungsverkehrsstärke: SV-Anteil (unterhalb): Steigung	OSV [-] Au OSV [-] Ve [Kfz/h] [%] OSV [-] Ei OSV [-] erkehrsablaufs der H [Kfz/h] [%]	Ausfädelungsberflechtungsberfle	reich	nterhalb des	Teilknotens		A
1 IV		erreichbare Qualitätsstufe erreichbare Qualitätsstufe Bemessungsverkehrsstärke: SV-Anteil (Einfahrt): erreichbare Qualitätsstufe erreichbare Qualitätsstufe Qualität des V Bemessungsverkehrsstärke: SV-Anteil (unterhalb): Steigung maßgebende Verkehrsstärke:	OSV [-] Au OSV [-] Ve [Kfz/h] [%] OSV [-] Ei OSV [-] erkehrsablaufs der H [Kfz/h] [%] [%] [%] [PKW-E/h]	A asfädelungsbe 636 14,5% A infädelungsbe 566 13,4% <2% 642	reich	nterhalb des	Teilknotens		
7 7	H55A	erreichbare Qualitätsstufe erreichbare Qualitätsstufe Bemessungsverkehrsstärke: SV-Anteil (Einfahrt): erreichbare Qualitätsstufe erreichbare Qualitätsstufe Qualität des V Bemessungsverkehrsstärke: SV-Anteil (unterhalb): Steigung maßgebende Verkehrsstärke: Anzahl der Fahrstreifen	OSV [-] Au OSV [-] Ve [Kfz/h] [%] OSV [-] Ei OSV [-] erkehrsablaufs der H [Kfz/h] [%]	A ausfädelungsber 636 14,5% A ausfädelungsber 14,5% A ausfädelungsber 14,5% A 4 4 4 4 4 4 4 4 4 4 4 4	reich	nterhalb des	Teilknotens		A
7 7		erreichbare Qualitätsstufe erreichbare Qualitätsstufe Bemessungsverkehrsstärke: SV-Anteil (Einfahrt): erreichbare Qualitätsstufe erreichbare Qualitätsstufe Qualität des V Bemessungsverkehrsstärke: SV-Anteil (unterhalb): Steigung maßgebende Verkehrsstärke: Anzahl der Fahrstreifen Funktion und Lage	OSV [-] Au OSV [-] Ve [Kfz/h] [%] OSV [-] Ei OSV [-] erkehr-sablaufs der H [Kfz/h] [%] [%] [%] [PKW-E/h] [-]	Ausfädelungsberflechtungsberfle	reich	nterhalb des	Teilknotens		
77		erreichbare Qualitätsstufe erreichbare Qualitätsstufe Bemessungsverkehrsstärke: SV-Anteil (Einfahrt): erreichbare Qualitätsstufe erreichbare Qualitätsstufe Qualität des V Bemessungsverkehrsstärke: SV-Anteil (unterhalb): Steigung maßgebende Verkehrsstärke: Anzahl der Fahrstreifen Funktion und Lage Geschwindigkeitsbeschränkung	OSV [-] Au OSV [-] Ve [Kfz/h] [%] OSV [-] Ei OSV [-] erkehr-sablaufs der H [Kfz/h] [%] [%] [%] [-] [FKW-E/h] [-] [km/h]	Ausfädelungsber 636 14,5% Auffädelungsber 14,5% Auffädelungsber 1566 13,4% <2% 642 2 innerh. BR 80	reich	nterhalb des	Teilknotens		
7 7		erreichbare Qualitätsstufe erreichbare Qualitätsstufe Bemessungsverkehrsstärke: SV-Anteil (Einfahrt): erreichbare Qualitätsstufe erreichbare Qualitätsstufe Qualität des V Bemessungsverkehrsstärke: SV-Anteil (unterhalb): Steigung maßgebende Verkehrsstärke: Anzahl der Fahrstreifen Funktion und Lage	OSV [-] Au OSV [-] Ve [Kfz/h] [%] OSV [-] Ei OSV [-] erkehr-sablaufs der H [Kfz/h] [%] [%] [%] [PKW-E/h] [-]	Ausfädelungsberflechtungsberfle	reich	nterhalb des	Teilknotens		
2 2 3 4 4 5 5 V		erreichbare Qualitätsstufe erreichbare Qualitätsstufe Bemessungsverkehrsstärke: SV-Anteil (Einfahrt): erreichbare Qualitätsstufe erreichbare Qualitätsstufe Qualität des V Bemessungsverkehrsstärke: SV-Anteil (unterhalb): Steigung maßgebende Verkehrsstärke: Anzahl der Fahrstreifen Funktion und Lage Geschwindigkeitsbeschränkung Auslastungsgrad	QSV [-] Au QSV [-] Ve [Kfz/h] [%] QSV [-] Ei QSV [-] erkehr-sablaufs der H [Kfz/h] [%] [%] [%] [PKW-E/h] [-]	Ausfädelungsber 636 14,5% Auffädelungsber 14,5% Auffädelungsber 14,5% Auffädelungsber 14,4% 2% 642 2 innerh. BR 80 0,15	reich	nterhalb des	Teilknotens		
1 I I I I I I I I I I I I I I I I I I I		erreichbare Qualitätsstufe erreichbare Qualitätsstufe Bemessungsverkehrsstärke: SV-Anteil (Einfahrt): erreichbare Qualitätsstufe erreichbare Qualitätsstufe Qualität des V Bemessungsverkehrsstärke: SV-Anteil (unterhalb): Steigung maßgebende Verkehrsstärke: Anzahl der Fahrstreifen Funktion und Lage Geschwindigkeitsbeschränkung Auslastungsgrad erreichbare Qualitätsstufe	QSV [-] Au QSV [-] Ve [Kfz/h] [%] QSV [-] Ei QSV [-] erkehr-sablaufs der H [Kfz/h] [%] [%] [%] [PKW-E/h] [-]	A Justia delungs be 14,5% A Justia delungs be 15,5% A	reich erfahrbahn ui				
7		erreichbare Qualitätsstufe erreichbare Qualitätsstufe Bemessungsverkehrsstärke: SV-Anteil (Einfahrt): erreichbare Qualitätsstufe erreichbare Qualitätsstufe Qualität des V Bemessungsverkehrsstärke: SV-Anteil (unterhalb): Steigung maßgebende Verkehrsstärke: Anzahl der Fahrstreifen Funktion und Lage Geschwindigkeitsbeschränkung Auslastungsgrad erreichbare Qualitätsstufe	QSV [-] Ve [Kfz/h] [%] QSV [-] Ei QSV [-] erkehr-sablaufs der H [Kfz/h] [%] [%] [PKW-E/h] [-] [sov [-] S Verkehr-sablaufs d	A Justia delungs be 14,5% A Justia delungs be 15,5% A	reich erfahrbahn ui				
7		erreichbare Qualitätsstufe erreichbare Qualitätsstufe Bemessungsverkehrsstärke: SV-Anteil (Einfahrt): erreichbare Qualitätsstufe Qualität des V Bemessungsverkehrsstärke: SV-Anteil (unterhalb): Steigung maßgebende Verkehrsstärke: Anzahl der Fahrstreifen Funktion und Lage Geschwindigkeitsbeschränkung Auslastungsgrad erreichbare Qualitätsstufe	QSV [-] Au QSV [-] Ve [Kfz/h] [%] QSV [-] Ei QSV [-] erkehr-sablaufs der H [Kfz/h] [%] [%] [%] [PKW-E/h] [-] [km/h] [-] QSV [-]	Ausfädelungsberflechtungsberfle	reich erfahrbahn ui				
7 7		erreichbare Qualitätsstufe erreichbare Qualitätsstufe Bemessungsverkehrsstärke: SV-Anteil (Einfahrt): erreichbare Qualitätsstufe Qualität des V Bemessungsverkehrsstärke: SV-Anteil (unterhalb): Steigung maßgebende Verkehrsstärke: Anzahl der Fahrstreifen Funktion und Lage Geschwindigkeitsbeschränkung Auslastungsgrad erreichbare Qualitätsstufe	QSV [-] At QSV [-] Ve [Kfz/h] [%] QSV [-] Ei QSV [-] erkehrsablaufs der H [Kfz/h] [%] [%] [PKW-E/h] [-] [km/h] [-] QSV [-] s Verkehrsablaufs d	Ausfädelungsberflechtungsberfle	reich reich erfahrbahn ur	stungskomb			
7		erreichbare Qualitätsstufe erreichbare Qualitätsstufe Bemessungsverkehrsstärke: SV-Anteil (Einfahrt): erreichbare Qualitätsstufe Qualität des V Bemessungsverkehrsstärke: SV-Anteil (unterhalb): Steigung maßgebende Verkehrsstärke: Anzahl der Fahrstreifen Funktion und Lage Geschwindigkeitsbeschränkung Auslastungsgrad erreichbare Qualitätsstufe	QSV [-] At QSV [-] Ve [Kfz/h] [%] QSV [-] Ei QSV [-] erkehrsablaufs der H [Kfz/h] [%] [%] [PKW-E/h] [-] [km/h] [-] QSV [-] s Verkehrsablaufs d	A usfädelungsbe erflechtungsbe 636 14,5% A infädelungsbe 566 13,4% <2% 642 2 innerh. BR 80 0,15 A es Teilknoten	reich reich erfahrbahn ur	stungskomb	inationen		
2 3 4 5 7 8 9 9		erreichbare Qualitätsstufe erreichbare Qualitätsstufe Bemessungsverkehrsstärke: SV-Anteil (Einfahrt): erreichbare Qualitätsstufe Qualität des V Bemessungsverkehrsstärke: SV-Anteil (unterhalb): Steigung maßgebende Verkehrsstärke: Anzahl der Fahrstreifen Funktion und Lage Geschwindigkeitsbeschränkung Auslastungsgrad erreichbare Qualitätsstufe	QSV [-] At QSV [-] Ve [Kfz/h] [%] QSV [-] Ei QSV [-] erkehrsablaufs der H [Kfz/h] [%] [%] [PKW-E/h] [-] [km/h] [-] QSV [-] s Verkehrsablaufs d	A usfädelungsbe erflechtungsbe 636 14,5% A infädelungsbe 566 13,4% <2% 642 2 innerh. BR 80 0,15 A es Teilknoten	reich reich erfahrbahn ur	stungskomb			
2 2 3 4 5 5 V		erreichbare Qualitätsstufe Bemessungsverkehrsstärke: SV-Anteil (Einfahrt): erreichbare Qualitätsstufe Qualität des V Bemessungsverkehrsstärke: SV-Anteil (unterhalb): Steigung maßgebende Verkehrsstärke: Anzahl der Fahrstreifen Funktion und Lage Geschwindigkeitsbeschränkung Auslastungsgrad erreichbare Qualitätsstufe Qualität de erreichbare Qualitätsstufe	QSV [-] At QSV [-] Ve [Kfz/h] [%] QSV [-] Ei QSV [-] erkehrsablaufs der H [Kfz/h] [%] [%] [PKW-E/h] [-] [-] [km/h] [-] QSV [-] s Verkehrsablaufs de GSV [-]	A usfädelungsbe erflechtungsbe 636 14,5% A infädelungsbe 566 13,4% <2% 642 2 innerh. BR 80 0,15 A es Teilknoten	reich reich erfahrbahn ur	stungskomb	inationen		

		Erreichbare Q	ualität des Ver	kehrsablau	fs an planfre	eien Knotenp	unkten		
		Planfall:				Prognose	fall 1		
		Planfreier Knotenpunkt:			AS GI	-Gebiet Jüchen		oich	
		Teiknotenpunkt:				9-4			
	knoter	npunktart:				Verflech	ung		
2 Typ:						V1-2			
3 NMS	S			I	II	Ш	IV	V	QSV Min
	1	T	Haupt / Verteilerf		halb des Teilki	notens			
4		Bemessungsverkehrsstärke:	[Kfz/h]	1.072					
5		SV-Anteil (oberhalb):	[%]	4,8%					
7		Steigung	[%]	<2%					
8 I		maßgebende Verkehrsstärke:	[PKW-E/h]	1123					Α
9 '		Anzahl der Fahrstreifen	[-]	2					A
10		Funktion und Lage	[-]	innerh. BR					
11		Geschwindigkeitsbeschränkung	[km/h]	80					
12		Auslastungsgrad	[-]	0,27					
	!	erreichbare Qualitätsstufe	QSV [-]	Α			L		
			Ramne au	ısfahrende Ve	rkehrsströme				
13	Ī	Bemessungsverkehrsstärke:	[Kfz/h]	317	2 201. 01116	T			
14		SV-Anteil (Einfahrt):	[%]	19,9%					
15		Steigung	[%]	<2%					
16 II		maßgebende Verkehrsstärke:	[PKW-E/h]	380					Α
17		Anzahl der Fahrstreifen	[-]	1					
18		Auslastungsgrad	[-]	0,21					
19	1	erreichbare Qualitätsstufe	QSV [-]	A					
	_								
			Rampe ei	nfahrende Ve	kehrsströme				
20		Bemessungsverkehrsstärke:	[Kfz/h]	302					
21		SV-Anteil (Einfahrt):	[%]	39,1%					
22		Steigung	[%]	<2%					
23 III		maßgebende Verkehrsstärke:	[PKW-E/h]	420					Α
24		Anzahl der Fahrstreifen	[-]	1					
25		Auslastungsgrad	[-]	0,23					
26		erreichbare Qualitätsstufe	QSV [-]	Α					
			A	usfädelungsbo	ereich	1		1	
27		erreichbare Qualitätsstufe	QSV [-]						
				erflechtungsb	ereich				
		1	Ve						
28		Bemessungsverkehrsstärke:	[Kfz/h]	1374					
28 29 IV		Bemessungsverkehrsstärke: SV-Anteil (Einfahrt):		1374 12,3%					
20			[Kfz/h]						В
29 IV		SV-Anteil (Einfahrt):	[Kfz/h]	12,3%					В
29 IV		SV-Anteil (Einfahrt):	[Kfz/h] [%] QSV [-]	12,3%	reich				В
29 IV 30		SV-Anteil (Einfahrt): erreichbare Qualitätsstufe	[Kfz/h] [%] QSV [-]	12,3% B	reich				В
29 IV 30		SV-Anteil (Einfahrt):	[Kfz/h] [%] QSV [-]	12,3% B	reich				В
29 IV 30		SV-Anteil (Einfahrt): erreichbare Qualitätsstufe erreichbare Qualitätsstufe	[Kfz/h] [%] QSV [-] E	12,3% B infädelungsbe		terhalh des Toi	lknotens		В
29 IV 30 IV		SV-Anteil (Einfahrt): erreichbare Qualitätsstufe erreichbare Qualitätsstufe Qualität des Vert	[Kfz/h] [%] QSV [-] E QSV [-]	B infädelungsbe		terhalb des Tei	iknotens		В
29 IV 30 31 31 32		SV-Anteil (Einfahrt): erreichbare Qualitätsstufe erreichbare Qualitätsstufe Qualität des Verl Bemessungsverkehrsstärke:	[Kfz/h] [%] QSV [-] E QSV [-] cehrsablaufs der l [Kfz/h]	B infädelungsbei Haupt-/ Verteil 1.059		terhalb des Tei	Iknotens		В
29 IV 30 IV 31 IV		SV-Anteil (Einfahrt): erreichbare Qualitätsstufe erreichbare Qualitätsstufe Qualität des Verl Bemessungsverkehrsstärke: SV-Anteil (unterhalb):	[Kfz/h] [%] QSV [-] E QSV [-] Sehrsablaufs der I [Kfz/h] [%]	Binfädelungsbei Haupt-/ Verteil 1.059 10,1%		terhalb des Tei	Iknotens		В
29 IV 30 31 31 32 33 34		SV-Anteil (Einfahrt): erreichbare Qualitätsstufe erreichbare Qualitätsstufe Qualität des Verl Bemessungsverkehrsstärke: SV-Anteil (unterhalb): Steigung	[Kfz/h] [%] QSV [-] E QSV [-] sehrsablaufs der I [Kfz/h] [%]	12,3% B infädelungsbe Haupt-/ Verteil 1.059 10,1% <2%		terhalb des Tei	Iknotens		В
29 IV 30 31 31 32 33 34 35 34	55A	SV-Anteil (Einfahrt): erreichbare Qualitätsstufe erreichbare Qualitätsstufe Qualität des Verk Bemessungsverkehrsstärke: SV-Anteil (unterhalb): Steigung maßgebende Verkehrsstärke:	[Kfz/h] [%] QSV [-] Ehrsablaufs der l [Kfz/h] [%] [%] [PKW-E/h]	12,3% B infädelungsbe Haupt-/ Verteil 1.059 10,1% <2% 1166		terhalb des Tei	Iknotens		
29 IV 330 IV 331 332 333 344 355 46 V	H55A	SV-Anteil (Einfahrt): erreichbare Qualitätsstufe erreichbare Qualitätsstufe Qualität des Verk Bemessungsverkehrsstärke: SV-Anteil (unterhalb): Steigung maßgebende Verkehrsstärke: Anzahl der Fahrstreifen	[Kfz/h] [%] QSV [-] E QSV [-] sehrsablaufs der I [Kfz/h] [%]	12,3% B infädelungsbe Haupt-/ Verteil 1.059 10,1% <2% 1166 2		terhalb des Tei	Iknotens		B
29 IV 330 IV 331 332 333 34 35 36 V	H55A	SV-Anteil (Einfahrt): erreichbare Qualitätsstufe erreichbare Qualitätsstufe Qualität des Verk Bemessungsverkehrsstärke: SV-Anteil (unterhalb): Steigung maßgebende Verkehrsstärke: Anzahl der Fahrstreifen Funktion und Lage	[Kfz/h] [%] QSV [-] E QSV [-] (kfz/h] [%] [%] [%] [PKW-E/h] [-]	12,3% B infädelungsbe 1.059 10,1% <2% 1166 2 innerh. BR		terhalb des Tei	Iknotens		
29 IV 30 31 31 32 33 34 35	H55A	SV-Anteil (Einfahrt): erreichbare Qualitätsstufe erreichbare Qualitätsstufe Qualität des Verk Bemessungsverkehrsstärke: SV-Anteil (unterhalb): Steigung maßgebende Verkehrsstärke: Anzahl der Fahrstreifen Funktion und Lage Geschwindigkeitsbeschränkung	[Kfz/h] [%] QSV [-] E QSV [-] (kfz/h] [%] [%] [PKW-E/h] [-]	12,3% B infädelungsbe 1.059 10,1% <2% 1166 2 innerh. BR 80		terhalb des Tei	Iknotens		
32 33 34 35 56 V 377 38	H55A	SV-Anteil (Einfahrt): erreichbare Qualitätsstufe erreichbare Qualitätsstufe Qualität des Verk Bemessungsverkehrsstärke: SV-Anteil (unterhalb): Steigung maßgebende Verkehrsstärke: Anzahl der Fahrstreifen Funktion und Lage	[Kfz/h] [%] QSV [-] E QSV [-] (kfz/h] [%] [%] [%] [PKW-E/h] [-]	12,3% B infädelungsbe 1.059 10,1% <2% 1166 2 innerh. BR		terhalb des Tei	Iknotens		
29 IV 30 IV 31 32 33 34 35 36 V 37 38 39	H55A	SV-Anteil (Einfahrt): erreichbare Qualitätsstufe erreichbare Qualitätsstufe Qualität des Verk Bemessungsverkehrsstärke: SV-Anteil (unterhalb): Steigung maßgebende Verkehrsstärke: Anzahl der Fahrstreifen Funktion und Lage Geschwindigkeitsbeschränkung Auslastungsgrad	[Kfz/h] [%] QSV [-] Ensablaufs der l [Kfz/h] [%] [%] [PKW-E/h] [-]	12,3% B infädelungsbe 1.059 10,1% <2% 1166 2 innerh. BR 80 0,27		terhalb des Tei	Iknotens		
29 IV 30 IV 31 32 33 34 35 36 V 37 38 39	H55A	SV-Anteil (Einfahrt): erreichbare Qualitätsstufe erreichbare Qualitätsstufe Qualität des Verk Bemessungsverkehrsstärke: SV-Anteil (unterhalb): Steigung maßgebende Verkehrsstärke: Anzahl der Fahrstreifen Funktion und Lage Geschwindigkeitsbeschränkung Auslastungsgrad erreichbare Qualitätsstufe	[Kfz/h] [%] QSV [-] Ensablaufs der l [Kfz/h] [%] [%] [PKW-E/h] [-]	12,3% B infädelungsbe 1.059 10,1% <2% 1166 2 innerh. BR 80 0,27 A	erfahrbahn un				
331 333 333 344 355 V V 8 373 88 39 9 40	H55A	SV-Anteil (Einfahrt): erreichbare Qualitätsstufe Preichbare Qualitätsstufe Qualität des Vert Bemessungsverkehrsstärke: SV-Anteil (unterhalb): Steigung maßgebende Verkehrsstärke: Anzahl der Fahrstreifen Funktion und Lage Geschwindigkeitsbeschränkung Auslastungsgrad erreichbare Qualitätsstufe Qualität des V	[Kfz/h] [%] QSV [-] E QSV [-] (kehrsablaufs der l	12,3% B Infädelungsbe Haupt-/ Verteil 1.059 10,1% <2% 1166 2 innerh. BR 80 0,27 A es Teilknoten	erfahrbahn un				
331 333 333 344 355 V V 8 373 88 39 9 40	H55A	SV-Anteil (Einfahrt): erreichbare Qualitätsstufe erreichbare Qualitätsstufe Qualität des Verk Bemessungsverkehrsstärke: SV-Anteil (unterhalb): Steigung maßgebende Verkehrsstärke: Anzahl der Fahrstreifen Funktion und Lage Geschwindigkeitsbeschränkung Auslastungsgrad erreichbare Qualitätsstufe	[Kfz/h] [%] QSV [-] Enrablaufs der l [Kfz/h] [%] [%] [PKW-E/h] [-] [km/h] [-] QSV [-]	12,3% B infädelungsbe 1.059 10,1% <2% 1166 2 innerh. BR 80 0,27 A	erfahrbahn un				
29 IV 330 IV 331 331 333 344 355 366 V 377 388 339	H55A	SV-Anteil (Einfahrt): erreichbare Qualitätsstufe Preichbare Qualitätsstufe Qualität des Vert Bemessungsverkehrsstärke: SV-Anteil (unterhalb): Steigung maßgebende Verkehrsstärke: Anzahl der Fahrstreifen Funktion und Lage Geschwindigkeitsbeschränkung Auslastungsgrad erreichbare Qualitätsstufe Qualität des V	[Kfz/h] [%] QSV [-] E QSV [-] Sehrsablaufs der I [Kfz/h] [%] [%] [PKW-E/h] [-] [km/h] [-] QSV [-] Serkehrsablaufs d	12,3% B Infädelungsbe Haupt-/ Verteil 1.059 10,1% <2% 1166 2 innerh. BR 80 0,27 A es Teilknoten B	erfahrbahn un	tungskombinat			
332 333 34 35 37 38 39 440 41 41	H55A	SV-Anteil (Einfahrt): erreichbare Qualitätsstufe Preichbare Qualitätsstufe Qualität des Vert Bemessungsverkehrsstärke: SV-Anteil (unterhalb): Steigung maßgebende Verkehrsstärke: Anzahl der Fahrstreifen Funktion und Lage Geschwindigkeitsbeschränkung Auslastungsgrad erreichbare Qualitätsstufe Qualität des V	[Kfz/h] [%] QSV [-] E QSV [-] Sehrsablaufs der I [Kfz/h] [%] [%] [PKW-E/h] [-] [km/h] [-] QSV [-] Serkehrsablaufs d	12,3% B Infädelungsbe Haupt-/ Verteil 1.059 10,1% <2% 1166 2 innerh. BR 80 0,27 A es Teilknoten B	erfahrbahn un	tungskombinat	ionen		
332 333 334 345 356 373 388 399 40	H55A	SV-Anteil (Einfahrt): erreichbare Qualitätsstufe Pulität des Vert Qualität des Vert Bemessungsverkehrsstärke: SV-Anteil (unterhalb): Steigung maßgebende Verkehrsstärke: Anzahl der Fahrstreifen Funktion und Lage Geschwindigkeitsbeschränkung Auslastungsgrad erreichbare Qualitätsstufe Qualität des Vert	[Kfz/h] [%] QSV [-] End Sty [-] Sehrsablaufs der I [Kfz/h] [%] [%] [%] [PKW-E/h] [-] [km/h] [-] QSV [-] Gerkehrsablaufs d QSV [-]	12,3% B Infädelungsbe Haupt-/ Verteil 1.059 10,1% <2% 1166 2 innerh. BR 80 0,27 A es Teilknoten B	erfahrbahn un	tungskombinat			
229 IV 330 IV 331 IV 332 IV 333 IV 344 IV 353 IV 364 IV 377 IV 378 IV 377 IV 378 IV 378 IV 378 IV 379 IV 37	H55A	SV-Anteil (Einfahrt): erreichbare Qualitätsstufe Preichbare Qualitätsstufe Qualität des Vert Bemessungsverkehrsstärke: SV-Anteil (unterhalb): Steigung maßgebende Verkehrsstärke: Anzahl der Fahrstreifen Funktion und Lage Geschwindigkeitsbeschränkung Auslastungsgrad erreichbare Qualitätsstufe Qualität des V	[Kfz/h] [%] QSV [-] E QSV [-] Sehrsablaufs der I [Kfz/h] [%] [%] [PKW-E/h] [-] [km/h] [-] QSV [-] Serkehrsablaufs d	12,3% B Infädelungsbe Haupt-/ Verteil 1.059 10,1% <2% 1166 2 innerh. BR 80 0,27 A es Teilknoten B	erfahrbahn un	tungskombinat	ionen		
19 IV 11	H55A	SV-Anteil (Einfahrt): erreichbare Qualitätsstufe Pulität des Vert Qualität des Vert Bemessungsverkehrsstärke: SV-Anteil (unterhalb): Steigung maßgebende Verkehrsstärke: Anzahl der Fahrstreifen Funktion und Lage Geschwindigkeitsbeschränkung Auslastungsgrad erreichbare Qualitätsstufe Qualität des Vert	[Kfz/h] [%] QSV [-] End Sty [-] Sehrsablaufs der I [Kfz/h] [%] [%] [%] [PKW-E/h] [-] [km/h] [-] QSV [-] Gerkehrsablaufs d QSV [-]	12,3% B Infädelungsbe Haupt-/ Verteil 1.059 10,1% <2% 1166 2 innerh. BR 80 0,27 A es Teilknoten B	erfahrbahn un	tungskombinat	ionen		
9 IV 1 1 2 3 4 4 5 6 6 V 7 8 8 9 9 0 0 1 1	H55A	SV-Anteil (Einfahrt): erreichbare Qualitätsstufe Pulität des Vert Qualität des Vert Bemessungsverkehrsstärke: SV-Anteil (unterhalb): Steigung maßgebende Verkehrsstärke: Anzahl der Fahrstreifen Funktion und Lage Geschwindigkeitsbeschränkung Auslastungsgrad erreichbare Qualitätsstufe Qualität des Vert	[Kfz/h] [%] QSV [-] End Sty [-] Sehrsablaufs der I [Kfz/h] [%] [%] [%] [PKW-E/h] [-] [km/h] [-] QSV [-] Gerkehrsablaufs d QSV [-]	12,3% B Infädelungsbe Haupt-/ Verteil 1.059 10,1% <2% 1166 2 innerh. BR 80 0,27 A es Teilknoten B	erfahrbahn un	tungskombinat	ionen		

