

ANSIEDLUNG EINES BAU- UND GARTENFACHMARKTES UND EINES BÜROKOMPLEXES AN DER THEODORSTRASSE UND AM HÜLSERHOF IN DÜSSELDORF-RATH

Verkehrsuntersuchung

ANSIEDLUNG EINES BAU- UND GARTENFACH-MARKTES UND EINES BÜROKOMPLEXES AN DER THEODORSTRASSE UND AM HÜLSERHOF IN DÜSSELDORF-RATH

Bebauungsplan Nr. 06/007 - Theodorstraße / Am Hülserhof

188. Änderung des Flächennutzungsplanes

- Theodorstraße: Verlagerung Bau- und Gartenfachmarkt -

Verkehrsuntersuchung

10.09.2020

Spiekermann GmbH Consulting Engineers Fritz-Vomfelde-Str. 12, 40547 Düsseldorf www.spiekermann.de

Bearbeitung:

Dipl.-Ing. Dipl.-Wirt.-Ing. Anke Berndgen Dipl.-Ing. Uwe Heistermann

A ERLÄUTERUNGSTEXT

<u>INHA</u>	LTSVERZEICHNIS	SEITE
	VERZEICHNISSE	ı
1	EINLEITUNG UND AUFGABENSTELLUNG	1
2	ANALYSE DER HEUTIGEN SITUATION	4
2.1	Untersuchungsgebiet und überregionale Verkehrsanbindung	4
2.2	Regionale Verkehrsanbindung	6
2.3	Knotenpunkte der Verkehrsuntersuchung im Überblick	6
2.4	Heutige Verkehrsbelastung	8
2.5	Besonderheiten der Leistungsfähigkeitsberechnung am Knotenpunkt 1	12
2.6	Querschnittsbelastung (Ist-Zustand)	16
3	VERKEHRSPROGNOSE	18
3.1	Allgemeine Verkehrsentwicklung	18
3.2	Prognose der Verkehrsnachfrage durch das Baumarkt-Fachzentrum	18
3.3	Prognose der Verkehrsnachfrage durch den Bürokomplex	23
3.4	Prognose der Verkehrsbelastung	27
4	NACHWEIS DER LEISTUNGSFÄHIGKEIT	31
4.1	Vorgehensweise	31
4.2	Ergebnisse der Leistungsfähigkeitsberechnung	31
5	EXTREMTAG-BETRACHTUNG	33
5.1	Allgemeines	33
5.2	Nachfrage durch Veranstaltungen im ISS-Dome	33
5.3	Prognose Verkehrsaufkommen Spitzenstunde	35
5.4	Überprüfung der Leistungsfähigkeit der betroffenen Knotenpunkte	35
6	ZUSAMMENFASSUNG	37

ABBILDUNGS	SVERZEICHNIS	<u>SEITE</u>
Abbildung 1:	Lageplan und künftige Bebauung an der Theodorstraße / Am Hülserhof	1
Abbildung 2:	Vorgesehene Zufahrten für die Planungen an der Theodorstraße / Am Hülserhof	2
Abbildung 3:	Lage des Untersuchungsgebietes im Raum	4
Abbildung 4:	Lage des Stadtteils Düsseldorf Rath im übergeordneten Straßennetz	z 5
Abbildung 5:	Betroffene Knotenpunkte im Standortbereich	7
Abbildung 6:	Knotenstrombelastungen der werktäglichen Spitzenstunde MF früh (Ist-Daten)	8
Abbildung 7:	Knotenstrombelastungen der werktäglichen Spitzenstunde MF spät (Ist-Daten)	9
Abbildung 8:	Betroffene Fahrspuren und Signalgruppen durch die Stadtbahn-/ Straßenbahntrasse am Knotenpunkt 1	13
Abbildung 9:	Werte der Verkehrsstärken an ausgewählten Querschnitten (Ist-Zustand)	17
Abbildung 10:	Tagesganglinien im Quell- und Zielverkehr sowie resultierende Gesamtbelastung für das Baumarkt-Fachzentrum für den MF-Tag	21
Abbildung 11:	Umlegung der Neuverkehre des Baumarkt-Fachzentrums auf das vorhandene Straßennetz	22
Abbildung 12:	Tagesganglinien im Quell- und Zielverkehr sowie resultierende Gesamtbelastung für den Bürokomplex für den MF-Tag	25
Abbildung 13:	Umlegung der Neuverkehre des Bürokomplexes auf das vorhandene Straßennetz	26
Abbildung 14:	Werte der Verkehrsstärken an ausgewählten Querschnitten (Prognose-Werte)	28
Abbildung 15:	Knotenstrombelastungen der werktäglichen Spitzenstunde MF früh (Prognose-Daten)	30
Abbildung 16:	Knotenstrombelastungen der werktäglichen Spitzenstunde MF spät (Prognose-Daten)	30
Abbildung 17:	Unterstellte Verteilung des Veranstaltungsverkehrs zu den Parkplätzen des ISS-Domes im vorhandenen Straßennetz	34
Abbildung 18:	Knotenstrombelastungen der werktäglichen Spitzenstunde MF spät für einen Extremtag (Prognose-Daten mit einem Veranstaltungsfall im ISS-Dome)	35

TABELLEN\	/ERZEICHNIS	SEITE
Tabelle 1:	Ergebnisse der Leistungsfähigkeitsüberprüfung für die Ist- Verkehrsbelastung für den Werktag (Montag bis Freitag – MF) früh und spät in der Unterscheidung Kfz, Fußgänger-/Radverkehr sowie ÖPNV (nur Knoten 1 und 9)	12
Tabelle 2:	Ermittlung der reduzierten Freigabezeiten je Umlauf für die morgendliche Spitzenstunde	14
Tabelle 3:	Ermittlung der reduzierten Freigabezeiten je Umlauf für die nachmittägliche Spitzenstunde	15
Tabelle 4:	Ermittlung der Fahrtenzahl der Mitarbeiter und Beschäftigten für das Baumarkt-Fachzentrum	19
Tabelle 5:	Ermittlung der Fahrtenzahl der Kunden und Besucher für das Baumarkt-Fachzentrum	20
Tabelle 6:	Ermittlung der Fahrtenzahl im Güterverkehr (Lkw-Fahrten) für das Baumarkt-Fachzentrum	20
Tabelle 7:	Verkehrsaufkommen für das Baumarkt-Fachzentrum in der Übersicht	21
Tabelle 8:	Ermittlung der Fahrtenzahl der Mitarbeiter und Beschäftigten inkl. der Fahrten durch Kunden und Besucher für den Büro-Standort	24
Tabelle 9:	Ermittlung der Fahrtenzahl im Güterverkehr für den Büro-Standort	24
Tabelle 10:	Verkehrsaufkommen für den Büro-Standort in der Übersicht	24
Tabelle 11:	Ergebnisse der Leistungsfähigkeitsüberprüfung für die Prognose- Verkehrsbelastung für den Werktag MF früh und spät in der Unterscheidung Kfz, Fußgänger-/Radverkehr sowie ÖPNV (nur Knoten 1 und 9)	32
Tabelle 12:	Ergebnisse der Leistungsfähigkeitsüberprüfung für die Verkehrsbelastung am Extremtag in der werktäglichen Spitzenstunde am Nachmittag	36

B ANLAGEN

ANLAGENVERZEICHNIS

Anlage 1 Verkehrsbelastungen im Ist-Zustand

Belastungen der werktäglichen Spitzenstunde (Montag bis Freitag) am **Vormittag** – Darstellung der Knotenströme

Anlage 2 Verkehrsbelastungen im Ist-Zustand

Belastungen der werktäglichen Spitzenstunde (Montag bis Freitag) am **Nachmittag** – Darstellung der Knotenströme

Anlage 3 DTV-Werte im Ist-Zustand (Analyse-Daten)

Anlage 4 Verkehrsbelastungen für die Prognose

Belastungen der werktäglichen Spitzenstunde (Montag bis Freitag) am **Vormittag** – Darstellung der Knotenströme

Anlage 5 Verkehrsbelastungen für die Prognose

Belastungen der werktäglichen Spitzenstunde (Montag bis Freitag) am **Nachmittag** – Darstellung der Knotenströme

Anlage 6 DTV-Werte für die Prognose-Daten

Anlage 7 Verkehrsbelastungen für die Prognose – Extremtag-Betrachtung

Belastungen der werktäglichen Spitzenstunde (Montag bis Freitag) am **Nachmittag** für den Extremtag (Veranstaltung im ISS-Dome) – Darstellung der Knotenströme

Anhang Im Anhang sind die Formblätter zur Prüfung der Leistungsfähigkeit der Knotenpunkte zusammengestellt.

1 EINLEITUNG UND AUFGABENSTELLUNG

Für ein bislang nicht bebautes Grundstück zwischen der Theodorstraße und der Straße Am Hülserhof in Düsseldorf-Rath besteht eine Bauvoranfrage für die Ansiedlung eins Bau- und Gartenfachmarktes mit einer vorläufig geplanten Verkaufsfläche von insgesamt rund 19.000 m². Für den unmittelbar angrenzenden Bereich an der Theodorstraße bestehen weitere Planungen, die einen Bürokomplex mit mehreren Baukörpern und einer Brutto-Geschossfläche von rd. 28.000 m² vorsehen. Die Erschließung des Bürokomplexes soll von der Theodorstraße aus erfolgen (Abbildung 1).

Abbildung 1: Lageplan und künftige Bebauung an der Theodorstraße / Am Hülserhof (Quelle: K6Architekten, Konzept)

Für beide Planvorhaben wird gemeinsam ein Bebauungsplan Nr. 06/007 – Theodorstraße / Am Hülserhof – aufgestellt. Hierzu sind die verkehrlichen Wirkungen dieser Planungen auf das Umfeld in einem Verkehrsgutachten aufzuzeigen und zu bewerten.

Das geplante Vorhaben Baumarkt-Fachzentrum soll von drei Seiten mittels Zufahrten erschlossen werden (Abbildung 2):

Zufahrt 1 Die Zufahrt ist für Pkws vorgesehen und erreichbar von der Straße Am Hülserhof durch ein "Rechts rein – rechts raus"-Fahrgebot. Daher ist diese Zufahrt nur aus Richtung Süden von der Theodorstraße kommend zu erreichen.

Zufahrt 2 Die Zufahrt liegt im Norden des Grundstücks und kann von den Pkws aus allen Richtungen über die Straße Zum Gut Heiligendonk angefahren werden.

Zufahrt 3 Diese im Osten des Geländes gelegene Zufahrt ist für den Liefer- und Wirtschaftsverkehr (Lkw) vorgesehen. Sie besteht aus jeweils einer separaten Fahrspur für die Einfahrten und für die Ausfahrten, die nur im Einrichtungsverkehr genutzt werden. Da ein Wenden auf dem Gelände aufgrund der örtlichen Verhältnisse nicht möglich ist, liegen Ein- und Ausfahrt über 100 Meter auseinander und münden jeweils in die Straße Zum Gut Heiligendonk. Somit erfolgt der Lieferund Wirtschaftsverkehr in der Anfahrt über den Knotenpunkt Am Hülserhof / Zum Gut Heiligendonk, während die Abfahrten über den Knotenpunkt Theodorstraße / Zum Gut Heiligendonk / Zufahrt ISS-Dome durchgeführt werden.

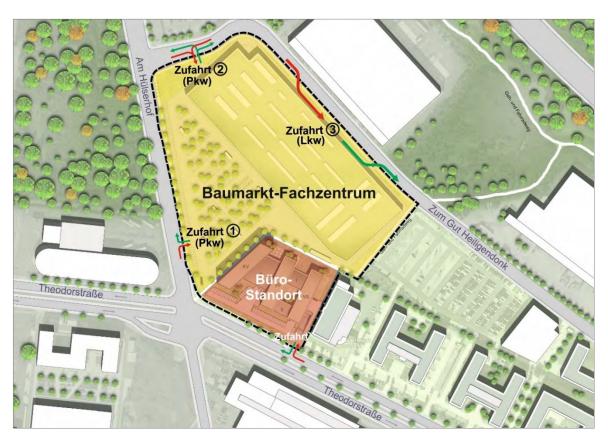


Abbildung 2: Vorgesehene Zufahrten für die Planungen an der Theodorstraße / Am Hülserhof (Quelle: K6Architekten, Konzept)

Die Erschließung des Bürokomplexes erfolgt von der Theodorstraße und bedingt für die von Westen anfahrenden Verkehre die Notwendigkeit, am östlich angrenzenden Knotenpunkt einen U-Turn durchzuführen, um die Einfahrt zum Grundstück und somit zur Tiefgarage zu erreichen. Daher wird dieser östliche Knotenpunkt in die Betrachtungen einbezogen. Für die Prognose der Knotenbelastung und die Prüfung der Leistungsfähigkeit wird die vorhandene Stadtbahn- / Straßenbahn-Trasse der Linie 701 entsprechend berücksichtigt.

Bei der Verkehrsprognose wird das westlich der Planungen gelegene und derzeit weitgehend ungenutzte Areal nördlich der Theodorstraße nicht einbezogen. Auch für aktuell noch vorhandene Freiflächen südlich der Theodorstraße werden keine Prognosen zur Verkehrsbelastung erstellt. Die vorhandenen Überlegungen bzw. Planungen der Stadt Düsseldorf zur Nutzung dieser genannten Flächen sind derzeit auf einem Stand, der verlässliche Prognosedaten zur Verkehrsnachfrage nicht zulässt.

Mit der vorliegenden Verkehrsuntersuchung werden die Leistungsfähigkeiten der betroffenen Knotenpunkte im näheren Einzugsbereich der geplanten Bauvorhaben überprüft. Die Ist-Verkehrsbelastung dieser Knotenpunkte wird durch Datenauswertung von Verkehrszählungen der Stadt Düsseldorf abgeleitet. Sofern diese nicht vorlagen, sind eigene Erhebungen durchgeführt worden. Datengrundlage bildet das Jahr 2016, was in Abstimmung mit der Stadt Düsseldorf als hinreichend genau angesehen wird, da sich in der Folgezeit keine wesentlichen, die Verkehrsnachfrage und -belastung besonders beeinflussenden Bauvorhaben bzw. -projekte im Untersuchungsbereich angesiedelt haben.

Die Auswirkungen der Ansiedlung von Baumarkt-Fachzentrum und Bürokomplex werden als Prognosebelastungen dargestellt, in der die Verkehrsströme und -mengen im Untersuchungsgebiet durch Beschäftigte, Mitarbeiter und Lieferanten sowie die Besucher bzw. Kunden der geplanten Standorte prognostiziert und der aktuellen Verkehrsbelastung (Ist-Belastung) zugeschlagen werden.

Der vorliegende Bericht fasst die Ergebnisse der Überprüfung der Leistungsfähigkeiten der in der Nähe der Planvorhaben betroffenen Knotenpunkte für die morgendliche und nachmittägliche Spitzenstunde des Werktages (Montag bis Freitag) zusammen. Außerdem werden die verkehrlichen Auswirkungen im Veranstaltungsfall des ISS-Domes als Worst Case (Extremtag-Betrachtung) beschrieben.

2 ANALYSE DER HEUTIGEN SITUATION

2.1 Untersuchungsgebiet und überregionale Verkehrsanbindung

Das Untersuchungsgebiet (vgl. Abbildung 3) umfasst die im Stadtteil Düsseldorf Rath gelegene Fläche zwischen der Straße Am Hülserhof im Westen und der westlich der A 44 liegenden Straße Zum Gut Heiligendonk im Osten. Südlich begrenzt die Theodorstraße das Gebiet.

Abbildung 3: Lage des Untersuchungsgebietes im Raum (Quelle Luftbild: Geoportal der Landeshauptstadt Düsseldorf)

Die den geplanten Vorhaben umliegenden Nutzungen umfassen vielfältige Gewerbeflächen, unter anderem Autohäuser, ein Gartencenter und Logistikgewerbe. Außerdem befindet sich an der Theodorstraße die Veranstaltungshalle ISS-Dome mit Platzkapazitäten für bis zu ca. 13.000 Zuschauer, je nach Veranstaltung. Sowohl auf Düsseldorfer als auch auf Ratinger Stadtgebiet (nördlich des Untersuchungsgebietes) existieren diverse konkurrierende Nutzungen durch weitere Baumärkte.

Die Zufahrten zum Baumarkt-Grundstück der untersuchten Planung befinden sich auf der Straße Am Hülserhof für Pkws mit der Vorschrift "Rechts rein – rechts raus" und auf der Straße Zum Gut Heiligendonk im Norden des Grundstücks sowie im Osten für die Lkw-Einund Ausfahrten.

Die Zufahrt zum Büro-Standort inkl. der geplanten Tiefgarage (Knoten TG in Abbildung 5) erfolgt von der Theodorstraße. Diese Zufahrt ist jedoch nur aus östlicher Richtung kommend im "Rechts rein – rechts raus"-Fahrgebot zu erreichen. Daher muss der Verkehr aus Richtung Westen kommend mit Ziel Bürokomplex (Zielverkehr) am Knotenpunkt östlich des

Büro-Standorts (Knoten 9 in Abbildung 5) einen U-Turn durchführen, um die Zufahrt zu erreichen. Gleiches gilt für den Verkehr, der den Bürokomplex in östliche Richtung verlassen will (Quellverkehr), dieser kann nur mittels U-Turn am Knotenpunkt westlich des Büro-Standorts (Knoten 1 in Abbildung 5) in östliche Richtung abfließen.

Überregional ist der Standort optimal angebunden. Die Theodorstraße liegt nahe dem Kreuzungsbereich der Autobahnen A 52 und A 44 und bietet damit gute Verbindungen zum Autobahnnetz, vorwiegend in Ost-West-Ausrichtung. Über kurze Wege bestehen darüber hinaus gute Anbindungen zu den Autobahnen A 3 und A 57 in nördliche bzw. südliche Richtungen (vgl. Abbildung 4).

Abbildung 4: Lage des Stadtteils Düsseldorf Rath im übergeordneten Straßennetz (Quelle: "Gewerbestandort Theodorstraße" III/15-5, 3. Auflage, Landeshauptstadt Düsseldorf, Wirtschaftsförderungsamt)

2.2 Regionale Verkehrsanbindung

Die straßenseitige Hauptanbindung des Untersuchungsstandortes erfolgt über die vierspurige Theodorstraße. Diese erschließt ein weiträumiges Gewerbe-Areal im Düsseldorfer Norden sowie die Veranstaltungshalle ISS-Dome. In westlicher Richtung kann nach ca. 3.000 Meter der Flughafen erreicht werden. Die Innenstadt ist über die A 52 bzw. den Nördlichen Zubringer und die an der Theodorstraße gelegene Anschlussstelle 21 "Düsseldorf-Rath" der A 52 (vgl. Abbildung 3) ebenfalls auf kurzem Wege erreichbar. Eine weitere Anbindung besteht über die Straße Am Hülserhof insbesondere für die nördlich des Planungsstandorts gelegenen Gebiete.

Die Erschließung des Gewerbe-Areals Theodorstraße mit dem öffentlichen Personennahverkehr (ÖPNV) ist durch die Stadtbahn- / Straßenbahnverbindung der Linie 701 gegeben. Die Endhaltestelle südlich der Kreuzung Theodorstraße / Am Hülserhof / Am Röhrenwerk verbindet den Standort direkt mit der Düsseldorfer Innenstadt. Für die Linie 701 wird derzeit ein 10-Minuten-Takt angeboten.

Ergänzt wird das ÖPNV-Angebot durch die Buslinien 756, 757 und 758. Diese verknüpfen den Standort vor allem mit den westlich und nördlich gelegenen Stadtteilen bzw. mit der Nachbarstadt Ratingen. Die für den Baumarkt- und Büro-Standort relevante Haltestelle "DOME / Am Hülserhof" dieser Linien hat Bussteige je nach Fahrtenziel auf der Straße Am Hülserhof bzw. auf der Theodorstraße. Damit ist dieses Gewerbe-Areal insgesamt sehr gut mit dem ÖPNV erschlossen.

Bei Veranstaltungen des ISS-Dome können je nach Besucheraufkommen weitere Linien die ÖPNV-Bedienung ergänzen. Das betrifft die Buslinie 729, die die Verbindung zwischen S-Bahnhof D-Unterrath und ISS-Dome herstellt, sowie die Stadtbahnlinie U71, die vom Stadtzentrum kommend über den S-Bahnhof D-Rath bis zum ISS-Dome verlängert wird.

2.3 Knotenpunkte der Verkehrsuntersuchung im Überblick

Die Untersuchung umfasst die in der nachfolgenden Abbildung 5 dargestellten Knotenpunkte und Zufahrten. Diese benennen sich wie folgt:

Knotenpunkt 1	Theodorstraße / Am Hülserhof / Am Röhrenwerk
Knotenpunkt 2	Theodorstraße / Planstraße A / Betriebseinfahrt
Knotenpunkt 3	U-Turn Theodorstraße, östlich
Knotenpunkt 4	U-Turn Theodorstraße, westlich
Knotenpunkt 5	Theodorstraße / Anschlussstelle A 52 D-Rath Ost
Knotenpunkt 6	Theodorstraße / Anschlussstelle A 52 D-Rath West / Gladbecker Straße
Knotenpunkt 7	Am Hülserhof / Zum Gut Heiligendonk
Knotenpunkt 8	Kreisverkehr Volkardeyer Straße / Broichhofstraße
Knotenpunkt 9	Theodorstraße / Zum Gut Heiligendonk / DOME
Knotenpunkt TG	Zufahrt Bürokomplex mit Tiefgarage (TG)
Knotenpunkt ZF1	Zufahrt (ZF) 1 zum Baumarkt-Fachzentrum Am Hülserhof
Knotenpunkt ZF2	Zufahrt (ZF) 2 zum Baumarkt-Fachzentrum Zum Gut Heiligendonk

Die in der Abbildung 5 dargestellten Knotenpunkte TG, ZF1 und ZF2 existieren heute noch nicht und fehlen demzufolge in der Analyse der vorhandenen Verkehrsbelastung (vgl. Kapitel 2.4). Für die Prognose der Belastungen und die Leistungsfähigkeitsuntersuchungen werden diese Knoten in den betrachteten Fällen jeweils mitberücksichtigt.

Abbildung 5: Betroffene Knotenpunkte im Standortbereich (Quelle Luftbild: Geoportal der Landeshauptstadt Düsseldorf)

2.4 Heutige Verkehrsbelastung

Für die Erfassung der Ist-Situation der Verkehrsbelastung wurden die Ergebnisse von aufwändigen Verkehrs- und Knotenstromzählungen der Stadt Düsseldorf sowie eigener Erhebungen verwendet. Diese fanden an repräsentativen Werktagen (Montag bis Freitag) statt, Datengrundlage bildet das Jahr 2016. In Abstimmung mit der Stadt Düsseldorf wird dies als hinreichend genau angesehen, da sich in der Folgezeit keine wesentlichen, die Verkehrsnachfrage und -belastung besonders beeinflussenden Bauvorhaben im Untersuchungsbereich angesiedelt haben. Die Daten der Ist-Situation (Analysedaten) werden nachfolgend zusammenfassend dargestellt.

■ Knotenstrombelastungen

Die Auswertung der Zählungen hat ergeben, dass die Verkehrsbelastungen im Bereich der Theodorstraße in der morgendlichen Spitzenstunde des Werktages (Montag bis Freitag – MF) in West-Ost-Richtung sehr stark ausgeprägt sind. Die Spitzenstunde wurde für die Zeit von 07:30 Uhr bis 08:30 Uhr ermittelt. Die festgestellten Belastungen der einzelnen Knotenströme sind in der nachfolgenden Abbildung dargestellt.

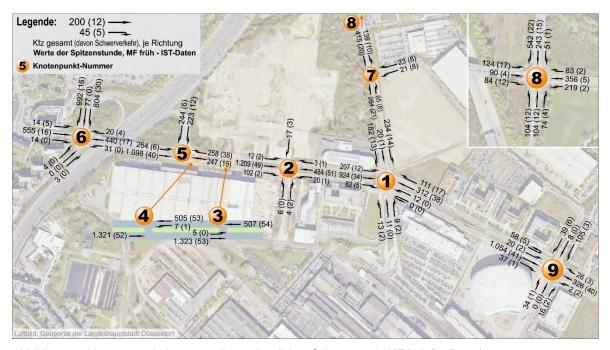


Abbildung 6: Knotenstrombelastungen der werktäglichen Spitzenstunde MF früh (Ist-Daten) (Quelle Luftbild: Geoportal der Landeshauptstadt Düsseldorf)

Erwartungsgemäß zeigen die Auswertungen der Zähldaten für die Spitzenstunde des Werktages MF am Nachmittag (Spitzenstunde MF spät) die im Vergleich zur Morgenspitze gegenläufige Schwerpunktbelastung. Die Verkehrsbelastungen im Bereich der Theodorstraße sind in Ost-West-Richtung sehr stark richtungsbezogen ausgeprägt. Die Spitzenstunde liegt in der Zeit zwischen 16:30 Uhr und 17:30 Uhr. Die ermittelten Belastungen der Knotenströme sind in der nachfolgenden Abbildung 7 zusammenfassend dargestellt.

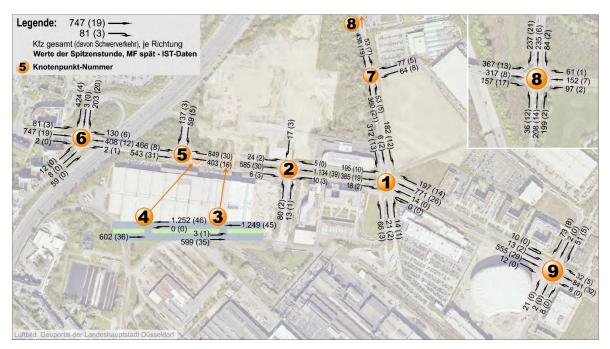


Abbildung 7: Knotenstrombelastungen der werktäglichen Spitzenstunde MF spät (Ist-Daten) (Quelle Luftbild: Geoportal der Landeshauptstadt Düsseldorf)

■ Leistungsfähigkeiten

Zur Beurteilung der Leistungsfähigkeiten der Knotenpunkte werden die Berechnungsverfahren nach den Grundsätzen des Handbuches für die Bemessung von Straßenverkehrsanlagen (HBS), Ausgabe 2015 unter Berücksichtigung des jeweiligen Ausbaus und der Ausstattung der einzelnen Knotenpunkte angewendet. Im Ergebnis werden Wartezeiten und Rückstaulängen an den Knotenpunkten zu den Spitzenzeiten berechnet, die der Beurteilung der Leistungsfähigkeit dienen.

Die eigentliche Bewertung der Leistungsfähigkeit der Knotenpunkte erfolgt über die Qualitätsstufe des Verkehrsablaufs (QSV), die aus der Wartezeit und den Rückstaulängen ermittelt wird. Eine ausreichende Leistungsfähigkeit weisen Knotenpunkte auf, wenn für die Spitzenstunde die Qualitätsstufen A bis D gemäß HBS ermittelt werden können. Bei Qualitätsstufe E erreicht der Knoten seine Kapazitätsgrenze, die Qualitätsstufen F weist dagegen auf eine nicht mehr leistungsfähige Verkehrsabwicklung hin.

Folgende Qualitätsstufen des Verkehrsablaufs sind nach HBS definiert, deren nachfolgende Beschreibung sich beispielhaft auf Knotenpunkte mit Lichtsignalanlage bezieht. Die Bedeutung der QSV für Knotenpunkte ohne Lichtsignalanlage, die im Untersuchungsraum ebenfalls vorhanden sind, entsprechen den beschriebenen QSV analog (vgl. HBS).

Stufe A Die Wartezeiten sind für die jeweils betroffenen Verkehrsteilnehmer sehr kurz.

Stufe B Die Wartezeiten sind für die jeweils betroffenen Verkehrsteilnehmer kurz. Alle während der Sperrzeit auf dem betrachteten Fahrstreifen ankommenden Kraftfahrzeuge können in der nachfolgenden Freigabezeit weiterfahren.

- Stufe C Die Wartezeiten sind für die jeweils betroffenen Verkehrsteilnehmer spürbar. Nahezu alle während der Sperrzeit auf dem betrachteten Fahrstreifen ankommenden Kraftfahrzeuge können in der nachfolgenden Freigabezeit weiterfahren. Auf dem betrachteten Fahrstreifen tritt im Kfz-Verkehr am Ende der Freigabezeit nur gelegentlich ein Rückstau auf.
- Stufe D Die Wartezeiten sind für die jeweils betroffenen Verkehrsteilnehmer beträchtlich. Auf dem betrachteten Fahrstreifen tritt im Kfz-Verkehr am Ende der Freigabezeit häufig ein Rückstau auf.
- Stufe E Die Wartezeiten sind für die jeweils betroffenen Verkehrsteilnehmer lang. Auf dem betrachteten Fahrstreifen tritt im Kfz-Verkehr am Ende der Freigabezeit häufig in den meisten Umläufen ein Rückstau auf.
- Stufe F Die Wartezeiten sind für die jeweils betroffenen Verkehrsteilnehmer sehr lang. Auf dem betrachteten Fahrstreifen wird die Kapazität im Kfz-Verkehr überschritten. Die Kraftfahrzeuge müssen bis zur Weiterfahrt mehrfach vorrücken.

Aufgrund der nach HBS, Ausgabe 2015 grundsätzlich zu betrachtenden Fußgängerverkehre wird an den Knotenpunkten mit Lichtsignalanlage (LSA) teilweise eine niedrigere QSV erreicht – bedingt durch relativ lange Wartezeiten für den Fußgängerverkehr, auch wenn deren Belastung relativ gering ist. In der nachfolgenden Tabelle 1 sind deshalb die QSV-Werte separat für die Kraftfahrzeuge (Kfz) und Fußgänger inkl. Radverkehr sowie – falls vorhanden – für die ÖPNV-Trassen für die Analyse (Ist-Zustand) ausgewiesen.

Die Überprüfung der Leistungsfähigkeiten durch Ermittlung der Qualitätsstufe des Verkehrsablaufs (QSV) erfolgt mit Hilfe des Programms AMPEL[®], Version 6. Dies ist ein Programm zur Planung, Leistungsberechnung, Optimierung und Datenverwaltung für Lichtsignalanlagen der BPS GmbH Bochum / Ettlingen.

Für die Prüfung der Leistungsfähigkeiten werden die LSA-Programme der Stadt Düsseldorf für die jeweiligen Knoten herangezogen. Diese Programme arbeiten mit Verkehrsbeeinflussung. Somit erfolgen richtungsgebundene Freischaltungen (die sogenannten "Grün-Phasen") teilweise nur nach Fahrzeuganforderung, diese wiederum – je nach Anforderung bzw. Fahrzeugbelastung – werden nur einmal über einen Zeitraum von mehreren LSA-Umläufen geschaltet.

Da dieses System in der Theorie nur sehr schwierig und aufwändig darstellbar ist, werden mit dem Programm AMPEL® Festzeitprogramme (in Anlehnung an die Programm-Schaltungen der Stadt Düsseldorf) für alle notwendigen Fahrtbeziehungen abgebildet. Freie Rechtsabbieger bleiben dabei unberücksichtigt. Zwischenzeiten werden für nicht eindeutige Fälle gemäß Vorgaben der Richtlinien für Lichtsignalanlagen (RiLSA) Deutschland eingesetzt. Die Optimierung des LSA-Umlaufprogramms und die Ermittlung der Qualitätsstufe des Verkehrsablaufs erfolgen jeweils gemäß HBS-Verfahren. Die verwendete Umlaufzeit beträgt entsprechend den Vorgaben der Programme der Stadt Düsseldorf 70 Sekunden. Die nach diesem Verfahren ermittelten QSV-Werte werden ausgewiesen.

Für die werktägliche Spitzenstunde Montag bis Freitag (MF) kann an allen überprüften Knotenpunkten eine ausreichende Leistungsfähigkeit mit den aktuellen Belastungszahlen (Analysewerte) nachgewiesen werden.

Für den Kreisverkehr Volkardeyer Straße / Broichhofstraße (Knotenpunkt 8) erfolgt im Sinne der HBS eine Sensitivitätsanalyse, da hier nach dem HBS-Berechnungsverfahren keine ausreichende Leistungsfähigkeit nachgewiesen wird. Danach ergeben sich für die Wartezeiten sehr große und dabei stark streuende Werte. Es sollten sich Staus bilden, die sich bei der vorhandenen Belastung nicht mehr abbauen. Diese Aussage steht jedoch im Widerspruch zu den Beobachtungen und Erfahrungen in der Spitzenstunde vor Ort. Die mittels Videoerfassung durchgeführten Erhebungen am 02.06.2016 bestätigen diese Beobachtungen und Erfahrungen. Die Durchführung der Sensitivitätsanalyse erfolgt HBS-konform, die Ergebnisgröße "mittlere Wartezeit" bleibt dabei das im Berechnungsverfahren zu Grunde gelegte Kriterium für die Bewertung der Verkehrsqualität.

Die Berechnung der mittleren Wartezeit für eine Neubewertung der Verkehrsqualität des Knotenpunktes 8 erfolgt auf der Grundlage der Daten des TomTom TrafficStats Portals. Aus diesem Datenpool – Basis sind GPS-Daten von insgesamt rund 75 Millionen Navigationsgeräten – wird für jede Zufahrt des Kreisverkehrs die mittlere Wartezeit errechnet. Sie wird bestimmt aus dem Vergleich der Fahrtzeiten ohne Belastung (in den Zeiten zwischen 01:00 Uhr und 02:00 Uhr bzw. 04:00 Uhr und 05:00 Uhr) und den Fahrtzeiten in der werktäglichen Spitzenstunde am Nachmittag zwischen 16:30 Uhr und 17:30 Uhr. Die dabei ermittelten Zeitdifferenzen ("Verlustzeiten") werden als mittlere Wartezeiten unterstellt. Datengrundlage bilden die Werktage (Montag bis Freitag) im Zeitraum vom 02. Mai 2016 bis 30. Juni 2016 (ohne Feiertage und "Brückenfeiertage").

Mit diesen berechneten mittleren Wartezeiten erfolgt mit Hilfe des Programms KREISEL8, Version 8.1.7, die Ermittlung der Qualitätsstufe des Verkehrsablaufs (QSV) für den Kreisverkehr (Knotenpunkt 8). Das Programm KREISEL8 wurde von der BPS GmbH Bochum / Ettlingen entwickelt und dient der Ermittlung der Kapazität und des Leistungsvermögens von Kreisverkehrsanlagen.

Mit dieser vorbeschriebenen Methodik erreicht der Kreisverkehr im Ist-Zustand die QSV B. Die Qualitätsstufen des Verkehrsablaufs werden hier nicht nach dem HBS-Verfahren berechnet, sondern gemäß Verfahren nach Grenzzeitlücken-Theorie (Grenzzeitlücken-Theorie nach Harders-Formel). Die Grenzzeitlücken werden dabei so angepasst, dass die wie vorbeschrieben berechneten Werte der mittleren Wartezeiten erreicht werden.

Mit diesem Datenmodell inkl. der verwendeten Grenzzeitlücken werden auch die Qualitätsstufen des Verkehrsablaufs für die jeweiligen künftigen Belastungen in den werktäglichen Spitzenstunden ermittelt und ausgewiesen.

Die Leistungsfähigkeiten der sonstigen Knotenpunkte (kein Kreisverkehr, keine Lichtsignalanlage vorhanden) werden mit Hilfe des Simulationsprogramms KNOSIMO, Version 5.2.1 ermittelt. Dieses Programm der BPS GmbH Bochum / Karlsruhe simuliert den Verkehrsablauf zur Ermittlung der Qualitätsstufen gemäß HBS. Als Grundlage für die Beurteilung der

Qualität des Verkehrsablaufs wertet KNOSIMO jeden Simulationslauf hinsichtlich der Kriterien Verlustzeit, Rückstau und Anzahl der Halte aus.

In der nachfolgenden Tabelle sind alle Ergebnisse zur Leistungsfähigkeitsuntersuchung zusammengefasst. Grundlage ist die jeweilige Fahrzeugbelastung in der relevanten Spitzenstunde am Werktag (MF) früh bzw. spät.

		Qualitätsstufe QSV für die werktägliche Spitzenstunde MF									
Nr. des Knoten-	Ausbau / Ausstattung des Knotens	(Ist-	früh ·Daten 201	6)	spät (Ist-Daten 2016)						
punktes		nur Kfz	inkl. Fuß- gänger-/ Radverkehr	ÖPNV	nur Kfz	inkl. Fuß- gänger-/ Radverkehr	ÖPNV				
1	Knotenpunkt mit Lichtsignalanlage	С	С	D	В	D	D				
2	Knotenpunkt mit Lichtsignalanlage	В	С	-	В	С	-				
3	U-Turn (ohne Lichtsignalanlage)	Α	-	-	С	_	-				
4	U-Turn (ohne Lichtsignalanlage)	С	-	-	Α	-	-				
5	Knotenpunkt mit Lichtsignalanlage	В	-	-	В	-	-				
6	Knotenpunkt mit Lichtsignalanlage)	В	С	-	С	С	-				
7	Knotenpunkt mit Lichtsignalanlage	В	В	-	В	В	-				
8	Kreisverkehr	В		-	В	-	-				
9	Knotenpunkt mit Lichtsignalanlage	В	D	С	В	D	С				

Tabelle 1: Ergebnisse der Leistungsfähigkeitsüberprüfung für die Ist-Verkehrsbelastung für den Werktag (Montag bis Freitag – MF) früh und spät in der Unterscheidung Kfz, Fußgänger-/Radverkehr sowie ÖPNV (nur Knoten 1 und 9)

2.5 Besonderheiten der Leistungsfähigkeitsberechnung am Knotenpunkt 1

Die Straßenbahn-Linie 701 verkehrt bis zur Haltestelle "DOME/Am Hülserhof" im 10-Minuten-Takt und überquert damit die Kreuzung Theodorstraße / Am Hülserhof / Am Röhrenwerk (Knotenpunkt 1) sechs Mal in der Spitzenstunde. Die räumlichen Gegebenheiten der Streckenführung der Stadtbahn-/Straßenbahntrasse über den Knotenpunkt 1 erfordern eine besondere Betrachtung, da zwischen ankommenden und abfahrenden Bahnfahrten zu unterscheiden ist. Folgender Ansatz wurde gewählt:

- Ermittlung der Freigabezeiten (Grünzeiten) je Richtung bzw. Signalphase am Knoten (für die gemäß Vorgaben der Stadt Düsseldorf geplante Umlaufzeit von 70 Sekunden) und Berechnung der jeweiligen Gesamt-Freigabezeit je Richtung bzw. Signalphase für die Spitzenstunde
- Identifizierung der durch die Linienführung betroffenen Fahrspuren bzw. Signalphasen (Signalgruppen)

Es wird unterstellt, dass eine Straßenbahnfahrt – aufgrund der räumlichen Gegebenheiten in der Unterscheidung zwischen "ankommend" und "abfahrend" – jeweils innerhalb eines Umlaufes (also innerhalb von 70 Sekunden) absolviert werden kann. In dieser Zeit steht die Freigabezeit je Richtung bzw. Signalphase für den Individualverkehr (IV) nicht zur Verfügung. Die folgende Abbildung zeigt die betroffenen Richtungen (Fahrspuren) bzw. Signalgruppen am Knoten 1.

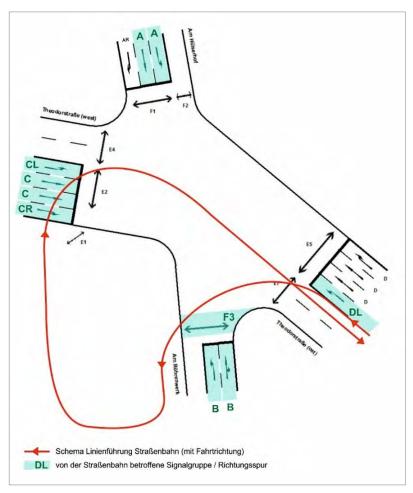


Abbildung 8: Betroffene Fahrspuren und Signalgruppen durch die Stadtbahn-/Straßenbahntrasse am Knotenpunkt 1
[Quelle der Darstellung/Skizze: Programm AMPEL®)

- Reduzierung der ermittelten Gesamt-Freigabezeiten (Grünzeiten) der Spitzenstunde je Richtung bzw. Signalphase um die Freigabezeiten, die durch die Straßenbahnbelegung am Knoten entfallen müssen.
- Ermittlung der resultierenden (verminderten) Freigabezeiten je Richtung bzw. Signalphase für den durchschnittlichen Wert je Umlauf und Ermittlung der daraus resultierenden QSV

Dieser Ansatz berücksichtigt die Tatsache, dass nur einzelne Umläufe in der Spitzenstunde von den Fahrten des ÖPNV (Straßenbahn Linie 701) betroffen sind. Auch die Fahrten im IV werden nicht alle von den resultierenden fehlenden Freigabezeiten beeinflusst; bei den

Signalgruppen, die von der Straßenbahndurchfahrt nicht betroffen sind, bleiben die Freigabezeiten unverändert.

Die für die Überprüfung der Leistungsfähigkeiten ermittelten, reduzierten Freigabezeiten je Richtung bzw. Signalphase als Durchschnittswert je Umlauf berücksichtigen den ÖPNV am Knoten 1 ausreichend, ohne eine aufwändige zusätzliche Verkehrsuntersuchung durchführen zu müssen.

Die nachfolgenden Tabellen (Tabelle 2 für die morgendliche Spitzenstunde und Tabelle 3 für die nachmittägliche Spitzenstunde) zeigen in der Übersicht

- die Ausgangswerte der Freigabezeiten je Umlauf ohne Berücksichtigung der Straßenbahntrasse (kein ÖPNV) in den Tabellen rot markiert,
- die betroffenen Signalphasen je ankommendem ÖPNV (Straßenbahn-Ankunft) und abfahrendem ÖPNV (Straßenbahn-Abfahrten),
- die Berechnung der fehlenden Freigabezeiten durch ankommenden bzw. abfahrenden ÖPNV sowie
- die sich ergebenden reduzierten Freigabezeiten (Durchschnittswerte je Umlauf) in den Tabellen blau hinterlegt.

Mit den neuen, reduzierten Freigabezeiten wird die Leistungsfähigkeit am Knoten 1 mit Hilfe des Programms AMPEL[®] überprüft bzw. neu ermittelt. Die Einhaltung dieser Zeiten dokumentieren der Signalzeitenplan sowie das HBS-Formblatt 2. Diese Unterlagen sind – wie die übrigen Formblätter und Unterlagen zur Ermittlung der Leistungsfähigkeit der Knotenpunkte – als separater Anlagen-Band diesem Bericht beigefügt.

	Ermittlung der durch ÖPNV reduzierten Freigabezeiten je Umlauf (Spitzenstunde MFfrüh)															
Ausga	angswerte (k	cein ÖPNV)	ÖPN	۱۷ -	ank	omm	end	ÖPNV - abfahrend				end	Zielwe	Zielwerte (für QSV-Ermittlung)		
Signal- gruppe	Freigabezeit Umlauf (70 s) [s]	Freigabezeit Spitzenstunde [s]	Signal- gruppe relevant	Fr	eigabe		fehlend [s]	Signal- gruppe relevant	Fr	eig	abez [s]	zeit -	fehlend [s]	Signal- gruppe	Freigabezeit Spitzenstunde [s]	Freigabezeit Umlauf (70 s) [s]
Α	17	874	Α	6	x 17	7 =	102	Α	6	х	17	=	102	Α	670	13
AR	23	1.183												AR	1.183	23
В	7	360	В	6	x 7	=	42	В	6	Х	7	=	42	В	276	5
С	28	1.440	С	6	x 28	3 =	168	С	6	Х	28	=	168	С	1.104	21
CL	14	720						CL	6	Х	14	=	84	CL	636	12
CR	27	1.389	CR	6	x 27	7 =	162	CR	6	х	27	=	162	CR	1.065	21
D	19	977												D	977	19
DL	8	411	DL	6	x 8	=	48	DL	6	Х	8	=	48	DL	315	6
F1	23	1.183												F1	1.183	23
F2	33	1.697												F2	1.697	33
F3	24	1.234	F3	6	x 24	1 =	144							F3	1.090	21
E1	28	1.440												E1	1.440	28
E2	27	1.389												E2	1.389	27
E4	36	1.851												E4	1.851	36
E5	36	1.851												E5	1.851	36
E7	15	771												E7	771	15
	ÖPNV- (Straße	enbahn-) Takt:	10	Mi	nute	n						_				
		entspricht:	6	Fa	nrter	n pro	Stunde	e (Spitze	ns	tur	nde)				

Tabelle 2: Ermittlung der reduzierten Freigabezeiten je Umlauf für die morgendliche Spitzenstunde

	Ermittlung der durch ÖPNV reduzierten Freigabezeiten je Umlauf (Spitzenstunde MFspät)																
Ausga	angswerte (k	cein ÖPNV)	ÖPI	۷V	- aı	nkoı	mm	end	ÖPI	ÖPNV - ankommend				end	Zielwerte (für QSV-Ermittlung)		
Signal- gruppe	Freigabezeit Umlauf (70 s)	Freigabezeit Spitzenstunde	Signal- gruppe	F	reig	jabez	eit -	fehlend	Signal- gruppe	F	reiç	gabez	æit -	fehlend	Signal- gruppe	Freigabezeit Spitzenstunde	Freigabezeit Umlauf (70 s)
g. appo	[s]	[s]	relevant			[s]		[s]	relevant			[s]		[s]	g.appo	[s]	[s]
Α	16	823	_ A	6	Х	16	=	96	A	6	Х	16	=	96	_ A	631	12
AR	32	1.646													AR	1.646	32
В	11	566	В	6	Х	11	=	66	В	6	Х	11	=	66	В	434	8
С	28	1.440	С	6	Х	28	=	168	С	6	Х	28	=	168	С	1.104	21
CL	15	771							CL	6	х	15	=	90	CL	681	13
CR	28	1.440	CR	6	х	28	=	168	CR	6	Х	28	=	168	CR	1.104	21
D	21	1.080													D	1.080	21
DL	9	463	DL	6	х	9	=	54	DL	6	Х	9	=	54	DL	355	7
F1	14	720													F1	720	14
F2	28	1.440													F2	1.440	28
F3	24	1.234	F3	6	х	24	=	144							F3	1.090	21
E1	27	1.389													E1	1.389	27
E2	26	1.337													E2	1.337	26
E4	34	1.749													E4	1.749	34
E5	34	1.749													E5	1.749	34
E7	9	463													E7	463	9
	ÖPNV- (Straße	enbahn-) Takt:	10	M	nu	ten		-						-	-		
	entspricht: 6 Fahrten pro Stunde (Spitzenstunde)																

Tabelle 3: Ermittlung der reduzierten Freigabezeiten je Umlauf für die nachmittägliche Spitzenstunde

Für die Abschätzung der QSV für die Stadt-/Straßenbahn (ÖPNV) wird folgender Ansatz als ungünstigster Fall gewählt:

o Ankommende Straßenbahn

Der (letzte) Anmeldepunkt für die Freischaltung der ankommenden Bahnen liegt 100 Meter vor dem Knotenpunkt.

Die Geschwindigkeit wird in diesen 100 Metern Meldestrecke von unterstellten 20 km/h (Mittelwert aus 10 bis 30 km/h, je nach Fahrweise des Fahrers) auf Null reduziert, d. h. die Bahn kommt am Knotenpunkt zum Stehen, da die Freigabe noch nicht erfolgt ist (nur angemeldet).

Damit benötigt die Bahn für diese 100 Meter Anmeldestrecke rechnerisch eine durchschnittliche Zeit von 36 Sekunden.

Im ungünstigsten Fall beginnt am Knoten 1 ein neuer Signalumlauf von 70 Sekunden bei Passieren des Anmeldepunktes durch die Straßenbahn. Nach den 36 Sekunden bis zum Stillstand der Bahn verbleiben noch 34 Sekunden Wartezeit, bis ein neuer Signalumlauf mit Freischaltung der Straßenbahn erfolgen kann. Mit dieser Wartezeit ergibt sich nach HBS für die Straßenbahn im ungünstigsten Fall eine QSV D.

o Abfahrende Straßenbahn

Die Bahnen stehen im Abfahrtsbereich der Start-Haltestelle "DOME/Am Hülserhof", die Anmeldung für die Freischaltung der Bahnen erfolgt von Hand (Fahrer). Dadurch wird das Türschließ-Signal entsprechend aktiviert und nach 20 Sekunden Verzögerung wird die Freigabe ermöglicht.

Im ungünstigsten Fall kann hier die Wartezeit 70 Sekunden (ein Signalumlauf) betragen, im günstigsten Fall beträgt die Wartezeit Null (theoretisch). Unterstellt man für die Bewertung den (statistischen) Mittelwert von 35 Sekunden als Wartezeit, ergibt sich nach HBS die QSV D.

Mit den reduzierten Freigabezeiten und den beschriebenen Ansätzen für den ÖPNV am Knotenpunkt 1 ergeben sich die in den jeweiligen Ergebnistabellen ausgewiesenen Qualitätsstufen des Verkehrsablaufs.

2.6 Querschnittsbelastung (Ist-Zustand)

In Auswertung der Zähldaten für die betrachteten Knotenpunkte ergeben sich die entsprechenden Querschnittsbelastungen für die untersuchten Straßen. Zur Vergleichbarkeit der Werte aus den beschriebenen Verkehrsuntersuchungen (vgl. Kapitel 1) werden die Regeln und Vorschriften des HBS für die Berechnung der Verkehrsstärken verwendet.

Folgende Werte sind in der Abbildung 9 zusammenfassend dargestellt (Angaben jeweils in Kraftfahrzeugen – Kfz):

DTV-Wert durchschnittliche tägliche Verkehrsstärke (alle Tage)

Werktäglicher DTV-Wert durchschnittliche werktägliche Verkehrsstärke

(der Werktag nach HBS ist definiert als Montag bis Samstag)

MSV_W-Wert maßgebende stündliche Verkehrsstärke des Werktages

Abbildung 9: Werte der Verkehrsstärken an ausgewählten Querschnitten (Ist-Zustand) (Quelle Luftbild: Geoportal der Landeshauptstadt Düsseldorf)

3 VERKEHRSPROGNOSE

3.1 Allgemeine Verkehrsentwicklung

Für eine Überprüfung bzw. den Nachweis der Leistungsfähigkeit der zu untersuchenden Knotenpunkte ist das erwartete Verkehrsaufkommen von Bedeutung, das in Realisierung der Planungen erzeugt wird. Eine heutige Belastung der jeweiligen Areale wird nicht unterstellt bzw. vernachlässigt. Weitere Entwicklungen im Umfeld sind derzeit nicht bekannt.

3.2 Prognose der Verkehrsnachfrage durch das Baumarkt-Fachzentrum

Die Ermittlung der Verkehrsnachfrage erfolgt getrennt nach Mitarbeiter-/Beschäftigten-, Besucher-/Kunden- und Liefer-/Wirtschaftsverkehr (Lkw). Dabei wird jeweils unterschieden in die Fahrten zum Fachzentrum (Zielverkehr) und von dort zurück (Quellverkehr). Für die Verkehrsprognose werden Ansätze aus der gängigen Fachliteratur verwendet, die eine gewisse Spannbreite an Werten aufgrund von Erhebungen und Erfahrungen ausweisen. Zu den verwendeten Schriften der Fachliteratur gehören:

- "Integration von Verkehrsplanung und räumlicher Planung",
 Heft 42 der Schriftenreihe der Hessischen Straßen- und Verkehrsverwaltung, Wiesbaden 2000/2005
- "Handbuch für Verkehrssicherheit und Verkehrstechnik", Kapitel 1.3 Verkehrsaufkommen durch Vorhaben der Bauleitplanung und Auswirkungen auf die Anbindung an das Straßennetz;
 - Heft 53/1-2006 der Schriftenreihe der Hessischen Straßen- und Verkehrsverwaltung, Wiesbaden 2006
- "Hinweise zur Schätzung des Verkehrsaufkommens von Gebietstypen" (Forschungsgesellschaft für Straßen- und Verkehrswesen FGSV, Ausgabe 2006)

Die genannte Fachliteratur zur Abschätzung der Verkehrserzeugung aus den Jahren 2005 / 2006 findet in Fachkreisen nach wie vor große Anerkennung und wird auch in kommunalen Verwaltungen eingesetzt. Die dort ausgewiesenen Ansätze und Kenngrößen werden zur Abschätzung des Verkehrsaufkommens verwendet, sofern keine aktuelleren, insbesondere regionalen oder vorhabenbezogenen Kenntnisse vorliegen.

Für die Ermittlung der Mitarbeiter- und Beschäftigtenzahl ist der Parameter Brutto-Geschossfläche (BGF) des Standortes maßgeblich. Bei dem geplanten Baumarkt-Fachzentrum ist davon auszugehen, dass ein großer Teil der Ware innerhalb der Verkaufsräume gelagert wird. Daher wird aus dem in der Fachliteratur angegebenen Bereich von 85% bis 95% als Anteil der Verkaufsfläche gegenüber der BGF der mittlere Wert von 90% unterstellt. Somit ergeben sich für das Baumarkt-Fachzentrum mit einer vorgesehenen Verkaufsfläche von rund 19.000 m² (vgl. Kapitel 1) rund 21.100 m² BGF.

Mit den Vorgaben aus der Fachliteratur und einem Ansatz von einem Beschäftigten pro 125 m² bis 150 m² BGF für Baumärkte ergibt sich rein rechnerisch ein Bereich für die Prognose der Anzahl von 140 bis 169 Beschäftigten. Ein Vergleich dieser Daten mit der Statistik über die Mitarbeiterzahl pro 1.000 m² Verkaufsfläche der führenden deutschen Baumarktunternehmen der Jahre 2015 und 2016 zeigt für den künftigen Betreiber des Baumarkt-Fachzentrums 6,4 Mitarbeiter pro 1.000 m² Verkaufsfläche. Daher werden für die möglichen rund 19.000 m² Verkaufsfläche 130 Mitarbeiter und Beschäftigte unterstellt.

Die nachfolgende Tabelle weist die aus dieser unterstellten Beschäftigtenzahl ermittelte Anzahl an prognostizierten Fahrten aus. Dabei werden die Ansätze der Fachliteratur verwendet. Für die tägliche Anwesenheit der Mitarbeiter und Beschäftigten wird aufgrund von Krankheit, Urlaub und Sonstiges ein Wert von 90% angenommen, der Modal-Split wird für den Standort mit 85% Pkw-Nutzung (MIV – motorisierter Individualverkehr) unterstellt. Dieser relativ hohe Wert wird möglicherweise durch die gute ÖPNV-Anbindung des Standortes (vgl. Kapitel 2.2) nicht erreicht, wodurch sich die Zahl der Pkw-Fahrten verringert. In Abstimmung mit der Stadt Düsseldorf bleibt dieser Ansatz für die Prognosebelastung jedoch bestehen. Dadurch sind die Werte und Ergebnisse zu den Untersuchungen der Leistungsfähigkeit auf der sicheren Seite.

Beschäftigte		Anzahl F	ahrten	Mod	lal Split	Pkw-	Anzahl Fahrten	
gesamt (Annahme)	täglich anwesend (ca. 90%)	je Beschäftigten	Summe	MIV-Anteil	Anzahl Fahrten	Besetzungs- grad	(gesamt, gerundet)	
130	120	2,5	300	85%	255	1,1	230	
	115							
			Pkw-Fahrt	en im Quel	lverkehr (Rüd	k-Richtung)	115	

Tabelle 4: Ermittlung der Fahrtenzahl der Mitarbeiter und Beschäftigten für das Baumarkt-Fachzentrum

Für die Zahl der Kunden und Besucher ist in der Fachliteratur ein Ansatz von 0,1 bis 0,4 Kunden pro Quadratmeter BGF für Bau- und Gartenmärkte ausgewiesen. Damit liegt der Bereich rein rechnerisch zwischen 2.110 und 8.440 Kunden und Besuchern pro Tag. Mit den Erfahrungen und Vergleichswerten des künftigen Betreibers des Baumarkt-Fachzentrums und unter Berücksichtigung der vorhandenen Konkurrenz im Umland (vgl. Kapitel 2.1) werden für den Standort rund 2.800 Kunden und Besucher pro Tag unterstellt.

Die nachfolgende Tabelle weist die aus dieser unterstellten Kunden- und Besucherzahl errechnete Anzahl an prognostizierten Fahrten aus. Dabei werden die Ansätze der Fachliteratur verwendet. Für den Modal-Split wird entsprechend des Warenangebots eines Baumarkt-Fachzentrums ein Anteil für die Pkw-Nutzung im MIV von 95% angesetzt.

Dieser relativ hohe Wert wird möglicherweise durch die gute ÖPNV-Anbindung des Standortes (vgl. Kapitel 2.2) auch im Besucher- / Kundenverkehr nicht erreicht, wodurch sich die Zahl der Pkw-Fahrten in diesem Segment ebenfalls verringert. In Abstimmung mit der Stadt Düsseldorf bleibt dieser Ansatz für die Prognosebelastung jedoch bestehen. Dadurch sind die Werte und Ergebnisse zu den Untersuchungen der Leistungsfähigkeit auf der sicheren Seite.

Kunden / Besucher	Anzahl Fah	rten	Mod	lal Split	Pkw-	Anzahl Fahrten
gesamt (Annahme)	je Kunden / Besucher	Summe	MIV-Anteil	Anzahl Fahrten	Besetzungs- grad	(gesamt, gerundet)
2.800	2,0	5.600	95%	5.320	1,3	4.100
	2.050					
	k-Richtung)	2.050				

Tabelle 5: Ermittlung der Fahrtenzahl der Kunden und Besucher für das Baumarkt-Fachzentrum

Der Güterverkehr umfasst den Liefer- und Wirtschaftsverkehr. Unter dem Wirtschaftsverkehr ist in erster Linie der Lkw-Verkehr für Entsorgung (z. B. Altpapier, Abfälle, Restmüll usw.) zu verstehen. Die Abschätzung der Anzahl Fahrten im Güterverkehr kann gemäß Ansätzen aus der Fachliteratur über die Beschäftigtenzahl oder mit Bezug auf die Bruttogeschoss-Fläche (BGF) erfolgen.

Mit den jeweils für Baumärkte ausgewiesenen Ansätzen für die Ermittlung der Anzahl an Fahrten im Güterverkehr ergibt sich je nach Methode mittels Beschäftigtenzahl oder mittels Bezug zur BGF eine Spannweite für die Fahrtenzahl zwischen 26 und 42, wie die Tabelle 6 in der Übersicht ausweist. Für die weiteren Untersuchungen zur Verkehrsbelastung wird deshalb der Mittelwert von 34 Fahrten im Güterverkehr unterstellt, was sich mit den Erfahrungen und Ansätzen des künftigen Betreibers des Baumarkt-Fachzentrums deckt.

Beschäftigte	Anzahl Fahi							
gesamt (Annahme)	je Beschäftigten	Summe	Anzahl Fahrten					
130	0,20	26	26					
Bruttogeschoss-Fläche (BGF)	Anzahl Fahi							
gesamt	Ansatz: je 100 m² BGF	Summe	Anzahl Fahrten					
21.100 m ²	0,20	42	42					
	Ansatz Lkw-Fahrten (Mittelwert)							
	17							
	Lkw-Fahrten im Quellverke	ehr (Rück-Richtung)	17					

Tabelle 6: Ermittlung der Fahrtenzahl im Güterverkehr (Lkw-Fahrten) für das Baumarkt-Fachzentrum

Die nachfolgende Tabelle 7 fasst die Prognose der Nachfrage als Fahrtenzahlen, die das geplante Baumarkt-Fachzentrum generiert, in der Übersicht zusammen.

Verkehrsaufkommen	Montag – Freitag	Einheit		
Beschäftigten- /	115	Pkw-Fahrten / Tag und Richtung		
Mitarbeiterverkehr	230	Pkw-Fahrten / Tag		
Kunden- /	2.050	Pkw-Fahrten / Tag und Richtung		
Besucherverkehr	4.100	Pkw-Fahrten / Tag		
Güterverkehr	17	Lkw-Fahrten / Tag und Richtung		
(Liefer-/Wirtschaftsverkehr)	34	Lkw-Fahrten / Tag		
Gesamtverkehr	4.364	Fahrten / Tag		

Tabelle 7: Verkehrsaufkommen für das Baumarkt-Fachzentrum in der Übersicht

In der Verteilung der Nachfrage über den Tag sind große Unterschiede festzustellen, die sich in den sogenannten Ganglinien (Tagesganglinien) widerspiegeln. Diese Ganglinien werden in der Fachliteratur dargestellt und mit Anpassungen entsprechend den vorgesehenen Öffnungszeiten analog für das Baumarkt-Fachzentrum unterstellt.

Mittels dieser Ganglinien kann das Verkehrsaufkommen – getrennt nach Ziel- und Quellverkehr – für jedes Stundenintervall berechnet und so die Anzahl an Fahrten in der jeweiligen Spitzenstunde bestimmt werden. Diese bilden die Grundlage für die Leistungsfähigkeitsuntersuchung.

In der Betrachtung über alle Verkehrsarten (Beschäftigen-, Kunden- und Güterverkehr) berechnen sich die Prognosedaten für die Verkehrsbelastung, die durch das Baumarkt-Fachzentrum entstehen. Diese werden als Ganglinien in der Abbildung 10 für den Werktag (Montag bis Freitag – MF) veranschaulicht.

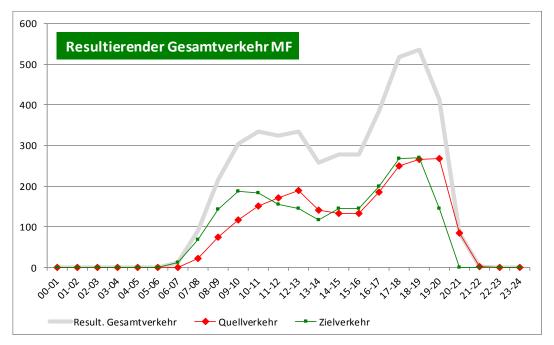


Abbildung 10: Tagesganglinien im Quell- und Zielverkehr sowie resultierende Gesamtbelastung für das Baumarkt-Fachzentrum (alle Verkehrsarten) für den MF-Tag (Angaben in Kfz-Fahrten)

Die Umlegung der zusätzlichen Verkehre aus der Ansiedlung des Baumarkt-Fachzentrums auf das vorhandene Straßennetz im Bereich der Theodorstraße bzw. des Stadtteils Düsseldorf-Rath erfolgt gemäß der anteiligen Verteilung, die in der nachfolgenden Abbildung 11 dargestellt ist. Für die Aufteilung werden sinnvolle Annahmen getroffen.

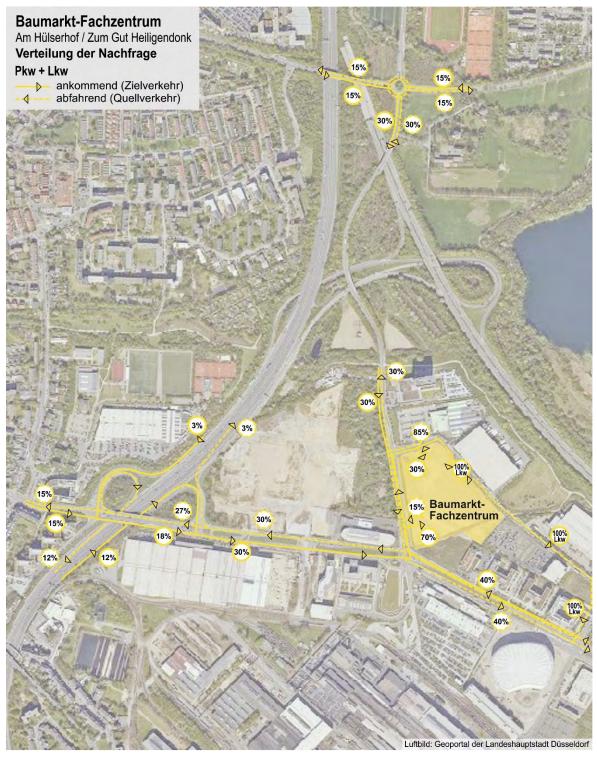


Abbildung 11: Umlegung der Neuverkehre des Baumarkt-Fachzentrums auf das vorhandene Straßennetz (Quelle Luftbild: Geoportal der Landeshauptstadt Düsseldorf)

Die in Abbildung 11 dargestellte räumliche Verteilung der Nachfrage des Baumarkt-Fachzentrums im Netz und die unterstellte tageszeitliche Verteilung gemäß Tagesganglinie (vgl. Abbildung 10) bilden die Grundlage für die Ermittlung der Prognosewerte für die Querschnittsbelastungen im Bereich des untersuchten Straßennetzes. Diese wird mit der vorhandenen Nachfrage des Ist-Zustandes (Analyse) überlagert.

Ebenfalls zu berücksichtigen ist die Nachfrage aus der Ansiedlung des Bürokomplexes im Untersuchungsgebiet. Die hierbei getroffenen Annahmen werden im nachfolgenden Kapitel ausführlich beschrieben.

3.3 Prognose der Verkehrsnachfrage durch den Bürokomplex

Mit der Umsetzung der Planung des Büro-Standorts entsteht neben den bereits beschriebenen zusätzlichen Verkehren eine weitere Nachfragebelastung. Die folgenden Berechnungen zur Nachfrage (Fahrtenanzahl) beruhen auf Vorgaben aus der gängigen Fachliteratur (vgl. Kapitel 3.2) sowie Erfahrungs- und Vergleichswerten des Investors.

Für die Zahl der Mitarbeiter und Beschäftigten wird eine Bruttogeschossfläche von aufgerundet 27.800 m² herangezogen. Je Beschäftigten werden in der ausgewiesenen Fachliteratur zwischen 30 und 40 Quadratmeter angesetzt. Zur Ermittlung der Zahl der Beschäftigten wird der Mittelwert von 35 m²/Beschäftigen verwendet. Damit werden 795 Mitarbeiter und Beschäftigte an diesem Büro-Standort unterstellt.

Die nachfolgende Tabelle 8 weist die aus dieser unterstellten Beschäftigtenzahl ermittelte Anzahl an prognostizierten Fahrten aus. Dabei werden die Ansätze aus der Fachliteratur verwendet. In der Fahrtenermittlung für den Beschäftigtenverkehr sind die Anteile für die Kunden und Besucher bereits enthalten, da es sich bei den Planungen It. Investor um eine Büronutzung ohne hohen Kundenverkehr handelt.

Für die tägliche Anwesenheit der Mitarbeiter und Beschäftigten wird aufgrund von Krankheit, Urlaub und Sonstiges ein Wert von 90% angenommen. Der Ansatz für die Anzahl an Fahrten je Beschäftigten inkl. der Fahrten für die Kunden und Besucher liegt It. Fachliteratur zwischen 3,3 und 3,5. Um auf der sicheren Seite zu liegen, wird hier der obere Wert von 3,5 Fahrten je Beschäftigten angesetzt.

Der Büro-Standort hat eine gute ÖPNV-Anbindung (vgl. Kapitel 2.2). Daher wird für die Mitarbeiter und Beschäftigen inkl. der Kunden und Besucher ein Anteil für die Pkw- bzw. Zweirad-Nutzung (MIV) von 75% angenommen. Die übrigen 25% der Fahrten werden im Modal-Split dem Umweltverbund (ÖPNV und Fahrrad) zugeordnet. Der Pkw-Besetzungsgrad wird gemäß Angaben der Fachliteratur mit 1,1 angenommen. Daraus ergeben sich die in nachfolgender Tabelle zusammengefassten Werte für die Fahrtenzahl im Neuverkehr.

Beschäftigte		Anzahl Fahr	ten	Mod	al Split	Pkw-	Anzahl Fahrten			
gesamt (Annahme)	anwesend (90%)	je Beschäfligten (inkl. Kunden/Besucher)	Summe	Summe MIV-Anteil Anzahl Fahrten Besetzungs- grad		(gesamt)				
795	716	3,5	2.506	75%	1.880	1,1	1.710			
	Pkw-Fahrten im Zielverkehr (Hin-Richtung)									
			Pkw-Fahrt	en im Quel	lverkehr (Rüc	k-Richtung)	855			

Tabelle 8: Ermittlung der Fahrtenzahl der Mitarbeiter und Beschäftigten inkl. der Fahrten durch Kunden und Besucher für den Büro-Standort

Für den Liefer- und Wirtschaftsverkehr erfolgt die Abschätzung der Fahrtenzahl für den Büro-Standort über die Zahl der Beschäftigten. Gemäß Ansatz aus der Fachliteratur ist für die Nutzung "Dienstleistungen" bei Büronutzung mit 0,1 Lkw-Fahrten je Beschäftigten zu rechnen. Bei einer Beschäftigtenzahl von 795 ergeben sich damit gerundet 80 Lkw-Fahrten.

Beschäftigte	Anzahl Fahrten		
gesamt (Annahme)	je Beschäftigten	Summe	Anzahl Fahrten
795	0,1	80	80
	40		
Lkw-Fahrten im Quellverkehr (Rück-Richtung)			40

Tabelle 9: Ermittlung der Fahrtenzahl im Güterverkehr für den Büro-Standort

Es ist zu erwarten, dass die ausgewiesenen Lkw-Fahrten für den Büro-Standort nicht alle mit schweren Lkw durchgeführt werden, real sind diese Fahrten hauptsächlich mit Lieferwagen bzw. kleineren Lkw zu prognostizieren. In den Leistungsfähigkeitsberechnungen werden sie jedoch als Lkw-Verkehre berücksichtigt, damit liegen die ausgewiesenen Qualitätsstufen des Verkehrsablaufs auf der sicheren Seite. Zusammenfassend werden für den Büro-Standort folgende Nachfragewerte unterstellt:

Verkehrsaufkommen	Montag – Freitag	Einheit	
Beschäftigtenverkehr	855	Pkw-Fahrten / Tag und Richtung	
(inkl. Besucher / Kunden)	1.710	Pkw-Fahrten / Tag	
Wirtschaftsverkehr	40	Lkw-Fahrten / Tag und Richtung	
	80	Lkw-Fahrten / Tag	
Gesamtverkehr	1.790	Fahrten / Tag	

Tabelle 10: Verkehrsaufkommen für den Büro-Standort in der Übersicht

Für die Verteilung der Nachfrage des Bürokomplexes über den Tag werden analog dem Baumarkt-Fachzentrum die Tagesganglinien genutzt. Die dabei angewendete Methodik wird in Kapitel 3.2 genauer beschrieben. Die sich hieraus für den MF-Tag ergebenden Ganglinien zeigt die nachfolgende Abbildung 12.

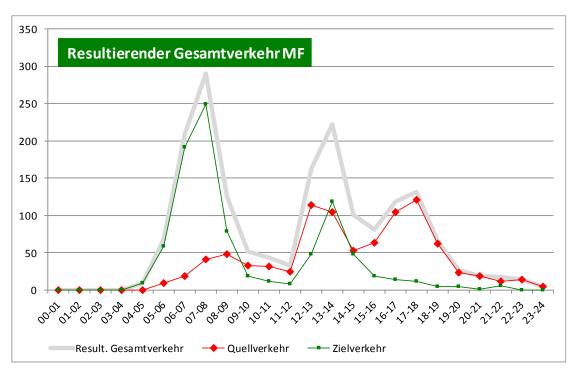


Abbildung 12: Tagesganglinien im Quell- und Zielverkehr sowie resultierende Gesamtbelastung für den Bürokomplex (alle Verkehrsarten) für den MF-Tag (Angaben in Kfz-Fahrten)

Für die Umlegung der zusätzlichen Verkehre aus der Bürobebauung werden sinnvolle Annahmen getroffen. Die nachfolgende Abbildung zeigt die anteilige Verteilung auf das vorhandene Straßennetz im Bereich der Theodorstraße bzw. des Stadtteils Düsseldorf-Rath.

Abbildung 13: Umlegung der Neuverkehre des Bürokomplexes auf das vorhandene Straßennetz (Quelle Luftbild: Geoportal der Landeshauptstadt Düsseldorf)

3.4 Prognose der Verkehrsbelastung

■ Querschnittsbelastungen (Prognose)

Mit den dargestellten räumlichen Verteilungen der Nachfrage des Baumarkt-Fachzentrums und des Büro-Standorts im Netz sowie den unterstellten tageszeitlichen Verteilungen gemäß Tagesganglinien entsteht die Grundlage für die Ermittlung der Prognosewerte für die Querschnittsbelastungen im Bereich des untersuchten Straßennetzes. Diese wird mit der vorhandenen Nachfrage des Ist-Zustandes (Analyse) überlagert.

Damit entstehen für die Prognose der Verkehrsbelastung die nachfolgend dargestellten Querschnittsbelastungen. Die Bedeutung der ausgewiesenen Werte ist in Kapitel 2.6 beschrieben.

Abbildung 14: Werte der Verkehrsstärken an ausgewählten Querschnitten (Prognose-Werte) (Quelle Luftbild: Geoportal der Landeshauptstadt Düsseldorf)

■ Prognose Verkehrsaufkommen Spitzenstunde

Die Verteilung der prognostizierten Verkehrsmengen über den Tag erfolgt getrennt nach Quell- und Zielverkehr mit Hilfe der Tagesganglinien (vgl. Kapitel 3.2 und 3.3). Die induzierten Verkehre aus der Ansiedlung des Baumarkt-Fachzentrums und des Büro-Standorts werden mit den Analyse-Daten (Ist-Zustand) überlagert.

Die Überprüfung der Leistungsfähigkeit erfolgt generell für die höchste Verkehrsbelastung an den jeweiligen Knotenpunkten. Folgenden Spitzenstunden wurden in Auswertung der Erhebungen festgestellt:

- Spitzenstunde am Werktag (Montag bis Freitag) Vormittag: 07:30 Uhr 08:30 Uhr
- Spitzenstunde am Werktag (Montag bis Freitag) Nachmittag: 16:30 Uhr 17:30 Uhr

Da die tageszeitliche Verteilung des Prognose-Verkehrs aufgrund der Tagesganglinien in der Fachliteratur nur über volle Stunden von der "Minute Null" bis zur "Minute Sechzig" (Null) erfolgen kann, wird den Werten der oben genannten Spitzenstunden aus der Zählung der jeweils höhere Wert der angrenzenden Stunde der Prognosewerte (aus der Anwendung der Tagesganglinien) zugeschlagen (z. B. für die Spitzenstunde 16:30 Uhr – 17:30 Uhr der prognostizierte Wert It. Tagesganglinie für die Stunde 17 Uhr – 18 Uhr).

Über die räumliche Verteilung der Nachfrage im Netz können so die Verkehrsbelastungen in der jeweiligen Spitzenstunde an den zu untersuchenden Knotenpunkten richtungsscharf ermittelt werden. Diese Prognosewerte bilden wiederum die Grundlage für die Ermittlung der Leistungsfähigkeiten der einzelnen Knoten.

Die nachfolgenden Abbildungen zeigen die Belastungen für den Prognosefall für die jeweiligen Knotenströme in der Unterscheidung zwischen der Spitzenstunde am Werktag (Montag bis Freitag – MF) am Vormittag (Spitzenstunde MF früh) und am Nachmittag (Spitzenstunde MF spät).

Abbildung 15: Knotenstrombelastungen der werktäglichen Spitzenstunde MF früh (Prognose-Daten) (Quelle Luftbild: Geoportal der Landeshauptstadt Düsseldorf)

Abbildung 16: Knotenstrombelastungen der werktäglichen Spitzenstunde MF spät (Prognose-Daten) (Quelle Luftbild: Geoportal der Landeshauptstadt Düsseldorf)

4 NACHWEIS DER LEISTUNGSFÄHIGKEIT

4.1 Vorgehensweise

Zur Beurteilung der Ansiedlung des Baumarkt-Fachzentrums und des Büro-Standorts sind die Leistungsfähigkeiten an den betroffenen Knotenpunkten zu überprüfen. Die Überprüfung erfolgt für den Werktag MF (Montag bis Freitag) jeweils für die Spitzenstunde am Vormittag und für die Spitzenstunde am Nachmittag.

Der Nachweis kann nach verschiedenen Berechnungsverfahren erfolgen. Diese folgen, wie bereits im Kapitel 2.4 ausgeführt, alle den Grundsätzen des Handbuches für die Bemessung von Straßenverkehrsanlagen (HBS) und berücksichtigen den jeweiligen Ausbau und die Ausstattung der untersuchten Knotenpunkte. Im Ergebnis werden Wartezeiten und Rückstaulängen an den Knotenpunkten zu den Spitzenzeiten berechnet. Das Ergebnis der Prüfung der Leistungsfähigkeit wird nach Qualitätsstufen (QSV) A bis F angegeben, wobei die QSV F als nicht mehr leistungsfähig einzustufen ist. Die genauere Bedeutung der QSV ist ebenfalls im Kapitel 2.4 beschrieben.

Für die Leistungsfähigkeitsuntersuchung der Spitzenstunden am Werktag MF werden die Werte der Stunde von 07:30 Uhr bis 08:30 Uhr in Auswertung der Zähldaten verwendet (Ist-Werte). Dazugerechnet werden die Prognosezahlen für die Ziel- und Quellverkehre der Nutzergruppen des Baumarkt-Fachzentrums und des Büro-Standorts (vgl. auch Kapitel 1).

Analog zu diesem Verfahren erfolgt die Leistungsfähigkeitsuntersuchung für die Spitzenstunde am Nachmittag, die für die Zeit von 16:30 Uhr bis 17:30 Uhr festgestellt wurde.

4.2 Ergebnisse der Leistungsfähigkeitsberechnung

Für die werktägliche Spitzenstunde MF am Vormittag kann an den überprüften Knotenpunkten für die prognostizierten Fahrten die volle Leistungsfähigkeit nachgewiesen werden, d. h. die Qualitätsstufe des Verkehrsablaufs erreicht an allen Knotenpunkten mindestens die QSV D (Tabelle 11).

Für die werktägliche Spitzenstunde MF am Nachmittag kann ebenfalls an den überprüften Knotenpunkten für die prognostizierten Fahrten die volle Leistungsfähigkeit nachgewiesen werden, d. h. die Qualitätsstufe des Verkehrsablaufs erreicht an allen Knotenpunkten mindestens die QSV D (Tabelle 11).

Die nachfolgende Tabelle 11 fasst alle Ergebnisse zur Leistungsfähigkeitsuntersuchung gemäß prognostizierter Belastungswerte (Neuverkehr durch die beschriebenen Planvorhaben und Daten des Ist-Zustandes) zusammen.

			Qı für die wer		stufe QS Spitzens		
Nr. des Knoten- punktes	Ausbau / Ausstattung des Knotens	(Pro	früh gnose-Dat	en)	(Pro	spät gnose-Dat	en)
puliktes		nur Kfz	inkl. Fuß- gänger-/ Radverkehr	ÖPNV	nur Kfz	inkl. Fuß- gänger-/ Radverkehr	ÖPNV
1	Knotenpunkt mit Lichtsignalanlage	D	С	D	D	D	D
2	Knotenpunkt mit Lichtsignalanlage	В	С	-	С	С	-
3	U-Turn (ohne Lichtsignalanlage)	Α	-	-	С	-	-
4	U-Turn (ohne Lichtsignalanlage)	D	-	-	Α	-	-
5	Knotenpunkt mit Lichtsignalanlage	В	-	-	В	-	-
6	Knotenpunkt mit Lichtsignalanlage)	В	С	-	С	С	-
7	Knotenpunkt mit Lichtsignalanlage	В	В	-	В	В	-
8	Kreisverkehr	В	-	-	D	-	-
9	Knotenpunkt mit Lichtsignalanlage	В	D	С	В	D	С
TG	Knotenpunkt ohne Lichtsignalanlage ("rechts rein – rechts raus")	Α	-	-	Α	-	-
ZF1	Knotenpunkt ohne Lichtsignalanlage ("rechts rein – rechts raus")	Α	-	-	Α	-	-
ZF2	Knotenpunkt ohne Lichtsignalanlage	Α	-	-	Α	-	-

Tabelle 11: Ergebnisse der Leistungsfähigkeitsüberprüfung für die Prognose-Verkehrsbelastung für den Werktag (Montag bis Freitag – MF) früh und spät in der Unterscheidung Kfz, Fußgänger-/Radverkehr sowie ÖPNV (nur Knoten 1 und 9)

5 EXTREMTAG-BETRACHTUNG

5.1 Allgemeines

Im Kapitel 4 ist bereits beschrieben, wie sich die künftige Verkehrsnachfrage auf die Leistungsfähigkeiten der betrachteten Knotenpunkte auswirkt. Die vorhandenen Fahrten (Ist-Daten) werden um diejenigen ergänzt, die sich aus der Ansiedlung des Baumarkt-Dachzentrums und des Büro-Standorts generieren. Die dort unterstellte Zahl an Fahrten wird somit verursacht durch die Realisierung der geplanten Bauvorhaben im Bereich der Theodorstraße. Die genauen Belastungswerte (Fahrtenzahlen) werden im Kapitel 3 hergeleitet und beschrieben.

5.2 Nachfrage durch Veranstaltungen im ISS-Dome

Im Rahmen einer Extremtag-Betrachtung wird die Belastung der Spitzenstunde im Netz zusätzlich mit dem Verkehr kombiniert, der von einer Veranstaltung im ISS-Dome generiert wird. Den Erfahrungswerten der Stadt Düsseldorf gemäß müssen näherungsweise 800 Kfz-Fahrten pro Stunde in der Zeit zwischen 17:00 Uhr und 19:00 Uhr unterstellt werden, da in dieser Zeit das Gros der Anfahrten erfolgt. Somit ist die werktägliche Spitzenstunde am Nachmittag betroffen, die Leistungsfähigkeiten der betroffenen Knoten sind für diese Zeit zu überprüfen.

Für die Extremtag-Betrachtung werden für die nachmittägliche Spitzenstunde am Werktag (Montag bis Freitag) zu den Fahrten, die aus dem Ist-Zustand und der Realisierung der beschriebenen Vorhaben im Bereich Theodorstraße generiert werden, weitere 800 Fahrten des ISS-Dome-Veranstaltungsverkehrs zugeschlagen. Dabei wird unterstellt, dass es sich generell um Pkw-Fahrten handelt.

Die angenommene Verteilung und Umlegung dieser Fahrten auf das Straßennetz um die Theodorstraße unter Berücksichtigung der vorhandenen, und für die Anfahrten zum ISS-Dome veröffentlichten Parkmöglichkeiten zeigt die Abbildung 17.

Die Abreisen im Veranstaltungsverkehr erfolgen erfahrungsgemäß nicht vor ca. 22:00 Uhr. Hier sind deshalb durch den dann ohnehin geringen, übrigen Verkehr keine Auswirkungen auf die Leistungsfähigkeiten zu erwarten. Der Abreiseverkehr bleibt daher unberücksichtigt.

Abbildung 17: Unterstellte Verteilung des Veranstaltungsverkehrs (800 Pkw/Stunde) zu den Parkplätzen des ISS-Domes im vorhandenen Straßennetz (Quelle Luftbild: Geoportal der Landeshauptstadt Düsseldorf)

5.3 Prognose Verkehrsaufkommen Spitzenstunde

Auf Basis der Annahmen zur räumlichen Verteilung der Nachfrage im Netz (vgl. Kapitel 3) und der Verteilung des Veranstaltungsverkehrs (vgl. Abbildung 17) kann die Verkehrsbelastung in der werktäglichen Spitzenstunde an den zu untersuchenden Knotenpunkten richtungsscharf für den Extremtag ermittelt werden. Diese Prognosewerte bilden wiederum die Grundlage für die Ermittlung der Leistungsfähigkeiten der einzelnen Knoten.

In der nachfolgenden Abbildung sind die Belastungen für den Prognosefall (Extremtag-Szenario mit den Verkehren aus der Nutzung des Baumarkt-Fachzentrums, des Büro-Standorts und einer ISS-Dome-Veranstaltung) für die jeweiligen Knotenströme für die nachmittägliche Spitzenstunde am Werktag (Montag bis Freitag) dargestellt.

Abbildung 18: Knotenstrombelastungen der werktäglichen Spitzenstunde MF spät für einen Extremtag (Prognose-Daten mit einem Veranstaltungsfall im ISS-Dome)

(Quelle Luftbild: Geoportal der Landeshauptstadt Düsseldorf)

5.4 Überprüfung der Leistungsfähigkeit der betroffenen Knotenpunkte

Für die Spitzenstunde in der Extremtag-Betrachtung (Spitzenstunde am Werktag MF) kann an allen überprüften Knotenpunkten die volle Leistungsfähigkeit nachgewiesen werden, es wird für den Kfz-Verkehr mindestens QSV D erreicht.

Durch die Signalschaltungen verändern sich die Freigabezeiten im Fußgängerverkehr. Hier wird am Knotenpunkt 2 in der Bewertung der Fußgänger-Furten nur die QSV E erreicht. Ohne separate Betrachtung der Furten ergibt sich für den Fußgänger-/Radverkehr die QSV C.

Die QSV E in der Gesamtbewertung nach HBS ist in der verhältnismäßig kurzen Zeit des Extremverkehrs und mit der zu erwartenden, relativ geringen Fußgängerbelastung für die Nutzung der Furten, d. h. für die Querung der Theodorstraße am Knotenpunkt 2, ohne zusätzliche Maßnahmen akzeptierbar.

Nr. des Knoten-	Ausbau / Ausstattung des Knotens	für die Prog	ualitätsstufe QS nosedaten der we MF am Extremtag	erktäglichen
punktes	ues Mioteris	nur Kfz	inkl. Fußgänger-/ Radverkehr	ÖPNV
1	Knotenpunkt mit Lichtsignalanlage	D	D	D
2	Knotenpunkt mit Lichtsignalanlage	D	Е	-
3	U-Turn (ohne Lichtsignalanlage)	D	-	-
4	U-Turn (ohne Lichtsignalanlage)	Α	-	-
5	Knotenpunkt mit Lichtsignalanlage	С	-	-
6	Knotenpunkt mit Lichtsignalanlage)	С	С	-
7	Knotenpunkt mit Lichtsignalanlage	В	В	-
8	Kreisverkehr	D	-	-
9	Knotenpunkt mit Lichtsignalanlage	В	D	D
TG	Knotenpunkt ohne Lichtsignalanlage ("rechts rein – rechts raus")	Α	-	-
ZF1	Knotenpunkt ohne Lichtsignalanlage ("rechts rein – rechts raus")	Α	-	-
ZF2	Knotenpunkt ohne Lichtsignalanlage	Α	-	-

Tabelle 12: Ergebnisse der Leistungsfähigkeitsüberprüfung für die Verkehrsbelastung am Extremtag in der werktäglichen Spitzenstunde am Nachmittag

6 ZUSAMMENFASSUNG

Auf einem bislang nicht bebauten Grundstück zwischen der Theodorstraße und der Straße Am Hülserhof in Düsseldorf-Rath bestehen Planungen für die Errichtung eines Baumarkt-Fachzentrums. Unmittelbar südlich angrenzend an dieses Plangebiet ist an der Theodorstraße ein Bürokomplex mit mehreren Baukörpern geplant. Die Erschließung des Bürokomplexes ist von der Theodorstraße aus vorgesehen.

Die vorliegende Verkehrsuntersuchung prüft die Leistungsfähigkeiten der betroffenen Knotenpunkte im näheren Einzugsbereich der geplanten Bauvorhaben. Dazu werden die Ist-Belastungen dieser Knotenpunkte übernommen, die aus Verkehrszählungen ermittelt wurden. Die Auswirkungen der Ansiedlung von Baumarkt-Fachzentrum und Büro-Standort werden als Prognosebelastungen dargestellt, die aus der Anzahl von Beschäftigten und Mitarbeiter, Lieferanten sowie Besuchern und Kunden ermittelt werden. Für die Verteilung der Nachfrage im umliegenden Straßennetz werden sinnvolle Annahmen getroffen.

Die tageszeitliche Verteilung der Verkehre erfolgt getrennt nach Quell- und Zielverkehr sowie fahrtzweckspezifisch nach normierten Tagesganglinien. Als bemessungsrelevante Spitzenstunden werden die aus Zählungen ermittelten Zeiträume verwendet. Die vormittägliche Spitzenstunde liegt demnach zwischen 07:30 Uhr und 08:30, die nachmittägliche Spitzenstunde zwischen 16:30 Uhr und 17:30 Uhr für den Normalwerktag Montag bis Freitag.

Die künftige Leistungsfähigkeit wird an folgenden Knotenpunkten überprüft:

Knotenpunkt 1	Theodorstraße / Am Hülserhof / Am Röhrenwerk
Knotenpunkt 2	Theodorstraße / Planstraße A / Betriebseinfahrt
Knotenpunkt 3	U-Turn Theodorstraße, östlich
Knotenpunkt 4	U-Turn Theodorstraße, westlich
Knotenpunkt 5	Theodorstraße / Anschlussstelle A 52 D-Rath Ost
Knotenpunkt 6	Theodorstraße / Anschlussstelle A 52 D-Rath West / Gladbecker Straße
Knotenpunkt 7	Am Hülserhof / Zum Gut Heiligendonk
Knotenpunkt 8	Kreisverkehr Volkardeyer Straße / Broichhofstraße
Knotenpunkt 9	Theodorstraße / Zum Gut Heiligendonk / DOME
Knotenpunkt TG	Zufahrt Bürokomplex mit Tiefgarage (TG)
Knotenpunkt ZF1	Zufahrt (ZF) 1 zum Baumarkt-Fachzentrum Am Hülserhof

Die Überprüfung der Leistungsfähigkeit erfolgt als Nachweis der Qualität des Verkehrsablaufs (QSV) mit der im Jahr 2015 neu aufgelegten Ausgabe des Handbuches für die Bemessung von Straßenverkehrsanlagen (HBS) der Forschungsgesellschaft für Straßen- und Verkehrswesen (FGSV). Der Verkehrsablauf an den Knotenpunkten mit Lichtsignalanlagen wird mit Hilfe des Programms AMPEL®, Version 6 überprüft. Der Verkehrsablauf an den

Knotenpunkt ZF2 Zufahrt (ZF) 2 zum Baumarkt-Fachzentrum Zum Gut Heiligendonk

Knotenpunkten ohne Lichtsignalanlagen wird mit dem Simulationsprogramm KNOSIMO, Version 5.2.1 bzw. für den Kreisverkehr mit dem Programm KREISEL, Version 8.1.7 untersucht. Alle Programme wurden von der BPS GmbH Bochum / Ettlingen / Karlsruhe entwickelt. Mit den dort jeweils dargestellten Berechnungsverfahren wird ermittelt, in welcher Qualität des Verkehrsablaufs die zu erwartende Verkehrsbelastung in der Spitzenstunde abgefertigt werden kann.

Im Ergebnis der Leistungsfähigkeitsüberprüfungen können für beide Planungen mit den dafür prognostizierten Verkehrsaufkommen unter Berücksichtigung der heutigen Belastung für die Spitzenstunde am Vormittag und die Spitzenstunde am Nachmittag eines Normalwerktages Montag bis Freitag Qualitätsstufen von A bis D ausgewiesen werden.

Das trifft auch auf den Extremfall zu, in welchem zum Verkehrsaufkommen der nachmittäglichen Spitzenstunde der Verkehr aus der Nachfrage einer Veranstaltung im ISS-Dome hinzugerechnet werden muss. Bis auf den Fußgängerverkehr in den Furten des Knotenpunktes 2, die die QSV E erreichen, wird für die übrigen Verkehre im Knotenpunkt 2 wie an allen anderen Knotenpunkten auch mit der Extrembelastung mindestens die QSV D erreicht. Somit ist an den untersuchten Knotenpunkten die volle Leistungsfähigkeit nachgewiesen.

Damit zeigt die vorliegende Untersuchung insgesamt, dass die verkehrliche Erschließung der geplanten Bauvorhaben im Düsseldorfer Norden durch die vorhandene Infrastruktur mit den Anpassungen durch neue Zufahrten an der Straße "Am Hülserhof" bzw. "Zum Gut Heiligendonk" für das Baumarkt-Fachzentrum und an der Theodorstraße für den Büro-Standort gewährleistet ist.

Düsseldorf, 10.09.2020

Spiekermann GmbH Consulting Engineers

Anke Berndgen

Uwe Heistermann

Spiekermann GmbH Consulting Engineers Fritz-Vomfelde-Str. 12, 40547 Düsseldorf www.spiekermann.de

Anlagen

<u>ANLAGENVERZEICHNIS</u>

Anlage 1 Verkehrsbelastungen im Ist-Zustand

Belastungen der werktäglichen Spitzenstunde (Montag bis Freitag) am **Vormittag** – Darstellung der Knotenströme

Anlage 2 Verkehrsbelastungen im Ist-Zustand

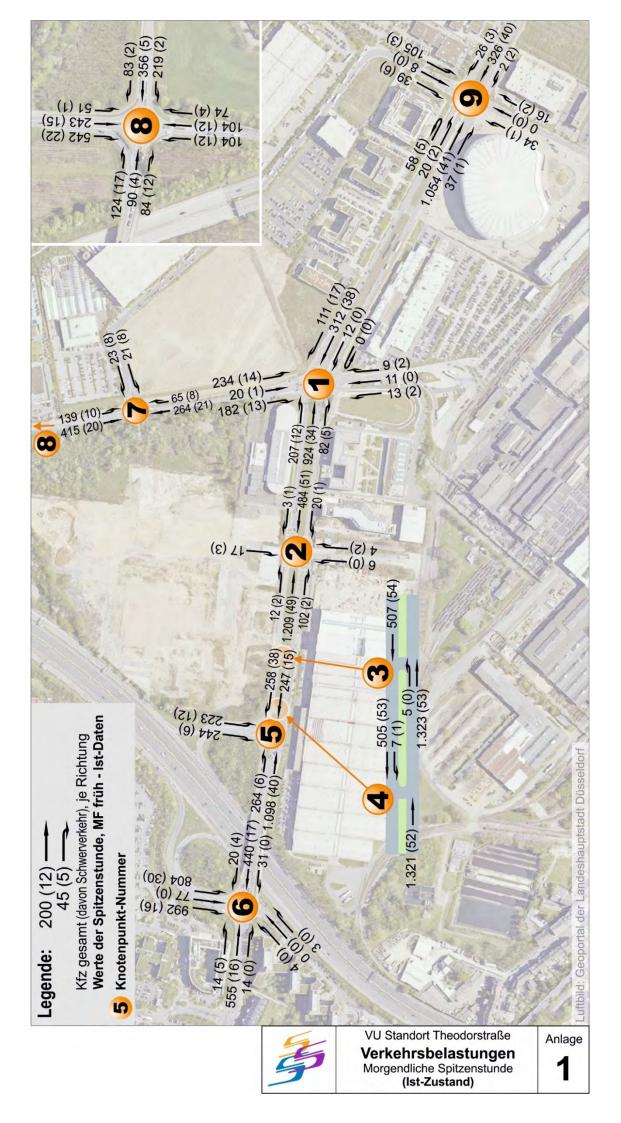
Belastungen der werktäglichen Spitzenstunde (Montag bis Freitag) am **Nachmittag** – Darstellung der Knotenströme

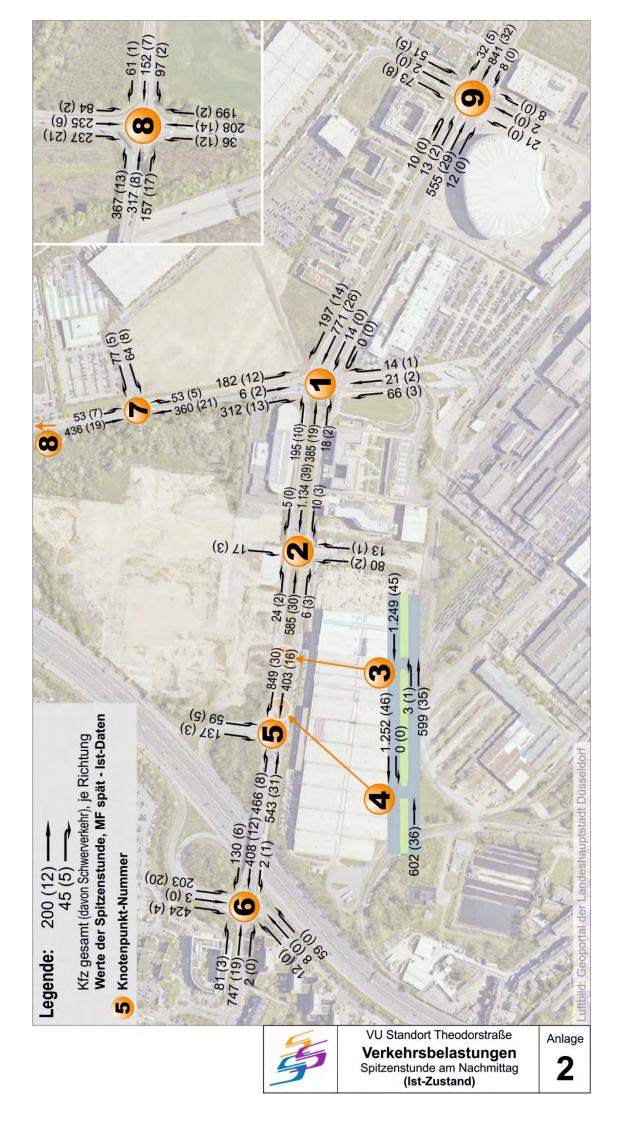
Anlage 3 DTV-Werte im Ist-Zustand (Analyse-Daten)

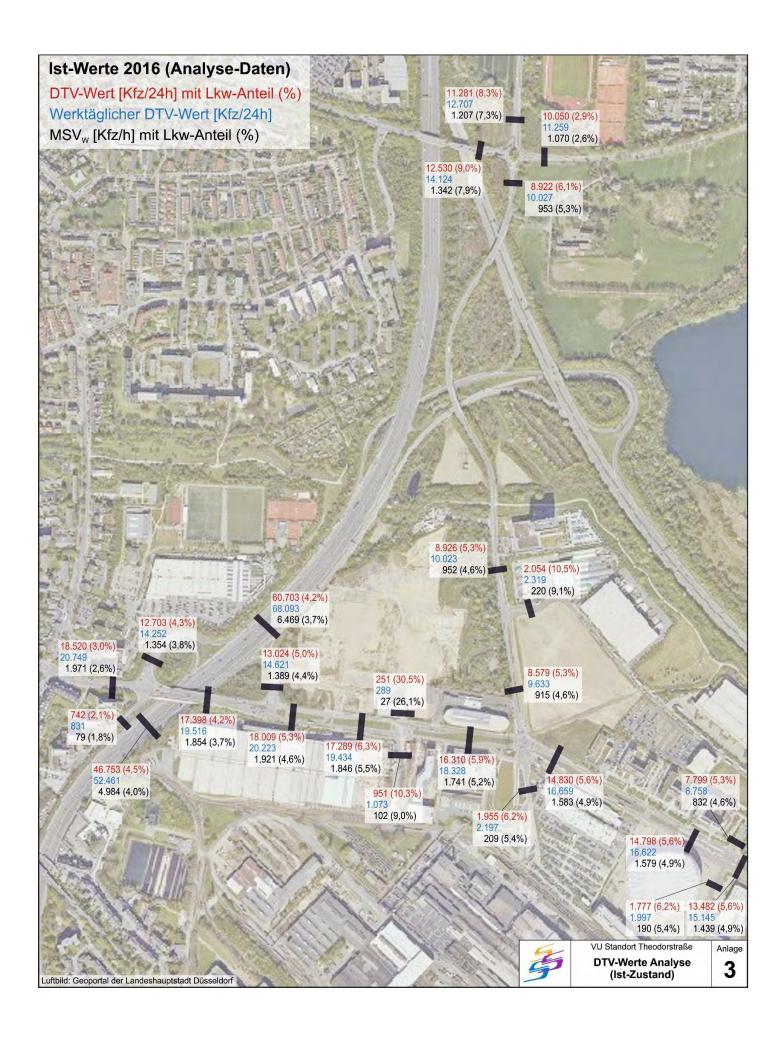
Anlage 4 Verkehrsbelastungen für die Prognose

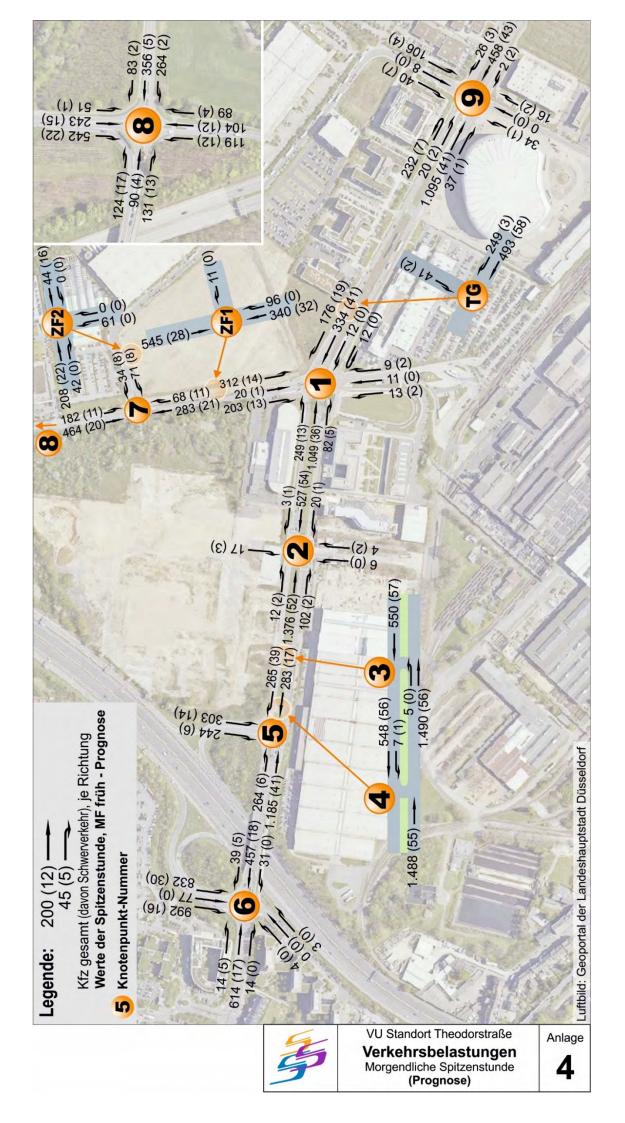
Belastungen der werktäglichen Spitzenstunde (Montag bis Freitag) am **Vormittag** – Darstellung der Knotenströme

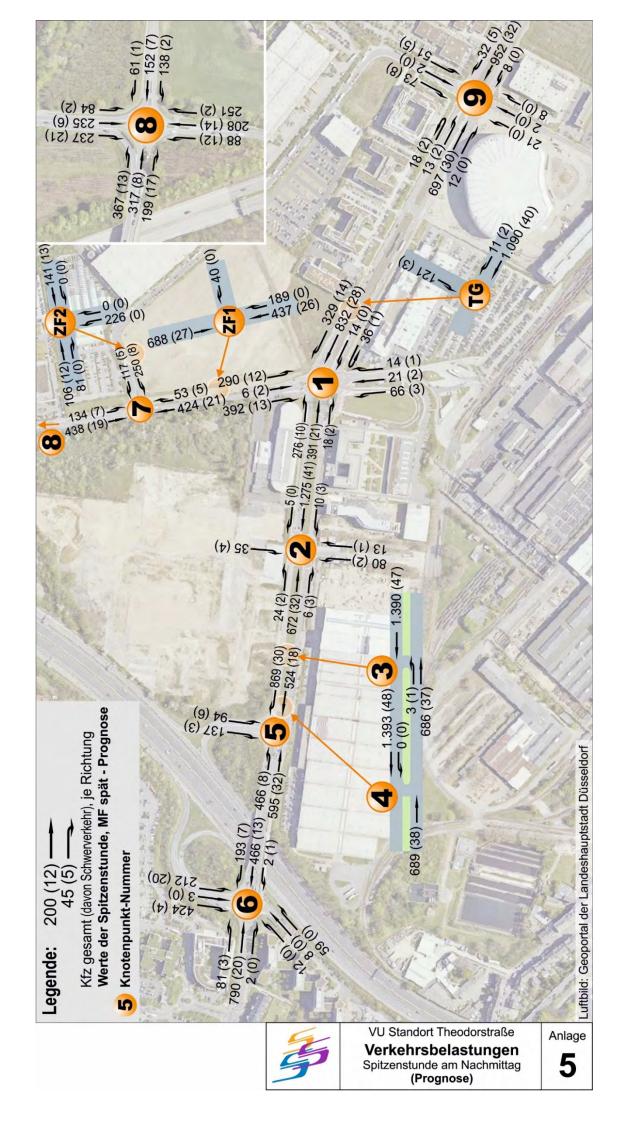
Anlage 5 Verkehrsbelastungen für die Prognose


Belastungen der werktäglichen Spitzenstunde (Montag bis Freitag) am **Nachmittag** – Darstellung der Knotenströme

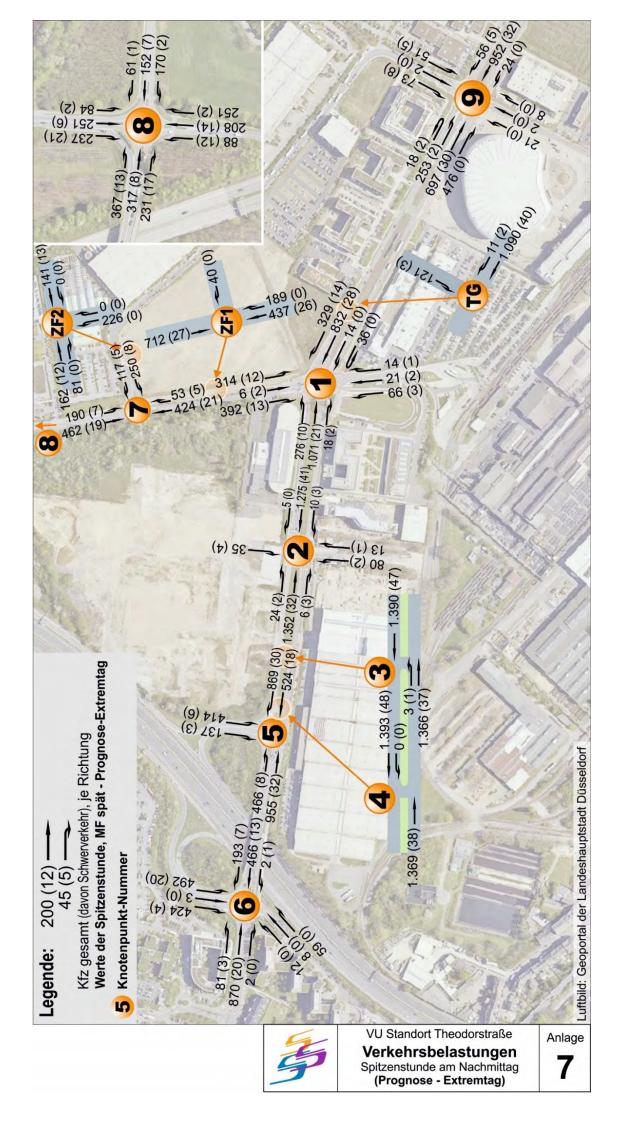

Anlage 6 DTV-Werte für die Prognose-Daten


Anlage 7 Verkehrsbelastungen für die Prognose – Extremtag-Betrachtung


Belastungen der werktäglichen Spitzenstunde (Montag bis Freitag) am **Nachmittag** für den Extremtag (Veranstaltung im ISS-Dome) – Darstellung der Knotenströme


Anhang Im Anhang sind die Formblätter zur Prüfung der Leistungsfähigkeit der Knotenpunkte zusammengestellt.





Anhang

ANHANG-VERZEICHNIS

Anhang 1 Verkehrsbelastungen im lst-Zustand (Analyse)

Belastungen der werktäglichen Spitzenstunde (Montag bis Freitag) am **Vormittag**

- Darstellung der Knotenströme (Verkehrsfluss-Diagramm)
- Formblätter zur Ermittlung der Leistungsfähigkeit (Qualitätsstufe des Verkehrsablaufs – QSV) für die untersuchten Knotenpunkte

Anhang 2 Verkehrsbelastungen im Ist-Zustand (Analyse)

Belastungen der werktäglichen Spitzenstunde (Montag bis Freitag) am **Nachmittag**

- Darstellung der Knotenströme (Verkehrsfluss-Diagramm)
- Formblätter zur Ermittlung der Leistungsfähigkeit (Qualitätsstufe des Verkehrsablaufs – QSV) für die untersuchten Knotenpunkte

Anhang 3 Verkehrsbelastungen für die Prognose

Belastungen der werktäglichen Spitzenstunde (Montag bis Freitag) am **Vormittag**

- Darstellung der Knotenströme (Verkehrsfluss-Diagramm)
- Formblätter zur Ermittlung der Leistungsfähigkeit (Qualitätsstufe des Verkehrsablaufs QSV) für die untersuchten Knotenpunkte und Zufahrten)

Anhang 4 Verkehrsbelastungen für die Prognose

Belastungen der werktäglichen Spitzenstunde (Montag bis Freitag) am **Nachmittag**

- Darstellung der Knotenströme (Verkehrsfluss-Diagramm)
- Formblätter zur Ermittlung der Leistungsfähigkeit (Qualitätsstufe des Verkehrsablaufs QSV) für die untersuchten Knotenpunkte und Zufahrten)

Anhang 5 Verkehrsbelastungen für die Prognose am Extremtag

Belastungen der werktäglichen Spitzenstunde (Montag bis Freitag) am Nachmittag bei Veranstaltungen im ISS-Dome

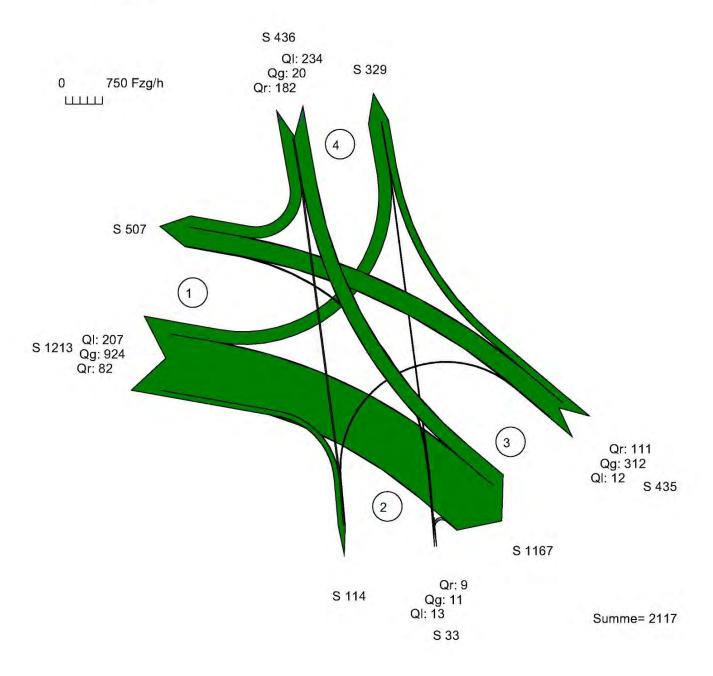
- Darstellung der Knotenströme (Verkehrsfluss-Diagramm)
- Formblätter zur Ermittlung der Leistungsfähigkeit (Qualitätsstufe des Verkehrsablaufs QSV) für die untersuchten Knotenpunkte und Zufahrten)

Anhang 1

Formblätter zur Ermittlung der Leistungsfähigkeit (Qualitätsstufe des Verkehrsablaufs – QSV) für die untersuchten Knotenpunkte mit den Belastungen im Ist-Zustand (Analyse)
Spitzenstunde am Werktag (Montag bis Freitag) früh

Verkehrsfluss-Diagramm

Datei : KV2007-Kn1_MFfrueh_OPNV-reduziert_IST-Daten.amp


Projekt: VU D-Rath, Theodorstraße - Baumarkt-Fachzentrum + Bürostandort (KV2007)

Knoten: KN01 - Am Röhrenwerk/Theodorstr./Am Hülserhof

Stunde: Spitzenstunde MF früh (reduzierte Freigabezeiten wg. ÖPNV) - IST-Daten (Analyse)

Fahrzeuge

Zufahrt 1 : Theodorstraße (west) Zufahrt 2 : Am Röhrenwerk Zufahrt 3 : Theodorstraße (ost) Zufahrt 4 : Am Hülserhof

Form	blatt 1				Knotenpunkt					
1.000	Diate 1				Au	sgangsdaten				
	Knotenpunkt:	KN01 - Am I	Röhrenwerk/	Theodorstr.//	kt-Fachzentru Am Hülserhof			Datum	: Düsseldorf : 27.04.2020	
7 - 10 - 10 - 10 - 10 - 10 - 10 - 10 - 1		Spitzenstund	de MF trun (r	eduzierte Fr	eigabezeiten	wg. OPNV) -	IS I-Dater	(Acressiyases)ei	: un	
	t _U : 70 [s]									
MIZ-VERKE	hrsströme	10 111111		11 TORC 5 T 11	i tazt il		+ 1	Anzahl	Missh	hodinat
Nr.	q _{LV} [Kfz/h]	Q _{Lkw+Bus} [Kfz/h]	q _{LkwK} [Kfz/h]	q _{Kfz} [Kfz/h]	q _{sv} [Kfz/h]	f _{SV} [-]			Misch- fahrstreifen	bedingt verträglic
1	195	0	12			1,087		1	nein	nein
2	890	0	34			1,055		2	nein	nein
3	77	0	5			1,091		1	nein	nein
4	11	0	2			1,231		1	nein	ja
5	11	0	0			1,000		1	ja	nein
6	7	0	2			1,333		1	ja	nein
7	12	0	0			1,000		1	nein	nein
8	274	0	38			1,183		2	nein	nein
9	94	0	17	•		1,230		1	nein	ja
10	220	0	14			1,090		- 1	nein	ja
11	19	0	9			1,075		1	nein	nein
12	169	0	13			1,107		1	nein	ja
Kfz-Fahrs	treifen							7.3.3		3000
Zufahrt	Fahrt- richtung	Nr.	L [m]	b [m]	f _b [-]	R [m]	f _R	s [%]	f _s	L _{LA} /L _{RA}
1	rechts	11	[m]	>= 3,00	1,000	20,00	1,000	0,0	[-] 1,000	[m]
1	gerade	12		>= 3,00	1,000	20,00	1,000	0,0	1,000	
1	gerade	13		>= 3,00	1,000		1,000	0,0	1,000	
1	links	14		>= 3,00	1,000	20,00	1,000	0,0	1,000	
2	rechts	21		>= 3,00	1,000	20,00	1,000	0,0	1,000	
2	gerade	21		>= 3,00	1,000	20,00	1,000	0,0	1,000	
2	links	22	-	>= 3,00	1,000	20,00	1,000	0,0	1,000	5
3	rechts	31		>= 3,00	1,000	20,00	1,000	0,0	1,000	10
3	gerade	32		>= 3,00	1,000	20,00	1,000	0,0	1,000	10
3	gerade	33		>= 3,00	1,000		1,000	0,0	1,000	
3	links	34		>= 3,00	1,000	20,00	1,000	0,0	1,000	
4	rechts	41		>= 3,00	1,000	20,00	1,000	0,0	1,000	3
4	gerade	42		>= 3,00	1,000	20,00	1,000	0,0	1,000	31
4	links	43		>= 3,00	1,000	20,00	1,000	0,0	1,000	50

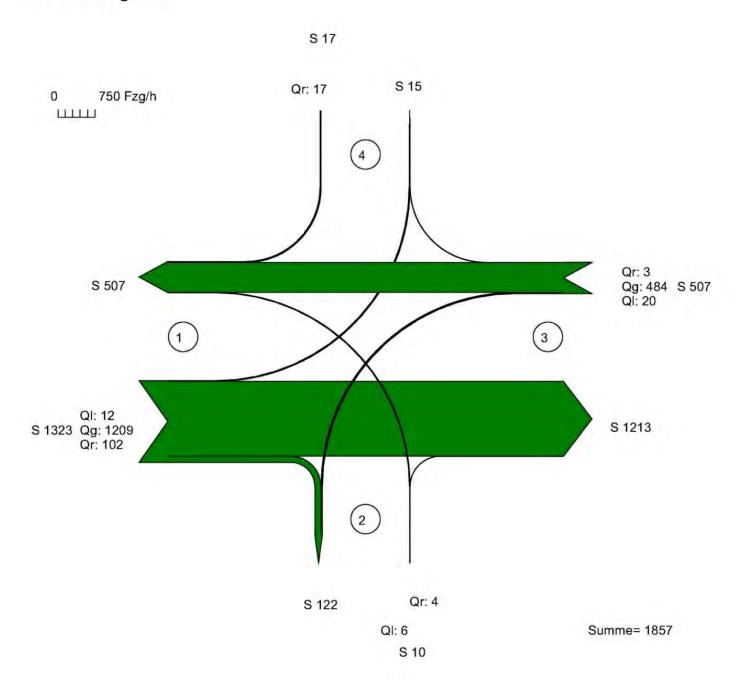
AMPEL Version 6.2.3 Seite 1

Farm	blatt 1			Knotenpunkt	mit Lichtsigr	nalanlage			
FORM	UIALL I			Au	isgangsdate	n			
	Projekt:	VU D-Rath.	Theodorstraße - Ba	aumarkt-Fachzentr	um + Bürost	andort (KV2	007) Stadt	: Düsseldorf	
				orstr./Am Hülserho		10000000		27.04.2020)
Total Control		Spitzenstun	de MF früh (reduzie	erte Freigabezeiten	wg. ÖPNV)	- IST-Daten	(ABreadylsei)ter	: uh	
Umlaufzei	t _U : 70 [s]								
Fußgänge	r-/Radfahrer	furten							1
	Bez.	q_{Fg}	q _{Rad}	1. Furt	2. Furt	3. Furt	4. Furt		
Zufahrt	Signalgr.	[Fg/h]	[Rad/h]	Länge	Länge	Länge	Länge		
		V - 11		[m]	[m]	[m]	[m]		
1	E1	50	20	10		-	1 - 1 - 1 -		
_1\-	E2	50	20	10					
1	E4	50	20	10					
2	F3	50	20	10					
3	E5	50	20	10					
3	E7	50	20	10					
4	F1	50	20	10		1			
4	F2	50	20	10	. — 11	11 - 11			
4	F1+F2	50	20	10	10	10 2 3 1			
4	F2+F1	50	20	10	10				

Form	blatt 2					kt mit Lichtsi				
76-170	E1047 E1			Berechn	ung der Grur	ndlagendater	für den Kfz	-Verkehr		
	the second secon	: VU D-Rath,					andort (KV20	007) Stadt	Düsseldorf	
		t: KN01 - Am					-3-3-3-5-7-F		27.04.2020	
		t: Spitzenstun			eigabezeiten	wg. ÖPNV)	- IST-Daten	(ABreadylsæi)ter	; uh	
Kfz-Verke	hrsströme -	Kapazitäten	(strombezo	gen)						
Nr.	Bez. SG	t _{B,i} [s]	q _{s,i} [Kfz/h]	t _{F,i} [s]	C _{0,j} [Kfz/h]	C _{D,i} [Kfz/h]	C _{PW,i} [Kfz/h]	C _{GF,i} [Kfz/h]	C _{LA,i} [Kfz/h]	C _{RA,i} [Kfz/h]
1	CL	1,957	1840	14	394				77	
2	С	1,899	1896	20	569					
3	CR	1,965	1832	21	576					
4	В	2,215	1625	5	139	55	383		139	
5	В	1,800	2000	5	171		1 = 1			
6	В	2,400	1500	5	129	1				
7	DL	1,800	2000	7	229					
8	D	2,129	1691	19	483					
9	D	2,214	1626	19	465					46
10	А	1,962	1835	13	367	42	393		367	
11	А	1,935	1860	13	372					
12	AR	1,993	1806	23	619	152	232			38-
Kfz-Verke	East	Kapazitäten								
Nr.	Bez, SG	q _j [Kfz/h]	q _G [Kfz/h]	q _{RA} [Kfz/h]	q _{LA} [Kfz/h]	n _k [Kfz]	N _{MS,90,j} [Kfz]	C _{K,j} [Kfz/h]	C _{M,j} [Kfz/h]	C _j [Kfz/h]
11	CR	82	1	82			3,118		4-4	57
12	С	462	462			11	17,612			56
13	С	462	462				17,612		1111	56
14	CL	207			207		7,721			39
21	В	20	11	9			1,576		149	
22	В	13			13		1,201			13
31	D	111	1	111			4,121			46
32	D	156	156				5,421			48
33	D	156	156				5,421			48
34	DL	12			12		1,064		11 -	22
41	AR	182		182			6,864			38
42	А	20	20			- 1	1,341			37
43	А	234			234		9,201			36
									11	

Form	platt 3				Knotenpunk	t mit Lichtsig	nalanlage			
, or m	and to				Berechnung	der Verkehr	squalitäten			
	(notenpunkt:	KN01 - Am	Röhrenwerk/	Theodorstr.//	Am Hülserho	f		07) Stadt <u>: I</u> Datum: <u>:</u> Ærædylse i)er: i	27.04.2020	
				rstreifenbez		ng. O. III)	TO T DUIGHT	, and any and a second	411	
TALL VOING	Bez.	Ströme	q _i	x _j	f _{A,j}	$N_{GE,j}$	N _{MS,j}	L 95,j	t _{W,j}	QSV
Nr.	SG	Olionio	با [Kfz/h]	ث [-]	[-]	[Kfz]	[Kfz]	[m]	[s]	[-]
11	CR	3	82	0,142	0,31	0,093	1,237	20	17,8	Α
12	С	2	462	0,812	0,30	3,489	11,802	112	44,7	С
13	С	2	462	0,812	0,30	3,489	11,802	112	44,7	C
14	CL		207	0,525	0,21	0,675	4,239	50	30,5	В
21	В	5, 6	20	0,134	0,09	0,086	0,446	11	31,7	В
22	В	4	13	0,094	0,09	0,057	0,290	9	31,0	В
31	D	9	111	0,239	0,29	0,178	1,832	30	20,5	В
32	D	8	156	0,323	0,29	0,275	2,662	38	21,7	В
33	D	8	156	0,323	0,29	0,275	2,662	38	21,7	В
34	DL	7	12	0,052	0,11	0,031	0,238	6	28,1	В
41	AR	12	182	0,474	0,21	0,539	3,638	46	29,2	В
42	Α	11	20	0,054	0,20	0,031	0,346	9	23,0	В
43	Α	10	234	0,638	0,20	1,134	5,306	60	36,8	С
Gesamt			2117						34,9	
a year to open the and	r- /Radfahre	rfurten			1,000					
Zufahrt	Bez. SG	q _{Fg} [Fg/h]	q _{Rad} [Rad/h]	Anzahl Furten	t _{W.max} [s]					QSV [-]
1	E1	50	20	1	42					C
1	E2	50	20	1	42					С
1	E4	50	20	L Mil	34					В
2	F3	50	20	1	50					С
3	E5	50	20	1	34					В
3	E7	50	20	1	55					С
4	F1	50	20	1	47					С
4	F2	50	20	1	39					В
4	F1+F2	50	20	2	50					С
4	F2+F1	50	20	2	47					С
								Gesamtb	ewertung:	С

Verkehrsfluss-Diagramm


Datei : KV2007-Kn2_MFfrueh_IST-Daten.amp

Projekt: VU D-Rath, Theodorstraße - Baumarkt-Fachzentrum + Bürostandort (KV2007)

Knoten: KN02 - Theodorstr./Planstr. A/Betriebseinfahrt Stunde: Spitzenstunde MF früh - IST-Daten (Analyse)

Fahrzeuge

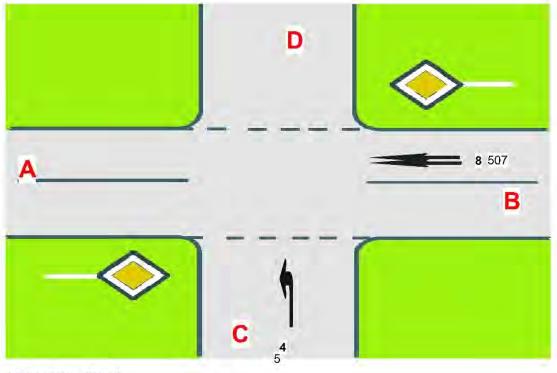
Zufahrt 1 : Theodorstraße (west) Zufahrt 2 : Betriebszufahrt Zufahrt 3 : Theodorstraße (ost)

Zufahrt 4 : Planstr. A

Form	blatt 1					mit Lichtsign usgangsdate				
	Projekt:	VU D-Rath.	Theodorstral	ße - Baumari				007) Stadt	: Düsseldorf	
	Knotenpunkt:								22.04.2020	
3	Zeitabschnitt:	Spitzenstun	de MF früh -	IST-Daten (A	Analyse)			Bearbeiter	: uh	
Umlaufzeit	t t _U : 70 [s]		1	32.1						
Kfz-Verke	hrsströme									
Nr.	q _{LV}	q _{Lkw+Bus} [Kfz/h]	q _{LkwK} [Kfz/h]	q _{Kfz} [Kfz/h]	q _{SV} [Kfz/h]	f _{SV}	174	Anzahl	Misch- fahrstreifen	bedingt verträglic
1	[Kfz/h] 10	0	2	[KIZ/H]	[KIZ/II]	[-] 1,250	1	1	nein	nein
2	1160	0	49			1,061		2	nein	nein
3	100	0	2			1,029		1	nein	
4	6	0	0			1,000		1	nein	ja
5	2	0	2			1,750		1	nein	ja ja
6	19	0	1			1,075		1	nein	nein
7	433	0	51		1	1,073		2		
8	433	0	1			1,500		1	nein nein	nein ja
9	14	0	3			1,265		1	nein	nein
						1,200			TION .	Hour
Kfz-Fahrs										
Zufahrt	Fahrt- richtung	Nr.	L [m]	b [m]	f _b [-]	R [m]	f _R [-]	s [%]	f _s [-]	L _{LA} /L _{RA} [m]
1	rechts	11		>= 3,00	1,000	20,00	1,000	0,0	1,000	50
1	gerade	12		>= 3,00	1,000		1,000	0,0	1,000	
1	gerade	13		>= 3,00	1,000	+	1,000	0,0	1,000	
1	links	14		>= 3,00	1,000	20,00	1,000	0,0	1,000	
2	rechts	21		>= 3,00	1,000	20,00	1,000	0,0	1,000	30
2	links	22		>= 3,00	1,000	20,00	1,000	0,0	1,000	30
3	rechts	31		>= 3,00	1,000	20,00	1,000	0,0	1,000	80
3	gerade	32		>= 3,00	1,000	$=$ α	1,000	0,0	1,000	
3	gerade	33		>= 3,00	1,000	4	1,000	0,0	1,000	
3	links	34		>= 3,00	1,000	20,00	1,000	0,0	1,000	11
4	rechts	41		>= 3,00	1,000	20,00	1,000	0,0	1,000	
Fußgänge	er-/Radfahrer	furten								
Zufahrt	Bez. Signalgr.	q _{Fg} [Fg/h]	q _{Rad} [Rad/h]		1, Furt Länge [m]	2. Furt Länge [m]	3. Furt Länge [m]	4. Furt Länge [m]		
1	E1	50	20		10					ļ,
1	E2	50	20		10					7
2	F2	50	50		10					
3	E3	50	20		10				1	,
3	E4	50	20		10		1		11 = 1	1
4	F1	50	50		10					1
1	E1+E2	50	20		10	10				
1	E2+E1	50	20		10	10				11
3	E4+E3	50	20		10	10				
	6.2.3E3+E4	50	20		10	10				1

Form	blatt 2				Knotenpun	kt mit Lichts	ignalanlage			
1.51/1				Berechn	ung der Grui	ndlagendate	n für den Kfz	-Verkehr		
	Projekt	: VU D-Rath.	Theodorstra	ße - Baumar	kt-Fachzentr	um + Büros	tandort (KV20	(07) Stadt	: Düsseldorf	
		: KN02 - The							22.04.2020	
		: Spitzenstun			Analyse)			Bearbeiter	: uh	
Kfz-Verke	hrsströme -	Kapazitäten	(strombezo	gen)						
Nr.	Bez. SG	t _{B,i} [s]	q _{S,i} [Kfz/h]	t _{F,i} [s]	C _{0,i} [Kfz/h]	C _{D,i} [Kfz/h]	C _{PW,i} [Kfz/h]	C _{GF,i} [Kfz/h]	C _{LA,i} [Kfz/h]	C _{RA,i} [Kfz/h]
1_	CL	2,250	1600	5	137				2-5	
2	С	1,909	1886	31	862					11 -
3	С	1,853	1943	31	888					80
4	В	1,800	2000	12	371				316	
5	В	3,150	1143	12	212					164
6	DL	1,935	1860	5	159					
7	D	2,085	1727	16	419					
8	D	2,700	1333	16	324					324
9	A	2,276	1582	5	136					
	17 1 2 1									
	10000									
							11			
Kfz-Vorke	hreetröme -	Kapazitäten	(fabretroifo	nhezogen)						
Miz-Verke	Bez.				0	n.	N _{MS,90,j}	C _{K,j}	C _{M,j}	Ci
Nr.	SG	q _j [Kfz/h]	q _G [Kfz/h]	9 _{RA} [Kfz/h]	q _{LA} [Kfz/h]	n _k [Kfz]	[Kfz]	[Kfz/h]	[Kfz/h]	[Kfz/h]
11	С	102		102			3,236			807
12	C	604	604				16,628			862
13	С	604	604				16,628			862
14										
14, 31	CL	12			12		1,144			137
21	CL B	12 4		4	12		1,144 0,561			
21 22				4	6		1000			164
	В	4		3			0,561			16 ⁴
22	В	4	242				0,561 0,668			164 316 324
22 31	B B D	4 6 3	242 242				0,561 0,668 0,425			164 316 324 419
22 31 32	B B D	4 6 3 242					0,561 0,668 0,425 8,781			164 316 324 419 419
22 31 32 33	B B D D	4 6 3 242 242			6		0,561 0,668 0,425 8,781 8,781			164 316 324 419 419
22 31 32 33 34	B B D D D D	4 6 3 242 242 20		3	6		0,561 0,668 0,425 8,781 8,781 1,561			16- 310 32- 419 419 159
22 31 32 33 34	B B D D D D	4 6 3 242 242 20		3	6		0,561 0,668 0,425 8,781 8,781 1,561			164 316 324 419 419
22 31 32 33 34	B B D D D D	4 6 3 242 242 20		3	6		0,561 0,668 0,425 8,781 8,781 1,561			164 316 324 419 419
22 31 32 33 34	B B D D D D	4 6 3 242 242 20		3	6		0,561 0,668 0,425 8,781 8,781 1,561			164 316 324 419 419
22 31 32 33 34	B B D D D D	4 6 3 242 242 20		3	6		0,561 0,668 0,425 8,781 8,781 1,561			164 316 324 419 419
22 31 32 33 34	B B D D D D	4 6 3 242 242 20		3	6		0,561 0,668 0,425 8,781 8,781 1,561			164 316 324 419 419
22 31 32 33 34	B B D D D D	4 6 3 242 242 20		3	6		0,561 0,668 0,425 8,781 8,781 1,561			164 316 324 419 419
22 31 32 33 34	B B D D D D	4 6 3 242 242 20		3	6		0,561 0,668 0,425 8,781 8,781 1,561			164 316 324 419 419
22 31 32 33 34	B B D D D D	4 6 3 242 242 20		3	6		0,561 0,668 0,425 8,781 8,781 1,561			137 164 316 324 419 159 136

Form	blatt 3				Knotenpunk	t mit Lichtsig	gnalanlage			
1 011111	Jidit 0				Berechnung	der Verkehr	squalitäten			
		VU D-Rath,	THE COUNTY OF THE COUNTY	AT A THE STATE OF THE		ım + Bürosta	andort (KV20		Düsseldorf	
		KN02 - The							22.04.2020	
1.9. I Salt J		Spitzenstun						Bearbeiter:	uh	
Kfz-Verkel	nrsströme -	Verkehrsqu	alitäten (fah	rstreifenbez	ogen)	0	i i		n	ED4.DX
Nr.	Bez. SG	Ströme	q _j [Kfz/h]	x _j [-]	f _{A.j} [-]	N _{GE,j} [Kfz]	N _{MS.j} [Kfz]	L _{95,j} [m]	t _{W.j} [s]	QSV [-]
11	С	3	102	0,126	0,42	0,081	1,304	20	13,0	Α
12	С	2	604	0,701	0,46	1,635	11,015	106	22,0	В
13	С	2	604	0,701	0,46	1,635	11,015	106	22,0	В
14	CL	1	12	0,088	0,09	0,053	0,268	9	30,9	В
21	В	5	4	0,024	0,14	0,014	0,081	6	26,1	В
22	В	4	6	0,019	0,16	0,011	0,109	4	25,0	В
31	D	8	3	0,009	0,24	0,005	0,049	4	20,2	В
32	D	7	242	0,578	0,24	0,855	4,999	61	30,7	В
33	D	7	242	0,578	0,24	0,855	4,999	61	30,7	В
34	DL	6	20	0,126	0,09	0,080	0,440	10	31,4	В
41	Α	9	17	0,125	0,09	0,080	0,385	11	31,7	В
		1 - 1								
Gesamt			1856						24,0	
Fußgänge	r- /Radfahre	rfurten								
Zufahrt	Bez. SG	q _{Fg} [Fg/h]	q _{Rad} [Rad/h]	Anzahl Furten	t _{W,max} [s]		11			QSV [-]
1	E1	50	20	44)14	49					С
1	E2	50	20	1	41					С
2	F2	50	50	11	41					С
3	E3	50	20	1-77	31					В
3	E4	50	20	9-	44					С
4	F1	50	50	1	23					Α
1	E1+E2	50	20	2	49					С
1	E2+E1	50	20	2	49					С
3	E4+E3	50	20	2	44				1. = 1	С
3	E3+E4	50	20	2	44					С
								Gesamtb	ewertung:	С


Übersicht von 07:30 bis 08:30

Knotenpunktbezeichung: Knoten 3 - U-Turn Theodorstraße (östlich)

Spitzenstunde MF früh - IST-Daten (Analyse)

: KV2007-Kn3_MFfrueh_IST-Daten.EIN Name der Datei

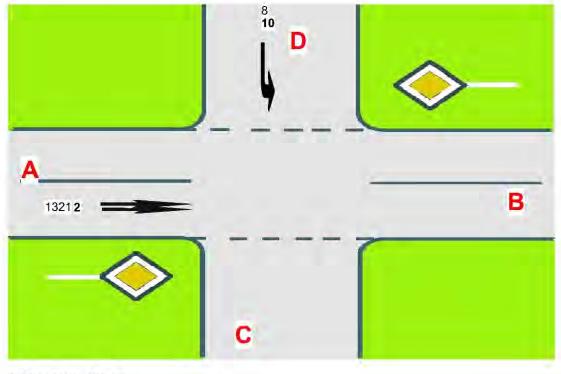
					ı	Übersic	ht von	07:30 b	ois 08:3	30					
Strom	VZ	VZ	VZ	VZ	RS	RS	RS	RS	н	Н	Н	Fz.	Fz.	Fz.	QSV
	ges	mitt	85%	max	mitt	85%	95%	max	ges	mitt	max	ang.	abg.	wart.	
	[min]	[sec]	[sec]	[sec]	[Kfz]	[Kfz]	[Kfz]	[Kfz]	[-]	[-]	[-]	[Kfz]	[Kfz]	[Kfz]	[-]
4	1,1	14,3	21,0	41,0	0,0	0	0	2	5	1,0	2	5	5	0	A
8	0,0	0,0	0,0	0,0	0,0	0	0	0	0	0,0	0	507	507	0	A
Sum	1,1	0,1		41,0	0,0			2		0,0	2	512			
					ľ	Îbersic	ht van	07:30 b	ois 08:3	so.					

A=Theodorstr. (West) C=U-Turn B=Theodorstr. (Ost)

Spiekermann GmbH Consultung Engineers

Düsseldorf

Bearbeiter: uh


Übersicht von 07:30 bis 08:30

Knotenpunktbezeichung: Knoten 4 - U-Turn Theodorstraße (westlich)

Spitzenstunde MF früh - IST-Daten (Analyse)

Name der Datei : KV2007-Kn4_MFfrueh_IST-Daten.EIN

					ι	Übersic	ht von	07:30 ხ	ois 08:3	0					
Strom	VZ	VZ	VZ	VZ	RS	RS	RS	RS	Н	H	Н	Fz.	Fz.	Fz.	QSV
	ges	mitt	85%	max	mitt	85%	95%	max	ges	mitt	max	ang.	abg.	wart.	
	[min]	[sec]	[sec]	[sec]	[Kfz]	[Kfz]	[Kfz]	[Kfz]	[-]	[-]	[-]	[Kfz]	[Kfz]	[Kfz]	[-]
2	0,0	0,0	0,0	0,0	0,0	0	0	0	0	0,0	0	1313	1313	0	Α
10	4,2	32,0	56,0	187,5	0,1	0	1	2	8	1,0	2	8	8	0	C
Sum	4,2	0,2		187,5	0,0			2		0,0	2	1321			
					ľ	bersic	ht von	07:30 b	ois 08:3	30					

A=Theodorstr. (West)

C=-

B=Theodorstr. (Ost)

D=U-Turn

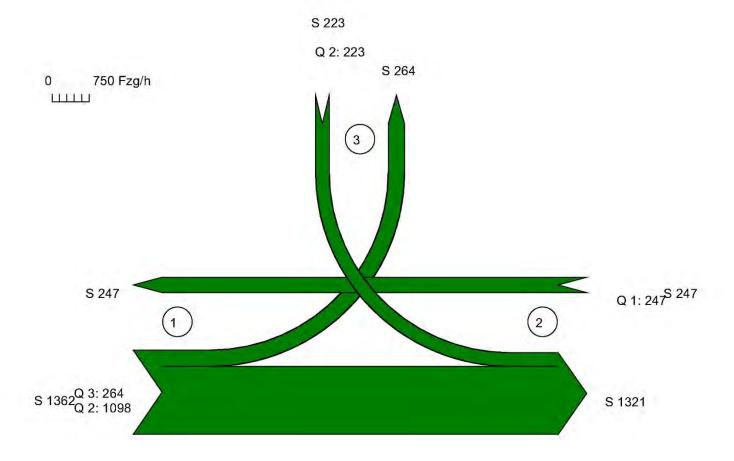
Spiekermann GmbH Consultung Engineers

Düsseldorf

Bearbeiter: uh

Verkehrsfluss-Diagramm

Datei : KV2007-Kn5_MFfrueh_IST-Daten.amp


Projekt: VU D-Rath, Theodorstraße - Baumarkt-Fachzentrum + Bürostandort (KV2007)

Knoten: KN05 - Abfahrt A52 Ost/Theodorstr.

Stunde : Spitzenstunde MF früh - IST-Daten (Analyse)

Fahrzeuge

Summe= 1832

Zufahrt 1 : Theodorstraße (west) Zufahrt 2 : Theodorstraße (ost) Zufahrt 3 : Zu-/Abfahrt A52

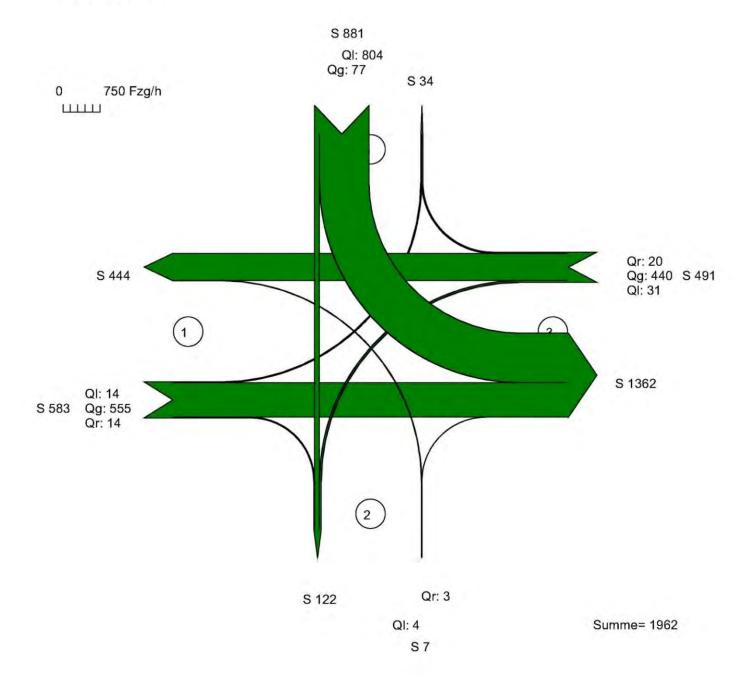
Formblatt 1		Knotenpunkt mit Lichtsignalanlage									
		Ausgangsdaten									
	and the second second				kt-Fachzentr	um + Bürosta	andort (KV2		: Düsseldorf		
	Knotenpunkt:								Datum: 22.04.2020		
	Zeitabschnitt:	Spitzenstun	de MF fruh -	IST-Daten (A	Analyse)			Bearbeiter	: uh		
	tլ: 70[s]										
Kfz-Verke	hrsströme										
Nr.	q _{LV} [Kfz/h]	q _{Lkw+Bus} [Kfz/h]	q _{LkwK} [Kfz/h]	q _{Kfz} [Kfz/h]	q _{sv} [Kfz/h]	f _{sv} [-]		Anzahl Fahrstreifen	Misch- fahrstreifen	bedingt verträglic	
1	258	Ö	6		1	1,034		2	nein	nein	
2	1058	0	40			1,055		2	nein	nein	
3	232	0	15			1,091		2	nein	nein	
4	211	0	12			1,081		2	nein	nein	
Kfz-Fahrs	treifen	1,				1				,	
	Fahrt-		L	ь	f _b	R	f _R	s	f _s	L _{LA} /L _{RA}	
Zufahrt	richtung	Nr.	[m]	[m]	[-]	[m]	[-]	[%]	[-]	[m]	
1	gerade	11	1,01	>= 3,00	1,000		1,000	0,0	1,000	1,-1	
1	gerade	12		>= 3,00	1,000	-	1,000	0,0	1,000		
1	links	13		>= 3,00	1,000	20,00	1,000	0,0	1,000		
1	links	14		>= 3,00	1,000	20,00	1,000	0,0	1,000		
2	gerade	21		>= 3,00	1,000	1 - 2	1,000	0,0	1,000		
2	gerade	22		>= 3,00	1,000		1,000	0,0	1,000		
3	links	31		>= 3,00	1,000	20,00	1,000	0,0	1,000		
3	links	32		>= 3,00	1,000	20,00	1,000	0,0	1,000		
	r-/Radfahrer			*****			- A-1-7-TV		, , , , , , , , , , , , , , , , , , , ,		
	Bez.	q _{Fg}	q _{Rad}		1. Furt	2. Furt	3. Furt	4. Furt			
Zufahrt	Signalgr.	[Fg/h]	[Rad/h]		Länge	Länge	Länge	Länge			
Zulariit		r. 21	1.33,33,101		[m]	[m]	[m]	[m]			

Formblatt 2		Knotenpunkt mit Lichtsignalanlage Berechnung der Grundlagendaten für den Kfz-Verkehr									
		: VU D-Rath.			kt-Fachzentr	um + Büros	tandort (KV20				
	The second secon	t: KN05 - Abfa			A.2.26.633V				22.04.2020		
		t: Spitzenstun			Analyse)			Bearbeiter	un		
Ktz-Verke		Kapazitäten						1.745			
Nr.	Bez. SG	t _{B,j} [s]	q _{s,i} [Kfz/h]	t _{F,i} [s]	C _{0,i} [Kfz/h]	C _{D,i} [Kfz/h]	C _{PW,I} [Kfz/h]	C _{GF,i} [Kfz/h]	C _{LA,i} [Kfz/h]	C _{RA,i} [Kfz/h]	
-1	CL	1,861	1934	9	276						
2	C	1,898	1897	45	1246						
3	D	1,964	1833	31	838						
4	AL	1,945	1851	11	317						
Kfz-Verke	hrsströme -	- Kapazitäten	(fahrstreife	nbezogen)							
Nr.	Bez. SG	q _j [Kfz/h]	q _G [Kfz/h]	q _{RA} [Kfz/h]	q _{LA} [Kfz/h]	n _k [Kfz]	N _{MS,90,j} [Kfz]	C _{K,j} [Kfz/h]	C _{M,j} [Kfz/h]	C _j [Kfz/h]	
11	С	549	549		7.5	: :	9,634			1246	
12	С	549	549				9,634			1246	
13	CL	132			132		5,793			276	
14	CL	132			132		5,793			276	
21	D	124	124				3,573			838	
22	D	124	124				3,573			838	
31	AL	112			112		4,767			31	
32	AL	112			112		4,767			31	
	1										
					1					1	

Formblatt 3		Knotenpunkt mit Lichtsignalanlage									
		Berechnung der Verkehrsqualitäten									
Projekt: <u>VU D-Rath, Theodorstraße - Baumarkt-Fachzentrum + Bürostandort (KV20</u> 07) Stadt: <u>Düsseldorf</u> Knotenpunkt: <u>KN05 - Abfahrt A52 Ost/Theodorstr.</u> Datum: <u>22.04.2020</u> Zeitabschnitt: Spitzenstunde MF früh - IST-Daten (Analyse) Bearbeiter: uh											
								Bearbeiter:	un		
Atz-verken		- Verkehrsqu				- I	i i	. 1	. 1	001/	
Nr.	Bez. SG	Ströme	q _j [Kfz/h]	× _j [-]	f _{A,j} [-]	N _{GE,j} [Kfz]	N _{MS,j} [Kfz]	L _{95,j} [m]	t _{W,j} [s]	QSV [-]	
11	C	2	549	0,441	0,66	0,469	5,623	61	7,2	Α	
12	С	2	549	0,441	0,66	0,469	5,623	61	7,2	Α	
13	CL	1	132	0,478	0,14	0,547	2,909	36	34,7	В	
14	CL	1	132	0,478	0,14	0,547	2,909	36	34,7	В	
21	D	3	124	0,148	0,46	0,097	1,501	23	11,5	Α	
22	D	3	124	0,148	0,46	0,097	1,501	23	11,5	Α	
31	AL	4	112	0,353	0,17	0,316	2,237	31	29,2	В	
32	AL	4	112	0,353	0,17	0,316	2,237	31	29,2	В	
= {	1										
Gesamt		(C. 1 1)	1834			- 11			14,4		
Fußgänger	- /Radfahr	erfurten		1			-	- 1	T.		
Zufahrt	Bez. SG	q _{Fg} [Fg/h]	q _{Rad} [Rad/h]	Anzahl Furten	t _{w,max} [s]				111	QSV [-]	
									1 = -		
		0.0	10 7 91			10	1000	Gesamtb	В		

Verkehrsfluss-Diagramm

Datei : KV2007-Kn6_MFfrueh_IST-Daten.amp


Projekt: VU D-Rath, Theodorstraße - Baumarkt-Fachzentrum + Bürostandort (KV2007)

Knoten: KN06 - Abfahrt A52 West/Theodorstr./Gladbecker Str.

Stunde: Spitzenstunde MF früh - IST-Daten (Analyse)

Fahrzeuge

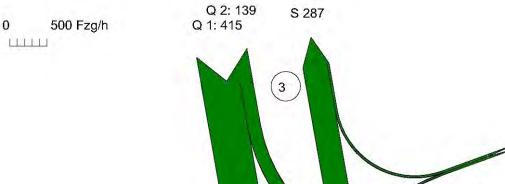
Zufahrt 1 : Theodorstraße (west) Zufahrt 2 : Gladbecker Straße Zufahrt 3 : Theodorstraße (ost) Zufahrt 4 : Zu-/Abfahrt A52

Form	blatt 1				Knotenpunkt	mit Lichtsigr	nalanlage			
Form	Diatt 1				A	usgangsdate	n			
	Projekt: Knotenpunkt: Zeitabschnitt:		hrt A52 Wes	t/Theodorstr	./Gladbecker		andort (KV2		: 22.04.2020	
for your residence	tt _u : 70 [s]									
	hrsströme									
Nr.	q _{LV} [Kfz/h]	q _{Lkw+Büs} [Kfz/h]	q _{LkwK} [Kfz/h]	q _{Kfz} [Kfz/h]	q _{SV} [Kfz/h]	f _{SV} [-]	ni ū	Anzahl Fahrstreifer	Misch- fahrstreifen	bedingt verträglic
1	9	0	5			1,536		1	nein	nein
2	539	0	16			1,043		2	ja	nein
3	14	0	0			1,000		1	ja	ja
4	4	0	0			1,000		1	nein	ja
5	0	0	0			1,000		1	ja	nein
6	3	0	0			1,000		1	ja	nein
7	31	0	0			1,000		1	nein	nein
8	423	0	17			1,058		2	ja	nein
9	16	0	4			1,300		1	ja	nein
10	774	Ö	30			1,056		2	nein	nein
11	77	0	0			1,000		1	nein	ja
Kfz-Fahrs	traifan									
NIZ-Fallis	Fahrt-		- 6	b	100	R				1 4
Zufahrt	richtung	Nr.	[m]	[m]	f _b [-]	[m]	f _R [-]	s [%]	f _s [-]	L _{LA} /L _{RA} [m]
-1	rechts	11		>= 3,00	1,000	20,00	1,000	0,0	1,000	50
1	gerade	11		>= 3,00	1,000	4	1,000	0,0	1,000	
1	gerade	12		>= 3,00	1,000		1,000	0,0	1,000	
1	links	13		>= 3,00	1,000	20,00	1,000	0,0	1,000	
2	rechts	21		>= 3,00	1,000	20,00	1,000	0,0	1,000	
2	gerade	21		>= 3,00	1,000	×	1,000	0,0	1,000	
2	links	22		>= 3,00	1,000	20,00	1,000	0,0	1,000	2
3	rechts	31		>= 3,00	1,000	20,00	1,000	0,0	1,000	
3	gerade	31		>= 3,00	1,000	-	1,000	0,0	1,000	
3	gerade	32		>= 3,00	1,000	<u>.</u>	1,000	0,0	1,000	
3	links	33		>= 3,00	1,000	20,00	1,000	0,0	1,000	
4	gerade	41		>= 3,00	1,000	4	1,000	0,0	1,000	5
4	links	42		>= 3,00	1,000	20,00	1,000	0,0	1,000	
4	links	43		>= 3,00	1,000	20,00	1,000	0,0	1,000	
Fußgänge	er-/Radfahrer	furten								
Zufahrt	Bez. Signalgr.	q _{Fg} [Fg/h]	q _{Rad} [Rad/h]		1. Furt Länge [m]	2. Furt Länge [m]	3. Fürt Länge [m]	4. Furt Länge [m]		
2	F1	50	50		16,00					

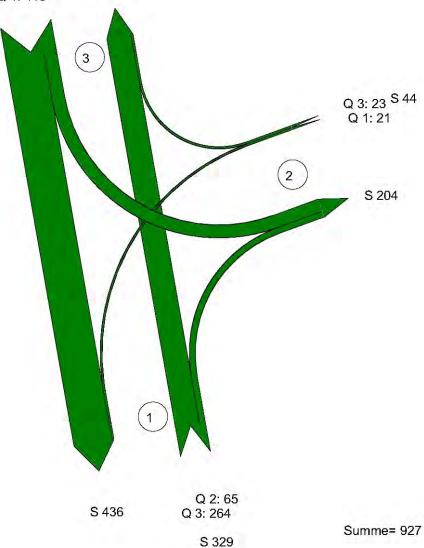
Form	blatt 2				Knotenpun	kt mit Lichtsi	gnalanlage			
FORM	DIALL Z			Berechn	ung der Gru	ndlagendater	n für den Kfz	-Verkehr		
	Projek	t: VU D-Rath,	Theodorstra	ße - Baumar	kt-Fachzentr	um + Bürost	andort (KV20	007) Stadt	Düsseldorf	
	Knotenpunk	t: KN06 - Abfa	hrt A52 Wes	t/Theodorstr	./Gladbecker	Str.		Datum	22.04.2020	
- 1	Zeitabschnit	t: Spitzenstun	de MF früh -	IST-Daten (A	Analyse)			Bearbeiter	: uh	
Kfz-Verke	hrsströme	- Kapazitäten	(strombezo	gen)	1					
Nr.	Bez. SG	t _{B,i} [s]	q _{s,i} [Kfz/h]	t _{F,l} [s]	C _{0,i} [Kfz/h]	C _{D,i} [Kfz/h]	C _{PW,i} [Kfz/h]	C _{GF,i} [Kfz/h]	C _{LA,i} [Kfz/h]	C _{RA,i} [Kfz/h]
1	CL	2,764	1302	5	112					
2	С	1,878	1917	17	493				1	
3	С	1,800	2000	17	514					43
4	В	1,800	2000	5	171	69	214		171	
5	В	1,800	2000	5	171					
6	В	1,800	2000	5	171					
7	DL	1,800	2000	5	171				1	
8	D	1,904	1891	14	405		-			1
9	D	2,340	1538	14	330					
10	AL	1,901	1894	20	568					
11	A	1,800	2000	9	286	73	429		286	
	-	1	-	1					11 11	
ICE- Manha		Vitüt	/folometro if							
KIZ-Verke	Bez.	- Kapazitäten q _j	q _G	9 _{RA}	q _{LA}	n _k	N _{MS,90,j}	C _{K,j}	C _{M,j}	Cj
Nr.	SG	[Kfz/h]	[Kfz/h]	[Kfz/h]	[Kfz/h]	[Kfz]	[Kfz]	[Kfz/h]	[Kfz/h]	[Kfz/h]
1.1	С	283	269	14			9,689		490	
12	С	286	286		3.0		9,768			49
13	CL	14			14		1,304			11:
21	В	3	0	3			0,489		171	
22	В	4			4		0,576			17
31	D	228	208	20			8,524		397	
32	D	232	232				8,611			40
33	DL	31			31		2,083			17
41	A	77	77				3,646			28
42	AL	402			402		13,594			56
43	AL	402			402		13,594			56
									<u> </u>	,
										Ų.
		1 1								

Formb	slatt 3				Knotenpunk	t mit Lichtsig	ınalanlage			
Forme	natt 3			- 1	Berechnung	der Verkehr	squalitäten			
7 10 10	Projek	t: VU D-Rath,	Theodorstral	ße - Baumark	t-Fachzentru	ım + Bürosta	ndort (KV20	07) Stadt:_I	Düsseldorf	
		t: KN06 - Abfa				Str.		Datum:_	22.04.2020	
Z	eitabschnit	t: Spitzenstun	de MF früh -	IST-Daten (A	nalyse)			Bearbeiter:	uh	
Kfz-Verkeh	rsströme -	Verkehrsqu	alitäten (fah	rstreifenbez	ogen)					
Nr.	Bez. SG	Ströme	q _j [Kfz/h]	× _j [-]	f _{A,j} [-]	N _{GE,j} [Kfz]	N _{MS,j} [Kfz]	L _{95,j} [m]	t _{w.j} [s]	QSV [-]
11	С	2, 3	283	0,578	0,26	0,857	5,664	61	29,1	В
12	С	2	286	0,580	0,26	0,867	5,722	61	29,0	В
13	CL	1	14	0,125	0,09	0,079	0,331	12	32,1	В
21	В	5, 6	3	0,018	0,09	0,010	0,063	3	29,5	В
22	В	4	4	0,023	0,09	0,013	0,084	3	29,6	В
31	D	8, 9	228	0,574	0,21	0,841	4,813	55	32,3	В
32	D	8	232	0,573	0,21	0,836	4,876	55	32,1	В
33	DL	7	31	0,181	0,09	0,124	0,684	12	32,3	В
41	Α	11	77	0,269	0,14	0,210	1,544	22	29,4	В
42	AL	10	402	0,708	0,30	1,680	8,627	86	32,4	В
43	AL	10	402	0,708	0,30	1,680	8,627	86	32,4	В
Gesamt			1962						31,3	
Fußgänger	r- /Radfahr	erfurten	- 1			- 4	- 6		-	
Zufahrt	Bez. SG	q _{Fg} [Fg/h]	q _{Rad} [Rad/h]	Anzahl Furten	t _{W,max} [s]					QSV [-]
2	F1	50	50	1	42					С
								Gesamth	ewertung:	С

Verkehrsfluss-Diagramm


Datei : KV2007-Kn7_MFfrueh_IST-Daten.amp

Projekt: VU D-Rath, Theodorstraße - Baumarkt-Fachzentrum + Bürostandort (KV2007)


Knoten: KN07 - Am Hülserhof/Zum Gut Heiligendonk Stunde : Spitzenstunde MF früh - IST-Daten (Analyse)

Fahrzeuge

S 554

Zufahrt 1: Am Hülserhof (süd) Zufahrt 2: Zum Gut Heiligendonk Zufahrt 3: Am Hülserhof (nord)

Form	blatt 1			-)	Knotenpunkt	mit Lichtsigr	nalanlage			
1,8111					A	usgangsdate	n			
	Committee Committee	VU D-Rath,				um + Bürosta	andort (KV2		Düsseldorf	
	Knotenpunkt.		5	The second secon					21.04.2020	
	Zeitabschnitt.	Spitzenstun	de MF fruh -	IST-Daten (A	Analyse)			Bearbeiter	uh	
	tt _i : 70 [s]									
Kfz-Verke	hrsströme					- Par		- 2 - 25 -	1.000	T-D-RO
Nr.	q _{LV} [Kfz/h]	q _{Lkw+Bus} [Kfz/h]	q _{LkwK} [Kfz/h]	q _{Kfz} [Kfz/h]	q _{sv} [Kfz/h]	f _{sv} [-]		Anzahl Fahrstreifer	Misch- fahrstreifen	bedingt verträglic
1	243	0	21			1,119		1	ja	nein
2	57	0	8			1,185		1	ja	ja
3	13	0	8			1,571		1	nein	nein
4	15	0	8			1,522		1	nein	nein
5	129	0	10			1,108		7	nein	ja
6	395	0	20			1,072		1	nein	nein
Kfz-Fahrs	treifen									
Zufahrt	Fahrt- richtung	Nr.	L [m]	b [m]	f _b	R [m]	f _R [-]	s [%]	f _s [-]	L _{LA} /L _{RA} [m]
1	rechts	11		>= 3,00	1,000	20,00	1,000	0,0	1,000	15
1	gerade	11		>= 3,00	1,000		1,000	0,0	1,000	-
2	rechts	21		>= 3,00	1,000	20,00	1,000	0,0	1,000	
2	links	22		>= 3,00	1,000	20,00	1,000	0,0	1,000	
3	gerade	31		>= 3,00	1,000	Ш. ж	1,000	0,0	1,000	
3	links	32		>= 3,00	1,000	20,00	1,000	0,0	1,000	25
Fußgänge	r-/Radfahrer	furten								
Zufahrt	Bez. Signalgr.	q _{Fg} [Fg/h]	q _{Rad} [Rad/h]		1. Furt Länge [m]	2. Furt Länge [m]	3. Furt Länge [m]	4. Furt Länge [m]		
2	E1	30	20		10,00	Find	Pol	POI		
2	E2	30	20		8,00					
	E1+E2	30	20		10,00	8,00				
2		~~	20		10,00	0,00				

Form	blatt 2	-		Descri		kt mit Lichtsi		Madrales		
	Daniel of a	WIE E	than in the		ung der Grur			4-1	DALL CHARGE	
	The second second second	VU D-Rath, KN07 - Am I				um + Burosta	andort (KV20	A SA SECTION	Düsseldorf 21.04.2020	
		Spitzenstun		Control of the Control of the	and the same of			Bearbeiter	- Prince of the Control	
7		Kapazitäten			nialyse)			Dearpeller	(d))	
	Bez.	t _{B,i}	q _{S,i}	t _{F,1}	C _{0,i}	$G_{D,j}$	C _{PW,I}	$C_{GF,i}$	C _{LA,i}	C _{RA,I}
Nr.	SG	[s]	[Kfz/h]	[s]	[Kfz/h]	[Kfz/h]	[Kfz/h]	[Kfz/h]	[Kfz/h]	[Kfz/h]
1	В	2,015	1787	38	995	2.30	7.154.311			100.0
2	В	2,132	1689	38	941	442	109			55
3	DL	2,829	1273	7	145					
4	DR	2,739	1314	18	357	1505		i i i i i	3,63	
5	Α	1,994	1805	54	1419	364		258	622	
6	A	1,930	1865	54	1466					
Kfz-Verke	hrsströme -	Kapazitäten	(fahrstreife	nbezogen)						
Nr.	Bez. SG	q _j [Kfz/h]	q _G [Kfz/h]	q _{RA} [Kfz/h]	q _{LA} [Kfz/h]	n _k [Kfz]	N _{MS,90,j} [Kfz]	C _{K,J} [Kfz/h]	C _{MJ} [Kfz/h]	C _j [Kfz/h]
11	В	329	264	65			7,957		858	
21	DR	23		23			1,398			35
22	DL	21			21		1,612			14
31	Α	415	415		1 T.		5,093			146
32	Α	139			139		4,523			62

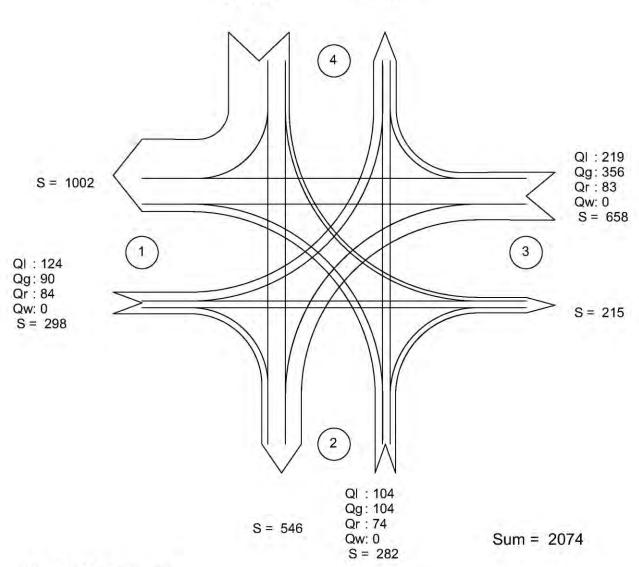
Form	blatt 3				Knotenpunk	t mit Lichtsiç	ınalanlage			
T SILL	Sidteo				Berechnung	der Verkehr	squalitäten			
	Projekt	VU D-Rath,	Theodorstra	ße - Baumarl	kt-Fachzentru	um + Bürosta	indort (KV20	07) Stadt_I	Düsseldorf	
		A Part of the Part	1	m Gut Heilig				Datum:_	21.04.2020	
Ž	Zeitabschnitt.	Spitzenstun	de MF früh -	IST-Daten (A	Analyse)			Bearbeiter: (uh	
Kfz-Verkel	rsströme -	Verkehrsqu	alitäten (fah	rstreifenbez	ogen)					
Nr.	Bez. SG	Ströme	q _j [Kfz/h]	x _j [-]	f _{A,j} [-]	N _{GE,j} [Kfz]	N _{MS,j} [Kfz]	L _{95,j} [m]	t _{W.j} [s]	QSV [-]
11	В	1, 2	329	0,383	0,49	0,364	4,407	54	12,9	Α
21	DR	4	23	0,064	0,27	0,038	0,370	13	19,3	Α
22	DL	3	21	0,145	0,11	0,094	0,462	15	30,3	В
31	Α	6	415	0,283	0,79	0,226	2,448	33	2,6	Α
32	Α	5	139	0,223	0,34	0,163	2,082	30	17,2	Α
	11									
	0.00									
Gesamt			927	0 11					9,5	
Fußgänge	r-/Radfahre	rfurten								
Zufahrt	Bez.	q_{Fg}	q _{Rad}	Anzahl	t _{W,max}					QSV
ZUMINI	SG	[Fg/h]	[Rad/h]	Furten	[s]					-1
2	El	30	20	1_	32					В
2	E2	30	20	1	36					В
2	E1+E2	30	20	2	36					В
2	E2+E1	30	20	2	36					В
								Canamita	owort (pa	D
				- 4				Gesamtb	ewerlung:	В

Verkehrsfluss - Diagramm als Kreuzung

Datei: KV2007-Kn8_MFfrueh_IST-Daten_Zeitluecken.krs

Projekt: VU D-Rath, Theodorstraße - Baumarkt-Fachzentrum + Bürostandort

Projekt-Nummer: KV2007


Knoten: KN08 - Kreisverkehr Volkardeyer Straße
Stunde: Spitzenstunde MFfrüh - IST-Daten (Analyse)

LITTI

QI:51 Qg:243 Qr:542 Qw:0 S=836

S = 311

alle Kraftfahrzeuge

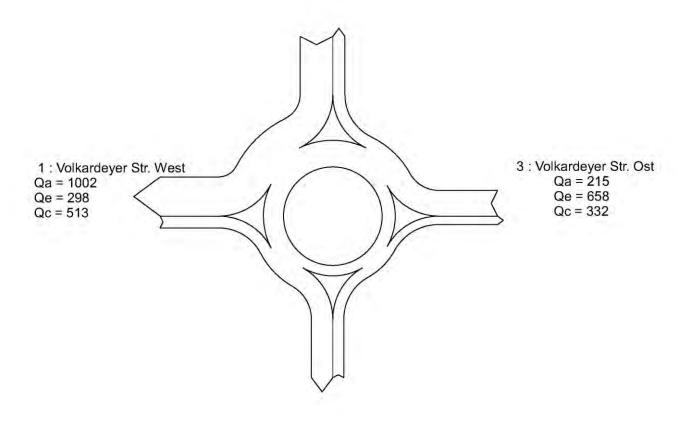
Zufahrt 1: Volkardeyer Str. West Zufahrt 2: Broichhofstr. Süd Zufahrt 3: Volkardeyer Str. Ost Zufahrt 4: Broichhofstr. Nord

Verkehrsfluss - Diagramm als Kreis

Datei: KV2007-Kn8_MFfrueh_IST-Daten_Zeitluecken.krs

Projekt: VU D-Rath, Theodorstraße - Baumarkt-Fachzentrum + Bürostandort

Projekt-Nummer: KV2007


Knoten: KN08 - Kreisverkehr Volkardeyer Straße
Stunde: Spitzenstunde MFfrüh - IST-Daten (Analyse)

0 1000 Fz / h

4 : Broichhofstr. Nord

Qa = 311 Qe = 836

Qc = 679

2 : Broichhofstr. Süd

Qa = 546

Qe = 282

Qc = 265

Sum = 2074

alle Kraftfahrzeuge

Spiekermann GmbH, Düsseldorf

Kapazität, mittlere Wartezeit und Staulängen - mit Fußgängereinfluss

Datei: KV2007-Kn8_MFfrueh_IST-Daten_Zeitluecken.krs

Projekt: VU D-Rath, Theodorstraße - Baumarkt-Fachzentrum + Bürostandort

Projekt-Nummer: KV2007

Knoten: KN08 - Kreisverkehr Volkardeyer Straße
Stunde: Spitzenstunde MFfrüh - IST-Daten (Analyse)

Wartezeiten

		n-in	F+R	q-Kreis	q-e-vorh	q-e-max	×	Reserve	Wz	QSV
	Name		/h	Pkw-E/h	Pkw-E/h	Pkw-E/h	-	Pkw-E/h	s	÷
1	Volkardeyer Str. West	1	0	523	315	1053	0,30	738	4,9	Α
2	Broichhofstr. Süd	1	40	277	296	964	0,31	668	5,4	Α
3	Volkardeyer Str. Ost	1	40	353	663	968	0,68	305	11,7	В
4	Broichhofstr. Nord	1	0	689	303	976	0,31	673	5,3	A
4	Bypass	1			553	1400	0,40	847	4,2	А

Staulängen

		n-in	F+R	q-Kreis	q-e-vorh	q-e-max	L	L-95	L-99	QSV
	Name		/h	Pkw-E/h	Pkw-E/h	Pkw-E/h	Pkw-E	Pkw-E	Pkw-E	- E
1	Volkardeyer Str. West	1	0	523	315	1053	0,3	1	2	Α
2	Broichhofstr. Süd	1	40	277	296	964	0,3	1	2	Α
3	Volkardeyer Str. Ost	1	40	353	663	968	1,5	6	9	В
4	Broichhofstr. Nord	1	0	689	303	976	0,3	1	2	Α
4	Bypass	1			553	1400	12		-	Α

Gesamt-Qualitätsstufe: B

		Gesamter Verkehr mit Bypass	Verkehr im Kreis ohne Bypass	
Zufluss über alle Zufahrten	:	2130	1577	Pkw-E/h
davon Kraftfahrzeuge		2074	1532	Fz/h
Summe aller Wartezeiten		4,8	2,9	Fz-h/h
Mittl. Wartezeit über alle Fz		8,4	6,8	s pro Fz

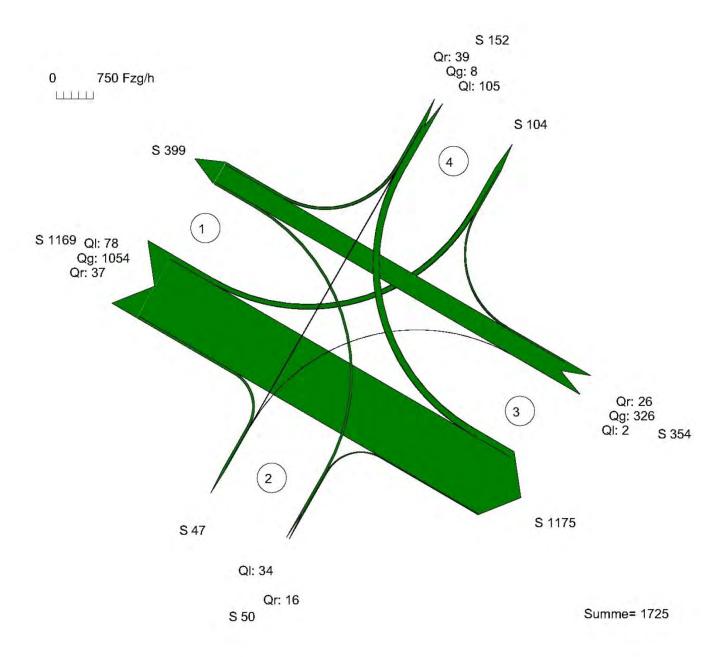
Berechnungsverfahren:

Kapazität : Grenzzeitlücken-Verfahren nach Harders-Formel

Wartezeit : HBS 2015 + HBS 2009 = Akcelik, Troutbeck (1991) mit T = 3600

Staulängen : Wu, 1997 Fußgänger-Einfluss : Stuwe, 1992 LOS - Einstufung : HBS (Deutschland)

Verkehrsfluss-Diagramm


Datei : KV2007-Kn09_MFfrueh_mit-Strab_IST-Daten.amp

Projekt: VU D-Rath, Theodorstraße - Baumarkt-Fachzentrum + Bürostandort (KV2007)

Knoten: KN 09- Theodorstr./Zum Gut Heiligendonk/DOME Stunde: Spitzenstunde MF früh - IST-Daten (Analyse)

Fahrzeuge

Zufahrt 1: Theodorstraße (west)

Zufahrt 2: DOME

Zufahrt 3 : Theodorstraße (ost) Zufahrt 4 : Zum Gut Heiligendonk

F	L	Knotenpunkt mit Lichtsignalanlage											
FOIIII	blatt 1				Αι	usgangsdate	n						
	Proje k t:	VU D-Rath,	Theodorstra	ße - Baumar	kt-Fachzentr	um + Bürost	andort (KV2	2007) Stadt	: Düsseldorf				
	Knotenpunkt:	KN09 - The	odorstr./Zum	Gut Heiliger	ndonk/DOME			_ Datum	<u>20.04.2020</u>				
	Zeitabschnitt:	Spitzenstun	de MF früh -	IST-Daten (A	Analyse)			Bearbeiter	: uh				
Umlaufzeit	t t _∪ : 70 [s]												
Kfz-Verke	hrsströme												
Nr.	q_{LV}	$q_{Lkw+Bus}$	q_{LkwK}	q_{Kfz}	q_{SV}	f_{SV}		Anzahl	Misch-	bedingt			
	[Kfz/h]	[Kfz/h]	[Kfz/h]	[Kfz/h]	[Kfz/h]	[-]		Fahrstreifen	fahrstreifen	verträglich			
1	71	0	7			1,135		1	nein	nein			
2	1013	0	41			1,058		2	nein	nein			
3	36	0	1			1,041		1	nein	ja			
4	33	0	1			1,044		1	nein	ja			
5	0	0	0			1,000		1	ja	nein			
6	14	0	2			1,188		1	ja	ja			
7	0	0	2			2,500		1	nein	nein			
8	286	0	40			1,184		2	nein	nein			
9	23	0	3			1,173		1	nein	ja			
10	102	0	3			1,043		1	ja	ja			
11	8	0	0			1,000		1	ja	nein			
12	33	0	6			1,231		1	nein	ja			
Kfz-Fahrs	treifen							520					
7.5.1.	Fahrt-		L	b	f _b	R	f _R	s	f _s	L _{LA} /L _{RA}			
Zufahrt	richtung	Nr.	[m]	[m]	[-]	[m]	[-]	[%]	[-]	[m]			
1	rechts	11		>= 3,00	1,000	20,00	1,000	0,0	1,000	19			
1	gerade	12		>= 3,00	1,000	-	1,000	0,0	1,000				
1	gerade	13		>= 3,00	1,000	-	1,000	0,0	1,000				
1	links	14		>= 3,00	1,000	20,00	1,000	0,0	1,000				
2	rechts	21		>= 3,00	1,000	20,00	1,000	0,0	1,000	14			
2	gerade	21		>= 3,00	1,000	-	1,000	0,0	1,000				
2	links	22		>= 3,00	1,000	20,00	1,000	0,0	1,000	30			
3	rechts	31		>= 3,00	1,000	20,00	1,000	0,0	1,000	15			
3	gerade	32		>= 3,00	1,000	-	1,000	0,0	1,000				
3	gerade	33		>= 3,00	1,000	-	1,000	0,0	1,000				
3	links	34		>= 3,00	1,000	20,00	1,000	0,0	1,000				
4	rechts	41		>= 3,00	1,000	20,00	1,000	0,0	1,000	18			
4	gerade	42		>= 3,00	1,000	-	1,000	0,0	1,000				
4	links	42		>= 3,00	1,000	20,00	1,000	0,0	1,000	30			

AMPEL Version 6.23 Seite 1

F	blatt 1			Knotenpunk	t mit Lichtsig	nalanlage			
Form	DIATE 1			Α	usgangsdate	en			
	Proje k t:_	VU D-Rath,	Theodorstra	e - Baumarkt-Fachzent	rum + Bürost	andort (KV20	007) Stadt	:: Düsseldor	f
	Knotenpunkt:	KN09 - The	odorstr./Zum	ut Heiligendonk/DOMI	Ξ		Datum	: <u>20.04.202</u>	0
	Zeitabschnitt	Spitzenstun	de MF früh -	T-Daten (Analyse)			Bearbeiter	: uh	
Umlaufzei	t t _∪ : 70 [s]								
Fußgänge	er-/Radfahrer	furten							_
	Bez.	\mathbf{q}_{Fg}	q_{Rad}	1. Furt	2. Furt	3. Furt	4. Furt		
Zufahrt	Signalgr.	[Fg/h]	[Rad/h]	Länge	Länge	Länge	Länge		
				[m]	[m]	[m]	[m]		
1	E1	50	20	12,00					
1	E2	50	20	7,00					
2	F3	50	20	13,00					
3	E3	50	20	14,00					
3	E4	50	20	9,00					
4	F1	50	20	7,00					
4	F2	50	20	6,00					
5	E7	50	20	7,00					
6	E8	50	20	7,00					
4	F1+F2	50	20	7,00	6,00				
4	F2+F1	50	20	6,00	7,00				
1+5	E1+E7+E2	50	20	12,00	7,00	7,00			
1+5	E2+E7+E1	50	20	7,00	7,00	12,00			
3+6	E4+E8+E3	50	20	9,00	7,00	14,00			
3+6	E3+E8+E4	50	20	14,00	7,00	9,00			

AMPEL Version 6.23 Seite 2

Berechnung der Grundlagendaten für den Kfz-Verkehr Projekt: VU D-Rath, Theodorstraße - Baumarkt-Fachzentrum + Bürostandort (KV2007) Stadt: Düsseld Knotenpunkt: KN09 - Theodorstr./Zum Gut Heiligendonk/DOME Datum: 20.04.20 Zeitabschnitt: Spitzenstunde MF früh - IST-Daten (Analyse) Bearbeiter: uh Verkehrsströme - Kapazitäten (strombezogen) Bez. t _{B,i} q _{S,i} t _{F,i} C _{0,i} C _{D,i} C _{PW,i} C _{GF,i} C _{LA,i}	
Knotenpunkt: KN09 - Theodorstr:/Zum Gut Heiligendonk/DOME Zeitabschnitt: Spitzenstunde MF früh - IST-Daten (Analyse) Bearbeiter: uh Verkehrsströme - Kapazitäten (strom bezogen)	
Zeitabschnitt: Spitzenstunde MF früh - IST-Daten (Analyse) Bearbeiter: uh Verkehrsströme - Kapazitäten (strombezogen) Bez fp: ge: fp: Co: Co: Co: Co: Co: Co: Co: Co: Co: Co	00
-Verkehrsströme - Kapazitäten (strombezogen) Bez tei Coi Coi Coi Cowi Cosi Cosi Cosi Cosi	20
Bez te de te Coi Coi Com Com Com Com	
Bez. t_{Bi} q_{Si} t_{Ei} C_{Oi} C_{Di} C_{DWi} C_{CEi} C_{IAI}	10000
Nr. SG [s] [Kfz/h] [s] [Kfz/h] [Kfz/h] [Kfz/h] [Kfz/h]	C _{RA,i} [Kfz/h]
1 CL 2,042 1763 15 403	
2 C 1,905 1890 40 1107	
3 C 1,873 1922 40 1126	104
4 B 1,879 1916 11 328 110 246 32	3
5 B 1,800 2000 11 343	
6 B 2,138 1684 11 289	24
7 DL 4,500 800 5 69	
8 D 2,131 1689 32 796	
9 D 2,112 1705 32 804	73
10 A 1,877 1918 9 274 128 247 27	
11 A 1,800 2000 9 286	
12 A 2,215 1625 9 232	18
-Verkehrsströme - Kapazitäten (fahrstreifenbezogen)	
Bez. q_i q_G q_{RA} q_{LA} n_k $N_{MS,90,j}$ $C_{K,j}$ $C_{M,j}$	Cj
Nr. SG	[Kfz/h]
11 C 37 37 1,363	104
12 C 527 527 10,723	110
13 C 527 527 10,723	110
14 CL 78 78 3,331	40
21 B 16 0 16 1,247 24	
22 B 34 1,956	32
31 D 26 26 1,260	73
32 D 163 163 4,392	79
33 D 163 163 4,392	79
34 DL 2 2 0,438	6
41 A 39 39 2,382	18
42 A 113 8 105 5,034 27	
	1

Form	blatt 3				Knotenpunk	kt mit Lichtsiç	gnalanlage			
Folili	DIATE 3				Berechnung	der Verkehr	squalitäten			
	Proje k t:	VU D-Rath,	Theodorstra	ße - Baumar	kt-Fachzentr	um + Bürosta	andort (KV20	07) Stadt:_	Düsseldorf	
	Knotenpunkt:	KN09 - The	odorstr./Zum	Gut Heiliger	ndonk/DOME				20.04.2020	
	Zeitabschnitt:	Spitzenstun	de MF früh -	IST-Daten (A	Analyse)			Bearbeiter:	uh	
Kfz-Verke	hrsströme -	Verkehrsqu	alitäten (fah	rstreifenbez	zogen)					
Nr.	Bez.	Ströme	$\mathbf{q}_{\mathbf{j}}$	\mathbf{x}_{j}	$f_{A,j}$	$N_{GE,j}$	$N_{MS,j}$	L _{95,j}	t _{W.j}	QSV
	SG		[Kfz/h]	[-]	[-]	[Kfz]	[Kfz]	[m]	[s]	[-]
11	С	3	37	0,035	0,54	0,020	0,355	9	7,5	Α
12	С	2	527	0,476	0,59	0,548	6,434	68	10,1	Α
13	С	2	527	0,476	0,59	0,548	6,434	68	10,1	Α
14	CL	1	78	0,194	0,23	0,135	1,359	23	23,0	В
21	В	5, 6	16	0,066	0,14	0,039	0,308	9	26,5	В
22	В	4	34	0,104	0,17	0,064	0,622	12	25,2	В
31	D	9	26	0,036	0,43	0,020	0,313	9	11,7	Α
32	D	8	163	0,205	0,47	0,145	2,000	31	11,5	Α
33	D	8	163	0,205	0,47	0,145	2,000	31	11,5	Α
34	DL	7	2	0,029	0,09	0,016	0,052	7	30,2	В
41	Α	12	39	0,209	0,12	0,148	0,836	18	30,9	В
42	Α	10, 11	113	0,411	0,14	0,409	2,409	31	32,7	В
5 (ÖV)	ÖPNV1	13	6						22,6	С
6 (ÖV)	ÖPNV2	14	6						22,6	С
Gesamt			1725						13,3	
Fußgänge	er-/Radfahre	rfurten				'				
	Bez.	q_{Fg}	q_{Rad}	Anzahl	t _{W,max}					QSV
Zufahrt	SG	[Fg/h]	[Rad/h]	Furten	[s]					[-]
1	E1	50	20	1	65					D
1	E2	50	20	1	57					D
2	F3	50	20	1	37					В
3	E3	50	20	1	65					D
3	E4	50	20	1	65					D
4	F1	50	20	1	19					A
4	F2	50	20	1	39					В
5	E7	50	20	1	42					С
6	E8	50	20	1	42					С
4	F1+F2	50	20	2	39					В
4	F2+F1	50	20	2	39					В
1+5	E1+E7+E2	50	20	3	109					
1+5	E2+E7+E1	50	20	3	71					
3+6	E4+E8+E3	50	20	3	126					
3+6	E3+E8+E4	50	20	3	120				+	
3.0	L31L01L4	50	20	J	120					
								Casamit	owort is a:	D
								Gesamili	ewertung:	D

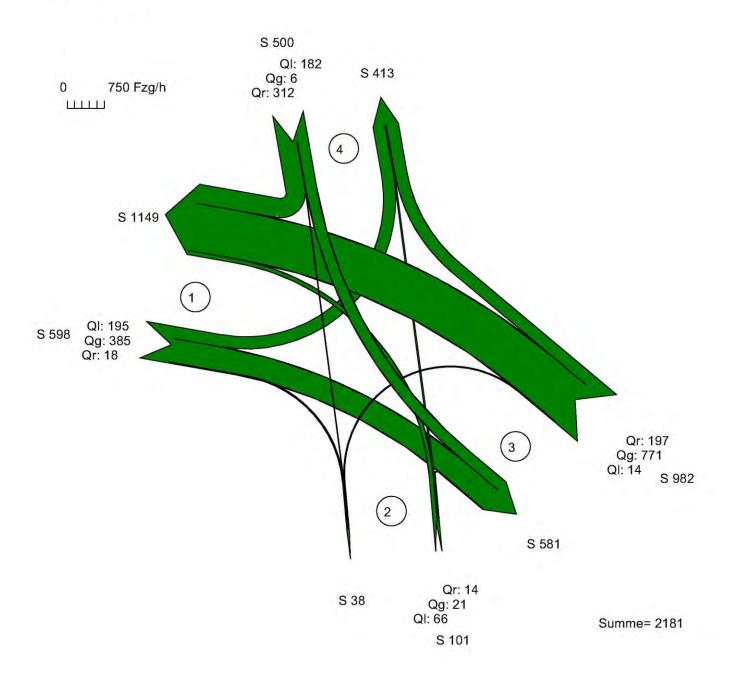
AMPEL	Version	6.2.3

Anhang 2

Formblätter zur Ermittlung der Leistungsfähigkeit (Qualitätsstufe des Verkehrsablaufs – QSV) für die untersuchten Knotenpunkte mit den Belastungen im **Ist-Zustand (Analyse)**Spitzenstunde am Werktag (Montag bis Freitag) **spät**

Verkehrsfluss-Diagramm

Datei : KV2007-Kn1_MFspaet_mit-OPNV-reduziert_IST-Daten.amp


Projekt: VU D-Rath, Theodorstraße - Baumarkt-Fachzentrum + Bürostandort (KV2007)

Knoten: KN01 - Am Röhrenwerk/Theodorstr./Am Hülserhof

Stunde: Spitzenstunde MF spaet (reduzierte Freigabezeiten wg. ÖPNV) - IST-Daten (Analyse)

Fahrzeuge

Zufahrt 1 : Theodorstraße (west) Zufahrt 2 : Am Röhrenwerk Zufahrt 3 : Theodorstraße (ost) Zufahrt 4 : Am Hülserhof

Form	blatt 1				Knotenpunkt i	mit Lichtsigna	alanlage			
, 0,,,,,	olute 1				Au	sgangsdaten	T .			
	Knotenpunkt:	KN01 - Am I	Röhrenwerk/	Theodorstr./	kt-Fachzentru Am Hülserhof Freigabezeitei			Datum	: Düsseldorf : 28.04.2020 :: uh	1
Umlaufzeit										
	hrsströme									
Nr.	q _{LV} [Kfz/h]	q _{Lkw+Bus} [Kfz/h]	q _{LkwK} [Kfz/h]	q _{Kfz} [Kfz/h]	9sv [Kfz/h]	f _{SV} [-]		Anzahl Fahrstreifen	Misch- fahrstreifen	bedingt verträglic
1	185	0	10			1,077		1	nein	nein
2	366	0	19			1,074		2	nein	nein
3	16	0	2			1,167		1	nein	nein
4	63	0	3			1,068		1	nein	ja
5	19	0	2			1,143		1	ja	nein
6	13	0	1			1,107		9 1	ja	nein
7	14	0	0			1,000		- 18	nein	nein
8	745	0	26			1,051		2	nein	nein
9	183	. 0	14	4		1,107		1	nein	ja
10	170	0	12			1,099		1	nein	ja
11	4	0	2			1,500		1	nein	nein
12	299	0	13			1,062		1	nein	ja
Kfz-Fahrs	treifen									
Zufahrt	Fahrt- richtung	Nr.	L [m]	b [m]	f _b [-]	R [m]	f _R [-]	s [%]	f _s [-]	L _{LA} /L _{RA} [m]
-12-	rechts	11		>= 3,00	1,000	20,00	1,000	0,0	1,000	
1	gerade	12		>= 3,00	1,000	- 4	1,000	0,0	1,000	
1	gerade	13		>= 3,00	1,000	*	1,000	0,0	1,000	
4	links	14		>= 3,00	1,000	20,00	1,000	0,0	1,000	
2	rechts	21		>= 3,00	1,000	20,00	1,000	0,0	1,000	
2	gerade	21		>= 3,00	1,000	- 8	1,000	0,0	1,000	
2	links	22		>= 3,00	1,000	20,00	1,000	0,0	1,000	5
3	rechts	31		>= 3,00	1,000	20,00	1,000	0,0	1,000	10
3	gerade	32		>= 3,00	1,000		1,000	0,0	1,000	
3	gerade	33		>= 3,00	1,000	4	1,000	0,0	1,000	
3	links	34		>= 3,00	1,000	20,00	1,000	0,0	1,000	
4	rechts	41		>= 3,00	1,000	20,00	1,000	0,0	1,000	3
4	gerade	42		>= 3,00	1,000		1,000	0,0	1,000	
4	links	43	1000	>= 3,00	1,000	20,00	1,000	0,0	1,000	5

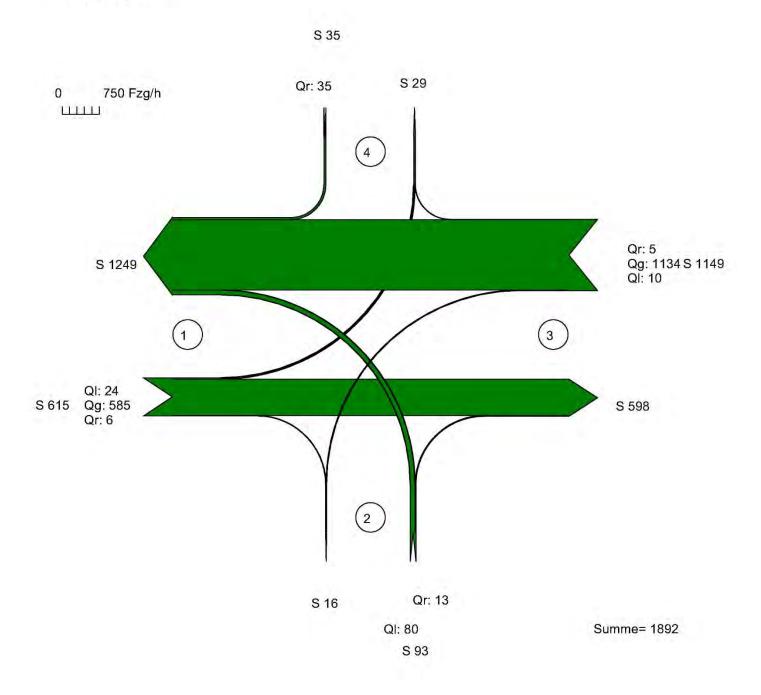
Farm	blass d			Knotenpunkt	mit Lichtsigr	nalanlage		
Form	blatt 1			Au	ısgangsdate	n		
	Knotenpunkt:	KN01 - Am I	Röhrenwerk/Theod	aumarkt-Fachzentr orstr./Am Hülserho zierte Freigabezeite	f		Datum: 28	
Umlaufzei	t t _U : 70 [s]							
Fußgänge	er-/Radfahrer	furten						
Zufahrt	Bez. Signalgr.	q _{Fg} [Fg/h]	q _{Rad} [Rad/h]	1. Furt Länge [m]	2. Furt Länge [m]	3, Furt Länge [m]	4. Furt Länge [m]	
1	E1	50	20	10				
1	E2	50	20	10				
1	E4	50	20	10				
2	F3	50	20	10				
3	E5	50	20	10				
3	E7	50	20	10				
4	F1	50	20	10	1	11 7 7 1		
4	F2	50	20	10	11			
4	F1+F2	50	20	10	10			
4	F2+F1	50	20	10	10			

AMPEL Version 6.2.3 Seite 2

Earn	blatt 2				Knotenpunl	kt mit Lichtsi	gnalanlage			
rorm	IDIALL Z			Berechni	ung der Grur	ndlagendater	n für den Kfz	-Verkehr		
	Projekt	VU D-Rath.	Theodorstral	ße - Baumari	kt-Fachzentr	um + Bürosta	andort (KV20	007) Stadt:	Düsseldorf	
		KN01 - Am I							28.04.2020	
	Zeitabschnitt	: Spitzenstund	de MF spaet	(reduzierte F	reigabezeite	en wg. ÖPNV	/) - IST-Date	n Bearbyeite)r	uh	
Kfz-Verke	hrsströme -	Kapazitäten	(strombezo	gen)						
Nr.	Bez.	t _{B,i}	9 _{S,i}	$t_{F,i}$	C _{0,i}	C _{D,i}	C _{PW,i}	$C_{GF,f}$	CLA,i	C _{RA,i}
INI	SG	[s]	[Kfz/h]	[s]	[Kfz/h]	[Kfz/h]	[Kfz/h]	[Kfz/h]	[Kfz/h]	[Kfz/h]
1	CL	1,938	1858	13	372					
2	С	1,933	1862	21	585					
3	CR	2,100	1714	21	539			+	11 - 11	
4	В	1,923	1872	8	241	0	441		241	
5	В	2,057	1750	8	225					
6	В	1,993	1806	8	232					
7	DL	1,800	2000	7	229		1			
8	D	1,891	1904	21	598					
9	D	1,992	1807	21	568					568
10	Α	1,978	1820	12	338	95	390		338	
11	Α	2,700	1333	12	248					
12	AR	1,912	1883	32	888	175		403		57
Kfz-Verke		Kapazitäten			250000	201		0	0	0
Nr.	Bez. SG	q _j [Kfz/h]	q _G [Kfz/h]	q _{RA} [Kfz/h]	q _{LA} [Kfz/h]	n _k [Kfz]	N _{MS,90,j} [Kfz]	C _{K,j} [Kfz/h]	C _{M,j} [Kfz/h]	C _j [Kfz/h]
11	CR	18		18			1,127			53
12	С	192	192				6,132			58
13	С	192	192				6,132			58
14	CL	195			195		7,466			37
21	В	35	21	14			2,128	1	228	
22	В	66			66		3,356			24
31	D	197		197	1 11	17 14	6,307	1+		56
32	D	386	386	12 = 1	177 11	11 = 1	12,332			59
33	D	386	386		11		12,332	4		598
34	DL	14	4 124		14		1,172			22
41	AR	312		312			9,822			57
42	A	6	6	1 1 1			0,668			24
43	A	182			182		7,262			33
	1									

Form	blatt 3				Knotenpunk	t mit Lichtsig	ınalanlage			
, 0,1,1,1	oldit o				Berechnung	der Verkehr	squalitäten			
	Projekt	VU D-Rath,	Theodorstra	ße - Baumarl	kt-Fachzentru	um + Bürosta	ndort (KV20	07) Stadt:_I	Düsseldorf	
	and a demand a man	KN01 - Am							28.04.2020	
						n wg. OPNV) - IST-Dater	n Bekarabyeste)r: (uh	
Kfz-Verkel	1 - 3 / 41 - 1	Verkehrsqu				- V 1	- v F		í	- 225.45
Nr.	Bez. SG	Ströme	q _j [Kfz/h]	x _j [-]	f _{A,j} [-]	N _{GE,j} [Kfz]	N _{MS,j} [Kfz]	L _{95,j} [m]	t _{W.j} [s]	QS\ [-]
11	CR	3	18	0,033	0,31	0,019	0,262	8	16,8	A
12	С	2	192	0,328	0,31	0,282	3,137	40	20,1	В
13	С	2	192	0,328	0,31	0,282	3,137	40	20,1	В
14	CL	1	195	0,524	0,20	0,671	4,059	48	31,5	В
21	В	5, 6	35	0,154	0,13	0,101	0,706	14	28,7	В
22	В	4	66	0,274	0,13	0,215	1,374	22	30,7	В
31	D	9	197	0,347	0,31	0,307	3,255	42	20,4	В
32	D	8	386	0,645	0,31	1,196	7,653	78	27,9	В
33	D	8	386	0,645	0,31	1,196	7,653	78	27,9	В
34	DL	7	14	0,061	0,11	0,036	0,279	7	28,2	В
41	AR	12	312	0,540	0,31	0,723	5,763	63	24,7	В
42	Α	11	6	0,024	0,19	0,014	0,109	6	23,5	В
43	A	10	182	0,538	0,19	0,714	3,916	48	33,4	В
Gesamt			2181						26,1	
Fußgänge	r- /Radfahre	erfurten			-					
Zufahrt	Bez. SG	q _{Fg} [Fg/h]	q _{Rad} [Rad/h]	Anzahl Furten	t _{W.max} [s]					QS\ [-]
1	E1	50	20	1	43					C
1	E2	50	20	1	44					С
1	E4	50	20	1	36					В
2	F3	50	20	3	49					С
3	E5	50	20	1	36					В
3	E7	50	20	1	61					D
4	F1	50	20	1	56					D
4	F2	50	20	1	42					С
4	F1+F2	50	20	2	56		- 4			D
4	F2+F1	50	20	2	.56					D
								Gesamtb	ewertung:	D

Verkehrsfluss-Diagramm


Datei : KV2007-Kn2_MFspät_IST-Daten.amp

Projekt: VU D-Rath, Theodorstraße - Baumarkt-Fachzentrum + Bürostandort (KV2007)

Knoten: KN02 - Theodorstr./Planstr. A/Betriebseinfahrt Stunde: Spitzenstunde MF spät - IST-Daten (Analyse)

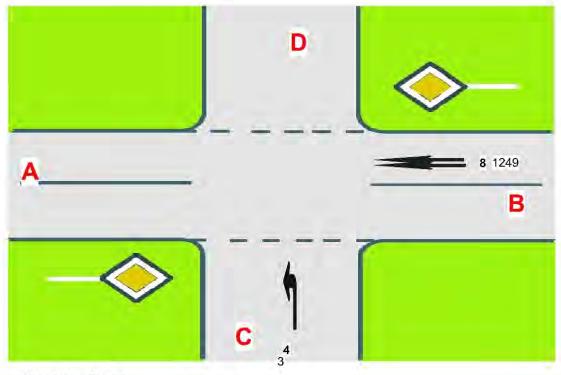
Fahrzeuge

Zufahrt 1 : Theodorstraße (west) Zufahrt 2 : Betriebszufahrt Zufahrt 3 : Theodorstraße (ost) Zufahrt 4 : Planstr. A

Form	blatt 1					mit Lichtsign				
12.33	192711	November Carlot		V		usgangsdate			OLE - TOTAL	
			Theodorstral			um + Bürosta	andort (KV2		: Düsseldorf	
	Knotenpunkt:_ Zeitabschnitt:	77.00 7 7.7						Bearbeiter	: 23.04.2020	
Umlaufzeit	- II	opitzeristuri	de Mi Spat-	10 1-Dateir (-tialyse)			Dearbeite	, un	
OF STREET	hrsströme									
TALE VOINCE	q _{LV}	C	q _{LkwK}	O.u.	Cov	f _{SV}		Anzahl	Misch-	bedingt
Nr.	[Kfz/h]	q _{Lkw+Bus} [Kfz/h]	[Kfz/h]	q _{kfz} [Kfz/h]	9sv [Kfz/h]	[-]		100000000000000000000000000000000000000	fahrstreifen	verträglic
1	22	0	2	[ruznij	[rsizeri]	1,125		1	nein	nein
2	555	0	30			1,077		2	nein	nein
3	3	0	3			1,750		1	nein	ja
4	78	0	2			1,038		1	nein	ja
5	12	0	1			1,115		1	nein	ja
6	7	0	3			1,450		1-1	nein	nein
7	1095	0	39			1,052		2	nein	nein
8	5	0	0			1,000		1	nein	ja
9	31	0	4			1,171		1	nein	nein
Kfz-Fahrs	treifen					= 1				-
Zufahrt	Fahrt- richtung	Nr.	L [m]	b [m]	f _b [-]	R [m]	f _R [-]	s [%]	f _s [-]	L _{LA} /L _{RA} [m]
1.	rechts	11	1.7.	>= 3,00	1,000	20,00	1,000	0,0	1,000	5
4	gerade	12		>= 3,00	1,000		1,000	0,0	1,000	
1	gerade	13		>= 3,00	1,000		1,000	0,0	1,000	
4	links	14		>= 3,00	1,000	20,00	1,000	0,0	1,000	
2	rechts	21		>= 3,00	1,000	20,00	1,000	0,0	1,000	3
2	links	22		>= 3,00	1,000	20,00	1,000	0,0	1,000	30
3	rechts	31		>= 3,00	1,000	20,00	1,000	0,0	1,000	8
3	gerade	32		>= 3,00	1,000	18	1,000	0,0	1,000	
3	gerade	33		>= 3,00	1,000	-	1,000	0,0	1,000	
3	links	34		>= 3,00	1,000	20,00	1,000	0,0	1,000	
4	rechts	41		>= 3,00	1,000	20,00	1,000	0,0	1,000	
Fußgänge	r-/Radfahrer	furten								
Zufahrt	Bez. Signalgr.	q _{Fg} [Fg/h]	q _{Rad} [Rad/h]		1. Furt Länge	2. Furt Länge	3. Furt Länge	4. Furt Länge		
4	F4	50	20		[m]	[m]	[m]	[m]		-
1	E1	50	20		10					
1	E2	50	20	- 11	10	-				-
2	F2	50	50 20		10	-				
3	E3	50			10	- 4				
3	E4	50	20		10					
4	F1	50	50		10	40				
1	E1+E2	50	20		10	10				
1	E2+E1	50	20		10	10				
3	E4+E3	50	20		10	10				
MPEL Version	Spieke	50	20		10	10				

	Projekt (notenpunkt	: VU D-Rath,	Theodorstral		ung der Grur	ndlagendate	n für den Kfz	-Verkehr		
Z Kfz-Verke h	(notenpunkt		Theodorstraf							
Z Kfz-Verke h	and the second					um + Büros	tandort (KV20	franklik i Denastrum	Düsseldorf	
Kfz-Verkeh									23.04.2020	
		: Spitzenstun			Analyse)			Bearbeiter	un	
Nr.					0			0		0
	Bez. SG	t _{B,i} [s]	q _{s,i} [Kfz/h]	t _{F,i} [s]	C _{0,i} [Kfz/h]	C _{D,i} [Kfz/h]	C _{PW,i} [Kfz/h]	C _{GF,[} [Kfz/h]	C _{LA,i} [Kfz/h]	C _{RA,i} [Kfz/h]
1	CL	2,025	1778	7	203		- No. 1			
2	С	1,938	1858	16	451					
3	С	3,150	1143	16	278				444	26
4	В	1,868	1927	16	468				387	
5	В	2,008	1793	16	435					41
6	DL	2,610	1379	5	118					
7	D	1,893	1902	27	761					
8	D	1,800	2000	27	800					77
9	Α	2,109	1707	6	171					
									1 - 1	
		12 1 100								
	Bez.	Kapazitäten q _j	q _G	q _{RA}	q _{LA}	n _k	N _{MS,90,j}	C _{K,j}	C _{M,j}	Cj
Nr.	SG	[Kfz/h]	[Kfz/h]	[Kfz/h]	[Kfz/h]	[Kfz]	[Kfz]	[Kfz/h]	[Kfz/h]	[Kfz/h]
11	С	6		6			0,647			26
12	С	292	292		112.11		10,545			45
13	С	292	292				10,545			45
14	CL	24			24	1	1,682			20
21	В	13		13			0,998			41
22	В	80			80		3,476			38
31	D	5		5	+		0,490			77
32	D	567	567		11 7 11		17,332			76
33	D	567	567				17,332			76
34	DL	10	1	-11	10		1,042			11
41	Α	35		35			2,254			17
					and the second second second second					

Form	nlatt 3				Knotenpunk	t mit Lichtsig	nalanlage			
TOTHE	Jiatt 5			1	Berechnung	der Verkehr	squalitäten			
	Projekt:	VU D-Rath,	Theodorstra	ße - Baumar	kt-Fachzentru	ım + Bürosta	ndort (KV20	07) Stadt:_l	Düsseldorf	
K	Knotenpunkt:	KN02 - The	odorstr./Plan	str. A/Betrieb	seinfahrt		100000	Datum:_	23.04.2020	
Z	eitabschnitt:	Spitzenstun	de MF spät -	IST-Daten (Analyse)			Bearbeiter:	uh	
Kfz-Verkel	rsströme -	Verkehrsqu	alitäten (fah	rstreifenbez	ogen)					
Nr.	Bez. SG	Ströme	q _j [Kfz/h]	x _j [-]	f _{A.j} [-]	N _{GE,j} [Kfz]	N _{MS,j} [Kfz]	L _{95,j} [m]	t _{W.j} [s]	QSV [-]
11	С	3	6	0,023	0,23	0,013	0,103	7	21,1	В
12	С	2	292	0,647	0,24	1,199	6,300	68	33,4	В
13	С	2	292	0,647	0,24	1,199	6,300	68	33,4	В
14	CL	1	24	0,118	0,11	0,075	0,494	11	29,2	В
21	В	5	13	0,032	0,23	0,018	0,214	7	21,1	В
22	В	4	80	0,207	0,20	0,147	1,444	22	24,7	В
31	D	8	5	0,006	0,39	0,004	0,063	3	13,3	A
32	D	7	567	0,745	0,40	2,155	11,577	109	28,1	В
33	D	7	567	0,745	0.40	2.155	11,577	109	28,1	В
34	DL	6	10	0,085	0,09	0,051	0,230	9	31,0	В
41	A	9	35	0,205	0,10	0.145	0.770	16	32,0	В
Gesamt			1891	7 74		- 4			29,6	
Fußgänge	r-/Radfahre	rfurten								
Zufahrt	Bez. SG	q _{Fg} [Fg/h]	q _{Rad} [Rad/h]	Anzahl Furten	t _{W,max} [s]					QSV [-]
1	E1	50	20	1	36					В
1	E2	50	20	1	53					С
2	F2	50	50	1	45					С
3	E3	50	20	1	44					С
3	E4	50	20	1	29					A
4	F1	50	50	1)	27				1	Α
1	E1+E2	50	20	2	53					С
1	E2+E1	50	20	2	53				- 0	С
3	E4+E3	50	20	2	44					С
3	E3+E4	50	20	2	48	4				С
								Gesamtb	owortung	С


Übersicht von 16:30 bis 17:30

Knotenpunktbezeichung: Knoten 3 - U-Turn Theodorstraße (östlich)

Spitzenstunde MF spät - IST-Daten (Analyse)

Name der Datei : KV2007-Kn3_MFspaet_IST-Daten.EIN

					ι	Jbersic	ht von	16:30 b	ois 17:3	30					
Strom	VZ	VZ	VZ	VZ	RS	RS	RS	RS	Н	Н	Н	Fz.	Fz.	Fz.	QSV
	ges	mitt	85%	max	mitt	85%	95%	max	ges	mitt	max	ang.	abg.	wart.	
	[min]	[sec]	[sec]	[sec]	[Kfz]	[Kfz]	[Kfz]	[Kfz]	[-]	[-]	[-]	[Kfz]	[Kfz]	[Kfz]	[-]
4	1,4	29,3	55,0	85,2	0,0	0	0	1	3	1,0	1	3	3	0	С
8	0,0	0,0	0,0	0,0	0,0	Ò	0	0	0	0,0	0	1251	1251	0	A
Sum	1,4	0,1		85,2	0,0			1		0,0	1	1254			
					H.	Îbersio	ht von	16:30 b	nis 17·3	kO					

A=Theodorstr. (West) C=U-Turn

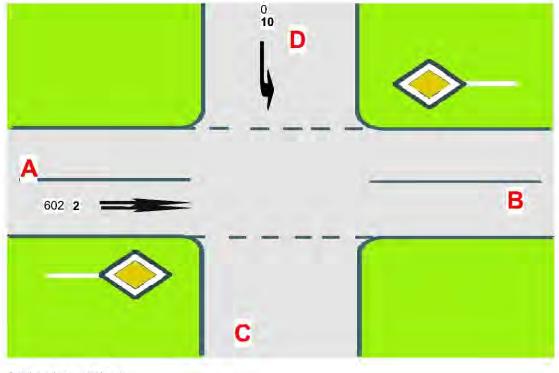
B=Theodorstr. (Ost)

D=-

Spiekermann GmbH Consultung Engineers

Düsseldorf

Bearbeiter: uh


Übersicht von 16:30 bis 17:30

Knotenpunktbezeichung: Knoten 4 - U-Turn Theodorstraße (westlich)

Spitzenstunde MF spät - IST-Daten (Analyse)

Name der Datei : KV2007-Kn4_MFspaet_IST-Daten.EIN

	Übersicht von 16:30 bis 17:30														
Strom	VZ	VZ	VZ	VZ	RS	RS	RS	RS	н	н	Н	Fz.	Fz.	Fz.	QSV
	ges	mitt	85%	max	mitt	85%	95%	max	ges	mitt	max	ang.	abg.	wart.	
	[min]	[sec]	[sec]	[sec]	[Kfz]	[Kfz]	[Kfz]	[Kfz]	[-]	[-]	[-]	[Kfz]	[Kfz]	[Kfz]	[-]
2	0,0	0,0	0,0	0,0	0,0	0	0	0	0	0,0	0	599	599	0	A
10	0,0	0,0	0,0	0,0	0,0	0	0	0	0	0,0	0	0	0	0	А
Sum	0,0	0,0		0,0	0,0			0		0,0	0	599			
					Ţ,	Ĵbersic	ht von	16:30 b	ois 17:3	30					

A=Theodorstr. (West)

B=Theodorstr. (Ost)

D=U-Turn

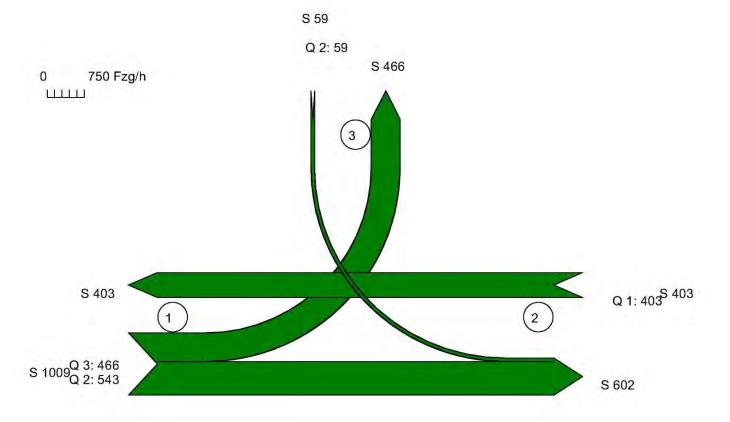
Spiekermann GmbH Consultung Engineers

Düsseldorf

Bearbeiter: uh

Verkehrsfluss-Diagramm

Datei : KV2007-Kn5_MFspaet_IST-Daten.amp


Projekt: VU D-Rath, Theodorstraße - Baumarkt-Fachzentrum + Bürostandort (KV2007)

Knoten: KN05 - Abfahrt A52 Ost/Theodorstr.

Stunde: Spitzenstunde MF spät - IST-Daten (Analyse)

Fahrzeuge

Summe= 1471

Zufahrt 1 : Theodorstraße (west) Zufahrt 2 : Theodorstraße (ost) Zufahrt 3 : Zu-/Abfahrt A52

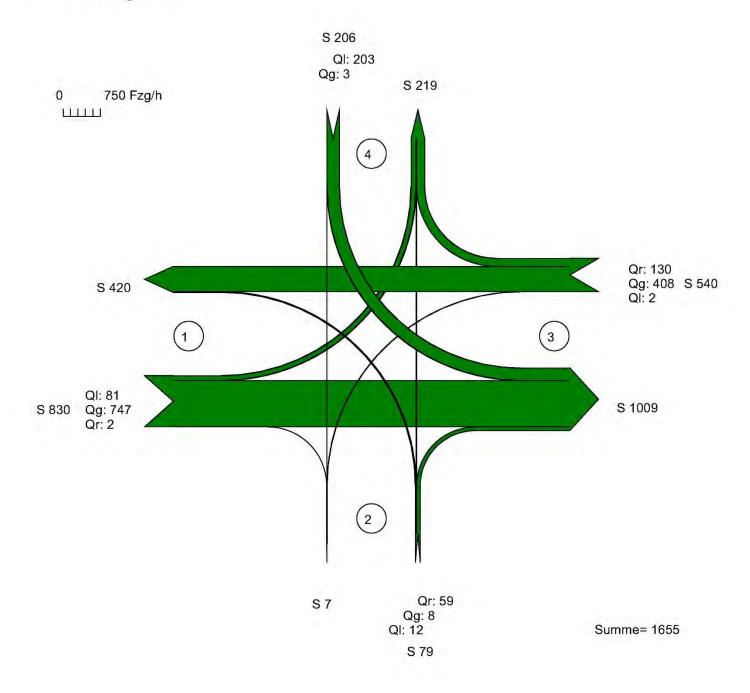
Form	blatt 1				Knotenpunkt					
2.2400	41417				A	usgangsdate	n			
	Projekt: Knotenpunkt:	VU D-Rath.			kt-Fachzentr	um + Bürosta	andort (KV2		: Düsseldorf : 22.04.2020	
	Zeitabschnitt:				Analyse)			Bearbeiter		
	t _u : 70 [s]	Opitzoriotari	do in opui	TO T BUILDING	anaryoo ₁			Dodrootto	. 3411	
	hrsströme									
Nr.	q _{LV}	Q _{Lkw+Bus}	Q _{Lkw} K	Q _{Kfz}	q _{sv}	f _{SV}	17.1	Anzahl	Misch-	bedingt
4	[Kfz/h] 458	[Kfz/h]	[Kfz/h] 8	[Kfz/h]	[Kfz/h]	[-] 1,026			fahrstreifen	verträglic
2	512	0	31			1,026		2	nein	nein
3	387	0	16			1,060		2	nein nein	nein nein
4	54	0	5	- 4		1,127		2	nein	nein
-	34	0,7	3			1,127		2	rieiri	rieiri
Kfz-Fahrs	treifen									
Zufahrt	Fahrt- richtung	Nr.	L [m]	b [m]	f _b [-]	R [m]	f _R [-]	s [%]	f _s [-]	L _{LA} /L _{RA} [m]
1	gerade	11		>= 3,00	1,000		1,000	0,0	1,000	1 -
1	gerade	12		>= 3,00	1,000	4	1,000	0,0	1,000	
1	links	13		>= 3,00	1,000	20,00	1,000	0,0	1,000	
1	links	14		>= 3,00	1,000	20,00	1,000	0,0	1,000	
2	gerade	21		>= 3,00	1,000		1,000	0,0	1,000	1
2	gerade	22		>= 3,00	1,000	I	1,000	0,0	1,000	
3	links	31		>= 3,00	1,000	20,00	1,000	0,0	1,000	
3	links	32	12 24	>= 3,00	1,000	20,00	1,000	0,0	1,000	
Fußgänge	r-/Radfahrer	furten								
Zufahrt	Bez. Signalgr.	q _{Fg} [Fg/h]	q _{Rad} [Rad/h]		1. Furt Länge [m]	2. Furt Länge [m]	3. Furt Länge [m]	4. Furt Länge [m]		

Form	blatt 2	Knotenpunkt mit Lichtsignalanlage											
FOITH	Diatt 2		Berechnung der Grundlagendaten für den Kfz-Verkehr										
	Projekt	VU D-Rath.	Theodorstral	ße - Baumar	kt-Fachzentr	um + Büros	tandort (KV20	007) Stadt	: Düsseldorf				
		: KN05 - Abfa							22.04.2020				
		: Spitzenstund			Analyse)			Bearbeiter	: uh				
Kfz-Verke	hrsströme -	Kapazitäten	(strombezo	gen)					0				
Nr.	Bez. SG	t _{B,i} [s]	q _{s,i} [Kfz/h]	t _{F,i} [s]	C _{0,1} [Kfz/h]	C _{D,i} [Kfz/h]	C _{PW,i} [Kfz/h]	C _{GF,i} [Kfz/h]	C _{LA,i} [Kfz/h]	C _{RA,i} [Kfz/h]			
1_1_	CL	1,846	1950	20	585			19		P			
2	С	1,954	1842	45	1211								
3	Ď	1,907	1888	20	566			1					
4	AL	2,029	1774	11	304								
- 20	hrsströme - Bez.	Kapazitäten 9j	(fahrstreife	nbezogen)	q _{LĀ}	n _k	N _{MS,90,j}	C _{K,j}	C _{M,j}	C _j			
Nr.	SG	[Kfz/h]	[Kfz/h]	[Kfz/h]	[Kfz/h]	[Kfz]	[Kfz]	[Kfz/h]	[Kfz/h]	[Kfz/h]			
11	С	272	272				4,850			121			
12	С	272	272				4,850			121			
13	CL	233			233		7,368			58			
14	CL	233	-7-0		233		7,368			58			
21	D	202	202				6,521			56			
22	D	202	202		.00		6,521			56			
31 32	AL AL	30 30	11		30 30		1,810 1,810			30			

Formb	Formblatt 3		Knotenpunkt mit Lichtsignalanlage										
FOITIL	лан э		Berechnung der Verkehrsqualitäten										
	Projekt: <u>VU D-Rath</u> , <u>Theodorstraße – Baumarkt-Fachzentrum + Bürostandort (KV20</u> 07) Stadt: <u>Düsseldorf</u> Knotenpunkt: <u>KN05 – Abfahrt A52 Ost/Theodorstr.</u> Zeitabschnitt: Spitzenstunde MF spät – IST-Daten (Analyse) Bearbeiter: uh												
		Verkehrsqu						Dod Dollor.	411				
Nr.	Bez. SG	Ströme	q _j [Kfz/h]	x _j [-]	f _{A,j} [-]	N _{GE,j} [Kfz]	N _{MS,j} [Kfz]	L _{95,j} [m]	t _{W,j} [s]	QSV [-]			
11	С	2	272	0,225	0,66	0,164	2,290	32	5,3	A			
12	С	2	272	0,225	0,66	0,164	2,290	32	5,3	Α			
13	CL	_1	233	0,398	0,30	0,388	3,990	45	21,9	В			
14	CL	1	233	0,398	0,30	0,388	3,990	45	21,9	В			
21	D	3	202	0,357	0,30	0,322	3,402	41	21,3	В			
22	D	3	202	0,357	0,30	0,322	3,402	41	21,3	В			
31	AL	4	30	0,099	0,17	0,061	0,553	12	25,2	В			
32	AL	4	30	0,099	0,17	0,061	0,553	12	25,2	В			
Gesamt			1474						15,7				
Fußgänger	- /Radfahr	erfurten											
Zufahrt	Bez. SG	q _{Fg} [Fg/h]	q _{Rad} [Rad/h]	Anzahl Furten	t _{W,max} [s]					QSV [-]			
								Gesamtb	ewertung:	В			

Verkehrsfluss-Diagramm

Datei : KV2007-Kn6_MFspaet_IST-Daten.amp


Projekt: VU D-Rath, Theodorstraße - Baumarkt-Fachzentrum + Bürostandort (KV2007)

Knoten: KN06 - Abfahrt A52 West/Theodorstr./Gladbecker Str.

Stunde: Spitzenstunde MF spät - IST-Daten (Analyse)

Fahrzeuge

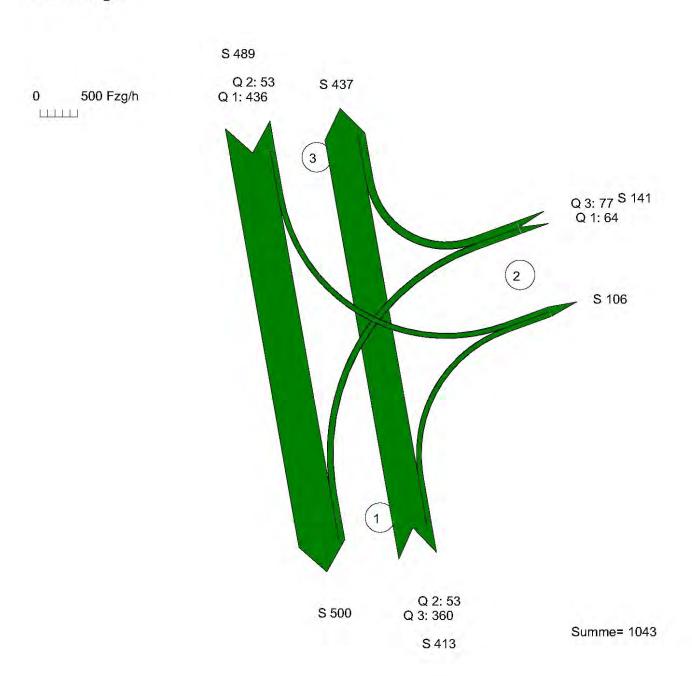
Zufahrt 1 : Theodorstraße (west) Zufahrt 2 : Gladbecker Straße Zufahrt 3 : Theodorstraße (ost) Zufahrt 4 : Zu-/Abfahrt A52

Formblatt 1		Knotenpunkt mit Lichtsignalanlage										
Form	ibiatt 1	Ausgangsdaten										
	Projekt: Knotenpunkt: Zeitabschnitt:	KN06 - Abfa		t/Theodorstr	/Gladbecker		andort (KV2		:: <u>Düsseldorf</u> : <u>22.04.2020</u> :: uh			
4 1 A 1 A 1 A 1 A 1 A 1 A 1	t t _U : 70 [s]		1000					-				
	hrsströme							d				
Nr.	q _{LV} [Kfz/h]	q _{Lkw+Bus} [Kfz/h]	q _{LkwK} [Kfz/h]	q _{Kfz} [Kfz/h]	q _{SV} [Kfz/h]	f _{SV} [-]		Anzahl Fahrstreifen	Misch- fahrstreifen	bedingt verträglich		
1	78	0	3			1,056		1	nein	nein		
2	728	0	19			1,038		2	ja	nein		
3	2	0	0			1,000		1	ja	ja		
4	12	0	0			1,000		1	nein	ja		
5	8	0	0			1,000		1	ja	nein		
6	59	0	0			1,000		1	ja	nein		
7	1	0	1			1,750		1	nein	nein		
8	396	0	12			1,044		2	ja	nein		
9	124	0	6			1,069		1	ja	nein		
10	183	0	20			1,148		2	nein	nein		
11	3	0	0		9	1,000		1	nein	ja		
Kfz-Fahrs	treifen											
Zufahrt	Fahrt- richtung	Nr.	L [m]	b [m]	f _b [-]	R [m]	f _R [-]	s [%]	f _s	L _{LA} /L _{RA} [m]		
1	rechts	11		>= 3,00	1,000	20,00	1,000	0,0	1,000	50		
1	gerade	11		>= 3,00	1,000		1,000	0,0	1,000			
1	gerade	12		>= 3,00	1,000		1,000	0,0	1,000			
1	links	13		>= 3,00	1,000	20,00	1,000	0,0	1,000			
2	rechts	21		>= 3,00	1,000	20,00	1,000	0,0	1,000			
2	gerade	21		>= 3,00	1,000	*	1,000	0,0	1,000			
2	links	22		>= 3,00	1,000	20,00	1,000	0,0	1,000	25		
3	rechts	31	1	>= 3,00	1,000	20,00	1,000	0,0	1,000			
3	gerade	31		>= 3,00	1,000	-	1,000	0,0	1,000			
3	gerade	32		>= 3,00	1,000		1,000	0,0	1,000			
3	links	33		>= 3,00	1,000	20,00	1,000	0,0	1,000			
4	gerade	41		>= 3,00	1,000	-	1,000	0,0	1,000	50		
4	links	42		>= 3,00	1,000	20,00	1,000	0,0	1,000	1		
4	links	43		>= 3,00	1,000	20,00	1,000	0,0	1,000			
Fußgänge	er-/Radfahrer	furten										
Zufahrt	Bez. Signalgr.	q _{Fg} [Fg/h]	q _{Rad} [Rad/h]		1. Furt Länge [m]	2. Furt Länge [m]	3. Furt Länge [m]	4. Furt Länge [m]				
2	F1	50	50		16,00							

	blatt 2		Knotenpunkt mit Lichtsignalanlage Berechnung der Grundlagendaten für den Kfz-Verkehr									
FOIL	DIALL Z											
	Projekt	VU D-Rath.	Theodorstra	3e - Baumarl	kt-Fachzentr	um + Bürost	andort (KV20	007) Stadt	: Düsseldorf			
	Knotenpunkt	KN06 - Abfa	hrt A52 Wes	t/Theodorstr	/Gladbecker	Str.		Datum	22.04.2020			
	Zeitabschnitt	: Spitzenstund	de MF spät -	IST-Daten (Analyse)			Bearbeiter	: uh			
Kfz-Verke	hrsströme -	Kapazitäten	(strombezo	gen)								
Nr.	Bez.	t _{B,i}	$q_{S,i}$	t _{F,i}	C _{0,i}	C _{D,i}	C _{PW,i}	$C_{GF,l}$	C _{LA,)}	C _{RA,i}		
(NL)	SG	[s]	[Kfz/h]	[s]	[Kfz/h]	[Kfz/h]	[Kfz/h]	[Kfz/h]	[Kfz/h]	[Kfz/h]		
1	CL	1,900	1895	5	162	- 1						
2	С	1,869	1926	19	550							
3	С	1,800	2000	19	571				1	48		
4	В	1,800	2000	5	171	73	214		171			
5	В	1,800	2000	5	171							
6	В	1,800	2000	5	171							
.7	DL	3,150	1143	5	98							
8	D	1,879	1916	16	465							
9	D	1,925	1870	16	454		1 1					
10	AL	2,066	1742	18	473		1 1					
1.1	А	1,800	2000	9	286	73	429		286			
Kfz-Vorko	hreetröma -	Kapazitäten	(fabretroifo	nhozogan)								
THE TOTAL	Bez.	qj	q _G	q _{RA}	9 _{LA}	n _k	N _{MS,90,j}	C _{K,j}	C _{M,j}	Cj		
Nr.	SG	[Kfz/h]	[Kfz/h]	[Kfz/h]	[Kfz/h]	[Kfz]	[Kfz]	[Kfz/h]	[Kfz/h]	[Kfz/h]		
11	С	374	372	2			12,629		550			
12	C	375	375			1.41	12,675			55		
13	CL	81			81		4,549			16		
21		01					4,049					
	В	67	8	59			3,750		171			
22	B B		8	59	12				171	17		
		67	137	59 130	12		3,750		171 460	17		
22	В	67 12			12		3,750 1,113		- = 1	17		
22 31	B D	67 12 267	137		12		3,750 1,113 9,389		- = 1			
22 31 32	B D D	67 12 267 271	137				3,750 1,113 9,389 9,500		- = 1	46		
22 31 32 33	B D D	67 12 267 271 2	137 271				3,750 1,113 9,389 9,500 0,414		- = 1	46 9 28		
22 31 32 33 41	B D D DL A	67 12 267 271 2 3	137 271		2		3,750 1,113 9,389 9,500 0,414 0,456		- = 1	46 9 28 47		
22 31 32 33 41 42	B D D A AL	67 12 267 271 2 3 102	137 271		2 102		3,750 1,113 9,389 9,500 0,414 0,456 3,889		- = 1	46 9 28 47		
22 31 32 33 41 42	B D D A AL	67 12 267 271 2 3 102	137 271		2 102		3,750 1,113 9,389 9,500 0,414 0,456 3,889		- = 1	46		
22 31 32 33 41 42	B D D A AL	67 12 267 271 2 3 102	137 271		2 102		3,750 1,113 9,389 9,500 0,414 0,456 3,889		- = 1	46 9 28 47		
22 31 32 33 41 42	B D D A AL	67 12 267 271 2 3 102	137 271		2 102		3,750 1,113 9,389 9,500 0,414 0,456 3,889		- = 1	46 9 28 47		
22 31 32 33 41 42	B D D A AL	67 12 267 271 2 3 102	137 271		2 102		3,750 1,113 9,389 9,500 0,414 0,456 3,889		- = 1	46 9 28 47		
22 31 32 33 41 42	B D D A AL	67 12 267 271 2 3 102	137 271		2 102		3,750 1,113 9,389 9,500 0,414 0,456 3,889		- = 1	46 9 28 47		
22 31 32 33 41 42	B D D A AL	67 12 267 271 2 3 102	137 271		2 102		3,750 1,113 9,389 9,500 0,414 0,456 3,889		- = 1	46 9 28 47		
22 31 32 33 41 42	B D D A AL	67 12 267 271 2 3 102	137 271		2 102		3,750 1,113 9,389 9,500 0,414 0,456 3,889		- = 1	46 9 28 47		
22 31 32 33 41 42	B D D A AL	67 12 267 271 2 3 102	137 271		2 102		3,750 1,113 9,389 9,500 0,414 0,456 3,889		- = 1	46 9 28 47		

Formblatt 3		Knotenpunkt mit Lichtsignalanlage										
Forme	natt 3	Berechnung der Verkehrsqualitäten										
	Projekt	t: VU D-Rath.	Theodorstral	ße - Baumark	t-Fachzentru	um + Bürosta	andort (KV20	07) Stadt:_I	Düsseldorf			
K	(notenpunk	t: KN06 - Abfa	hrt A52 Wes	t/Theodorstr.	/Gladbecker	Str.	2	Datum:_	22.04.2020			
Z	eitabschnit	t: Spitzenstun	de MF spät -	IST-Daten (A	Analyse)			Bearbeiter:	uh			
Kfz-Verkeh	rsströme -	Verkehrsqu	alitäten (fah	rstreifenbez	ogen)				-			
Nr.	Bez. SG	Ströme	q _j [Kfz/h]	(-)	f _{A.j} [-]	N _{GE,j} [Kfz]	N _{MS,j} [Kfz]	L _{95,j} [m]	t _{W,j} [s]	QSV [-]		
11	С	2, 3	374	0,680	0,29	1,433	7,881	79	31,6	В		
12	С	2	375	0,682	0,29	1,447	7,916	79	31,7	В		
13	CL	1	81	0,500	0,09	0,594	2,099	29	43,8	С		
21	В	5, 6	67	0,392	0,09	0,374	1,606	23	38,2	С		
22	В	4	12	0,070	0,09	0,042	0,256	7	30,3	В		
31	D	8, 9	267	0,580	0,24	0,867	5,443	60	30,1	В		
32	D	8	271	0,583	0,24	0,877	5,525	60	30,2	В		
33	DL	7	2	0,020	0,09	0,011	0,047	4	29,7	В		
41	Α	11	3	0,010	0,14	0,006	0,056	3	25,8	В		
42	AL	10	102	0,216	0,27	0,155	1,690	27	20,9	В		
43	AL	10	102	0,216	0,27	0,155	1,690	27	20,9	В		
Gesamt			1656						30,7			
Fußgänger	- /Radfahr	erfurten	-1			- 1	Т.	1	- 1			
Zufahrt	Bez. SG	q _{Fg} [Fg/h]	q _{Rad} [Rad/h]	Anzahl Furten	t _{W,max} [s]					QSV [-]		
2	F1	50	50	1	42					С		
								Gesamtb	ewertung:	С		

Verkehrsfluss-Diagramm


Datei : KV2007-Kn7_MFspaet_IST-Daten.amp

Projekt: VU D-Rath, Theodorstraße - Baumarkt-Fachzentrum + Bürostandort (KV2007)

Knoten : KN07 - Am Hülserhof/Zum Gut Heiligendonk Stunde : Spitzenstunde MF spät - IST-Daten (Analyse)

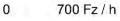
Fahrzeuge

Zufahrt 1 : Am Hülserhof (süd) Zufahrt 2 : Zum Gut Heiligendonk Zufahrt 3 : Am Hülserhof (nord)

Form	blatt 1					mit Lichtsigr				
1.8110	Did ii				A	usgangsdate	n			
						um + Bürosta	andort (KV2	Server Leader	Düsseldorf	
	Knotenpunkt.	2000	5 10 - 10 - 10 - 10 - 10 - 10 - 10 -	The state of the s					: <u>21.04.2020</u>	
	Zeitabschnitt	Spitzenstun	de M⊢ spat -	IST-Daten (Analyse)			Bearbeiter	uh	
Umlaufzeit										
Kfz-Verke	hrsströme	1			- T	- F			F. 28.00	
Nr.	q _{LV} [Kfz/h]	q _{Lkw+Bus} [Kfz/h]	q _{LkwK} [Kfz/h]	q _{Kfz} [Kfz/h]	q _{sv} [Kfz/h]	f _{sv} [-]		Anzahl Fahrstreifer	Misch- fahrstreifen	bedingt verträglic
1	339	0	21			1,087		1	ja	nein
2	48	0	5			1,142		1	ja	ja
3	56	0	8			1,188		1	nein	nein
4	72	0	5			1,097		1	nein	nein
5	46	0	7			1,198		1	nein	ja
6	417	0	19	10		1,065		1	nein	nein
Wo carrie										-
Kfz-Fahrs					-					
Zufahrt	Fahrt- richtung	Nr.	L [m]	b [m]	f _b [-]	R [m]	f _R [-]	s [%]	f _s [-]	L _{LA} /L _{RA} [m]
1	rechts	11		>= 3,00	1,000	20,00	1,000	0,0	1,000	15
1	gerade	11		>= 3,00	1,000		1,000	0,0	1,000	
2	rechts	21		>= 3,00	1,000	20,00	1,000	0,0	1,000	
2	links	22		>= 3,00	1,000	20,00	1,000	0,0	1,000	
3	gerade	31		>= 3,00	1,000	II _ ×	1,000	0,0	1,000	
3	links	32		>= 3,00	1,000	20,00	1,000	0,0	1,000	25
Fußgänge	r-/Radfahrer	furten								
Zufahrt	Bez. Signalgr.	q _{Fg} [Fg/h]	q _{Rad} [Rad/h]		1. Furt Länge	2. Furt Länge	3. Furt Länge	4. Furt Länge		
	65 50	2.0.9			[m]	[m]	[m]	[m]		
2	E1	30	20		10,00				1 = 1	
2	E2	30	20		8,00				1 =	
2	E1+E2	30	20		10.00	8,00				
2	E2+E1	30	20		8,00	10,00				

Form	blatt 2						gnalanlage	4.0.00		
Fout	NIGHT			Berechn	ung der Grur	ndlagendater	ı für den Kfz	-Verkehr		
	Projekt	VU D-Rath,	Theodorstra	ße - Baumar	kt-Fachzentr	um + Bürost	andort (KV20	007) Stadt	Düsseldorf	
		<u>KN07 - Am I</u>		the part of the part of the part of					21.04.2020	
7		Spitzenstun			Analyse)			Bearbeiter	uh	
Kfz-Verke	hrsströme -	Kapazitäten	(strom bezo	gen)						
Nr.	Bez. SG	t _{B,i} [s]	q _{S,i} [Kfz/h]	t _{F,∖} [s]	C _{0,i} [Kfz/h]	G _{D,i} [Kfz/h]	C _{PW,i} [Kfz/h]	C _{GF,i} [Kfz/h]	C _{LA,i} [Kfz/h]	C _{RA,I} [Kfz/h]
1	В	1,957	1840	40	1077					
2	В	2,055	1752	40	1026	512	113			62
3	DL	2,138	1684	7	192				1	
4	DR	1,975	1823	18	495					
5	Α	2,157	1669	54	1311	324		191	515	
6	A	1,918	1877	54	1475					
									-	
Kfz-Verke		Kapazitäten	(fahrstreife	nbezogen) q _{RA}	q _{LA}	n _k	N _{MS,90,j}	C _{K,j}	C _{MJ}	C _j
	Bez.	Q _i								
Nr.	Bez. SG	q _j [Kfz/h]	[Kfz/h]	[Kfz/h]	[Kfz/h]	[Kfz]	[Kfz]	[Kfz/h]	[Kfz/h]	[Kfz/h]
Nr. 11	1 2 2 2 2			100			1111-1111-1			[Kfz/h]
11	SG B	[Kfz/h] 413	[Kfz/h]	[Kfz/h] 53			[Kfz] 9,062		[Kfz/h]	
11 21	SG B DR	[Kfz/h] 413 77	[Kfz/h]	[Kfz/h] 53	[Kfz/h]		[Kfz] 9,062 3,127		[Kfz/h]	[Kfz/h] 49
11 21 22	SG B DR DL	[Kfz/h] 413 77 64	[Kfz/h] 360	[Kfz/h] 53	[Kfz/h]		[Kfz] 9,062 3,127 3,458		[Kfz/h] 986	[Kfz/h] 49 19
11 21 22 31	SG B DR DL A	[Kfz/h] 413 77 64 436	[Kfz/h] 360	[Kfz/h] 53	[Kfz/h]		[Kfz] 9,062 3,127 3,458 5,336		[Kfz/h]	[Kfz/h] 49 19 147
11 21 22 31	SG B DR DL A	[Kfz/h] 413 77 64 436	[Kfz/h] 360	[Kfz/h] 53	[Kfz/h]		[Kfz] 9,062 3,127 3,458 5,336		[Kfz/h] 986	[Kfz/h] 49 19 147
11 21 22 31	SG B DR DL A	[Kfz/h] 413 77 64 436	[Kfz/h] 360	[Kfz/h] 53	[Kfz/h]		[Kfz] 9,062 3,127 3,458 5,336		[Kfz/h] 986	[Kfz/h] 49 19 147
11 21 22 31	SG B DR DL A	[Kfz/h] 413 77 64 436	[Kfz/h] 360	[Kfz/h] 53	[Kfz/h] 64 53	[Kfz]	[Kfz] 9,062 3,127 3,458 5,336		[Kfz/h] 986	[Kfz/h] 49 19 147
11 21 22 31	SG B DR DL A	[Kfz/h] 413 77 64 436	[Kfz/h] 360	[Kfz/h] 53	[Kfz/h]		[Kfz] 9,062 3,127 3,458 5,336		[Kfz/h] 986	[Kfz/h] 49 19 147
11 21 22 31	SG B DR DL A	[Kfz/h] 413 77 64 436	[Kfz/h] 360	[Kfz/h] 53	[Kfz/h] 64 53	[Kfz]	[Kfz] 9,062 3,127 3,458 5,336		[Kfz/h] 986	[Kfz/h] 49 19 147
11 21 22 31	SG B DR DL A	[Kfz/h] 413 77 64 436	[Kfz/h] 360	[Kfz/h] 53	[Kfz/h] 64 53	[Kfz]	[Kfz] 9,062 3,127 3,458 5,336		[Kfz/h] 986	[Kfz/h] 49 19 147
11 21 22 31	SG B DR DL A	[Kfz/h] 413 77 64 436	[Kfz/h] 360	[Kfz/h] 53	[Kfz/h] 64 53	[Kfz]	[Kfz] 9,062 3,127 3,458 5,336		[Kfz/h] 986	[Kfz/h] 49 19 147
11 21 22 31	SG B DR DL A	[Kfz/h] 413 77 64 436	[Kfz/h] 360	[Kfz/h] 53	[Kfz/h] 64 53	[Kfz]	[Kfz] 9,062 3,127 3,458 5,336		[Kfz/h] 986	[Kfz/h] 49 19 147

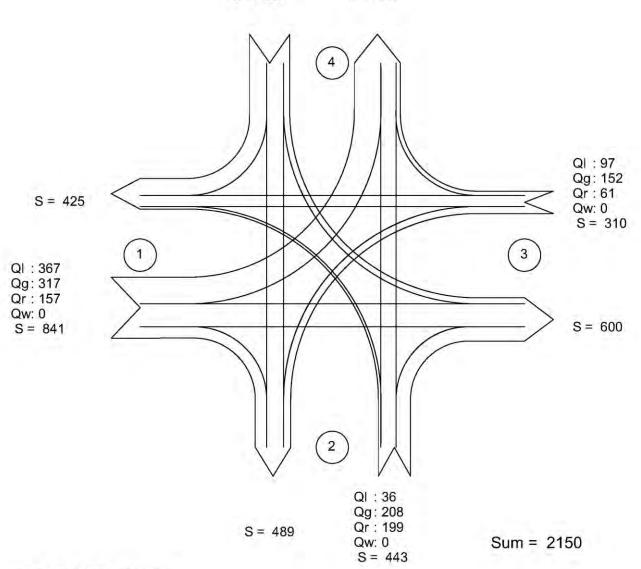
Form	blatt 3					t mit Lichtsig				
1.81110	olutt o				Berechnung	der Verkehr	squalitäten			
				ße - Baumarl		ım + Bürosta	indort (KV20	The Court of the State of the S	Düsseldorf	
	and the second second	The second second		m Gut Heilig	The state of the s				21.04.2020	
				IST-Daten (A	***************************************			Bearbeiter:	uh	
(fz-Verke	nrsströme -	Verkehrsqualitäten (fahrstreifenbezogen)								
Nr.	Bez.	Ströme	q	\mathbf{x}_{j}	f _{A,1}	N _{GE,J}	N _{MS,j}	L _{95,j}	$t_{W,j}$	QSV
7.5	SG		[Kfz/h]	[+]	[-]	[Kfz]	[Kfz]	[m]	[s]	[-]
11	В	1, 2	413	0,419	0,54	0,426	5,204	60	11,1	Α
21	DR	4	77	0,156	0,27	0,103	1,242	21	20,1	В
22	DL	3	64	0,333	0,11	0,287	1,433	25	33,9	В
31	Α	6	436	0,296	0,79	0,241	2,606	34	2,7	A
32	Α	5	53	0,103	0,31	0,064	0,800	17	17,7	Α
				1						
Sec. 37			92.02						- V. 2	
Gesamt			1043						10,0	
-ußgänge	r-/Radfahre			II was solen I	T					- حليادانين ا
Zufahrt	Bez.	q_{Fg}	q_{Rad}	Anzahl	t _{W,max}					QSV
	SG	[Fg/h]	[Rad/h]	Furten	[s]					[-]
2	E1	30	20	1	32					В
2	E2	30	20	1	34					В
2	E1+E2	30	20	2	34					В
2	E2+E1	30	20	2	34					В
								Conamth	owort ing	D
				4.5				Gesamb	ewertung:	В


Verkehrsfluss - Diagramm als Kreuzung

Datei: KV2007-Kn8_MFspaet_IST-Daten_Zeitluecken.krs

Projekt: VU D-Rath, Theodorstraße - Baumarkt-Fachzentrum + Bürostandort

Projekt-Nummer: KV2007


Knoten: KN08 - Kreisverkehr Volkardeyer Straße Stunde: Spitzenstunde MFspät - IST-Daten (Analyse)

HILLI

QI:84 Qg:235 Qr:237 Qw:0 S=556

S = 636

alle Kraftfahrzeuge

Zufahrt 1: Volkardeyer Str. West Zufahrt 2: Broichhofstr. Süd Zufahrt 3: Volkardeyer Str. Ost Zufahrt 4: Broichhofstr. Nord

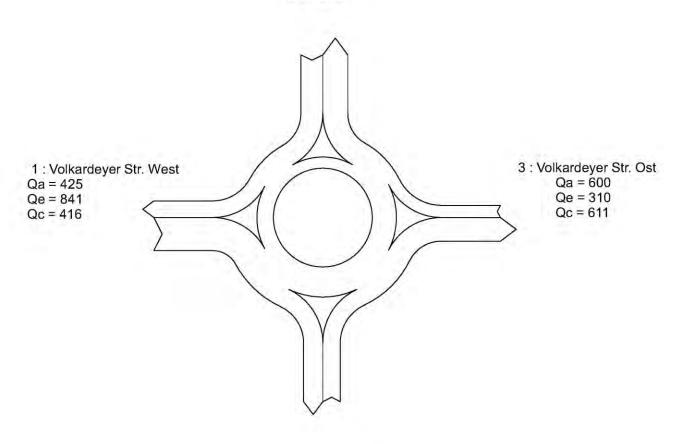
Verkehrsfluss - Diagramm als Kreis

Datei: KV2007-Kn8_MFspaet_IST-Daten_Zeitluecken.krs

Projekt: VU D-Rath, Theodorstraße - Baumarkt-Fachzentrum + Bürostandort

Projekt-Nummer: KV2007

Knoten: KN08 - Kreisverkehr Volkardeyer Straße
Stunde: Spitzenstunde MFspät - IST-Daten (Analyse)


0 1000 Fz / h

4 : Broichhofstr. Nord

Qa = 636

Qe = 556

Qc = 285

2: Broichhofstr. Süd

Qa = 489

Qe = 443

Qc = 768

Sum = 2150

alle Kraftfahrzeuge

Spiekermann GmbH, Düsseldorf

Kapazität, mittlere Wartezeit und Staulängen - mit Fußgängereinfluss

Datei: KV2007-Kn8_MFspaet_IST-Daten_Zeitluecken.krs

Projekt: VU D-Rath, Theodorstraße - Baumarkt-Fachzentrum + Bürostandort

Projekt-Nummer: KV2007

Knoten: KN08 - Kreisverkehr Volkardeyer Straße
Stunde: Spitzenstunde MFspät - IST-Daten (Analyse)

Wartezeiten

		n-in	F+R	q-Kreis	q-e-vorh	q-e-max	х	Reserve	Wz	QSV
	Name	-	/h	Pkw-E/h	Pkw-E/h	Pkw-E/h	18	Pkw-E/h	s	- Eg
1	Volkardeyer Str. West	1	0	421	861	1128	0,76	267	13,2	В
2	Broichhofstr. Süd	1	40	780	457	646	0,71	189	18,7	В
3	Volkardeyer Str. Ost	1	40	631	316	785	0,40	469	7,7	Α
4	Broichhofstr. Nord	1	0	296	323	1241	0,26	918	3,9	Α
4	Bypass	1			248	1400	0,18	1152	3,1	Α

Staulängen

		n-in	F+R	q-Kreis	q-e-vorh	q-e-max	L L	L-95	L-99	QSV
	Name	-	/h	Pkw-E/h	Pkw-E/h	Pkw-E/h	Pkw-E	Pkw-E	Pkw-E	100
1	Volkardeyer Str. West	1	0	421	861	1128	2,2	9	13	В
2	Broichhofstr. Süd	1	40	780	457	646	1,6	7	10	В
3	Volkardeyer Str. Ost	1	40	631	316	785	0,5	2	3	Α
4	Broichhofstr. Nord	1	0	296	323	1241	0,2	1	2	Α
4	Bypass	1			248	1400	(dec	÷	-	Α

Gesamt-Qualitätsstufe: B

Gesamter Verkehr Werkehr im Kreis ohne Bypass

Zufluss über alle Zufahrten 2205 1957 Pkw-E/h davon Kraftfahrzeuge 2150 1913 Fz/h Summe aller Wartezeiten 6,9 4.7 Fz-h/h s pro Fz Mittl. Wartezeit über alle Fz 11.5 8,8

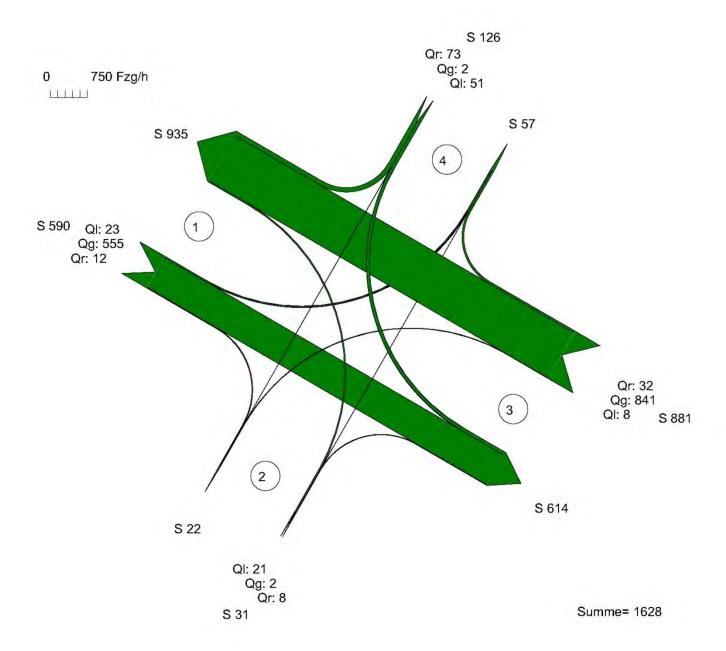
Berechnungsverfahren:

Kapazität : Grenzzeitlücken-Verfahren nach Harders-Formel

Wartezeit : HBS 2015 + HBS 2009 = Akcelik, Troutbeck (1991) mit T = 3600

Staulängen : Wu, 1997 Fußgänger-Einfluss : Stuwe, 1992 LOS - Einstufung : HBS (Deutschland)

Verkehrsfluss-Diagramm


Datei : KV2007-Kn09_MFspaet_mit-Strab_IST-Daten.amp

Projekt: VU D-Rath, Theodorstraße - Baumarkt-Fachzentrum + Bürostandort (KV2007)

Knoten: KN 09 - Theodorstr./Zum Gut Heiligendonk/DOME Stunde: Spitzenstunde MF spät - Ist-Daten (Analyse)

Fahrzeuge

Zufahrt 1: Theodorstraße (west)

Zufahrt 2: DOME

Zufahrt 3 : Theodorstraße (ost) Zufahrt 4 : Zum Gut Heiligendonk

F	h-1-44 d			1	Knotenpunkt	mit Lichtsig	nalanlage			
Form	blatt 1				Aı	usgangsdate	en			
	Projekt:	VU D-Rath,	Theodorstra	ße - Baumar	kt-Fachzentr	um + Bürost	andort (KV2	<u>20</u> 07) Stadt	: Düsseldorf	
	Knotenpunkt:	KN09 - The	odorstr./Zum	Gut Heiliger	ndonk/DOME			_ Datum	20.04.2020	
	Zeitabschnitt:	Spitzenstun	de MF spät -	Ist-Daten (A	nalyse)			Bearbeiter	: uh	
Umlaufzeit	t t _∪ : 70 [s]									
Kfz-Verke	hrsströme							-		
Nr.	q_{LV}	q _{Lkw+Bus}	q_{LkwK}	q_{Kfz}	q_{SV}	f_{SV}		Anzahl	Misch-	bedingt
INI.	[Kfz/h]	[Kfz/h]	[Kfz/h]	[Kfz/h]	[Kfz/h]	[-]		Fahrstreifen	fahrstreifen	verträglich
1	21	0	2			1,130		1	nein	nein
2	526	0	29			1,078		2	nein	nein
3	12	0	0			1,000		1	nein	ja
4	21	0	0			1,000		1	nein	ja
5	2	0	0			1,000		1	ja	nein
6	8	0	0			1,000		1	ja	ja
7	8	0	0			1,000		1	nein	nein
8	809	0	32			1,057		2	nein	nein
9	27	0	5			1,234		1	nein	ja
10	46	0	5			1,147		1	ja	ja
11	2	0	0			1,000		1	ja	nein
12	65	0	8			1,164		1	nein	ja
Kfz-Fahrs	treifen									
Zufahrt	Fahrt-	Nr.	L	b	f _b	R	f_R	s	f _s	L _{LA} /L _{RA}
Zulatiit	richtung	INI .	[m]	[m]	[-]	[m]	[-]	[%]	[-]	[m]
1	rechts	11		>= 3,00	1,000	20,00	1,000	0,0	1,000	19
1	gerade	12		>= 3,00	1,000	-	1,000	0,0	1,000	
1	gerade	13		>= 3,00	1,000	-	1,000	0,0	1,000	
1	links	14		>= 3,00	1,000	20,00	1,000	0,0	1,000	
2	rechts	21		>= 3,00	1,000	20,00	1,000	0,0	1,000	14
2	gerade	21		>= 3,00	1,000	-	1,000	0,0	1,000	
2	links	22		>= 3,00	1,000	20,00	1,000	0,0	1,000	30
3	rechts	31		>= 3,00	1,000	20,00	1,000	0,0	1,000	15
3	gerade	32		>= 3,00	1,000	-	1,000	0,0	1,000	
3	gerade	33		>= 3,00	1,000	-	1,000	0,0	1,000	
3	links	34		>= 3,00	1,000	20,00	1,000	0,0	1,000	
4	rechts	41		>= 3,00	1,000	20,00	1,000	0,0	1,000	18
4	gerade	42		>= 3,00	1,000	-	1,000	0,0	1,000	
4	links	42		>= 3,00	1,000	20,00	1,000	0,0	1,000	30

AMPEL Version 6.23 Seite 1

Form	ıblatt 1			Knotenpunkt	mit Lichtsigr	nalanlage		
				Αι	usgangsdate	n		
	Knotenpunkt:	KN09 - The		Baumarkt-Fachzentn Heiligendonk/DOME Daten (Analyse)		andort (KV20		Düsseldorf 20.04.2020 uh
Umlaufzei	t t _Ս : 70 [s]							
Fußgänge	er-/Radfahrer	furten						
Zufahrt	Bez. Signalgr.	q _{Fg} [Fg/h]	q _{Rad} [Rad/h]	1. Furt Länge [m]	2. Furt Länge [m]	3. Furt Länge [m]	4. Furt Länge [m]	
1	E1	50	20	12,00	. ,			
1	E2	50	20	7,00				
2	F3	50	20	13,00				
3	E3	50	20	14,00				
3	E4	50	20	9,00				
4	F1	50	20	7,00				
4	F2	50	20	6,00				
5	E7	50	20	7,00				
6	E8	50	20	7,00				
4	F1+F2	50	20	7,00	6,00			
4	F2+F1	50	20	6,00	7,00			
1+5	E1+E7+E2	50	20	12,00	7,00	7,00		
1+5	E2+E7+E1	50	20	7,00	7,00	12,00		
3+6	E4+E8+E3	50	20	9,00	7,00	14,00		
3+6	E3+E8+E4	50	20	14,00	7,00	9,00		

AMPEL Version 6.23 Seite 2

_					Knotenpun	kt mit Lichtsi	gnalanlage			
Form	blatt 2			Berechn	ung der Grur	ndlagendater	n für den Kfz	-Verkehr		
	Projekt	: VU D-Rath,	Theodorstra	ße - Baumar	kt-Fachzentr	um + Bürost	andort (KV20)07) Stadt	:_Düsseldorf	
	Knotenpunkt	: KN09 - The	odorstr./Zum	Gut Heiliger	ndonk/DOME			Datum	20.04.2020	
	Zeitabschnitt	: Spitzenstun	de MF spät -	Ist-Daten (A	nalyse)			Bearbeiter	: uh	
Kfz-Verke	hrsströme -	Kapazitäten	(strom bezo	gen)						
Nr.	Bez.	$t_{B,i}$	$q_{S,i}$	$t_{F,i}$	C _{0,i}	$C_{D,i}$	$C_{PW,i}$	$C_{GF,i}$	C _{LA,i}	$C_{RA,i}$
INI .	SG	[s]	[Kfz/h]	[s]	[Kfz/h]	[Kfz/h]	[Kfz/h]	[Kfz/h]	[Kfz/h]	[Kfz/h]
1	CL	2,035	1769	5	152					
2	С	1,941	1855	38	1033					
3	С	1,800	2000	38	1114					1059
4	В	1,800	2000	8	257	96	257		257	
5	В	1,800	2000	8	257					
6	В	1,800	2000	8	257					202
7	DL	1,800	2000	5	171					
8	D	1,903	1892	43	1189					
9	D	2,222	1620	43	1018					951
10	Α	2,065	1743	10	274	109	224		274	
11	A	1,800	2000	10	314					
12	А	2,096	1718	10	270					223
										0. 11 - 20
125 - 14 - 1 - 1		15								
K IZ-Verke	Bez.	Kapazitäten			g	n	N	C	C	· ·
Nr.	SG.	q _j [Kfz/h]	q _G [Kfz/h]	q _{RA} [Kfz/h]	q _{LA} [Kfz/h]	n _k [Kfz]	N _{MS,90,j} [Kfz]	C _{K,j} [Kfz/h]	C _{M,j} [Kfz/h]	C _j [Kfz/h]
11	С	12		12			0,695			1059
12	С	278	278				5,970			1033
13	С	278	278				5,970			1033
14	CL	23			23		1,726			152
21	В	10	2	8			0,963		211	
22	В	21			21		1,491			257
31	D	32		32			1,179			951
32	D	420	420				7,690			1189
33	D	420	420				7,690			1189
34	DL	8			8		0,867			171
41	А	73		73			3,688			223
42	Α	53	2		51		2,747		275	

Form	blatt 3				Knotenpunk	t mit Lichtsiç	gnalanlage			
FOIIII	Diatto				Berechnung	der Verkehr	squalitäten			
	Projekt:	VU D-Rath,	Theodorstra	ße - Baumar	kt-Fachzentru	um + Bürosta	andort (KV20	007) Stadt:_	Düsseldorf	
	Knotenpunkt:	KN09 - The	odorstr./Zum	Gut Heiliger	ndonk/DOME				20.04.2020	
	Zeitabschnitt:	Spitzenstun	de MF spät -	- Ist-Daten (A	Analyse)			Bearbeiter:	uh	
Kfz-Verke	hrsströme -	Verkehrsqu	alitäten (fah	rstreifenbez	zogen)					
Nr.	Bez.	Ströme	\mathbf{q}_{j}	\mathbf{x}_{j}	$f_{A,j}$	$N_{GE,j}$	$N_{MS,j}$	L _{95,j}	$t_{W,j}$	QSV
INI.	SG		[Kfz/h]	[-]	[-]	[Kfz]	[Kfz]	[m]	[s]	[-]
11	С	3	12	0,011	0,53	0,006	0,117	4	7,8	Α
12	С	2	278	0,269	0,56	0,210	3,027	39	8,8	Α
13	С	2	278	0,269	0,56	0,210	3,027	39	8,8	Α
14	CL	1	23	0,151	0,09	0,100	0,514	12	32,0	В
21	В	5, 6	10	0,047	0,11	0,027	0,202	6	28,6	В
22	В	4	21	0,082	0,13	0,049	0,409	9	27,6	В
31	D	9	32	0,034	0,59	0,019	0,281	9	6,2	Α
32	D	8	420	0,353	0,63	0,317	4,217	49	7,2	Α
33	D	8	420	0,353	0,63	0,317	4,217	49	7,2	Α
34	DL	7	8	0,047	0,09	0,027	0,170	5	30,0	В
41	А	12	73	0,327	0,13	0,279	1,569	26	32,2	В
42	A	10, 11	53	0,193	0,16	0,134	1,030	19	27,4	В
5 (ÖV)	ÖPNV1	13	6	500 - 000-00000		,			16,4	С
6 (ÖV)	ÖPNV2	14	6						16,4	С
- (/										
Gesamt			1628						10,4	
	er- /Radfahre	rfurten							, .	
	Bez.	q _{Fg}	q _{Rad}	Anzahl	t _{W,max}		Ī		T	QSV
Zufahrt	SG	۹⊦g [Fg/h]	[Rad/h]	Furten	[s]					[-]
1	E1	50	20	1	65					D
1	E2	50	20	1	65					D
2	F3	50	20	1	37					В
3	E3	50	20	1	65					D
3	E4	50	20	1	65					D
4	F1	50	20	1	20					A
4	F2	50	20	1	28					A
5	E7	50	20	1	50		+			C
6	E8	50	20	1	50					С
4	F1+F2	50	20	2	28		-			1950
4	F1+F2 F2+F1	50	20	2	28					Α
										Α
1+5	E1+E7+E2	50	20	3	174					
1+5	E2+E7+E1	50	20	3	126					
3+6	E4+E8+E3	50	20	3	127		-			
3+6	E3+E8+E4	50	20	3	173		-			
							-			
								Gesamtb	ewertung:	D

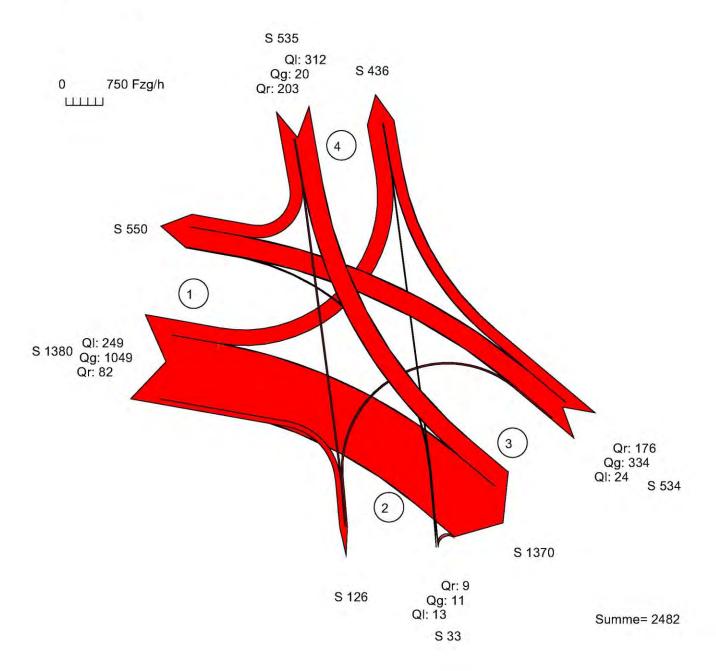
Anhang 3

Formblätter zur Ermittlung der Leistungsfähigkeit (Qualitätsstufe des Verkehrsablaufs – QSV) für die untersuchten Knotenpunkte mit den **Prognose-Belastungen**

Spitzenstunde am Werktag (Montag bis Freitag) früh

Verkehrsfluss-Diagramm

Datei : KV2007-Kn1_MFfrueh_mit-OPNV-reduziert_Prognose.amp


Projekt: VU D-Rath, Theodorstraße - Baumarkt-Fachzentrum + Bürostandort (KV2007)

Knoten: KN01 - Am Röhrenwerk/Theodorstr./Am Hülserhof

Stunde: Spitzenstunde MF früh (reduzierte Freigabezeiten wg. ÖPNV) - Prognose-Daten

Fahrzeuge

Zufahrt 1 : Theodorstraße (west) Zufahrt 2 : Am Röhrenwerk Zufahrt 3 : Theodorstraße (ost) Zufahrt 4 : Am Hülserhof

Form	blatt 1				Knotenpunkt	mit Lichtsigna	alanlage			
FOIII	Diati 1				Au	sgangsdaten	1			
	Projekt Knotenpunkt Zeitabschnitt	KN01 - Am I	Röhrenwerk/	Theodorstr.//			2.0	Datum	Düsseldorf 27.04.2020 uh	
Umlaufzeit			1.		9	.,,	3			
	hrsströme									
Nr.	q _{LV} [Kfz/h]	q _{Lkw+Bus} [Kfz/h]	q _{LkwK} [Kfz/h]	q _{Kfz} [Kfz/h]	q _{sV} [Kfz/h]	f _{sV} [-]		Anzahl Fahrstreifen	Misch- fahrstreifen	bedingt verträglic
1	236	0	13			1,078		1	nein	nein
2	1013	0	36			1,051		2	nein	nein
3	77	0	5			1,091		1	nein	nein
4	11	0	2			1,231		1	nein	ja
5	11	0	0			1,000		1	ja	nein
6	7	Ó	2	19		1,333		1	ja	nein
7	24	0	0			1,000		1	nein	nein
8	293	0	41			1,184		2	nein	nein
9	157	0	19			1,162		1	nein	ja
10	298	0	14			1,067		1	nein	ja
11	19	0	1			1,075		1	nein	nein
12	190	0	13	- 11		1,096		1	nein	ja
Kfz-Fahrs	treifen									
Zufahrt	Fahrt- richtung	Nr.	L [m]	b [m]	f _b	R [m]	f _R [-]	s [%]	f _s [-]	L _{LA} /L _{RA} [m]
4	rechts	11		>= 3,00	1,000	20,00	1,000	0,0	1,000	
1	gerade	12		>= 3,00	1,000		1,000	0,0	1,000	-
1	gerade	13		>= 3,00	1,000		1,000	0,0	1,000	
1	links	14		>= 3,00	1,000	20,00	1,000	0,0	1,000	
2	rechts	21		>= 3,00	1,000	20,00	1,000	0,0	1,000	
2	gerade	21		>= 3,00	1,000		1,000	0,0	1,000	
2	links	22		>= 3,00	1,000	20,00	1,000	0,0	1,000	56
3	rechts	31		>= 3,00	1,000	20,00	1,000	0,0	1,000	100
3	gerade	32		>= 3,00	1,000	- B	1,000	0,0	1,000	
3	gerade	33		>= 3,00	1,000	>	1,000	0,0	1,000	
3	links	34		>= 3,00	1,000	20,00	1,000	0,0	1,000	
4	rechts	41		>= 3,00	1,000	20,00	1,000	0,0	1,000	3(
4	gerade	42		>= 3,00	1,000		1,000	0,0	1,000	
4	links	43		>= 3,00	1,000	20,00	1,000	0,0	1,000	50

AMPEL Version 6,23 Seite 1

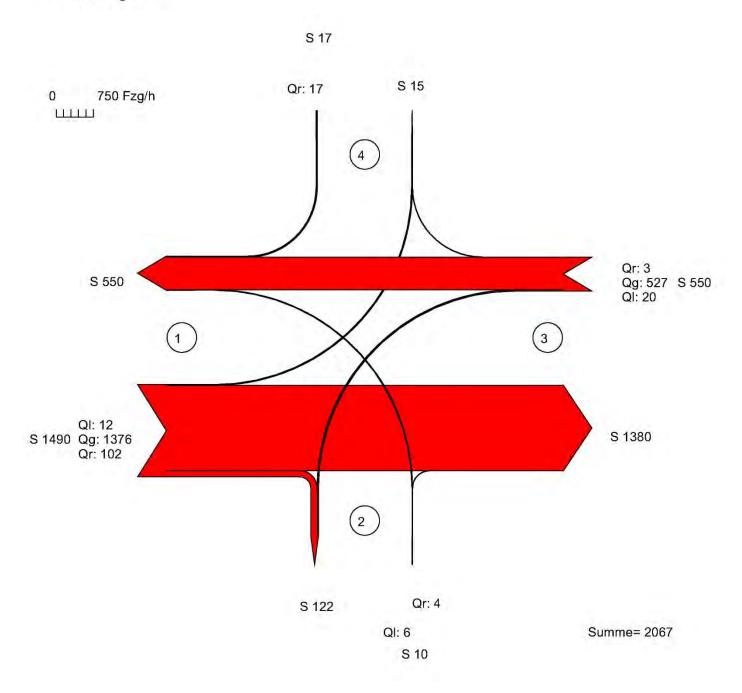
-				Knotenpunkt	mit Lichtsigr	nalanlage			
Form	blatt 1			Au	ısgangsdate	n			
	Knotenpunkt_	KN01 - Am I	Röhrenwerk/Theod	aumarkt-Fachzentru orstr./Am Hülserho erte Freigabezeiten	f		_ Datum:	Düsseldorf 27.04.2020 uh	
Umlaufzeit	tu: 70 [s]								
Fußgänge	r-/Radfahrer	furten						-	
Zufahrt	Bez. Signalgr.	q _{Fg} [Fg/h]	q _{Rad} [Rad/h]	1. Furt Länge [m]	2: Furt Länge [m]	3. Furt Länge [m]	4. Furt Länge [m]		
31	E1	50	20	10					
1	E2	50	20	10					
1	E4	50	20	10				1 2	
2	F3	50	20	10					
3	E5	50	20	10					
3	E7	50	20	10					
4	F1	50	20	10					
4	F2	50	20	10					
4	F1+F2	50	20	10	10				
4	F2+F1	50	20	10	10				

AMPEL Version 6.2.3 Seite 2

Form	blatt 2			Berechn	Knotenpuni ung der Grur	kt mit Lichtsi ndlagendater	And the second second	-Verkehr		
	The second second	VU D-Rath, KN01 - Am l		ße - Baumar	kt-Fachzentr	um + Bürost)07) Stadt	Düsseldorf 27.04.2020	
	Zeitabschnitt	Spitzenstun	de MF früh (r	eduzierte Fr	eigabezeiten	wg. ÖPNV)	- Prognose-l	D &tear beiter	uh	
Kfz-Verke	hrsströme -	Kapazitäten	(strom bezo	gen)			I			
Nr.	Bez. SG	t _{e,i} [s]	q _{s,i} [Kfz/h]	t _{F,≀} [s]	C _{0,i} [Kfz/h]	C _{D,I} [Kfz/h]	C _{PW,I} [Kfz/h]	C _{GF,i} [Kfz/h]	C _{LA,i} [Kfz/h]	C _{RA,i} [Kfz/h]
1	CL	1,941	1855	12	344					
2	С	1,893	1902	21	598					
3	CR	1,965	1832	21	576	1			1	1
4	В	2,215	1625	5	139	54	383		139	
5	В	1,800	2000	5	171					
6	В	2,400	1500	5	129					
7	DL	1,800	2000	6	200					
8	D	2,131	1689	19	483					
9	D	2,091	1722	19	492					49
10	Α	1,921	1874	13	375	14	402		375	
11	Α	1,935	1860	13	372					
12	AR	1,973	1825	23	626	153	235			.38
Kfz-Verk e	ehrsströme - Bez SG	Kapazitäten q _j [Kfz/h]	(fahrstreife q _G [Kfz/h]	nbezogen) q _{RA} [Kfz/h]	q _{LA} [Kfz/h]	n _k	N _{MS,90,j}	C _{K,j} [Kfz/h]	C _M ,	C _j [Kfz/h]
11	CR	82	[KiZiij	[KiZii] 82	[KiZiti]	[Kfz]	3,118	[KIZ/H]	[KiZ/ti]	57
12	C	524	524	UZ.			22,975			59
13	C	524	524				22,975			59
14	CL	249	VET	-	249		10,612			34
21	В	20	11	9	2,10		1,576		149	01
22	В	13			13		1,201			13
31	D	176		176			5,997			49
32	D	167	167				5,749			48
33	D	167	167				5,749			48
34	DL	24			24		1,698		1	20
41	AR	203		203			7,617			38
42	А	20	20				1,341			37
43	Α	312			312		14,889			37
						-				

Form	blatt 3	-				t mit Lichtsig				
r Mill	Diati 5				Berechnung	der Verkehr	squalitäten			
		VU D-Rath,					andort (KV20	07) Stadt_I	Düsseldorf	
		t. <u>KN01 - Am</u>		mile mile make the second of the second of	Jan Species A. V. A.		200		27.04.2020	
70 11 2 11		t. Spitzenstun				wg. OPNV)	- Prognose-E) Exter beiter: 1	uh	
Kfz-Verke		Verkehrsqu						0 1	2	
Nr.	Bez SG	Ströme	q _i [Kfz/h]	x _j [-]	f _{A,1} [-]	N _{GE,j} [Kfz]	N _{MS,j} [Kfz]	L _{95,j} [m]	t _{W.j} [s]	QSV [-]
11	CR	3	82	0,142	0,31	0,093	1,237	20	17,8	Α
12	С	2	524	0,876	0,31	6,532	16,173	145	62,0	D
13	С	2	524	0,876	0,31	6,532	16,173	145	62,0	D
14	CL	1	249	0,724	0,19	1,795	6,350	69	45,6	C
21	В	5, 6	20	0,134	0,09	0,086	0,446	11	31,7	В
22	В	4	13	0,094	0,09	0,057	0,290	9	31,0	В
31	D	9	176	0,358	0,29	0,323	3,046	42	22,3	В
32	D	8	167	0,346	0,29	0,306	2,879	41	22,1	В
33	D	8	167	0,346	0,29	0,306	2,879	41	22,1	В
34	DL	7	24	0,120	0,10	0,076	0,501	10	30,1	В
41	AR	12	203	0,523	0,21	0,669	4,165	50	30,6	В
42	Α	11	20	0,054	0,20	0,031	0,346	9	23,0	В
43	Α	10	312	0,832	0,20	3,817	9,639	95	63,5	D
					1					
Gesamt			2481						47,3	
Fußgänge	r-/Radfahr	erfurten								
Zufahrt	Bez. SG	q _{Fg} [Fg/h]	q _{Rad} [Rad/h]	Anzahl Furten	t _{W,max} [s]					QSV [-]
1	E1	[r g/rij 50	20	1	42					C
1	E2	50	20	1	43					C
1	E4	50	20	1	34					В
2	F3	50	20	1	49					С
3	E5	50	20	1	34					В
3	E7	50	20	1	55					C
4	F1	50	20	1	47					Ċ
4	F2	50	20	1	37					В
4	F1+F2	50	20	2	50					С
4	F2+F1	50	20	2	47					С
					1 1					
								Gesamtb	ewertung:	D

Verkehrsfluss-Diagramm


Datei : KV2007-Kn2_MFfrueh_Prognose.amp

Projekt: VU D-Rath, Theodorstraße - Baumarkt-Fachzentrum + Bürostandort (KV2007)

Knoten: KN02 - Theodorstr./Planstr. A/Betriebseinfahrt Stunde: Spitzenstunde MF früh - Prognose-Daten

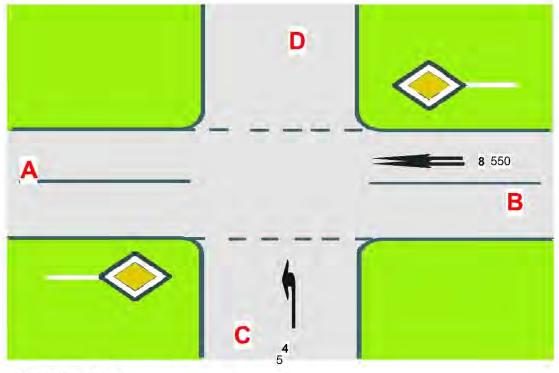
Fahrzeuge

Zufahrt 1 : Theodorstraße (west) Zufahrt 2 : Betriebszufahrt Zufahrt 3 : Theodorstraße (ost)

Zufahrt 4: Planstr. A

Form	blatt 1					mit Lichtsign isgangsdate				
	Projekt	VU D-Rath	Theodorstral	Se - Baumari				007) Stadt	: Düsseldorf	
1.3	Knotenpunkt:					arri - Datoon	and on the t		22.04.2020	
1	Zeitabschnitt:	Spitzenstun	de MF früh -	Prognose-Da	aten			Bearbeiter	: uh	
Umlaufzeit	tt _u : 70 [s]									
Kfz-Verke	hrsströme									
1070	q _{LV}	q _{Lkw+Bus}	Q LkwK	q _{Kfz}	q _{SV}	f _{SV}		Anzahl	Misch-	beding
Nr.	[Kfz/h]	[Kfz/h]	[Kfz/h]	[Kfz/h]	[Kfz/h]	[-]		Fahrstreifen	fahrstreifen	verträglid
1.	10	0	2			1,250		1	nein	nein
2	1324	0	52		14 2 14	1,057		2	nein	nein
3	100	0	2			1,029		1	nein	ja
4	6	0	0			1,000		1	nein	ja
5	2	0	2	J		1,750		1	nein	ja
6	19	0	1			1,075		1	nein	nein
7	473	0	54	i i		1,154		2	nein	nein
8	2	0	1		14-4-11	1,500		1	nein	ja
9	14	0	3		= 11	1,265		1	nein	nein
Kfz-Fahrs	treifen Fahrt-		L	ь			f			1 1
Zufahrt	richtung	Nr.	[m]	[m]	f _b [-]	R [m]	f _R [-]	s [%]	f _s [-]	L _{LA} /L _{RA} [m]
1	rechts	11	4.01	>= 3.00	1,000	20,00	1,000	0,0	1,000	5
1	gerade	12		>= 3,00	1,000	20,00	1,000	0,0	1,000	
1	gerade	13		>= 3,00	1,000		1,000	0,0	1,000	
1	links	14		>= 3,00	1,000	20,00	1,000	0,0	1,000	
2	rechts	21		>= 3,00	1,000	20,00	1,000	0,0	1,000	3
2	links	22	- 7	>= 3,00	1,000	20,00	1,000	0,0	1,000	3
3	rechts	31		>= 3,00	1,000	20,00	1,000	0,0	1,000	8
3	gerade	32		>= 3,00	1,000		1,000	0,0	1,000	
3	gerade	33		>= 3,00	1,000	1	1,000	0,0	1,000	
3	links	34		>= 3,00	1,000	20,00	1,000	0,0	1,000	1
4	rechts	41		>= 3,00	1,000	20,00	1,000	0,0	1,000	
	r-/Radfahrer				31000		4			
Zufahrt	Bez. Signalgr,	q _{Fg} [Fg/h]	q _{Rad} [Rad/h]		1. Furt Länge	2. Furt Länge	3. Furt Länge	4. Furt Länge		
4	F4	50	-00		[m]	[m]	[m]	[m]		
1	E1	50	20		10					
1	E2	50	20		10					
2	F2	50	50		10					
3	E3	50	20		10					
3	E4	50	20		10					
4	F1	50	50		10	10			-	
1	E1+E2	50 50	20		10	10				
3	E2+E1 E4+E3	50	20		10 10	10				
					7.11					
/IPEL∜ersion	_{6,2,3} E3+E4	50	20 nbH Cons		10	10			eldorf	

-					Knotenpun	kt mit Lichts	ignalanlage			
Forn	nblatt 2			Berechn	ung der Grui	ndlagendate	n für den Kfz	-Verkehr		
	Projekt	: VU D-Rath,	Theodorstral	ße - Baumar	kt-Fachzentr	um + Büros	tandort (KV20	007) Stadt	: Düsseldorf	
	the second second	: KN02 - Theo							22.04.2020	
A	Zeitabschnit	: Spitzenstund	de MF früh -	Prognose-Da	aten			Bearbeiter	uh .	
Kfz-Verke	ehrsströme -	Kapazitäten	(strombezo	gen)						
	Bez.	t _{B,ì}	q _{S,i}	$t_{\rm F,i}$	C _{0,i}	C _{D,i}	C _{PW,j}	$C_{GF,i}$	C _{LA,i}	C _{RA,i}
Nr.	SG	[s]	[Kfz/h]	[s]	[Kfz/h]	[Kfz/h]	[Kfz/h]	[Kfz/h]	[Kfz/h]	[Kfz/h]
1	CL	2,250	1600	5	137					1
2	С	1,902	1893	31	865					
3	С	1,853	1943	31	888					80
4	В	1,800	2000	12	371				316	
5	В	3,150	1143	12	212					164
6	DL	1,935	1860	5	159					
7	D	2,077	1733	16	421					
8	D	2,700	1333	16	324				1	324
9	A	2,276	1582	5	136					
	- 10	Litto	1002		100					
				1						
			-	*						
-										
CLE CONTROL	V 177.6110	SATISFIES AND THE	35-2-77-40	0.27.17.27.10						
Kfz-Verke		Kapazitäten	(fahrstreife	nbezogen)			1 22 3 1		D = 3	
Nr.	Bez. SG	q _j [Kfz/h]	q _G [Kfz/h]	q _{RA} [Kfz/h]	q _{LA} [Kfz/h]	n _k [Kfz]	N _{MS,90,j} [Kfz]	C _{K,j} [Kfz/h]	C _{M,j} [Kfz/h]	C _j [Kfz/h]
11	C	102		102			3,236			80
12	С	688	688				21,048			86
13	С	688	688				21,048		1122	869
14	CL	12			12		1,144			13
21	В	4	1 1	4		-	0,561			164
22	В	6			6		0,668			316
31	D	3	10000	3			0,425			324
32	D	264	264				9,691			42
33	D	264	264				9,691	-		42
34	DL	20	20,		20		1,561			159
41	A	17	*	17	20		1,434			130
77.1	- "	17		17			1,707			1.0
			7							
			1							
		+	-	-						
										-
						4				


Form	platt 3				Knotenpunk	t mit Lichtsig	gnalanlage			
) O())	Jiatt J				Berechnung	der Verkehr	squalitäten			
					kt-Fachzentrı	ım + Bürosta	andort (KV20		Düsseldorf	
	or o demin many	KN02 - The		7					22.04.2020	
		Spitzenstun						Bearbeiter:	uh	
Kfz-Verkel		Verkehrsqu	alitäten (fah		ogen)					1 33.30
Nr.	Bez. SG	Ströme	q _j [Kfz/h]	x _j [-]	f _{A,j} [-]	N _{GE,j} [Kfz]	N _{MS,j} [Kfz]	L _{95,j} [m]	t _{W,j} [s]	QSV [-]
11	C	3	102	0,126	0,42	0,081	1,304	20	13,0	Α
12	С	2	688	0,795	0,46	3,176	14,588	133	29,4	В
13	С	2	688	0,795	0,46	3,176	14,588	133	29,4	В
14	CL	1	12	0,088	0,09	0,053	0,268	9	30,9	В
21	В	5	4	0,024	0,14	0,014	0,081	6	26,1	В
22	В	4	6	0,019	0,16	0,011	0,109	4	25,0	В
31	D	8	3	0,009	0,24	0,005	0,049	4	20,2	В
32	D	7	264	0,627	0,24	1,081	5,666	67	32,9	В
33	D	7	264	0,627	0,24	1,081	5,666	67	32,9	В
34	DL	6	20	0,126	0,09	0,080	0,440	10	31,4	В
41	Α	9	17	0,125	0,09	0,080	0,385	11	31,7	В
Gesamt			2068						29,5	
Fußgänge	r- /Radfahre	rfurten								
Zufahrt	Bez. SG	q_{Fg}	q _{Rad}	Anzahl	t _{W,max}					QSV
1	E1	[Fg/h] 50	[Rad/h] 20	Furten 1	[s] 49				*	[-]
1	E2	50	20	1	49				- 1	С
2	F2	50	50	1	41					С
3	E3	50	20	1	31					В
3	E4	50	20	1	44					С
4	F1	50	50	1	23				· ·	A
1	E1+E2	50	20	2	49					C
1	E2+E1	50	20	2	49					С
3	E4+E3	50	20	2	44					C
3	E3+E4	50	20	2	44					С
	LU-LT	50	20	-	77				- K	
				-				Gesamtb	A	С

Übersicht von 07:30 bis 08:30

Knotenpunktbezeichung : Knoten 3 - U-Turn Theodorstraße (östlich) Spitzenstunde MF früh - Prognose-Daten

: KV2007-Kn3_MFfrueh_Prognose.EIN Name der Datei

						AVOV		C.M.	- 444						
Strom	VZ	VZ	VZ	VZ	RS	RS	RS	RS	н	н	Н	Fz.	Fz.	Fz.	QSV
	ges	mitt	85%	max	mitt	85%	95%	max	ges	mitt	max	ang.	abg.	wart.	
	[min]	[sec]	[sec]	[sec]	[Kfz]	[Kfz]	[Kfz]	[Kfz]	[-]	[-]	[-]	[Kfz]	[Kfz]	[Kfz]	[-]
4	1,3	16,0	22,0	57,3	0,0	0	0	2	5	1,0	2	5	5	0	Α
8	0,0	0,0	0,0	0,0	0,0	0	0	0	0	0,0	0	550	550	0	Α
Sum	1,3	0,1		57,3	0,0			2		0,0	2	555			
					t	bersic	ht von	07:30 b	ois 08:3	30					

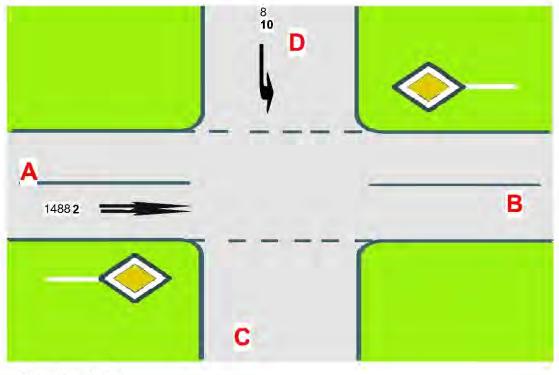
A=Theodorstr. (West) C=U-Turn

B=Theodorstr. (Ost)

Spiekermann GmbH Consultung Engineers

Düsseldorf

Bearbeiter: uh


Übersicht von 07:30 bis 08:30

Knotenpunktbezeichung: Knoten 4 - U-Turn Theodorstraße (westlich)

Spitzenstunde MF früh - Prognose-Daten

: KV2007-Kn4_MFfrueh_Prognose.EIN Name der Datei

Strom	VZ	VZ	VZ	VZ	RS	RS	RS	RS	Н	Н	Н	Fz.	Fz.	Fz.	QSV
	ges	mitt	85%	max	mitt	85%	95%	max	ges	mitt	max	ang.	abg.	wart.	
	[min]	[sec]	[sec]	[sec]	[Kfz]	[Kfz]	[Kfz]	[Kfz]	[-]	[-]	[-]	[Kfz]	[Kfz]	[Kfz]	[-]
2	0,0	0,0	0,0	0,0	0,0	0	0	0	0	0,0	0	1484	1484	0	А
10	6,2	48,6	91,0	323,7	0,1	Ò	1	3	8	1,1	2	8	8	0	D
Sum	6,2	0,2		323,7	0,0			3		0,0	2	1492			
Sum	6,2	0,2		323,7	0,0			3		0,0	2	1492			

A=Theodorstr. (West) C=-

B=Theodorstr. (Ost)

D=U-Turn

Spiekermann GmbH Consultung Engineers

Düsseldorf

Bearbeiter: uh

Verkehrsfluss-Diagramm

Datei : KV2007-Kn5_MFfrueh_Prognose.amp

Projekt: VU D-Rath, Theodorstraße - Baumarkt-Fachzentrum + Bürostandort (KV2007)

Knoten : KN05 - Abfahrt A52 Ost/Theodorstr. Stunde : Spitzenstunde MF früh - Prognose-Daten

Fahrzeuge

Summe= 2035

Zufahrt 1 : Theodorstraße (west) Zufahrt 2 : Theodorstraße (ost) Zufahrt 3 : Zu-/Abfahrt A52

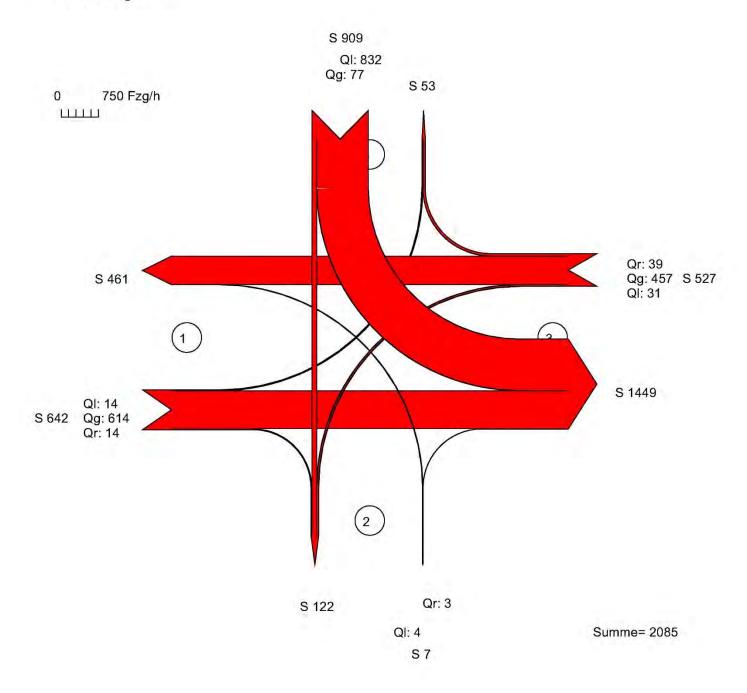
Form	blatt 1				Knotenpunkt	mit Lichtsign	alanlage			
, oili	Diat.				Αι	usgangsdate	n			
	Projekt: Knotenpunkt: Zeitabschnitt:	TV 15 13 HE WITH	hrt A52 Ost/	Theodorstr.	C-2-1-907	um + Bürosta	andort (KV2		: <u>Düsseldorf</u> : 22.04.2020 : uh	
	t t _U : 70 [s]				7,70					
	hrsströme									
Nr.	q _{LV} [Kfz/h]	q _{Lkw+Bus} [Kfz/h]	q _{LkwK} [Kfz/h]	q _{Kfz} [Kfz/h]	q _{sv} [Kfz/h]	f _{sv} [-]		Anzahl Fahrstreifen	Misch- fahrstreifen	bedingt verträglic
1	258	0	6			1,034		2	nein	nein
2	1144	0	41			1,052		2	nein	nein
3	266	0	17			1,090		2	nein	nein
4	289	0	14			1,069		2	nein	nein
Kfz-Fahrs	treifen Fahrt-	1	L	b	f _b	R	f _R	s	f _s	L _{LA} /L _{RA}
Zufahrt	richtung	Nr.	[m]	[m]	[-]	[m]	[-]	[%]	[-]	[m]
1	gerade	11		>= 3,00	1,000		1,000	0,0	1,000	1.5
1	gerade	12		>= 3,00	1,000	2	1,000	0,0	1,000	
1	links	13		>= 3,00	1,000	20,00	1,000	0,0	1,000	
_4	links	14		>= 3,00	1,000	20,00	1,000	0,0	1,000	
2	gerade	21		>= 3,00	1,000	14	1,000	0,0	1,000	
2	gerade	22		>= 3,00	1,000	1 4	1,000	0,0	1,000	
3	links	31	=======================================	>= 3,00	1,000	20,00	1,000	0,0	1,000	
3	links	32		>= 3,00	1,000	20,00	1,000	0,0	1,000	
Fußgänge	er-/Radfahrer	furten								
Zufahrt	Bez. Signalgr.	q _{Fg} [Fg/h]	q _{Rad} [Rad/h]		1. Furt Länge [m]	2. Furt Länge [m]	3. Furt Länge [m]	4. Furt Länge [m]		

Form	blatt 2				Knotenpun		137	by arrown		
1,7770	- X400-4						n für den Kfz			
		: VU D-Rath,			kt-Fachzentr	um + Büros	tandort (KV20		: Düsseldorf	
		: KN05 - Abfa			5				22.04.2020	
		: Spitzenstun			aten			Bearbeiter	: uh	
Kfz-Verke	hrsströme -	Kapazitäten	(strombezo	gen)						
Nr.	Bez. SG	t _{B,i} [s]	q _{s,i} [Kfz/h]	t _{F,i} [s]	C _{0,i} [Kfz/h]	C _{D,i} [Kfz/h]	C _{PW,i} [Kfz/h]	C _{GF,i} [Kfz/h]	C _{LA,i} [Kfz/h]	C _{RA,i} [Kfz/h]
1-	CL	1,861	1934	9	276					
2	С	1,893	1902	45	1250					
3	D	1,962	1835	31	839					1
4	AL	1,925	1870	11	321					
			-		4					1
										1
									1 2 2 2	
Kfz-Verke		Kapazitäten		nbezogen)						
Nr.	Bez. SG	q _j [Kfz/h]	q _G [Kfz/h]	q _{RA} [Kfz/h]	q _{LA} [Kfz/h]	n _k [Kfz]	N _{MS,90,j} [Kfz]	C _{K,j} [Kfz/h]	C _{M,j} [Kfz/h]	C _j [Kfz/h]
11	С	592	592				10,505			1250
12	С	592	592				10,505			1250
13	CL	132			132		5,793		4	276
14	CL	132		1	132		5,793		1	276
21	D	142	142				3,969			839
22	D	142	142				3,969		/	83
31	AL	152			152		6,228			32
32	AL	152			152		6,228			32
										1
										-
										J
			1							

Formb	latt 2			-	Knotenpunk	t mit Lichtsig	nalanlage			
FORME	natt 3				Berechnung	der Verkehr	squalitäten			
	(notenpunk	t: VU D-Rath, t: KN05 - Abfa	ahrt A52 Ost/	Theodorstr.		ım + Bürosta	indort (KV20	Datum:	Düsseldorf 22.04.2020	
		t: Spitzenstun						Bearbeiter:	uh	
Ktz-Verker		- Verkehrsqu				-v1		. 1	. 1	0011
Nr.	Bez. SG	Ströme	q _j [Kfz/h]	x _j [-]	f _{A,j} [-]	N _{GE,j} [Kfz]	N _{MS,j} [Kfz]	L _{95,j} [m]	t _{W,j} [s]	QSV [-]
11	С	2	592	0,474	0,66	0,542	6,270	66	7,5	Α
12	С	2	592	0,474	0,66	0,542	6,270	66	7,5	Α
13	CL	1	132	0,478	0,14	0,547	2,909	36	34,7	В
14	CL	1	132	0,478	0,14	0,547	2,909	36	34,7	В
21	D	3	142	0,169	0,46	0,114	1,739	26	11,7	Α
22	D	3	142	0,169	0,46	0,114	1,739	26	11,7	Α
31	AL	4	152	0,474	0,17	0,537	3,202	40	32,2	В
32	AL	4	152	0,474	0,17	0,537	3,202	40	32,2	В
				- 1						
Gesamt			2036				a = a†		15,3	
ußgänger	- /Radfahr	erfurten								
Zufahrt	Bez, SG	q _{Fg} [Fg/h]	q _{Rad} [Rad/h]	Anzahl Furten	t _{W,max} [s]					QSV [-]
								Gesamtb	ewertung:	В

Verkehrsfluss-Diagramm

Datei : KV2007-Kn6_MFfrueh_Prognose.amp


Projekt: VU D-Rath, Theodorstraße - Baumarkt-Fachzentrum + Bürostandort (KV2007)

Knoten: KN06 - Abfahrt A52 West/Theodorstr./Gladbecker Str.

Stunde: Spitzenstunde MF früh - Prognose-Daten

Fahrzeuge

Zufahrt 1 : Theodorstraße (west) Zufahrt 2 : Gladbecker Straße Zufahrt 3 : Theodorstraße (ost) Zufahrt 4 : Zu-/Abfahrt A52

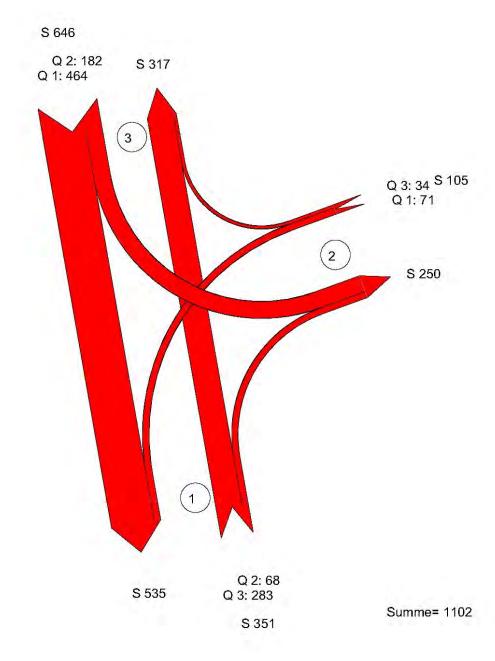
	blass d				Knotenpunkt	mit Lichtsign	nalanlage			
7,91,111	blatt 1				Au	usgangsdate	n			
	Projekt:	VU D-Rath,	Theodorstral	ße - Baumar	kt-Fachzentr	um + Bürosta	andort (KV2	007) Stadt	: Düsseldorf	
1	Knotenpunkt:	KN06 - Abfa	hrt A52 Wes	t/Theodorstr	./Gladbecker	Str.		_ Datum	: 22.04.2020	
	Zeitabschnitt:	Spitzenstun	de MF früh -	Prognose-D	aten			Bearbeiter	: uh	
Umlaufzeit	t _U : 70 [s]									
Kfz-Verke	hrsströme	1	т.						1	
Nr.	q _{LV} [Kfz/h]	q _{Lkw+Bus} [Kfz/h]	q _{LkwK} [Kfz/h]	q _{Kfz} [Kfz/h]	q _{SV} [Kfz/h]	f _{sv} [-]		Anzahl Fahrstreifer	Misch- fahrstreifen	bedingt verträglic
1	9	0	5	1.76	p-16	1,536		1	nein	nein
2	597	0	17		12 2 2 1	1,042	0.00	2	ja	nein
3	14	0	0			1,000		1	ja	ja
4	4	0	0			1,000		1	nein	ja
5	0	0	0			1,000		1	ja	nein
6	3	0	0			1,000		1	ja	nein
7	31	0	0			1,000		1	nein	nein
8	439	0	18		1 4 11	1,059		2	ja	nein
9	34	0	5	-		1,192		1	ja	nein
10	802	0	30		====	1,054		2	nein	nein
11	77	0	0			1,000		1	nein	ja
Kfz-Fahrs	treifen									
THE TAINS	Fahrt-		TE I	b	f _b	R	f _R	s	f _s	L _{LA} /L _{RA}
Zufahrt	richtung	Nr.	[m]	[m]	[-]	[m]	[-]	[%]	[-]	[m]
- 4	rechts	11	10.4	>= 3,00	1,000	20,00	1,000	0,0	1,000	.50
1	gerade	11		>= 3,00	1,000	- 4	1,000	0,0	1,000	
1	gerade	12		>= 3,00	1,000		1,000	0,0	1,000	
1	links	13		>= 3,00	1,000	20,00	1,000	0,0	1,000	
2	rechts	21		>= 3,00	1,000	20,00	1,000	0,0	1,000	
2	gerade	21		>= 3,00	1,000	123	1,000	0,0	1,000	
2	links	22		>= 3,00	1,000	20,00	1,000	0,0	1,000	2
3	rechts	31		>= 3,00	1,000	20,00	1,000	0,0	1,000	
3	gerade	31		>= 3,00	1,000	20,00	1,000	0,0	1,000	
3	gerade	32		>= 3,00	1,000	-	1,000	0,0	1,000	
3	links	33		>= 3,00	1,000	20,00	1,000	0,0	1,000	
4	gerade	41		>= 3,00	1,000	,	1,000	0,0	1,000	5
4	links	42		>= 3,00	1,000	20,00	1,000	0,0	1,000	
4	links	43		>= 3,00	1,000	20,00	1,000	0,0	1,000	
	r-/Radfahrer			5,00	,,500	20,00	1,550	0,0	.,,000	
3 3	Bez.	q _{Fg}	q _{Rad}	1 1	1. Furt	2. Furt	3. Furt	4. Furt	11	11
Zufahrt	Signalgr.	(Fg/h]	[Rad/h]		Länge [m]	Länge	Länge	Länge [m]		
2	F1	50	50		16,00	[m]	[m]	Lud		

	blatt 3				Knotenpun	kt mit Lichtsi	gnalanlage			
Form	blatt 2			Berechn	ung der Grun	ndlagendatei	n für den Kfz	-Verkehr		
	Projekt	: VU D-Rath.	Theodorstra	ße - Baumar	kt-Fachzentr	um + Bürost	andort (KV20	007) Stadt	: Düsseldorf	
i	Knotenpunkt	: KN06 - Abfa	hrt A52 Wes	t/Theodorstr	/Gladbecker	Str.	- Victoria		: 22.04.2020	
1 2	Zeitabschnitt	: Spitzenstun	de MF früh -	Prognose-D	aten			Bearbeiter	r: uh	
Kfz-Verke	hrsströme -	Kapazitäten	(strombezo	gen)						
	Bez.	t _{B,i}	q _{S,i}	t _{F,i}	C _{0,1}	CDJ	C _{PW,i}	C _{GF,I}	C _{LA,I}	CRAJ
Nr.	SG	[s]	[Kfz/h]	[s]	[Kfz/h]	[Kfz/h]	[Kfz/h]	[Kfz/h]	[Kfz/h]	[Kfz/h]
1	CL	2,764	1302	5	112				1 - 11	
2	С	1,875	1920	17	494					
3	С	1,800	2000	17	514	1				43
4	В	1,800	2000	5	171	69	214		171	
5	В	1,800	2000	5	171					
6	В	1,800	2000	5	171					
7	DL	1,800	2000	5	171					
8	D	1,906	1889	14	405					
9	D	2,146	1678	14	359					
10	AL	1,897	1898	20	569					
11	A	1,800	2000	9	286	73	429		286	
	- 23	1,000	2000	0	200	7.0	120		200	
									11	
i wana sa									1 - 1	
Ktz-verke	Bez.	Kapazitäten	100 To A 100 to 100		q _{LA}	n _k	N _{MS,90,j}	C _{K,j}	C _{M,j}	Cj
Nr.	SG	q _j [Kfz/h]	q _G [Kfz/h]	q _{RA} [Kfz/h]	Kfz/h]	[Kfz]	[Kfz]	[Kfz/h]	[Kfz/h]	[Kfz/h]
11	С	313	299	14			10,887		491	
12	Ċ	315	315	0			10,926			49
13	CL	14			14		1,304			11:
21	В	3	0	3		- 1	0,489		171	
22	В	4	11	T	4	1 = 1	0,576			17
31	D	246	207	39			9,295		397	100
32	D	250	250				9,372			40
33	DL	31			31		2,083			17
41	Α	77	77				3,646			28
42	AL	416			416	1	14,319			56
43	AL	416			416		14,319		1	56
			- 2							
					1					
				1		L 1			1	

Formb	latt 2				Knotenpunk	t mit Lichtsig	nalanlage			
FORME	natt 3				Berechnung	der Verkehr	squalitäten			
	Projekt	t: VU D-Rath,	Theodorstral	3e - Baumark	t-Fachzentru	um + Bürosta	andort (KV20	07) Stadt:_	Düsseldorf	
K	notenpunkt	t: KN06 - Abfa	hrt A52 Wes	t/Theodorstr	/Gladbecker	Str.		Datum:	22.04.2020	
Z	eitabschnitt	t: Spitzenstun	de MF früh -	Prognose-Da	iten			Bearbeiter:	uh	
Kfz-Verkeh	rsströme -	Verkehrsqu	alitäten (fah	rstreifenbez	ogen)					
Nr.	Bez. SG	Ströme	q _j [Kfz/h]	x _j [-]	f _{A,j} [-]	N _{GE,j} [Kfz]	N _{MS,j} [Kfz]	L _{95,j} [m]	t _{W.j}	QSV [-]
11	С	2, 3	313	0,637	0,26	1,143	6,556	68	31,6	В
12	С	2	315	0,638	0,26	1,144	6,586	68	31,4	В
13	CL	1	14	0,125	0,09	0,079	0,331	12	32,1	В
21	В	5, 6	3	0,018	0,09	0,010	0,063	3	29,5	В
22	В	4	4	0,023	0,09	0,013	0,084	3	29,6	В
31	D	8, 9	246	0,620	0,21	1,041	5,374	60	34,3	В
32	D	8	250	0,617	0,21	1,030	5,431	60	34,0	В
33	DL	7	31	0,181	0,09	0,124	0,684	12	32,3	В
41	Α	11	77	0,269	0,14	0,210	1,544	22	29,4	В
42	AL	10	416	0,731	0,30	1,938	9,191	91	34,2	В
43	AL	10	416	0,731	0,30	1,938	9,191	91	34,2	В
Gesamt			2085						33,2	
Fußgänger	- /Radfahre	erfurten	7			- 7	-7	- 1		
Zufahrt	Bez. SG	q _{Fg} [Fg/h]	q _{Rad} [Rad/h]	Anzahl Furten	t _{w,max} [s]					QSV [-]
2	F1	50	50	1	42					С
								Gesamth	ewertung:	С

Verkehrsfluss-Diagramm

Datei : KV2007-Kn7_MFfrueh_Prognose.amp


Projekt : VU D-Rath, Theodorstraße - Baumarkt-Fachzentrum + Bürostandort (KV2007)

Knoten : KN07 - Am Hülserhof/Zum Gut Heiligendonk Stunde : Spitzenstunde MF früh - Prognose-Daten

Fahrzeuge

Zufahrt 1 : Am Hülserhof (süd) Zufahrt 2 : Zum Gut Heiligendonk Zufahrt 3 : Am Hülserhof (nord)

Formblatt 1		Knotenpunkt mit Lichtsignalanlage								
		Ausgangsdaten								
	The state of the s		the second second second second	A Charles Burners	the second designation of	um + Bürosta	andort (KV2	E-Free Free Free Free Free Free Free Free	<u>Düsseldorf</u>	1
	Knotenpunkt.								21.04.2020	L.
	Zeitabschnitt	Spitzenstun	de MF früh =	Prognose-D	aten			Bearbeiter	uh	
Umlaufzeit										
Kfz-Verke	hrsströme		T		T				F 75 CS 1	5.0.40
Nr.	q _{LV} [Kfz/h]	q _{Lkw+Bus} [Kfz/h]	q _{LkwK} [Kfz/h]	q _{Kfz} [Kfz/h]	q _{sV} [Kfz/h]	f _{sV} [-]		Anzahl Fahrstreifen	Misch- fahrstreifen	bedingt verträglic
1	262	0	.21			1,111		1	ja	nein
2	57	0	11			1,243		1	ja	ja
3	63	0	8			1,169		4	nein	nein
4	26	0	8			1,353		1	nein	nein
5	171	0	11			1,091		1	nein	ja
6	444	0	20	7		1,065		1	nein	nein
Kfz-Fahrs										
Zufahrt	Fahrt- richtung	Nr.	L [m]	b [m]	f _b	R [m]	f _R [-]	s [%]	f _s [-]	L _{LA} /L _{RA} [m]
1	rechts	11		>= 3,00	1,000	20,00	1,000	0,0	1,000	13
1	gerade	11		>= 3,00	1,000	4	1,000	0,0	1,000	
2	rechts	21		>= 3,00	1,000	20,00	1,000	0,0	1,000	
2	links	22		>= 3,00	1,000	20,00	1,000	0,0	1,000	
3	gerade	31		>= 3,00	1,000	ш_ ж	1,000	0,0	1,000	
3	links	32		>= 3,00	1,000	20,00	1,000	0,0	1,000	25
Fußgänge	r-/Radfahrer	furten								
Zufahrt	Bez. Signalgr.	q _{Fg} [Fg/h]	q _{Rad} [Rad/h]		1. Furt Länge [m]	2. Furt Länge [m]	3. Furt Länge [m]	4. Furt Länge [m]		
2	E1	30	20		10,00	- 1			1 -	
2	E2	30	20		8,00					
2	E1+E2	30	20		10,00	8,00				
2	E2+E1	30	20		8,00	10,00				

Formblatt 2		Knotenpunkt mit Lichtsignalanlage									
roimblatt Z		Berechnung der Grundlagendaten für den Kfz-Verkehr									
	Projekt	VU D-Rath,	Theodorstraf	3e - Baumarl	kt-Fachzentr	um + Bürosta	andort (KV20	007) Stadt	Düsseldorf		
	Knotenpunkt	KN07 - Am I	Hülserhof/Zu	m Gut Heilig	endonk			Datum:	21.04.2020		
- 3	Zeitabschnitt	. Spitzenstund	de MF früh =	Prognose-Da	aten			Bearbeiter	uh		
Kfz-Verke	hrsströme -	Kapazitäten	(strom bezo	gen)							
Nr.	Bez. SG	t _{B,i} [s]	q _{s,i} [Kfz/h]	t _{∈,∣} [s]	C _{0,i} [Kfz/h]	G _{D,i} [Kfz/h]	C _{PW,⊦} [Kfz/h]	C _{GF,i} [Kfz/h]	C _{LA,i} [Kfz/h]	C _{RA,I} [Kfz/h]	
1	В	2,000	1800	38	1003	-					
2	В	2,237	1609	38	897	403	103			506	
3	DL	2,104	1711	7	196			1	1		
4	DR	2,435	1478	18	401						
5	Α	1,963	1834	54	1441	349		262	611		
6	A	1,916	1879	54	1476						
273.200 0.4											
Kfz-Verke		- Kapazitäten			ů.	n.	Numan	Cons	C···	C	
Kfz-Verk e Nr.	ehrsströme - Bez SG	q _j [Kfz/h]	(fahrstreifer q _G [Kfz/h]	nbezogen) q _{RA} [Kfz/h]	q _{LA} [Kfz/h]	n _k [Kfz]	N _{MS,90,j} [Kfz]	C _{K,j} [Kfz/h]	C _M J [Kfz/h]	C _j [Kfz/h]	
Nr.	Bez. SG B	q _j [Kfz/h] 351	q _G	q _{RA} [Kfz/h] 68			[Kfz] 8,592			[Kfz/h]	
Nr.	Bez SG	q _j [Kfz/h] 351 34	q _G [Kfz/h]	q _{RA} [Kfz/h]	[Kfz/h]		[Kfz] 8,592 1,793		[Kfz/h]		
Nr.	Bez. SG B	q _j [Kfz/h] 351	q _G [Kfz/h]	q _{RA} [Kfz/h] 68			[Kfz] 8,592		[Kfz/h]	[Kfz/h]	
Nr. 11 21 22 31	Bez. SG B DR	q _j [Kfz/h] 351 34	q _G [Kfz/h]	q _{RA} [Kfz/h] 68	[Kfz/h]		[Kfz] 8,592 1,793 3,745 5,680		[Kfz/h]	[Kfz/h] 40° 196 1476	
Nr. 11 21 22	Bez SG B DR	q _j [Kfz/h] 351 34 71	q _G [Kfz/h] 283	q _{RA} [Kfz/h] 68	[Kfz/h]		[Kfz] 8,592 1,793 3,745		[Kfz/h]	[Kfz/h] 40° 196 1476	
Nr. 11 21 22 31	Bez SG B DR DL	q _j [Kfz/h] 351 34 71 464	q _G [Kfz/h] 283	q _{RA} [Kfz/h] 68	[Kfz/h]		[Kfz] 8,592 1,793 3,745 5,680		[Kfz/h]	[Kfz/h] 40 ² 196	
Nr. 11 21 22 31	Bez SG B DR DL	q _j [Kfz/h] 351 34 71 464	q _G [Kfz/h] 283	q _{RA} [Kfz/h] 68	[Kfz/h]		[Kfz] 8,592 1,793 3,745 5,680		[Kfz/h]	[Kfz/h] 40° 196 1476	
Nr. 11 21 22 31	Bez SG B DR DL	q _j [Kfz/h] 351 34 71 464	q _G [Kfz/h] 283	q _{RA} [Kfz/h] 68	[Kfz/h]		[Kfz] 8,592 1,793 3,745 5,680		[Kfz/h]	[Kfz/h] 40° 196 1476	
Nr. 11 21 22 31	Bez SG B DR DL	q _j [Kfz/h] 351 34 71 464	q _G [Kfz/h] 283	q _{RA} [Kfz/h] 68	[Kfz/h]		[Kfz] 8,592 1,793 3,745 5,680		[Kfz/h]	[Kfz/h] 40 19	
Nr. 11 21 22 31	Bez SG B DR DL	q _j [Kfz/h] 351 34 71 464	q _G [Kfz/h] 283	q _{RA} [Kfz/h] 68	[Kfz/h]		[Kfz] 8,592 1,793 3,745 5,680		[Kfz/h]	[Kfz/h] 40 190 1470	
Nr. 11 21 22 31	Bez SG B DR DL	q _j [Kfz/h] 351 34 71 464	q _G [Kfz/h] 283	q _{RA} [Kfz/h] 68	[Kfz/h]		[Kfz] 8,592 1,793 3,745 5,680		[Kfz/h]	[Kfz/h] 40 190 1470	
Nr. 11 21 22 31	Bez SG B DR DL	q _j [Kfz/h] 351 34 71 464	q _G [Kfz/h] 283	q _{RA} [Kfz/h] 68	[Kfz/h]		[Kfz] 8,592 1,793 3,745 5,680		[Kfz/h]	[Kfz/h] 40 190 1470	
Nr. 11 21 22 31	Bez SG B DR DL	q _j [Kfz/h] 351 34 71 464	q _G [Kfz/h] 283	q _{RA} [Kfz/h] 68	[Kfz/h]		[Kfz] 8,592 1,793 3,745 5,680		[Kfz/h]	[Kfz/h] 40° 196 1476	

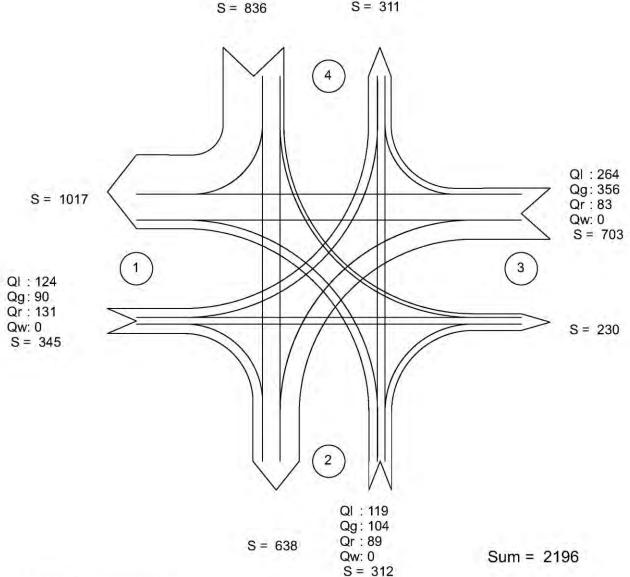
Formblatt 3		Knotenpunkt mit Lichtsignalanlage								
		Berechnung der Verkehrsqualitäten								
	The state of the s			ße - Baumarl		ım + Bürosta	indort (KV20	The Control of the Co	Düsseldorf	
	and the second second			m Gut Heilige					21.04.2020	
				Prognose-Da				Bearbeiter:	Jh	
Kfz-Verke	hrsströme -	Verkehrsqu	alitäten (fah	rstreifenbez	ogen)					
Nr.	Bez.	Ströme	$\mathbf{q}_{\mathbf{j}}$	\mathbf{x}_{j}	f _{A,1}	N _{GE,J}	N _{MS,j}	L _{95,j}	$t_{W,j}$	QSV
	SG		[Kfz/h]	[+]	[-]	[Kfz]	[Kfz]	[m]	[s]	[-]
11	В	1, 2	351	0,416	0,48	0,421	4,862	59	13,7	Α
21	DR	4	34	0,085	0,27	0,051	0,545	15	19,5	Α
22	DL	3	71	0,362	0,11	0,328	1,603	26	34,7	В
31	Α	6	464	0,314	0,79	0,264	2,833	36	2,8	A
32	Α	5	182	0,298	0,33	0,243	2,863	37	18,7	Α
	L 11				-					
Gesamt			1102						11,4	
	r-/Radfahre	rfurten	1100	1					y Yark	
	Bez.	q _{Fg}	q _{Rad}	Anzahl	house					QSV
Zufahrt	SG	[Fg/h]	[Rad/h]	Furten	t _{W,max} [s]					[-]
2	E1	30	20	1	32					В
2	E2	30	20	1	36					В
2	E1+E2	30	20	2	36					В
2	E2+E1	30	20	2	36					В
	LZFE	30	20	~	30					D
								Gesamtb	awartung:	В
								Gesamb	ewerung.	В


Verkehrsfluss - Diagramm als Kreuzung

Datei: KV2007-Kn8_MFfrueh_Prognose_Zeitluecken.krs

Projekt: VU D-Rath, Theodorstraße - Baumarkt-Fachzentrum + Bürostandort

Projekt-Nummer: KV2007


Knoten: KN08 - Kreisverkehr Volkardeyer Straße Stunde: Spitzenstunde MFfrüh - Prognose-Daten

ШШ

QI:51 Qg: 243 Qr: 542 Qw: 0

S = 311

alle Kraftfahrzeuge

Zufahrt 1: Volkardeyer Str. West Zufahrt 2: Broichhofstr. Süd Zufahrt 3: Volkardeyer Str. Ost Zufahrt 4: Broichhofstr. Nord

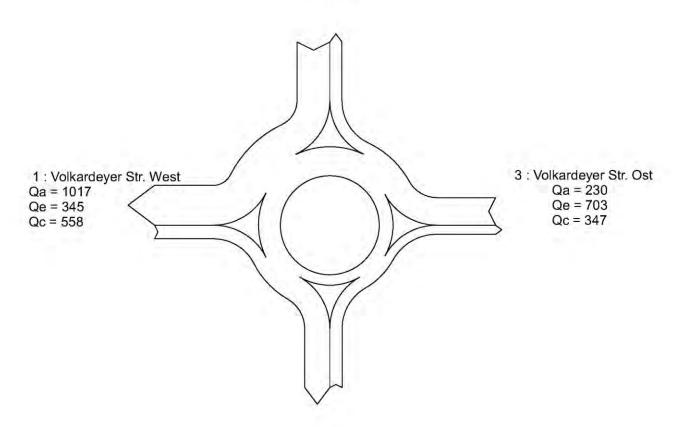
Verkehrsfluss - Diagramm als Kreis

Datei: KV2007-Kn8_MFfrueh_Prognose_Zeitluecken.krs

Projekt: VU D-Rath, Theodorstraße - Baumarkt-Fachzentrum + Bürostandort

Projekt-Nummer: KV2007

Knoten: KN08 - Kreisverkehr Volkardeyer Straße Stunde: Spitzenstunde MFfrüh - Prognose-Daten


0 1000 Fz/h

4: Broichhofstr. Nord

Qa = 311

Qe = 836

Qc = 739

2 : Broichhofstr. Süd

Qa = 638

Qe = 312

Qc = 265

Sum = 2196

alle Kraftfahrzeuge

Spiekermann GmbH, Düsseldorf

Kapazität, mittlere Wartezeit und Staulängen - mit Fußgängereinfluss

Datei: KV2007-Kn8_MFfrueh_Prognose_Zeitluecken.krs

Projekt: VU D-Rath, Theodorstraße - Baumarkt-Fachzentrum + Bürostandort

Projekt-Nummer: KV2007

Knoten: KN08 - Kreisverkehr Volkardeyer Straße Stunde: Spitzenstunde MFfrüh - Prognose-Daten

Wartezeiten

		n-in	F+R	q-Kreis	q-e-vorh	q-e-max	×	Reserve	Wz	QSV
	Name	1 7 -	/h	Pkw-E/h	Pkw-E/h	Pkw-E/h	11.5	Pkw-E/h	s	1 37
1	Volkardeyer Str. West	1	0	568	363	1021	0,36	658	5,5	A
2	Broichhofstr. Süd	1	40	277	326	964	0,34	638	5,6	Α
3	Volkardeyer Str. Ost	1	40	368	708	957	0,74	249	14,2	В
4	Broichhofstr. Nord	1	0	749	303	940	0,32	637	5,6	Α
4	Bypass	1			553	1400	0,40	847	4,2	Α

Staulängen

		n-in	F+R	q-Kreis	q-e-vorh	q-e-max	L	L-95	L-99	QSV
	Name	-	/h	Pkw-E/h	Pkw-E/h	Pkw-E/h	Pkw-E	Pkw-E	Pkw-E	4
1	Volkardeyer Str. West	1	0	568	363	1021	0,4	2	3	Α
2	Broichhofstr. Süd	1	40	277	326	964	0,4	2	2	Α
3	Volkardeyer Str. Ost	1	40	368	708	957	1,9	8	12	В
4	Broichhofstr. Nord	1	0	749	303	940	0,3	1	2	Α
4	Bypass	1			553	1400	1.09	-	-	А

Gesamt-Qualitätsstufe: B

Gesamter Verkehr Werkehr im Kreis mit Bypass ohne Bypass

1700 Pkw-E/h Zufluss über alle Zufahrten 2253 davon Kraftfahrzeuge 2196 1654 Fz/h Summe aller Wartezeiten 5,7 Fz-h/h 3,6 Mittl, Wartezeit über alle Fz 9,4 7,8 s pro Fz

Berechnungsverfahren:

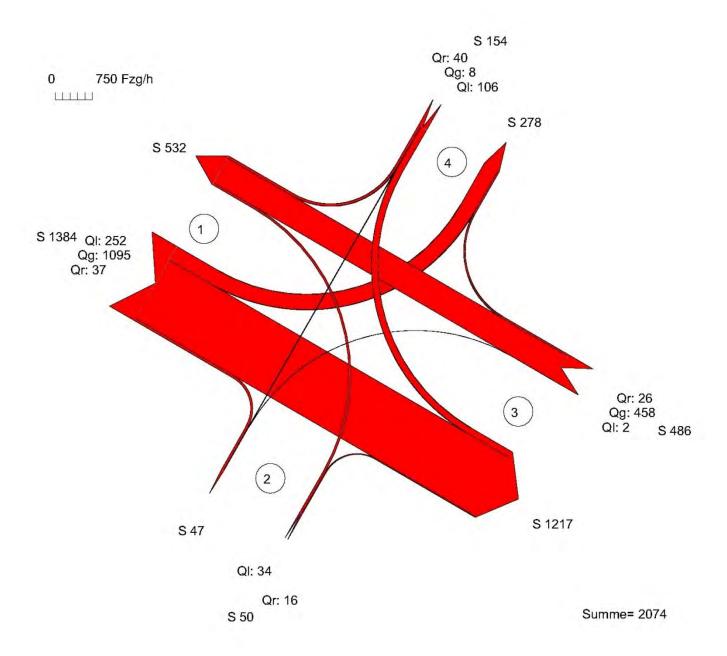
Kapazität : Grenzzeitlücken-Verfahren nach Harders-Formel

Wartezeit : HBS 2015 + HBS 2009 = Akcelik, Troutbeck (1991) mit T = 3600

Staulängen : Wu, 1997 Fußgänger-Einfluss : Stuwe, 1992 LOS - Einstufung : HBS (Deutschland)

Verkehrsfluss-Diagramm

Datei : KV2007-Kn09_MFfrueh_mit-Strab_Prognose.amp


Projekt: VU D-Rath, Theodorstraße - Baumarkt-Fachzentrum + Bürostandort (KV2007)

Knoten: KN 09 - Theodorstr./Zum Gut Heiligendonk/DOME

Stunde: Spitzenstunde MF früh - Prognose-Daten

Fahrzeuge

Zufahrt 1: Theodorstraße (west)

Zufahrt 2: DOME

Zufahrt 3 : Theodorstraße (ost) Zufahrt 4 : Zum Gut Heiligendonk

Гонт	blatt 1				Knotenpunkt	mit Lichtsigi	nalanlage			
FOIIII	DIALLI				Αι	usgangsdate	en			
		CONTRACTOR OF STREET		2002- 1-8002 80	kt-Fachzentr		andort (KV2		: Düsseldorf	
	Knotenpunkt:	mpage 1640 mg	TOTAL BARBOOK CONTRACTOR AND SERVICE	1000	100			_ Datum	20.04.2020	
	Zeitabschnitt:	Spitzenstun	de MF früh -	Prognose-D	aten			Bearbeiter	: uh	
Umlaufzei	t t _∪ : 70 [s]									
Kfz-Verke	hrsströme							1		
Nr.	q_{LV}	$q_{Lkw+Bus}$	q_{LkwK}	q_{Kfz}	q_{SV}	f_{SV}		Anzahl	Misch-	bedingt
	[Kfz/h]	[Kfz/h]	[Kfz/h]	[Kfz/h]	[Kfz/h]	[-]		Fahrstreifen	fahrstreifen	verträglich
1	243	0	9			1,054		1	nein	nein
2	1054	0	41			1,056		2	nein	nein
3	36	0	1			1,041		1	nein	ja
4	33	0	1			1,044		1	nein	ja
5	0	0	0			1,000		1	ja	nein
6	14	0	2			1,188		1	ja	ja
7	0	0	2			2,500		1	nein	nein
8	415	0	43			1,141		2	nein	nein
9	23	0	3			1,173		1	nein	ja
10	102	0	4			1,057		1	ja	ja
11	8	0	0			1,000		1	ja	nein
12	33	0	7			1,263		1	nein	ja
Kfz-Fahrs	treifen									
Zufahrt	Fahrt-	Nr.	L	b	f _b	R	f_R	s	f _s	L _{LA} /L _{RA}
Zulanın	richtung	INI .	[m]	[m]	[-]	[m]	[-]	[%]	[-]	[m]
1	rechts	11		>= 3,00	1,000	20,00	1,000	0,0	1,000	19
1	gerade	12		>= 3,00	1,000	(-)	1,000	0,0	1,000	
1	gerade	13		>= 3,00	1,000	-	1,000	0,0	1,000	
1	links	14		>= 3,00	1,000	20,00	1,000	0,0	1,000	
2	rechts	21		>= 3,00	1,000	20,00	1,000	0,0	1,000	14
2	gerade	21		>= 3,00	1,000	-	1,000	0,0	1,000	
2	links	22		>= 3,00	1,000	20,00	1,000	0,0	1,000	30
3	rechts	31		>= 3,00	1,000	20,00	1,000	0,0	1,000	15
3	gerade	32		>= 3,00	1,000	=	1,000	0,0	1,000	
3	gerade	33		>= 3,00	1,000	-	1,000	0,0	1,000	
3	links	34		>= 3,00	1,000	20,00	1,000	0,0	1,000	
4	rechts	41		>= 3,00	1,000	20,00	1,000	0,0	1,000	18
4	gerade	42		>= 3,00	1,000	-	1,000	0,0	1,000	
4	links	42		>= 3,00	1,000	20,00	1,000	0,0	1,000	30

AMPEL Version 6.2.3 Seite 1

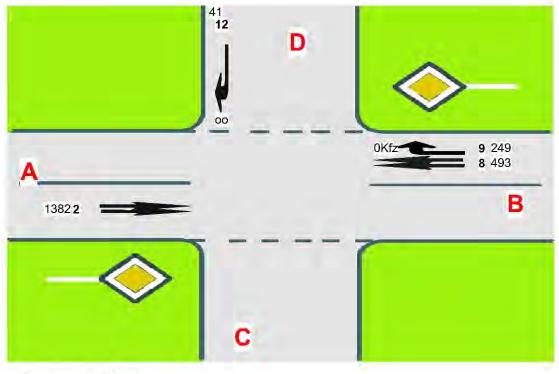
Form	blatt 1			Knotenpunk	t mit Lichtsig	nalanlage			
FOIII	ibiatt i			Д	usgangsdate	en			
	Proje k t:_	VU D-Rath,	Theodorstraß	e - Baumarkt-Fachzent	rum + Bürost	tandort (KV20	007) Stadt	: Düsseldor	f
	Knotenpunkt:	KN09 - The	odorstr./Zum	But Heiligendonk/DOM	Ε		Datum	: <u>20.04.202</u>	0
	Zeitabschnitt:	Spitzenstun	de MF früh - l	rognose-Daten			Bearbeiter	∵ uh	
Umlaufzei	t t _∪ : 70 [s]								
Fußgänge	er-/Radfahrer	furten							
	Bez.	q_{Fg}	q _{Rad}	1. Furt	2. Furt	3. Furt	4. Furt		
Zufahrt	Signalgr.	[Fg/h]	[Rad/h]	Länge	Länge	Länge	Länge		
				[m]	[m]	[m]	[m]		
1	E1	50	20	12,00					
1	E2	50	20	7,00					
2	F3	50	20	13,00					
3	E3	50	20	14,00					
3	E4	50	20	9,00					
4	F1	50	20	7,00					
4	F2	50	20	6,00					
5	E7	50	20	7,00					
6	E8	50	20	7,00					
4	F1+F2	50	20	7,00	6,00				
4	F2+F1	50	20	6,00	7,00				
1+5	E1+E7+E2	50	20	12,00	7,00	7,00			
1+5	E2+E7+E1	50	20	7,00	7,00	12,00			
3+6	E4+E8+E3	50	20	9,00	7,00	14,00			
3+6	E3+E8+E4	50	20	14,00	7,00	9,00			

AMPEL Version 6.23 Seite 2

Form	blott 2				Knotenpunl	kt mit Lichtsi	gnalanlage			
Form	blatt 2			Berechn	ung der Grur	ndlagendater	n für den Kfz-	-Verkehr		
	Projekt	: VU D-Rath,	Theodorstra	ße - Baumar	kt-Fachzentr	um + Bürost	andort (KV20	07) Stadt	: Düsseldorf	
	Knotenpunkt	: KN09 - Theo	odorstr./Zum	Gut Heiliger	donk/DOME			Datum	20.04.2020	
	Zeitabschnitt	Spitzenstun	de MF früh -	Prognose-Da	aten			Bearbeiter	: uh	
Kfz-Verke	hrsströme -	Kapazitäten	(strom bezo	gen)			-			
Ne	Bez.	t _{B,i}	$q_{S,i}$	$t_{F,i}$	C _{0,i}	$C_{D,i}$	$C_{PW,i}$	$C_{GF,i}$	C _{LA,i}	$C_{RA,i}$
Nr.	SG	[s]	[Kfz/h]	[s]	[Kfz/h]	[Kfz/h]	[Kfz/h]	[Kfz/h]	[Kfz/h]	[Kfz/h]
1	CL	1,896	1899	15	434					
2	С	1,901	1894	40	1109					
3	С	1,873	1922	40	1126					104
4	В	1,879	1916	11	328	97	246		328	
5	В	1,800	2000	11	343					
6	В	2,138	1684	11	289					242
7	DL	4,500	800	5	69					
8	D	2,053	1754	32	827					
9	D	2,112	1705	32	804					733
10	A	1,902	1893	9	270	127	243		270	
11	A	1,800	2000	9	286	121	2.10		2.0	
12	A	2,273	1584	9	226					18:
(1) (4.1)										
V fa Varka	bractröma	Kapazitäten	/fobretroife	nhozogon\						
KIZ-VEI KE	Bez.	q _j			q_{LA}	n.	N _{MS,90,j}	C _{K,j}	C _{M,j}	C _j
Nr.	SG.	(Kfz/h]	q _G [Kfz/h]	q _{RA} [Kfz/h]	MLA [Kfz/h]	n _k [Kfz]	[Kfz]	[Kfz/h]	[Kfz/h]	[Kfz/h]
11	С	37		37			1,363			104
12	С	548	548				11,219			1109
13	С	548	548				11,219			1109
14	CL	252			252		9,092			43-
21	В	16	0	16			1,247		242	
22	В	34			34		1,956			32
31	D	26		26			1,260			73
32	D	229	229				5,817			82
33	D	229	229				5,817			82
34	DL	2			2		0,438			6
41	Α	40		40			2,435			18
42	Α	114	8		106		5,094		271	

Form	blatt 3				Knotenpunl	kt mit Lichtsig	gnalanlage			
FOIII	Diates				Berechnung	der Verkehr	squalitäten			
	Projekt:	VU D-Rath,	Theodorstra	ße - Baumar	kt-Fachzentr	um + Bürosta	andort (KV20	07) Stadt:_	Düsseldorf	
	Knotenpunkt:							Datum:_	20.04.2020	
	Zeitabschnitt:							Bearbeiter:	uh	
Kfz-Verke	hrsströme -	Verkehrsqu	alitäten (fah	rstreifenbez	zogen)					
Nr.	Bez.	Ströme	\mathbf{q}_{j}	\mathbf{x}_{j}	$f_{A,j}$	$N_{GE,j}$	$N_{MS,j}$	L _{95,j}	$t_{W,j}$	QSV
	SG		[Kfz/h]	[-]	[-]	[Kfz]	[Kfz]	[m]	[s]	[-]
11	С	3	37	0,035	0,54	0,020	0,355	9	7,5	Α
12	С	2	548	0,494	0,59	0,593	6,807	71	10,4	Α
13	С	2	548	0,494	0,59	0,593	6,807	71	10,4	Α
14	CL	1	252	0,581	0,23	0,867	5,226	57	31,2	В
21	В	5, 6	16	0,066	0,14	0,039	0,308	9	26,5	В
22	В	4	34	0,104	0,17	0,064	0,622	12	25,2	В
31	D	9	26	0,036	0,43	0,020	0,313	9	11,7	Α
32	D	8	229	0,277	0,47	0,219	2,925	40	12,2	Α
33	D	8	229	0,277	0,47	0,219	2,925	40	12,2	Α
34	DL	7	2	0,029	0,09	0,016	0,052	7	30,2	В
41	Α	12	40	0,219	0,12	0,158	0,863	18	31,2	В
42	Α	10, 11	114	0,421	0,14	0,426	2,448	32	33,0	В
5 (ÖV)	ÖP N V1	13	6						22,6	С
6 (ÖV)	ÖPNV2	14	6						22,6	С
Gesamt			2075						15,3	
Fußgänge	er-/Radfahre	rfurten					_			
Zufahrt	Bez.	q_{Fg}	q_{Rad}	Anzahl	t _{W,max}					QSV
Zulatiit	SG	[Fg/h]	[Rad/h]	Furten	[s]					[-]
1	E1	50	20	1	65					D
1	E2	50	20	1	57					D
2	F3	50	20	1	37					В
3	E3	50	20	1	65					D
3	E4	50	20	1	65					D
4	F1	50	20	1	19					Α
4	F2	50	20	1	39					В
5	E7	50	20	1	42					С
6	E8	50	20	1	42					С
4	F1+F2	50	20	2	39					В
4	F2+F1	50	20	2	39					В
1+5	E1+E7+E2	50	20	3	109					
1+5	E2+E7+E1	50	20	3	71					
3+6	E4+E8+E3	50	20	3	126					
3+6	E3+E8+E4	50	20	3	120					
		P600303	0	3000						
	+									

AMPEL	Version	623
	- GIGIOII	V-1-0


Übersicht von 07:30 bis 08:30

Knotenpunktbezeichung: KV2007 Knoten TG - Zufahrt Büro-Standort / Tiefgarage

Spitzenstunde MF früh - Prognose-Daten

Name der Datei : KV2007-KnTG_MFfrueh_Prognose.EIN

					ţ	Übersic	ht von	07:30 b	ois 08:3	30					
Strom	VZ	VZ	VZ	VZ	RS	RS	RS	RS	н	Н	Н	Fz.	Fz.	Fz.	QSV
	ges	mitt	85%	max	mitt	85%	95%	max	ges	mitt	max	ang.	abg.	wart.	
	[min]	[sec]	[sec]	[sec]	[Kfz]	[Kfz]	[Kfz]	[Kfz]	[-]	[-]	[-]	[Kfz]	[Kfz]	[Kfz]	[-]
2	0,0	0,0	0,0	0,0	0,0	0	0	0	0	0,0	0	1376	1376	0	А
8	0,0	0,0	0,0	0,0	0,0	0	0	0	0	0,0	0	498	498	0	Α
9	0,0	0,0	0,0	0,0	0,0	0	0	0	0	0,0	0	244	244	0	Α
12	8,4	12,4	14,0	41,9	0,0	0	0	2	42	1,0	2	41	41	0	A
Sum	8,4	0,2		41,9	0,0			2		0,0	2	2159			
					C	lbersio	ht von	07:30 b	ois 08:3	so.					

A=Theodorstraße (West)

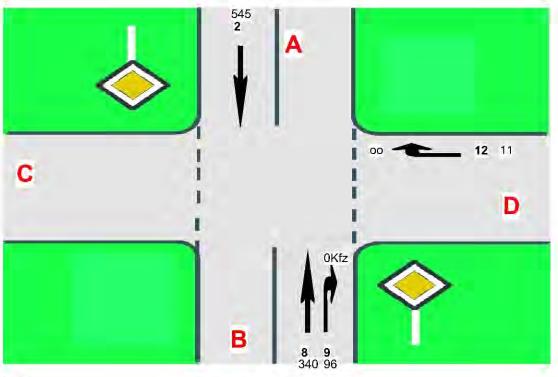
C=-

B=Theodorstraße (Ost)

D=Zufahrt Büro/Tiefgarage

Spiekermann GmbH Consultung Engineers

Düsseldorf


Übersicht von 07:30 bis 08:30

Knotenpunktbezeichung: KV2007 Knoten ZF1 - Zufahrt Am Hülserhof

Spitzenstunde MF früh - Prognose-Daten

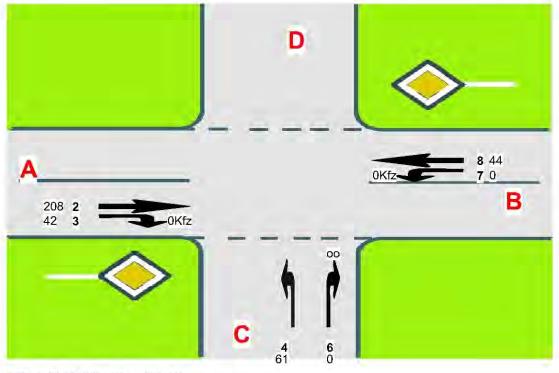
Name der Datei : KV2007-KnZF1_MFfrueh_Prognose.EIN

					ΙŢ	Übersic	ht von	07:30 b	ois 08:3	80					
Strom	VZ	VZ	VZ	VZ	RS	RS	RS	RS	н	Н	Н	Fz.	Fz.	Fz.	QSV
	ges	mitt	85%	max	mitt	85%	95%	max	ges	mitt	max	ang.	abg.	wart.	
	[min]	[sec]	[sec]	[sec]	[Kfz]	[Kfz]	[Kfz]	[Kfz]	[-]	[-]	[-]	[Kfz]	[Kfz]	[Kfz]	[-]
2	0,0	0,0	0,0	0,0	0,0	0	0	0	0	0,0	0	543	543	0	А
8	0,0	0,0	0,0	0,0	0,0	0	0	0	0	0,0	0	343	343	0	Α
9	0,0	0,0	0,0	0,0	0,0	0	0	0	0	0,0	0	94	94	0	Α
12	2,4	13,0	16,0	58,5	0,0	0	0	2	11	1,0	2	11	11	0	A
Sum	2,4	0,1		58,5	0,0			2		0,0	2	991			
					t	Übersic	ht von	07:30 b	ois 08:3	30					

C=-B=Am Hülserhof (Süd) D=Zufahrt Baumarkt-Fachzentrum A=Am Hülserhof (Nord)

Spiekermann GmbH Consultung Engineers

Düsseldorf


Übersicht von 07:30 bis 08:30

Knotenpunktbezeichung: KV2007 Knoten ZF2 - Zufahrt Zum Gut Heiligendonk

Spitzenstunde MF früh - Prognose-Daten : KV2007-KnZF2_MFfrueh_Prognose.EIN

Name der Datei

					Ü	Übersic	ht von	07:30 b	ois 08:3	30					
Strom	VZ	VZ	VZ	VZ	RS	RS	RS	RS	Н	н	н	Fz.	Fz.	Fz.	QSV
	ges	mitt	85%	max	mitt	85%	95%	max	ges	mitt	max	ang.	abg.	wart.	
	[min]	[sec]	[sec]	[sec]	[Kfz]	[Kfz]	[Kfz]	[Kfz]	[-]	[-]	[-]	[Kfz]	[Kfz]	[Kfz]	[2]
2	0,0	0,0	0,0	0,0	0,0	0	0	0	0	0,0	0	212	212	0	A
3	0,0	0,0	0,0	0,0	0,0	0	0	0	0	0,0	0	42	42	0	А
4	13,8	13,7	17,0	70,6	0,1	0	1	4	64	1,1	4	61	61	0	Д
6	0,0	0,0	0,0	0,0	0,0	0	0	0	0	0,0	0	0	0	0	Д
7	0,0	0,0	0,0	0,0	0,0	0	0	0	0	0,0	0	0	0	0	Α
8	0,0	0,0	0,0	0,0	0,0	0	0	0	0	0,0	0	43	43	0	Α
Sum	13,8	2,3		70,6	0,0			4		0,2	4	357			

A=Zum Gut Heiligendonk (West) C=Zufahrt Baumarkt-Fachzentrum B=Zum Gut Heiligendonk (Ost)

Spiekermann GmbH Consultung Engineers

Düsseldorf

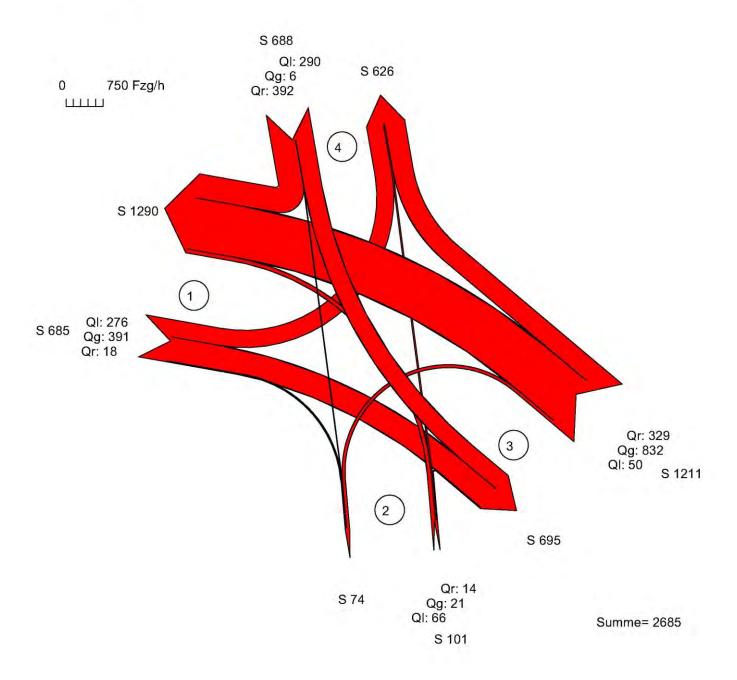
Anhang 4

Formblätter zur Ermittlung der Leistungsfähigkeit (Qualitätsstufe des Verkehrsablaufs – QSV) für die untersuchten Knotenpunkte mit den **Prognose-Belastungen**

Spitzenstunde am Werktag (Montag bis Freitag) spät

Verkehrsfluss-Diagramm

Datei : KV2007-Kn1_MFspaet_mit-OPNV-reduziert_Prognose.amp


Projekt: VU D-Rath, Theodorstraße - Baumarkt-Fachzentrum + Bürostandort (KV2007)

Knoten: KN01 - Am Röhrenwerk/Theodorstr./Am Hülserhof

Stunde: Spitzenstunde MF spaet (reduzierte Freigabezeiten wg. ÖPNV) - Prognose-Daten

Fahrzeuge

Zufahrt 1 : Theodorstraße (west) Zufahrt 2 : Am Röhrenwerk Zufahrt 3 : Theodorstraße (ost) Zufahrt 4 : Am Hülserhof

Form	blatt 1			- 1	Knotenpunkt	mit Lichtsign	alanlage			
FOIIII	Diatt 1				Au	sgangsdater				
	Projekt:	VU D-Rath,	Theodorstral	ße - Baumar	kt-Fachzentru	ım + Bürosta	ndort (KV2	2007) Stadt	Düsseldorf	
	Knotenpunkt:								28.04.2020	
	Zeitabschnitt:	Spitzenstun	de MF spaet	(reduzierte F	reigabezeite	n wg. ÖPNV	- Prognos	e- Beter beiter	: uh	
O. L. C. C. W. L. T. C. C.	t _U : 70 [s]									
Kfz-Verke	hrsströme		1	1	1					
Nr.	q _{LV} [Kfz/h]	q _{Lkw+Bus} [Kfz/h]	q _{LkwK} [Kfz/h]	q _{Kfz} [Kfz/h]	q _{sv} [Kfz/h]	fsv [-]	231	Anzahl Fahrstreifen	Misch- fahrstreifen	bedingt verträglic
1	266	0	10			1,054		1	nein	nein
2	370	0	21	1.0		1,081	-	2	nein	nein
3	16	0	2	1 - 4		1,167		1	nein	nein
4	63	0	3			1,068		1	nein	ja
5	19	0	2			1,143		1	ja	nein
6	13	0	1			1,107		1	ja	nein
7	49	0	1			1,030		1	nein	nein
8	804	0	28			1,050		2	nein	nein
9	315	0	14			1,064		1	nein	ja
10	278	0	12			1,062		1	nein	ja
11	4	0	2			1,500		1	nein	nein
12	379	0	13			1,050		1	nein	ja
Kfz-Fahrs	treifen									
Zufahrt	Fahrt- richtung	Nr.	L [m]	b [m]	f _b [-]	R [m]	f _R [-]	s [%]	f _s [-]	L _{LA} /L _{RA} [m]
1	rechts	11		>= 3,00	1,000	20,00	1,000	0,0	1,000	
1	gerade	12		>= 3,00	1,000	- V	1,000	0,0	1,000	
1	gerade	13		>= 3,00	1,000		1,000	0,0	1,000	
1	links	14	1	>= 3,00	1,000	20,00	1,000	0,0	1,000	
2	rechts	21		>= 3,00	1,000	20,00	1,000	0,0	1,000	
2	gerade	21		>= 3,00	1,000		1,000	0,0	1,000	
2	links	22		>= 3,00	1,000	20,00	1,000	0,0	1,000	55
3	rechts	31		>= 3,00	1,000	20,00	1,000	0,0	1,000	100
3	gerade	32		>= 3,00	1,000	- 4	1,000	0,0	1,000	
3	gerade	33		>= 3,00	1,000		1,000	0,0	1,000	
3	links	34		>= 3,00	1,000	20,00	1,000	0,0	1,000	
4	rechts	41		>= 3,00	1,000	20,00	1,000	0,0	1,000	30
4	gerade	42		>= 3,00	1,000	-	1,000	0,0	1,000	
4	links	43		>= 3,00	1,000	20,00	1,000	0,0	1,000	50

MPEL Version 6.2.3 Seite 1

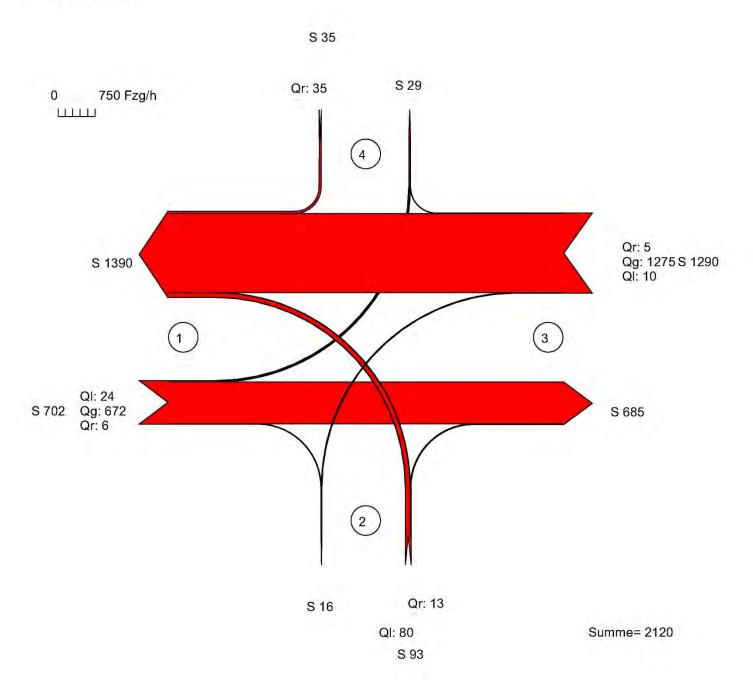
	blatt 1			Knotenpunkt	mit Lichtsign	nalanlage		
Form	Diatt			Αι	usgangsdate	n		
	Knotenpunkt:	KN01 - Am	Röhrenwerk/Theod	aumarkt-Fachzentr orstr./Am Hülserho zierte Freigabezeite	f		_ Datum:	Düsseldorf 28.04.2020 uh
Umlaufzei	ւկ ։ 70 [s]							
Fußgänge	er-/Radfahrer	furten	26					
Zufahrt	Bez. Signalgr.	q _{Fg} [Fg/h]	q _{Rad} [Rad/h]	1. Furt Länge [m]	2. Furt Länge [m]	3. Furt Länge [m]	4. Furt Länge [m]	
- (f)	E1	50	20	10				
_1	E2	50	20	10				
1	E4	50	20	10				
2	F3	50	20	10				
3	E5	50	20	10		L 4		
3	E7	50	20	10				
4	F1	50	20	10				
4	F2	50	20	10				
4	F1+F2	50	20	10	10			4 10
4	F2+F1	50	20	10	10			

AMPEL Version 6,2,3 Seite 2

Form	blatt 2	k-			Knotenpuni	kt mit Lichtsi	gnalanlage			
1 0.1	Didti 2			Berechn	ung der Grur	ndlagendater	für den Kfz	-Verkehr		
	Projekt	t: VU D-Rath,	Theodorstra	ße - Baumar	kt-Fachzentr	um + Bürosta	andort (KV20	007) Stadt:	Düsseldorf	
		t: KN01 - Am					F. T. Co. 1915		28.04.2020	
		t: Spitzenstun			reigabezeite	n wg. ÖPNV	/) - Prognose	e-Beterbeiter:	uh	
Kfz-Verke		- Kapazitäten	(strombezo	gen)						
Nr.	Bez. SG	t _{B,i} [s]	q _{s,i} [Kfz/h]	t _{F,i} [s]	C _{0,i} [Kfz/h]	C _{D,i} [Kfz/h]	C _{PW,i} [Kfz/h]	C _{GF,i} [Kfz/h]	C _{LA,i} [Kfz/h]	C _{RA,i} [Kfz/h]
1-1-	CL	1,898	1897	13	379					
2	С	1,945	1851	21	582					
3	CR	2,100	1714	21	539					
4	В	1,923	1872	8	241	0	441		241	
5	В	2,057	1750	8	225					
6	В	1,993	1806	8	232					
7	DL	1,854	1942	7	222				L	L .
8	D	1,891	1904	21	598					
9	D	1,915	1880	21	591					59
10	Α	1,912	1883	12	350	97	404		350	
11	A	2,700	1333	12	248					
12	AR	1,890	1905	32	898	176		408		58-
Kfz-Verke		- Kapazitäten						0	0	-
Nr.	Bez. SG	q _j [Kfz/h]	q _G [Kfz/h]	q _{RA} [Kfz/h]	q _{LA} [Kfz/h]	n _k [Kfz]	N _{MS,90,j} [Kfz]	C _{K,j} [Kfz/h]	C _{M.j} [Kfz/h]	C _j [Kfz/h]
11	CR	18		18			1,127			539
12	С	196	196				6,248			583
13	С	196	196				6,248			583
14	CL	276		11	276		11,318			37
21	В	35	21	14			2,128		228	
22	В	66			66		3,356			24
31	D	329		329			10,273			59
32	D	416	416				13,648			59
33	D	416	416				13,648			59
34	DL	.50		200.0	50		2,779			22
41	AR	392		392			12,814			58
42	Α	6	6		12.70		0,668			24
43	A	290			290		14,181			35
			1 1							
										-

Form	platt 3				Knotenpunk	t mit Lichtsig	nalanlage			
, 51111	JIGHT G				Berechnung	der Verkehr	squalitäten			
	the state of the state of	VU D-Rath,					andort (KV20		Düsseldorf	
		KN01 - Am						The state of the s	28.04.2020	
		Spitzenstun				n wg. ÖPNV) - Prognose	-Beterbeiter:	uh	
Kfz-Verkel	rrsströme -	Verkehrsqu	alitäten (fah	rstreifenbez	ogen)	-				
Nr.	Bez.	Ströme	qj	\mathbf{x}_{j}	f _{A,j}	$N_{GE,j}$	N _{MS,j}	L _{95,j}	t _{W,j}	QSV
	SG	12	[Kfz/h]	H	[-]	[Kfz]	[Kfz]	[m]	[s]	[-]
1.1	CR	3	18	0,033	0,31	0,019	0,262	8	16,8	A
12	С	2	196	0,337	0,31	0,293	3,216	41	20,2	В
13	С	2	196	0,337	0,31	0,293	3,216	41	20,2	В
14	CL	1	276	0,728	0,20	1,856	6,881	72	43,9	С
21	В	5, 6	35	0,154	0,13	0,101	0,706	14	28,7	В
22	В	4	66	0,274	0,13	0,215	1,374	22	30,7	В
31	D	9	329	0,557	0,31	0,781	6,097	66	24,7	В
32	D	8	416	0,696	0,31	1,569	8,669	86	30,5	В
33	D	8	416	0,696	0,31	1,569	8,669	86	30,5	В
34	DL	7	50	0,225	0,11	0,164	1,048	17	30,8	В
41	AR	12	392	0,671	0,31	1,369	8,024	81	29,6	В
42	Α	11	6	0,024	0,19	0,014	0,109	6	23,5	В
43	A	10	290	0,829	0,19	3,657	9,084	90	65,0	D
Gesamt			2686						33,1	
Fußgänge	r- /Radfahre	rfurten								
Zufahrt	Bez. SG	q _{Fg} [Fg/h]	q _{Rad} [Rad/h]	Anzahl Furten	t _{W,max} [s]					QSV [-]
- 1	E1	50	20	Top .	43					С
1	E2	50	20	1	44					С
-1	E4	50	20	1	36					В
2	F3	50	20	1	49					С
3	E5	50	20	7	36					В
3	E7	50	20	1	61					D
4	F1	50	20	11	56					D
4	F2	50	20	1	42					С
4	F1+F2	50	20	2	56					D
4	F2+F1	50	20	2	56					D
								Gesamth	ewertung:	D

Verkehrsfluss-Diagramm


Datei : KV2007-Kn2_MFspät_Prognose.amp

Projekt: VU D-Rath, Theodorstraße - Baumarkt-Fachzentrum + Bürostandort (KV2007)

Knoten : KN02 - Theodorstr./Planstr. A/Betriebseinfahrt Stunde : Spitzenstunde MF spät - Prognose-Daten

Fahrzeuge

Zufahrt 1 : Theodorstraße (west) Zufahrt 2 : Betriebszufahrt Zufahrt 3 : Theodorstraße (ost)

Zufahrt 4: Planstr. A

AMPEL Version 6.2.3

Form	blatt 1					mit Lichtsigr				
7,5***	2021					usgangsdate			Ten index on	
1 1 1 2			Theodorstral			um + Bürosta	andort (KV20		Düsseldorf	
	Knotenpunkt:								: 23.04.2020	
Tana Caratana	Zeitabschnitt:	Spitzenstun	de MF spat -	Prognose-D	aten			Bearbeiter	un .	
Umlaufzeit										
MIZ-Verke	hrsströme				J			Assess N	10000	E- 15-54
Nr.	q _{LV} [Kfz/h]	q _{Lkw+Bus} [Kfz/h]	q _{LkwK} [Kfz/h]	q _{Kfz} [Kfz/h]	q _{sv} [Kfz/h]	f _{sv} [-]		Anzahl Fahrstreifen	Misch- fahrstreifen	bedingt verträglic
31	22	0	2	[rvizeri]	[14211]	1,125		1	nein	nein
2	640	0	32			1,071		2	nein	nein
3	3	0	3			1,750		1	nein	ja
4	78	0	2			1,038		1	nein	ja
5	12	0	1			1,115		1	nein	ja
6	7	0	3		1 2 3 1	1,450		111	nein	nein
7	1234	0	41			1,048		2	nein	nein
8	5	0	0			1,000		1	nein	ja
9	31	0	4			1,171		1	nein	nein
Kfz-Fahrs	treifen									
Zufahrt	Fahrt- richtung	Nr.	L [m]	b [m]	f _b [-]	R [m]	f _R [-]	s [%]	f _s [-]	L _{LA} /L _{RA} [m]
1	rechts	11	8.55	>= 3,00	1,000	20,00	1,000	0,0	1,000	5
1	gerade	12		>= 3,00	1,000	-	1,000	0,0	1,000	
- 1	gerade	13		>= 3,00	1,000	3	1,000	0,0	1,000	
1	links	14		>= 3,00	1,000	20,00	1,000	0,0	1,000	
2	rechts	21		>= 3,00	1,000	20,00	1,000	0,0	1,000	3
2	links	22		>= 3,00	1,000	20,00	1,000	0,0	1,000	3
3	rechts	31		>= 3,00	1,000	20,00	1,000	0,0	1,000	8
3	gerade	32		>= 3,00	1,000	6.	1,000	0,0	1,000	
3	gerade	33		>= 3,00	1,000		1,000	0,0	1,000	
3	links	34		>= 3,00	1,000	20,00	1,000	0,0	1,000	
4	rechts	41		>= 3,00	1,000	20,00	1,000	0,0	1,000	
Fußgänge	r-/Radfahrer	furten								
Zufahrt	Bez. Signalgr.	q _{Fg} [Fg/h]	q _{Rad} [Rad/h]		1. Furt Länge	2. Furt Länge	3. Furt Länge	4. Furt Länge		
- 1	F4	E0.	20		[m]	[m]	[m]	[m]		
1	E1	50	20		10					
1	E2	50	20		10					
2	F2	50	50		10					
3	E3	50	20		10					
3	E4	50	20		10					
4	F1	50	50	+	10	16.		-	-	
1	E1+E2	50	20		10	10				
1	E2+E1	50	20		10	10				
3	E4+E3	50	20		10	10				
MPEL Version	6.2.3E3+E4	50	20		10	10				-

	blatt 2	-			***********		ignalanlage			
1 0.1.	ibidit E			Berechn	ung der Grur	ndlagendate	n für den Kfz	-Verkehr		
	Projekt	: VU D-Rath,	Theodorstra	ße - Baumar	kt-Fachzentr	um + Büros	tandort (KV20	007) Stadt	: Düsseldorf	
		: KN02 - The							: 23.04.2020	
		: Spitzenstun			aten			Bearbeiter	: uh	
Kfz-Verke	hrsströme -	Kapazitäten	(strombezo	gen)						
Nr.	Bez. SG	t _{B,i} [s]	q _{s,i} [Kfz/h]	t _{F,i} [s]	C _{0,i} [Kfz/h]	C _{D,i} [Kfz/h]	C _{PW,i} [Kfz/h]	C _{GF,i} [Kfz/h]	C _{LA,i} [Kfz/h]	C _{RA,i} [Kfz/h]
1	CL	2,025	1778	7	203					
2	С	1,929	1866	16	453					
3	С	3,150	1143	16	278					26
4	В	1,868	1927	16	468				387	
5	В	2,008	1793	16	435				1	41
6	DL	2,610	1379	5	118	- 1				
7	D	1,887	1908	27	763		. 4.	1		
8	D	1,800	2000	27	800					77
9	Α	2,109	1707	6	171					
	1									
		-								
Kfz-Verke	hrsströme -	Kapazitäten	(fahrstreife	nbezogen)						
- 50	Bez.		q_G	q _{RA}	Q _{LA}	n _k	N _{MS.90.1}	CKI	C _{M.i}	Ci
Nr.		q _j [Kfz/h]	q _G [Kfz/h]	q _{RA} [Kfz/h]	q _{LA} [Kfz/h]	n _k [Kfz]	N _{MS,90,j} [Kfz]	C _{K,j} [Kfz/h]	C _{M,j} [Kfz/h]	C _j [Kfz/h]
Nr.	Bez.	q _j	1.0000000000000000000000000000000000000	10.00		1 1/2 22 11				[Kfz/h]
11	Bez. SG	q _j [Kfz/h]	[Kfz/h]	[Kfz/h]		1 1/2 22 11	[Kfz] 0,647			[Kfz/h] 26
11	Bez. SG C	q _j [Kfz/h] 6 336	1.0000000000000000000000000000000000000	[Kfz/h]		1 1/2 22 11	[Kfz] 0,647 12,884			[Kfz/h] 26 45
11 12 13	Bez. SG C C	q _j [Kfz/h] 6 336 336	[Kfz/h]	[Kfz/h]	[Kfz/h]	1 1/2 22 11	[Kfz] 0,647 12,884 12,884			[Kfz/h] 26 45 45
11 12 13 14	Bez. SG C C C C	q _j [Kfz/h] 6 336 336	[Kfz/h]	[Kfz/h] 6		1 1/2 22 11	[Kfz] 0,647 12,884 12,884 1,682			[Kfz/h] 26 45 45 20
11 12 13 14 21	Bez. SG C C C C B	q _j [Kfz/h] 6 336 336 24	[Kfz/h]	[Kfz/h]	[Kfz/h]	1 1/2 22 11	[Kfz] 0,647 12,884 12,884 1,682 0,998			[Kfz/h] 26 45 45 20 41
11 12 13 14 21 22	Bez. SG C C C CL B B	q _j [Kfz/h] 6 336 336 24 13	[Kfz/h]	[Kfz/h] 6	[Kfz/h]	1 1/2 22 11	[Kfz] 0,647 12,884 12,884 1,682 0,998 3,476			[Kfz/h] 26 45 45 20 41 38
11 12 13 14 21 22 31	Bez. SG C C C C B B B D	q _j [Kfz/h] 6 336 336 24 13 80	[Kfz/h] 336 336	[Kfz/h] 6	[Kfz/h]	1 1/2 22 11	[Kfz] 0,647 12,884 12,884 1,682 0,998 3,476 0,490			[Kfz/h] 26 45 45 20 411 38 77
11 12 13 14 21 22 31 32	Bez. SG C C C CL B B D	q _j [Kfz/h] 6 336 336 24 13 80 5	[Kfz/h] 336 336 336	[Kfz/h] 6	[Kfz/h]	1 1/2 22 11	[Kfz] 0,647 12,884 12,884 1,682 0,998 3,476 0,490 22,457			[Kfz/h] 26 45 45 20 41 38 77
11 12 13 14 21 22 31 32 33	Bez. SG C C C CL B B D D	q _j [Kfz/h] 6 336 336 24 13 80 5 638	[Kfz/h] 336 336	[Kfz/h] 6	[Kfz/h] 24 80	1 1/2 22 11	[Kfz] 0,647 12,884 12,884 1,682 0,998 3,476 0,490 22,457 22,457			[Kfz/h] 26 45 45 20 41 38 77 76
11 12 13 14 21 22 31 32 33 34	Bez. SG C C C CL B B D D D D DL	q _j [Kfz/h] 6 336 336 24 13 80 5 638 638	[Kfz/h] 336 336 336	[Kfz/h] 6	[Kfz/h]	1 1/2 22 11	[Kfz] 0,647 12,884 12,884 1,682 0,998 3,476 0,490 22,457 22,457 1,042			[Kfz/h] 26 45 45 20 411 38 77 76 76
11 12 13 14 21 22 31 32 33	Bez. SG C C C CL B B D D	q _j [Kfz/h] 6 336 336 24 13 80 5 638	[Kfz/h] 336 336 336	[Kfz/h] 6	[Kfz/h] 24 80	1 1/2 22 11	[Kfz] 0,647 12,884 12,884 1,682 0,998 3,476 0,490 22,457 22,457			[Kfz/h] 26 45 45 20 41 38 77 76 76
11 12 13 14 21 22 31 32 33 34	Bez. SG C C C CL B B D D D D DL	q _j [Kfz/h] 6 336 336 24 13 80 5 638 638	[Kfz/h] 336 336 336	[Kfz/h] 6	[Kfz/h] 24 80	1 1/2 22 11	[Kfz] 0,647 12,884 12,884 1,682 0,998 3,476 0,490 22,457 22,457 1,042			[Kfz/h] 26 45 45 20 41 38 77 76 76
11 12 13 14 21 22 31 32 33 34	Bez. SG C C C CL B B D D D D DL	q _j [Kfz/h] 6 336 336 24 13 80 5 638 638	[Kfz/h] 336 336 336	[Kfz/h] 6	[Kfz/h] 24 80	1 1/2 22 11	[Kfz] 0,647 12,884 12,884 1,682 0,998 3,476 0,490 22,457 22,457 1,042			[Kfz/h] 26 45 45 20 41 38 77 76 76
11 12 13 14 21 22 31 32 33 34	Bez. SG C C C CL B B D D D D DL	q _j [Kfz/h] 6 336 336 24 13 80 5 638 638	[Kfz/h] 336 336 336	[Kfz/h] 6	[Kfz/h] 24 80	1 1/2 22 11	[Kfz] 0,647 12,884 12,884 1,682 0,998 3,476 0,490 22,457 22,457 1,042			[Kfz/h] 26 45 45 20 41 38 77 76
11 12 13 14 21 22 31 32 33 34	Bez. SG C C C CL B B D D D D DL	q _j [Kfz/h] 6 336 336 24 13 80 5 638 638	[Kfz/h] 336 336 336	[Kfz/h] 6	[Kfz/h] 24 80	1 1/2 22 11	[Kfz] 0,647 12,884 12,884 1,682 0,998 3,476 0,490 22,457 22,457 1,042			[Kfz/h] 26 45 45 20 41 38 77 76 76
11 12 13 14 21 22 31 32 33 34	Bez. SG C C C CL B B D D D D DL	q _j [Kfz/h] 6 336 336 24 13 80 5 638 638	[Kfz/h] 336 336 336	[Kfz/h] 6	[Kfz/h] 24 80	1 1/2 22 11	[Kfz] 0,647 12,884 12,884 1,682 0,998 3,476 0,490 22,457 22,457 1,042			[Kfz/h] 26 45 45 20 41 38 77 76 76
11 12 13 14 21 22 31 32 33 34	Bez. SG C C C CL B B D D D D DL	q _j [Kfz/h] 6 336 336 24 13 80 5 638 638	[Kfz/h] 336 336 336	[Kfz/h] 6	[Kfz/h] 24 80	1 1/2 22 11	[Kfz] 0,647 12,884 12,884 1,682 0,998 3,476 0,490 22,457 22,457 1,042			[Kfz/h] 26 45 45 20 41 38 77 76 76
11 12 13 14 21 22 31 32 33 34	Bez. SG C C C CL B B D D D D DL	q _j [Kfz/h] 6 336 336 24 13 80 5 638 638	[Kfz/h] 336 336 336	[Kfz/h] 6	[Kfz/h] 24 80	1 1/2 22 11	[Kfz] 0,647 12,884 12,884 1,682 0,998 3,476 0,490 22,457 22,457 1,042			[Kfz/h] 26 45 45 20 41 38 77 76 76
11 12 13 14 21 22 31 32 33 34	Bez. SG C C C CL B B D D D D DL	q _j [Kfz/h] 6 336 336 24 13 80 5 638 638	[Kfz/h] 336 336 336	[Kfz/h] 6	[Kfz/h] 24 80	1 1/2 22 11	[Kfz] 0,647 12,884 12,884 1,682 0,998 3,476 0,490 22,457 22,457 1,042			[Kfz/h] 26 45 45 20 411 38 77 76 76
11 12 13 14 21 22 31 32 33 34	Bez. SG C C C CL B B D D D D DL	q _j [Kfz/h] 6 336 336 24 13 80 5 638 638	[Kfz/h] 336 336 336	[Kfz/h] 6	[Kfz/h] 24 80	1 1/2 22 11	[Kfz] 0,647 12,884 12,884 1,682 0,998 3,476 0,490 22,457 22,457 1,042			[Kfz/h] 26 45 45 20 41 38 77 76 76

Formi	olatt 3				Knotenpunk	t mit Lichtsig	nalanlage			
1.01111	Junta 6				Berechnung	der Verkehr	squalitäten			
		VU D-Rath,		Cally Proc. The Sale		um + Bürosta	andort (KV20	07) Stadt:_I	Düsseldorf	
		KN02 - The				9.60			23.04.2020	
		Spitzenstun						Bearbeiter:	uh	
Kfz-Verkel	rrsströme -	Verkehrsqu	alitäten (fah	rstreifenbez	ogen)					
Nr.	Bez. SG	Ströme	q _j [Kfz/h]	x _j [-]	f _{A,j} [-]	N _{GE,j} [Kfz]	N _{MS.j} [Kfz]	L _{95.j} [m]	t _{W.j} [s]	QSV [-]
11	С	3	6	0,023	0,23	0,013	0,103	7	21,1	В
12	С	2	336	0,742	0,24	2,043	8,077	83	40,7	С
13	С	2	336	0,742	0,24	2,043	8,077	83	40,7	С
14	CL	1	24	0,118	0,11	0,075	0,494	11	29,2	В
21	В	5	13	0,032	0,23	0,018	0,214	7	21,1	В
22	В	4	80	0,207	0,20	0,147	1,444	22	24,7	В
31	D	8	5	0,006	0,39	0,004	0,063	3	13,3	Α
32	D	7	638	0,836	0,40	4,561	15,746	141	40,5	С
33	D	7	638	0,836	0,40	4,561	15,746	141	40,5	С
34	DL	6	10	0,085	0,09	0,051	0,230	9	31,0	В
41	Α	9	35	0,205	0,10	0,145	0,770	16	32,0	В
			11							
-										
Gesamt			2121						39,4	
	r- /Radfahre	rfurten								
Zufahrt	Bez.	q _{Fg}	q _{Rad}	Anzahl	$t_{W,max}$					QSV
- 10	SG	[Fg/h]	[Rad/h]	Furten	[s]		-			[-]
1	E1	50	20	1	36					В
1	E2	50	20	1	53					С
2	F2	50	50	1	45					С
3	E3	50	20	1	44					C
3	E4	50	20	1	29				-	A
4	F1	50	50	1	27					A
1	E1+E2	50	20	2	53					С
1	E2+E1	50	20	2	53					C
3	E4+E3	50	20	2	44					C
3	E3+E4	50	20	2	48					С
								Gesamtb	ewertung:	С

Übersicht von 16:30 bis 17:30

Knotenpunktbezeichung: Knoten 3 - U-Turn Theodorstraße (östlich)

Spitzenstunde MF spät - Prognose-Daten

Name der Datei : KV2007-Kn3_MFspaet_Prognose.EIN

					ı	Jbersic	ht von	16:30 b	ois 17:3	30					
Strom	VZ	VZ	VZ	VZ	RS	RS	RS	RS	н	Н	Н	Fz.	Fz.	Fz.	QSV
	ges	mitt	85%	max	mitt	85%	95%	max	ges	mitt	max	ang.	abg.	wart.	
	[min]	[sec]	[sec]	[sec]	[Kfz]	[Kfz]	[Kfz]	[Kfz]	[-]	[-]	[-]	[Kfz]	[Kfz]	[Kfz]	[-]
4	1,6	33,1	51,0	136,9	0,0	0	0	1	3	1,0	1	3	3	0	С
8	0,0	0,0	0,0	0,0	0,0	Ò	0	0	0	0,0	0	1390	1390	0	A
Sum	1,6	0,1		136,9	0,0			1		0,0	1	1393			
					ŗ	Ĵbersic	ht von	16:30 b	ois 17:3	30					

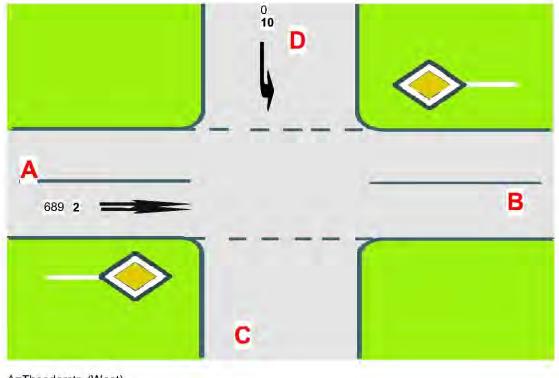
A=Theodorstr. (West) C=U-Turn

B=Theodorstr. (Ost)

D=

Spiekermann GmbH Consultung Engineers

Düsseldorf


Übersicht von 16:30 bis 17:30

Knotenpunktbezeichung: Knoten 4 - U-Turn Theodorstraße (westlich)

Spitzenstunde MF spät - Prognose-Daten

: KV2007-Kn4_MFspaet_Prognose.EIN Name der Datei

					Ţ	Übersic	ht von	16:30 b	ois 17:3	30					
Strom	VZ	VZ	VZ	VZ	RS	RS	RS	RS	н	H	Н	Fz.	Fz.	Fz.	QSV
	ges	mitt	85%	max	mitt	85%	95%	max	ges	mitt	max	ang.	abg.	wart.	
	[min]	[sec]	[sec]	[sec]	[Kfz]	[Kfz]	[Kfz]	[Kfz]	[-]	H	[-]	[Kfz]	[Kfz]	[Kfz]	[-]
2	0,0	0,0	0,0	0,0	0,0	0	0	0	0	0,0	0	682	682	0	A
10	0,0	0,0	0,0	0,0	0,0	0	0	0	0	0,0	0	0	0	0	А
Sum	0,0	0,0		0,0	0,0			0		0,0	0	682			
					Ü	Ĵbersic	ht von	16:30 b	ois 17:3	30					

A=Theodorstr. (West)

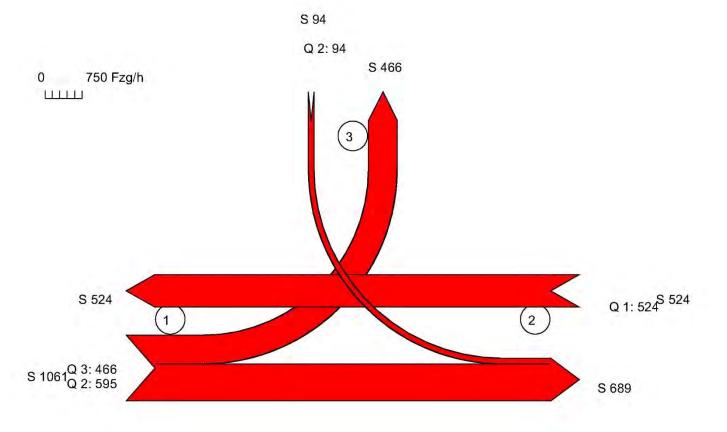
C=-B=Theodorstr. (Ost)

D=U-Turn

Spiekermann GmbH Consultung Engineers

Düsseldorf

Verkehrsfluss-Diagramm


Datei : KV2007-Kn5_MFspaet_Prognose.amp

Projekt: VU D-Rath, Theodorstraße - Baumarkt-Fachzentrum + Bürostandort (KV2007)

Knoten : KN05 - Abfahrt A52 Ost/Theodorstr. Stunde : Spitzenstunde MF spät - Prognose-Daten

Fahrzeuge

Summe= 1679

Zufahrt 1 : Theodorstraße (west) Zufahrt 2 : Theodorstraße (ost) Zufahrt 3 : Zu-/Abfahrt A52

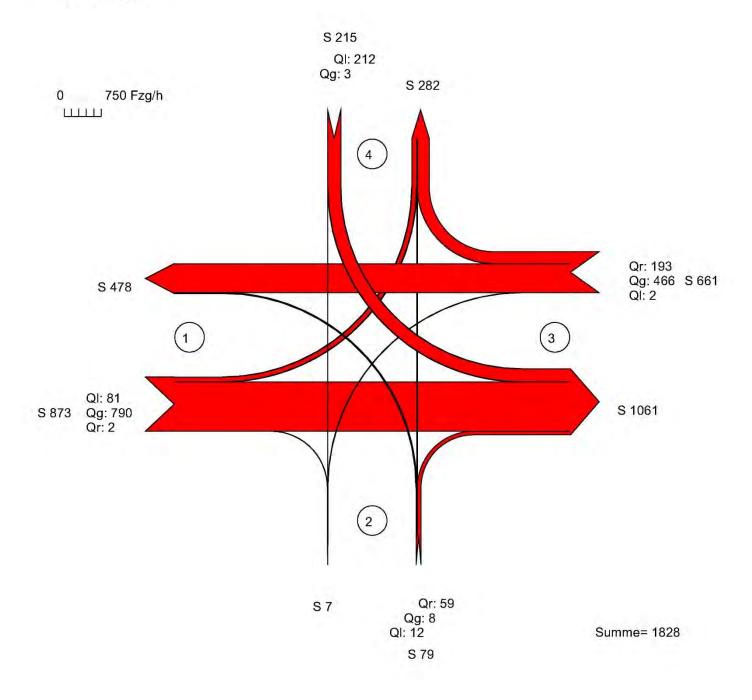
Form	blatt 1	-		loc"	Knotenpunkt	mit Lichtsigr	nalanlage			
1 01111	bidit 1				Αι	usgangsdate	n			
	Projekt: Knotenpunkt: Zeitabschnitt:		hrt A52 Ost/	Theodorstr.		um + Bürosta	andort (KV2		: Düsseldorf : 22.04.2020 :: uh	
	t t _U : 70 [s]									
Kfz-Verke	hrsströme									
Nr.	q _{LV} [Kfz/h]	q _{Lkw+Bus} [Kfz/h]	q _{LkwK} [Kfz/h]	q _{Kfz} [Kfz/h]	9sv [Kfz/h]	f _{SV} [-]		Anzahl Fahrstreifen	Misch- fahrstreifen	bedingt verträglic
1	458	0	8		7	1,026		2	nein	nein
2	563	0	32			1,081		2	nein	nein
3	506	0	18			1,052		2	nein	nein
4	88	0	6			1,096		2	nein	nein
Kfz-Fahrs	treifen Fahrt-		L	b	f _b	R	f _R	s	f _s	L _{LA} /L _{RA}
Zufahrt	richtung	Nr.	[m]	[m]	E	[m]	Fl	[%]	[-]	[m]
1	gerade	11		>= 3,00	1,000	7	1,000	0,0	1,000	
1	gerade	12		>= 3,00	1,000	9	1,000	0,0	1,000	
1	links	13		>= 3,00	1,000	20,00	1,000	0,0	1,000	
1	links	14		>= 3,00	1,000	20,00	1,000	0,0	1,000	
2	gerade	21		>= 3,00	1,000	1 3	1,000	0,0	1,000	
2	gerade	22	14	>= 3,00	1,000	in d	1,000	0,0	1,000	
3	links	31		>= 3,00	1,000	20,00	1,000	0,0	1,000	
3	links	32	l J	>= 3,00	1,000	20,00	1,000	0,0	1,000	
Fußgänge	er-/Radfahrer	furten								
Zufahrt	Bez. Signalgr.	q _{Fg} [Fg/h]	g _{Rad} [Rad/h]		1. Furt Länge [m]	2. Furt Länge [m]	3. Furt Länge [m]	4. Furt Länge [m]		

Enro	blatt 2				Knotenpuni	kt mit Lichts	ignalanlage			
Form	INIALL Z			Berechni	ung der Grur	ndlagendate	n für den Kfz	-Verkehr		
	Projekt	: VU D-Rath,	Theodorstraß	Se - Baumari	kt-Fachzentr	um + Büros	tandort (KV20	007) Stadt	: Düsseldorf	
	Knotenpunkt	: KN05 - Abfa	hrt A52 Ost/1	Theodorstr.				Datum	22.04.2020	1 -
	Zeitabschnitt	: Spitzenstund	de MF spät -	Prognose-D	aten			Bearbeiter	: uh	
Kfz-Verke	hrsströme -	Kapazitäten	(strombezo	gen)						
	Bez.	t _{B,i}	q _{s,i}	t _{F,i}	C _{0,i}	$C_{D,i}$	C _{PW,i}	$C_{GF,i}$	C _{LA,i}	C _{RA,i}
Nr.	SG	[s]	[Kfz/h]	[s]	[Kfz/h]	[Kfz/h]	[Kfz/h]	[Kfz/h]	[Kfz/h]	[Kfz/h]
	CL	1,846	1950	20	585					
2	С	1,945	1851	45	1216					
3	D	1,893	1902	20	571	10				
4	AL	1,972	1826	11	313					
		110.0								
							7			
			-							
			-	-	-					
			-							
				-						
	*									
			111				11 - 11		11 2 2 2 11	
Kfz-Verke	hrsströme -	- Kapazitäten	(fahrstreifer	nbezogen)						
1.50	hrsströme - Bez.	Kapazitäten	(fahrstreifer	nbezogen)	q _{LA}	n _k	N _{MS,90,j}	C _{K,j}	C _{M,j}	C _j
Kfz-Verke Nr.					q _{LA} [Kfz/h]	n _k [Kfz]	N _{MS,90,j} [Kfz]	C _{K,j} [Kfz/h]	C _{M,j} [Kfz/h]	C _j [Kfz/h]
1.50	Bez.	qj	q _G	q _{RA}	The second secon				1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	[Kfz/h]
Nr.	Bez. SG	q _j [Kfz/h]	q _G [Kfz/h]	q _{RA}	The second secon		[Kfz]		1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	[Kfz/h] 121
Nr.	Bez. SG C	q _j [Kfz/h] 298	q _G [Kfz/h] 298	q _{RA}	The second secon		[Kfz] 5,256		1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	[Kfz/h] 1210 1210
Nr. 11 12	Bez. SG C	q _j [Kfz/h] 298 298	q _G [Kfz/h] 298	q _{RA}	[Kfz/h]		[Kfz] 5,256 5,256		1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	[Kfz/h] 1210 1210 588
Nr. 11 12 13	Bez. SG C C	q _j [Kfz/h] 298 298 233	q _G [Kfz/h] 298	q _{RA}	[Kfz/h]		[Kfz] 5,256 5,256 7,368		1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	[Kfz/h] 1210 1210 588 588
Nr. 11 12 13 14	Bez. SG C C CL CL	q _j [Kfz/h] 298 298 233 233	9 _G [Kfz/h] 298 298	q _{RA}	[Kfz/h]		[Kfz] 5,256 5,256 7,368 7,368		1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	[Kfz/h] 121 121 58 58 57
Nr. 11 12 13 14 21 22	Bez. SG C C CL CL D	q _j [Kfz/h] 298 298 233 233 262	q _G [Kfz/h] 298 298 298	q _{RA}	[Kfz/h]		[Kfz] 5,256 5,256 7,368 7,368 8,284 8,284		1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	[Kfz/h] 121 121 58 58 57
Nr. 11 12 13 14 21 22 31	Bez. SG C C CL CL D D AL	q _j [Kfz/h] 298 298 233 233 262 262 47	q _G [Kfz/h] 298 298 298	q _{RA}	[Kfz/h] 233 233 47		[Kfz] 5,256 5,256 7,368 7,368 8,284 8,284 2,459		1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	[Kfz/h] 121 121 58 58 57 57
Nr. 11 12 13 14 21 22	Bez. SG C C CL CL D	q _j [Kfz/h] 298 298 233 233 262 262	q _G [Kfz/h] 298 298 298	q _{RA}	[Kfz/h] 233 233		[Kfz] 5,256 5,256 7,368 7,368 8,284 8,284		1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1000
Nr. 11 12 13 14 21 22 31	Bez. SG C C CL CL D D AL	q _j [Kfz/h] 298 298 233 233 262 262 47	q _G [Kfz/h] 298 298 298	q _{RA}	[Kfz/h] 233 233 47		[Kfz] 5,256 5,256 7,368 7,368 8,284 8,284 2,459		1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	[Kfz/h] 121 121 58 58 57 57
Nr. 11 12 13 14 21 22 31	Bez. SG C C CL CL D AL	q _j [Kfz/h] 298 298 233 233 262 262 47	q _G [Kfz/h] 298 298 298	q _{RA}	[Kfz/h] 233 233 47		[Kfz] 5,256 5,256 7,368 7,368 8,284 8,284 2,459		1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	[Kfz/h] 121 121 58 58 57 57
Nr. 11 12 13 14 21 22 31	Bez. SG C C CL CL D AL	q _j [Kfz/h] 298 298 233 233 262 262 47	q _G [Kfz/h] 298 298 298	q _{RA}	[Kfz/h] 233 233 47		[Kfz] 5,256 5,256 7,368 7,368 8,284 8,284 2,459		1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	[Kfz/h] 121 121 58 58 57 57
Nr. 11 12 13 14 21 22 31	Bez. SG C C CL CL D AL	q _j [Kfz/h] 298 298 233 233 262 262 47	q _G [Kfz/h] 298 298 298	q _{RA}	[Kfz/h] 233 233 47		[Kfz] 5,256 5,256 7,368 7,368 8,284 8,284 2,459		1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	[Kfz/h] 121 121 58 58 57 57
Nr. 11 12 13 14 21 22 31	Bez. SG C C CL CL D AL	q _j [Kfz/h] 298 298 233 233 262 262 47	q _G [Kfz/h] 298 298 298	q _{RA}	[Kfz/h] 233 233 47		[Kfz] 5,256 5,256 7,368 7,368 8,284 8,284 2,459		1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	[Kfz/h] 121 121 58 58 57 57
Nr. 11 12 13 14 21 22 31	Bez. SG C C CL CL D AL	q _j [Kfz/h] 298 298 233 233 262 262 47	q _G [Kfz/h] 298 298 298	q _{RA}	[Kfz/h] 233 233 47		[Kfz] 5,256 5,256 7,368 7,368 8,284 8,284 2,459		1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	[Kfz/h] 121 121 58 58 57 57
Nr. 11 12 13 14 21 22 31	Bez. SG C C CL CL D AL	q _j [Kfz/h] 298 298 233 233 262 262 47	q _G [Kfz/h] 298 298 298	q _{RA}	[Kfz/h] 233 233 47		[Kfz] 5,256 5,256 7,368 7,368 8,284 8,284 2,459		1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	[Kfz/h] 1210 1210 588 588 57 57 31
Nr. 11 12 13 14 21 22 31	Bez. SG C C CL CL D AL	q _j [Kfz/h] 298 298 233 233 262 262 47	q _G [Kfz/h] 298 298 298	q _{RA}	[Kfz/h] 233 233 47		[Kfz] 5,256 5,256 7,368 7,368 8,284 8,284 2,459		1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	[Kfz/h] 1210 1210 588 588 57 57 311
Nr. 11 12 13 14 21 22 31	Bez. SG C C CL CL D AL	q _j [Kfz/h] 298 298 233 233 262 262 47	q _G [Kfz/h] 298 298 298	q _{RA}	[Kfz/h] 233 233 47		[Kfz] 5,256 5,256 7,368 7,368 8,284 8,284 2,459		1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	[Kfz/h] 121 121 58 58 57 57
Nr. 11 12 13 14 21 22 31	Bez. SG C C CL CL D AL	q _j [Kfz/h] 298 298 233 233 262 262 47	q _G [Kfz/h] 298 298 298	q _{RA}	[Kfz/h] 233 233 47		[Kfz] 5,256 5,256 7,368 7,368 8,284 8,284 2,459		1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	[Kfz/h] 121 121 58 58 57 57
Nr. 11 12 13 14 21 22 31	Bez. SG C C CL CL D AL	q _j [Kfz/h] 298 298 233 233 262 262 47	q _G [Kfz/h] 298 298 298	q _{RA}	[Kfz/h] 233 233 47		[Kfz] 5,256 5,256 7,368 7,368 8,284 8,284 2,459		1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	[Kfz/h] 121 121 58 58 57 57
Nr. 11 12 13 14 21 22 31	Bez. SG C C CL CL D AL	q _j [Kfz/h] 298 298 233 233 262 262 47	q _G [Kfz/h] 298 298 298	q _{RA}	[Kfz/h] 233 233 47		[Kfz] 5,256 5,256 7,368 7,368 8,284 8,284 2,459		1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	[Kfz/h] 121 121 58 58 57 57

Formb	latt 3				Knotenpunk	t mit Lichtsig	ınalanlage			
FOITIL	natt 3				Berechnung	der Verkehr	squalitäten			
	Cnotenpunk	t: <u>VU D-Rath,</u> t: <u>KN05 - Abfa</u> t: Spitzenstun	ahrt A52 Ost/	Theodorstr.		um + Bürosta	indort (KV20		Düsseldorf 22.04.2020	
		· Verkehrsqu						Dear Delicit.	u, i	
Nr.	Bez. SG	Ströme	q _j [Kfz/h]	× _j [-]	f _{A,J} [-]	N _{GE,j} [Kfz]	N _{MS,j} [Kfz]	L _{.95,j} [m]	t _{W,j} [s]	QSV [-]
1.1	С	2	298	0,245	0,66	0,184	2,553	34	5,5	А
12	С	2	298	0,245	0,66	0,184	2,553	34	5,5	Α
13	CL	1	233	0,398	0,30	0,388	3,990	45	21,9	В
14	CL	1	233	0,398	0,30	0,388	3,990	45	21,9	В
21	D	3	262	0,459	0,30	0,506	4,641	52	23,1	В
22	D	3	262	0,459	0,30	0,506	4,641	52	23,1	В
31	AL	4	47	0,150	0,17	0,099	0,876	16	25,8	В
32	AL	4	47	0,150	0,17	0,099	0,876	16	25,8	В
Gesamt			1680						16,6	
Fußgänger	- /Radfahr	erfurten								
Zufahrt	Bez. SG	q _{Fg} [Fg/h]	q _{Rad} [Rad/h]	Anzahl Furten	t _{W,max} [s]					QSV [-]
								Gesamtb	ewertung:	В

Verkehrsfluss-Diagramm

Datei : KV2007-Kn6_MFspaet_Prognose.amp


Projekt: VU D-Rath, Theodorstraße - Baumarkt-Fachzentrum + Bürostandort (KV2007)

Knoten: KN06 - Abfahrt A52 West/Theodorstr./Gladbecker Str.

Stunde: Spitzenstunde MF spät - Prognose-Daten

Fahrzeuge

Zufahrt 1 : Theodorstraße (west) Zufahrt 2 : Gladbecker Straße Zufahrt 3 : Theodorstraße (ost) Zufahrt 4 : Zu-/Abfahrt A52

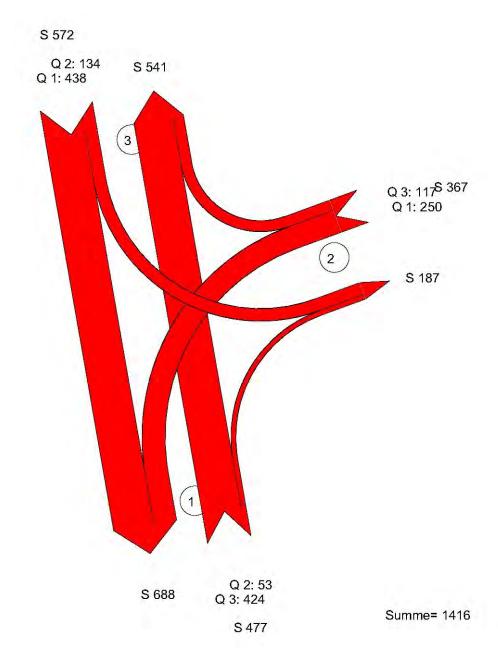
Form	blatt 1				Knotenpunkt	mit Lichtsigr	nalanlage			
FORM	DIAIL 1				Au	isgangsdate	n			
	Projekt: Knotenpunkt: Zeitabschnitt:	KN06 - Abfa		t/Theodorstr	./Gladbecker		andort (KV2		: <u>Düsseldorf</u> : 22.04.2020 : uh	
	t t _U : 70 [s]									
	hrsströme									
Nr.	q _{LV} [Kfz/h]	q _{Lkw+Bus} [Kfz/h]	q _{LkwK} [Kfz/h]	q _{Kfz} [Kfz/h]	q _{sv} [Kfz/h]	f _{sv} [-]	М	Anzahl Fahrstreifer	Misch- fahrstreifen	bedingt verträglic
- 1	78	0	3			1,056		1	nein	nein
2	770	0	20		11 0 11	1,038		2	ja	nein
3	2	0	0			1,000		Ť.	ja	ja
4	12	0	0			1,000		1	nein	ja
5	8	0	0			1,000		1	ja	nein
6	59	0	0	1		1,000		1	ja	nein
7	11	0	1	11 1/		1,750		11	nein	nein
8	453	0	13			1,042		2	ja	nein
9	186	0	7			1,054		1	ja	nein
10	192	0	20			1,142		2	nein	nein
11	3	0	0			1,000		1	nein	ja
Kfz-Fahrs	troifen								ji 1	
TUZ-I GIII S	Fahrt-		L	b	f _b	R	f _R	s	fs	L _{LA} /L _{RA}
Zufahrt	richtung	Nr.	[m]	[m]	[-]	[m]	[-]	[%]	's [-]	[m]
1	rechts	11	4 - (1)	>= 3,00	1,000	20,00	1,000	0,0	1,000	50
1	gerade	11		>= 3,00	1,000	-	1,000	0,0	1,000	
1	gerade	12	1 1	>= 3,00	1,000	I _ E	1,000	0,0	1,000	
1	links	13	1.	>= 3,00	1,000	20,00	1,000	0,0	1,000	
2	rechts	21		>= 3,00	1,000	20,00	1,000	0,0	1,000	
2	gerade	21		>= 3,00	1,000	-	1,000	0,0	1,000	
2	links	22		>= 3,00	1,000	20,00	1,000	0,0	1,000	25
3	rechts	31		>= 3,00	1,000	20,00	1,000	0,0	1,000	
3	gerade	31		>= 3,00	1,000		1,000	0,0	1,000	
3	gerade	32		>= 3,00	1,000		1,000	0,0	1,000	
3	links	33	1 11	>= 3,00	1,000	20,00	1,000	0,0	1,000	
4	gerade	41	- = -1	>= 3,00	1,000	-	1,000	0,0	1,000	50
4	links	42	4	>= 3,00	1,000	20,00	1,000	0,0	1,000	
4	links	43	11 : [1]	>= 3,00	1,000	20,00	1,000	0,0	1,000	
Fußgänge	er-/Radfahrer	furten								
Zufahrt	Bez. Signalgr.	q _{Fg} [Fg/h]	q _{Rad} [Rad/h]		1. Furt Länge [m]	2. Furt Länge [m]	3. Furt Länge [m]	4. Furt Länge [m]		
2	F1	50	50	14-17	16,00				[

Earn	blatt 2				Knotenpuni	kt mit Lichtsi	gnalanlage			
Form	INIALL Z			Berechni	ung der Grur	ndlagendater	für den Kfz-	-Verkehr		
	Projekt	: VU D-Rath,	Theodorstraf	Se - Baumari	kt-Fachzentr	um + Bürosta	andort (KV20	07) Stadt	: Düsseldorf	
	Knotenpunkt	: KN06 - Abfa	hrt A52 Wes	t/Theodorstr	./Gladbecker	Str.	55.200.00	Datum	22.04.2020	
	Zeitabschnit	: Spitzenstun	de MF spät -	Prognose-D	aten			Bearbeiter	: uh	
Kfz-Verke	hrsströme -	Kapazitäten	(strombezo	gen)						
Nr.	Bez. SG	t _{B,i} [s]	q _{s,i} [Kfz/h]	t _{F,i} [s]	C _{0,i} [Kfz/h]	C _{D,i} [Kfz/h]	C _{PW,i} [Kfz/h]	C _{GF,i} [Kfz/h]	C _{LA,i} [Kfz/h]	C _{RA,i} [Kfz/h]
1	CL	1,900	1895	5	162					100
2	С	1,868	1927	19	551					
3	С	1,800	2000	19	571					48
4	В	1,800	2000	5	171	73	214		171	
5	В	1,800	2000	5	171				12 = 2	
6	В	1,800	2000	5	171	1				
7	DL	3,150	1143	5	98		1	1		
8	D	1,875	1920	16	466					
9	D	1,898	1897	16	461					
10	AL	2,055	1752	18	475	-==1				
11	Α	1,800	2000	9	286	73	429		286	
		1								
				+ 1						
Kfz-Verke	hrsströme -	- Kapazitäten	(fahrstreife	nbezogen)						
1.50	hrsströme - Bez.				q _{LA}	n _k	N _{MS.90.1}	C _{K,i}	C _{M,i}	C _i
Kfz-Verke Nr.		Kapazitäten q _j [Kfz/h]	(fahrstreifer q _G [Kfz/h]	nbezogen) q _{RA} [Kfz/h]	q _{LA} [Kfz/h]	n _k [Kfz]	N _{MS,90,j} [Kfz]	C _{K,j} [Kfz/h]	C _{M,j} [Kfz/h]	C _j [Kfz/h]
1.50	Bez.	q _j	q _G	q_{RA}					100000000000000000000000000000000000000	1000
Nr.	Bez. SG	q _j [Kfz/h]	q _G [Kfz/h]	q _{RA} [Kfz/h]			[Kfz]		[Kfz/h]	[Kfz/h]
Nr. 11	Bez. SG C	q _j [Kfz/h] 396	q _G [Kfz/h] 394	q _{RA} [Kfz/h]			[Kfz] 13,704		[Kfz/h]	[Kfz/h] 55
Nr. 11 12 13	Bez. SG C	q _j [Kfz/h] 396 396	q _G [Kfz/h] 394	q _{RA} [Kfz/h]	[Kfz/h]		[Kfz] 13,704 13,704 4,549		[Kfz/h] 551	[Kfz/h] 55
Nr. 11 12	Bez. SG C C	q _j [Kfz/h] 396 396 81	q _G [Kfz/h] 394 396	q _{RA} [Kfz/h] 2	[Kfz/h]		[Kfz] 13,704 13,704 4,549 3,750		[Kfz/h]	[Kfz/h] 55 16
Nr. 11 12 13 21	Bez. SG C C CL B	q _j [Kfz/h] 396 396 81 67	q _G [Kfz/h] 394 396	q _{RA} [Kfz/h] 2	[Kfz/h] 81		[Kfz] 13,704 13,704 4,549		[Kfz/h] 551	[Kfz/h] 55 16
Nr. 11 12 13 21 22	Bez. SG C C CL B B	q _j [Kfz/h] 396 396 81 67	q _G [Kfz/h] 394 396 8	9 _{RA} [Kfz/h] 2	[Kfz/h] 81		[Kfz] 13,704 13,704 4,549 3,750 1,113 12,136		[Kfz/h] 551 171	[Kfz/h] 55 16.
Nr. 11 12 13 21 22 31	Bez. SG C C CL B B D	q _j [Kfz/h] 396 396 81 67 12 328 331	q _G [Kfz/h] 394 396	9 _{RA} [Kfz/h] 2	[Kfz/h] 81 12		[Kfz] 13,704 13,704 4,549 3,750 1,113 12,136 12,235		[Kfz/h] 551 171	[Kfz/h] 55 16. 17
Nr. 11 12 13 21 22 31 32	Bez. SG C C CL B B D D	q _j [Kfz/h] 396 396 81 67 12	q _G [Kfz/h] 394 396 8	9 _{RA} [Kfz/h] 2	[Kfz/h] 81		[Kfz] 13,704 13,704 4,549 3,750 1,113 12,136		[Kfz/h] 551 171	[Kfz/h] 55 16. 17 466
Nr. 11 12 13 21 22 31 32 33	Bez. SG C C CL B B D	q _j [Kfz/h] 396 396 81 67 12 328 331	q _G [Kfz/h] 394 396 8 135 331	9 _{RA} [Kfz/h] 2	[Kfz/h] 81 12		[Kfz] 13,704 13,704 4,549 3,750 1,113 12,136 12,235 0,414		[Kfz/h] 551 171	[Kfz/h] 55 16. 17 46 96 28
Nr. 11 12 13 21 22 31 32 33 41 42	Bez. SG C C CL B B D D DL A AL	q _j [Kfz/h] 396 396 81 67 12 328 331 2 3 106	q _G [Kfz/h] 394 396 8 135 331	9 _{RA} [Kfz/h] 2	[Kfz/h] 81 12 2 106		[Kfz] 13,704 13,704 4,549 3,750 1,113 12,136 12,235 0,414 0,456 4,006		[Kfz/h] 551 171	[Kfz/h] 55 16: 17 46: 9: 28: 47:
Nr. 11 12 13 21 22 31 32 33 41	Bez. SG C C CL B D D DL A	q _j [Kfz/h] 396 396 81 67 12 328 331 2	q _G [Kfz/h] 394 396 8 135 331	9 _{RA} [Kfz/h] 2	[Kfz/h] 81 12		[Kfz] 13,704 13,704 4,549 3,750 1,113 12,136 12,235 0,414 0,456		[Kfz/h] 551 171	[Kfz/h] 55 16 17 46 90 280 47
Nr. 11 12 13 21 22 31 32 33 41 42	Bez. SG C C CL B B D D DL A AL	q _j [Kfz/h] 396 396 81 67 12 328 331 2 3 106	q _G [Kfz/h] 394 396 8 135 331	9 _{RA} [Kfz/h] 2	[Kfz/h] 81 12 2 106		[Kfz] 13,704 13,704 4,549 3,750 1,113 12,136 12,235 0,414 0,456 4,006		[Kfz/h] 551 171	[Kfz/h] 55 16 17 46 9 28 47
Nr. 11 12 13 21 22 31 32 33 41 42	Bez. SG C C CL B B D D DL A AL	q _j [Kfz/h] 396 396 81 67 12 328 331 2 3 106	q _G [Kfz/h] 394 396 8 135 331	9 _{RA} [Kfz/h] 2	[Kfz/h] 81 12 2 106		[Kfz] 13,704 13,704 4,549 3,750 1,113 12,136 12,235 0,414 0,456 4,006		[Kfz/h] 551 171	[Kfz/h] 55 16 17 46 90 280 47
Nr. 11 12 13 21 22 31 32 33 41 42	Bez. SG C C CL B B D D DL A AL	q _j [Kfz/h] 396 396 81 67 12 328 331 2 3 106	q _G [Kfz/h] 394 396 8 135 331	9 _{RA} [Kfz/h] 2	[Kfz/h] 81 12 2 106		[Kfz] 13,704 13,704 4,549 3,750 1,113 12,136 12,235 0,414 0,456 4,006		[Kfz/h] 551 171	[Kfz/h] 55 16 17 46 90 280 47
Nr. 11 12 13 21 22 31 32 33 41 42	Bez. SG C C CL B B D D DL A AL	q _j [Kfz/h] 396 396 81 67 12 328 331 2 3 106	q _G [Kfz/h] 394 396 8 135 331	9 _{RA} [Kfz/h] 2	[Kfz/h] 81 12 2 106		[Kfz] 13,704 13,704 4,549 3,750 1,113 12,136 12,235 0,414 0,456 4,006		[Kfz/h] 551 171	[Kfz/h] 55 16 17 46 90 280 47
Nr. 11 12 13 21 22 31 32 33 41 42	Bez. SG C C CL B B D D DL A AL	q _j [Kfz/h] 396 396 81 67 12 328 331 2 3 106	q _G [Kfz/h] 394 396 8 135 331	9 _{RA} [Kfz/h] 2	[Kfz/h] 81 12 2 106		[Kfz] 13,704 13,704 4,549 3,750 1,113 12,136 12,235 0,414 0,456 4,006		[Kfz/h] 551 171	[Kfz/h] 55 16 17 46 90 280 47
Nr. 11 12 13 21 22 31 32 33 41 42	Bez. SG C C CL B B D D DL A AL	q _j [Kfz/h] 396 396 81 67 12 328 331 2 3 106	q _G [Kfz/h] 394 396 8 135 331	9 _{RA} [Kfz/h] 2	[Kfz/h] 81 12 2 106		[Kfz] 13,704 13,704 4,549 3,750 1,113 12,136 12,235 0,414 0,456 4,006		[Kfz/h] 551 171	[Kfz/h] 55 16 17 46 9 28 47
Nr. 11 12 13 21 22 31 32 33 41 42	Bez. SG C C CL B B D D DL A AL	q _j [Kfz/h] 396 396 81 67 12 328 331 2 3 106	q _G [Kfz/h] 394 396 8 135 331	9 _{RA} [Kfz/h] 2	[Kfz/h] 81 12 2 106		[Kfz] 13,704 13,704 4,549 3,750 1,113 12,136 12,235 0,414 0,456 4,006		[Kfz/h] 551 171	[Kfz/h] 55 16 17 46 90 280 47
Nr. 11 12 13 21 22 31 32 33 41 42	Bez. SG C C CL B B D D DL A AL	q _j [Kfz/h] 396 396 81 67 12 328 331 2 3 106	q _G [Kfz/h] 394 396 8 135 331	9 _{RA} [Kfz/h] 2	[Kfz/h] 81 12 2 106		[Kfz] 13,704 13,704 4,549 3,750 1,113 12,136 12,235 0,414 0,456 4,006		[Kfz/h] 551 171	1000

Formblatt 3		Knotenpunkt mit Lichtsignalanlage									
FOIME	natt o	Berechnung der Verkehrsqualitäten									
	Projek	: VU D-Rath,	Theodorstral	ße - Baumark	t-Fachzentru	ım + Bürosta	andort (KV20	07) Stadt:_I	Düsseldorf		
K	Cnotenpunk	t: KN06 - Abfa	hrt A52 Wes	t/Theodorstr.	Gladbecker	Str.	N	Datum:_	22.04.2020		
Z	eitabschnit!	t: Spitzenstun	de MF spät -	Prognose-Da	aten			Bearbeiter:	uh		
Kfz-Verkeh	rsströme -	Verkehrsqu	alitäten (fah	rstreifenbez	ogen)						
Nr.	Bez. SG	Ströme	q _j [Kfz/h]	x _j [-]	f _{A.j} [-]	N _{GE,j} [Kfz]	N _{MS,j} [Kfz]	L _{95,j} [m]	t _{W.j} [s]	QSV [-]	
1.1	С	2, 3	396	0,719	0,29	1,791	8,712	85	34,2	В	
12	С	2	396	0,719	0,29	1,791	8,712	85	34,2	В	
13	CL	1	81	0,500	0,09	0,594	2,099	29	43,8	С	
21	В	5, 6	67	0,392	0,09	0,374	1,606	23	38,2	С	
22	В	4	12	0,070	0,09	0,042	0,256	7	30,3	В	
31	D	8, 9	328	0,708	0,24	1,671	7,503	76	37,2	С	
32	D	8	331	0,710	0,24	1,690	7,579	76	37,3	С	
33	DL	7	2	0,020	0,09	0,011	0,047	4	29,7	В	
41	Α	11	3	0,010	0,14	0,006	0,056	3	25,8	В	
42	AL	10	106	0,223	0,27	0,162	1,761	27	21,0	В	
43	AL	10	106	0,223	0,27	0,162	1,761	27	21,0	В	
Gesamt			1828						34,3		
Fußgänger	r- /Radfahr	erfurten	T			T	r		-1		
Zufahrt	Bez. SG	q _{Fg} [Fg/h]	q _{Rad} [Rad/h]	Anzahl Furten	t _{W,max} [s]					QSV [-]	
2	F1	50	50	1	42					С	
								Gesamtb	ewerting:	С	

Verkehrsfluss-Diagramm

Datei : KV2007-Kn7_MFspaet_Prognose.amp


Projekt: VU D-Rath, Theodorstraße - Baumarkt-Fachzentrum + Bürostandort (KV2007)

Knoten : KN07 - Am Hülserhof/Zum Gut Heiligendonk Stunde : Spitzenstunde MF spät - Prognose-Daten

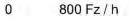
Fahrzeuge

Zufahrt 1 : Am Hülserhof (süd) Zufahrt 2 : Zum Gut Heiligendonk Zufahrt 3 : Am Hülserhof (nord)

Formblatt 1		Knotenpunkt mit Lichtsignalanlage									
Telli	Didti 1	Ausgangsdaten									
	ACTUAL DESIGNATION OF THE PROPERTY.					um + Bürosta	andort (KV2	Carrier Lands	Düsseldorf	I	
	Knotenpunkt_								21.04.2020	1	
	Zeitabschnitt.	Spitzenstun	de MF spät -	Prognose-D	aten			Bearbeiter	uh		
Umlaufzeit	t t _u : 70 [s]										
Kfz-Verke	hrsströme									3.5.5	
Nr.	q _{LV} [Kfz/h]	q _{Lkw+Bus} [Kfz/h]	q _{LkwK} [Kfz/h]	q _{Kfz} [Kfz/h]	q _{sv} [Kfz/h]	f _{sV} [-]		Anzahl Fahrstreifer	Misch- fahrstreifen	bedingt verträglic	
1	403	0	.21			1,074		1	ja	nein	
2	48	0	5			1,142		1	ja	ja	
3	242	0	8			1,048		4	nein	nein	
4	112	0	5	1		1,064		1	nein	nein	
5	127	0	7			1,078		1	nein	ja	
6	419	0	19	14		1,065		1	nein	nein	
Kfz-Fahrs	treifen										
TYLE T GITTO	Fahrt-		L	b	f _b	R	f_R	s	f _s	L _{LA} /L _{RA}	
Zufahrt	richtung	Nr.	[m]	[m]	[-]	[m]	[-]	[%]	[-]	[m]	
4	rechts	11	674	>= 3,00	1,000	20,00	1,000	0.0	1,000	15	
1	gerade	11		>= 3,00	1,000		1,000	0.0	1,000		
2	rechts	21		>= 3,00	1,000	20,00	1,000	0.0	1,000		
2	links	22		>= 3,00	1,000	20,00	1,000	0,0	1,000		
3	gerade	31		>= 3,00	1,000	ш_я	1,000	0,0	1,000		
3	links	32		>= 3,00	1,000	20,00	1,000	0,0	1,000	25	
Fußgänge	er-/Radfahrer	furten				*					
Zufahrt	Bez. Signalgr.	q _{Fg} [Fg/h]	q _{Rad} [Rad/h]		1. Furt Länge [m]	2 Furt Länge [m]	3. Furt Länge [m]	4. Furt Länge [m]			
2	E1	30	20		10,00	1-1	E - 1	F 7/1			
2	E2	30	20		8,00						
2	E1+E2	30	20		10,00	8,00					
		30	20			- 74/07		I			

Formblatt 2		Knotenpunkt mit Lichtsignalanlage										
2-25-121		Berechnung der Grundlagendaten für den Kfz-Verkehr VU D-Rath, Theodorstraße - Baumarkt-Fachzentrum + Bürostandort (KV2007) Stadt: Düsseldorf										
						um + Bürosta	andort (KV20	a second second	Düsseldorf			
		<u>KN07 - Am I</u>		The second second					21.04.2020			
7		Spitzenstun			aten			Bearbeiter	uh			
Kfz-Verke		Kapazitäten	1 1 1 1 1 1		75	70	ii					
Nr.	Bez. SG	t _{B,i} [s]	q _{s,i} [Kfz/h]	t _{∈,≀} [s]	C _{0,i} [Kfz/h]	G _{D,i} [Kfz/h]	C _{PW,⊩} [Kfz/h]	C _{GF,i} [Kfz/h]	C _{LA,i} [Kfz/h]	C _{RA,I} [Kfz/h]		
1	В	1,934	1861	31	851							
2	В	2,055	1752	31	801	354	113			46		
3	DL	1,886	1909	15	436				1			
4	DR	1,915	1880	24	671							
5	Α	1,941	1855	46	1245	194		238	432			
6	A	1,917	1878	46	1261							
20.00.0.0												
100	hrsströme - Bez	Kapazitäten q _j	(fahrstreife	nbezogen) q _{RA}	q_{LA}	n _k	N _{MS,90,j}	C _{K,J}	C _M J	Cj		
Nr.	SG	[Kfz/h]	[Kfz/h]	[Kfz/h]	[Kfz/h]	[Kfz]	[Kfz]	[Kfz/h]	[Kfz/h]	[Kfz/h]		
11			424	53			13,094		780			
	В	477	1							- L.L.F.		
21	B DR	477 117		117			3,870		2	67		
21 22				117	250		3,870 8,995			67 43		
	DR	117	438	117.	250		7730					
22	DR DL	117 250		117	250 134		8,995			43		
22 31	DR DL A	117 250 438		.117.			8,995 7,322			43 126		
22 31	DR DL A	117 250 438		117			8,995 7,322			43 126		
22 31	DR DL A	117 250 438		.117			8,995 7,322			43 126		
22 31	DR DL A	117 250 438		.117	134		8,995 7,322			43 126		
22 31	DR DL A	117 250 438		.117	134		8,995 7,322			43 126		
22 31	DR DL A	117 250 438		.117.	134		8,995 7,322			43 126		

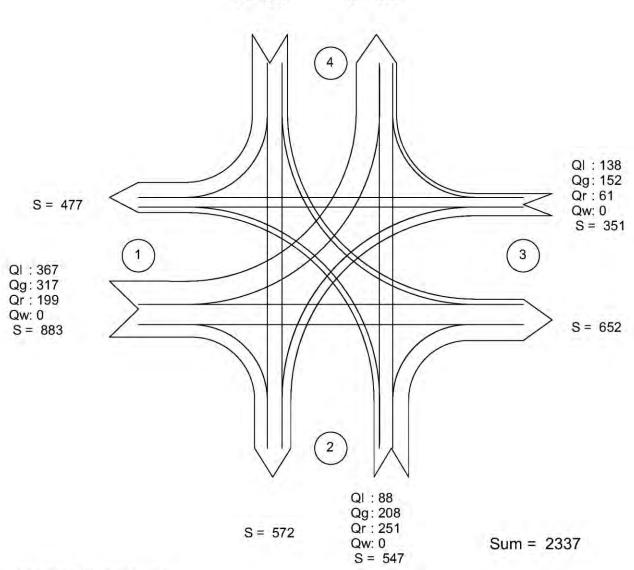
Formblatt 3		Knotenpunkt mit Lichtsignalanlage Berechnung der Verkehrsqualitäten									
	and the second second			m Gut Heilig	Allering broads				21.04.2020		
				Prognose-D				Bearbeiter:	Jh		
(fz-Verke	hrsströme -	Total Control	alitäten (fah	rstreifenbez	ogen)		- T	- 1	-	- 10	
Nr.	Bez.	Ströme	q	\mathbf{x}_{j}	f _{A,J}	N _{GE,J}	N _{MS,j}	L _{95,j}	t _{W.j}	QSV	
(*10.	SG		[Kfz/h]	[+]	[-]	[Kfz]	[Kfz]	[m]	[s]	[-]	
11	В	1, 2	477	0,612	0,42	1,014	8,240	85	20,4	В	
21	DR	4	117	0,174	0,36	0,119	1,679	25	16,1	Α	
22	DL	3	250	0,573	0,23	0,839	5,155	57	30,9	В	
31	Α	6	438	0,347	0,67	0,309	3,958	47	5,8	A	
32	Α	5	134	0,310	0,23	0,258	2,412	33	24,3	В	
	1								_		
Gesamt			1416						17,8		
	r-/Radfahre	rfurten	7,77						,.		
	Bez.	q _{Fg}	q_{Rad}	Anzahl	t _{W,max}			-		QSV	
Zufahrt	SG	[Fg/h]	[Rad/h]	Furten	[s]		- 11 T			[-]	
2	E1	30	20	1	38					В	
2	E2	30	20	1	40					В	
2	E1+E2	30	20	2	40					В	
2	E2+E1	30	20	2	40					В	
	LZFE	30	20	2	40					D	
								Canamith	ewertung:	В	
								Gesamb	ewerung.	В	


Verkehrsfluss - Diagramm als Kreuzung

Datei: KV2007-Kn8_MFspaet_Prognose_Zeitluecken.krs

Projekt: VU D-Rath, Theodorstraße - Baumarkt-Fachzentrum + Bürostandort

Projekt-Nummer: KV2007


Knoten: KN08 - Kreisverkehr Volkardeyer Straße Stunde: Spitzenstunde MFspät - Prognose-Daten

LLLLI

QI: 84 Qg: 235 Qr: 237 Qw: 0 S = 556

S = 636

alle Kraftfahrzeuge

Zufahrt 1: Volkardeyer Str. West Zufahrt 2: Broichhofstr. Süd Zufahrt 3: Volkardeyer Str. Ost Zufahrt 4: Broichhofstr. Nord

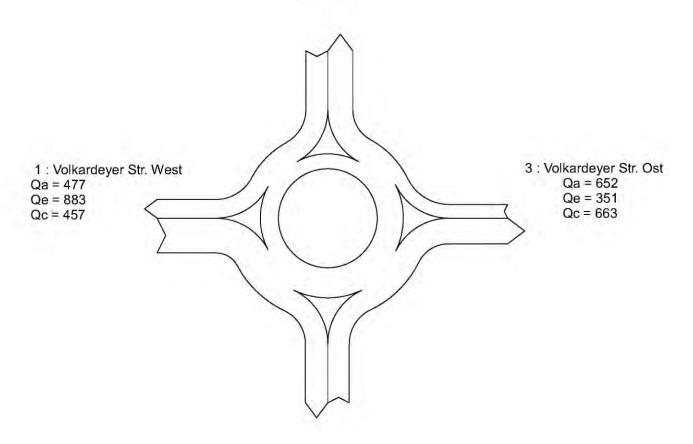
Verkehrsfluss - Diagramm als Kreis

Datei: KV2007-Kn8_MFspaet_Prognose_Zeitluecken.krs

Projekt: VU D-Rath, Theodorstraße - Baumarkt-Fachzentrum + Bürostandort

Projekt-Nummer: KV2007

Knoten: KN08 - Kreisverkehr Volkardeyer Straße Stunde: Spitzenstunde MFspät - Prognose-Daten


0 1000 Fz / h

4 : Broichhofstr. Nord

Qa = 636

Qe = 556

Qc = 378

2 : Broichhofstr. Süd

Qa = 572

Qe = 547

Qc = 768

Sum = 2337

alle Kraftfahrzeuge

Spiekermann GmbH, Düsseldorf

Kapazität, mittlere Wartezeit und Staulängen - mit Fußgängereinfluss

Datei: KV2007-Kn8_MFspaet_Prognose_Zeitluecken.krs

Projekt: VU D-Rath, Theodorstraße - Baumarkt-Fachzentrum + Bürostandort

Projekt-Nummer: KV2007

Knoten: KN08 - Kreisverkehr Volkardeyer Straße Stunde: Spitzenstunde MFspät - Prognose-Daten

Wartezeiten

		n-in	F+R	q-Kreis	q-e-vorh	q-e-max	x	Reserve	Wz	QSV
	Name	17.4	/h	Pkw-E/h	Pkw-E/h	Pkw-E/h	45	Pkw-E/h	s	-
1	Volkardeyer Str. West	1	0	462	903	1097	0,82	194	17,9	В
2	Broichhofstr. Süd	1	40	780	561	646	0,87	85	37,9	D
3	Volkardeyer Str. Ost	1	40	683	357	754	0,47	397	9,0	A
4	Broichhofstr. Nord	1	0	389	323	1173	0,28	850	4,2	Α
4	Bypass	1			248	1400	0,18	1152	3,1	Α

Staulängen

		n-in	F+R	q-Kreis	q-e-vorh	q-e-max	L	L-95	L-99	QSV
	Name		/h	Pkw-E/h	Pkw-E/h	Pkw-E/h	Pkw-E	Pkw-E	Pkw-E	- 4
1	Volkardeyer Str. West	1	0	462	903	1097	3,1	12	18	В
2	Broichhofstr. Süd	1	40	780	561	646	4,2	15	21	D
3	Volkardeyer Str. Ost	1	40	683	357	754	0,6	3	4	Α
4	Broichhofstr. Nord	1	0	389	323	1173	0,3	1	2	Α
4	Bypass	1			248	1400	14 C+C 1	100	-	Α

Gesamt-Qualitätsstufe: D

		Gesamter Verkehr mit Bypass	Verkehr im Kreis ohne Bypass	
Zufluss über alle Zufahrten	:	2392	2144	Pkw-E/h
davon Kraftfahrzeuge		2337	2100	Fz/h
Summe aller Wartezeiten	į	11,9	7,6	Fz-h/h
Mittl. Wartezeit über alle Fz		18,3	13,1	s pro Fz

Berechnungsverfahren:

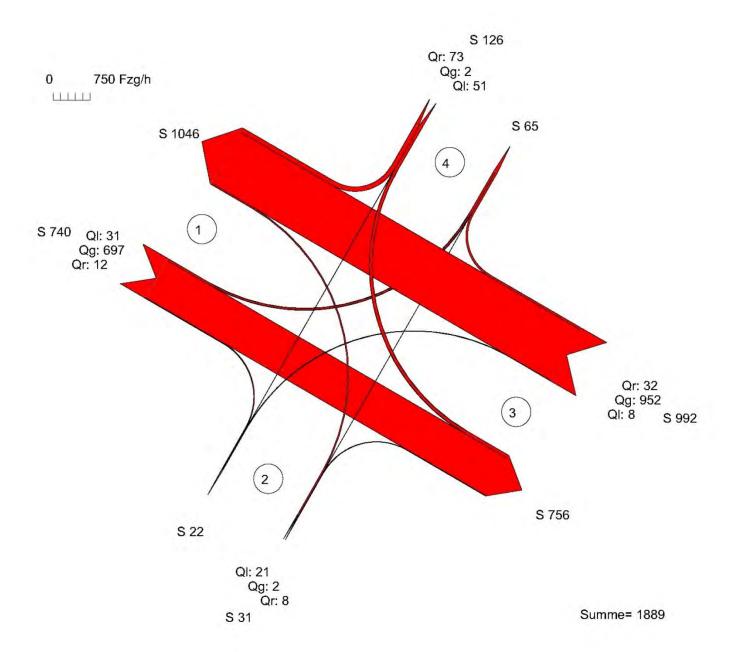
Kapazität : Grenzzeitlücken-Verfahren nach Harders-Formel

Wartezeit : HBS 2015 + HBS 2009 = Akcelik, Troutbeck (1991) mit T = 3600

Staulängen : Wu, 1997 Fußgänger-Einfluss : Stuwe, 1992 LOS - Einstufung : HBS (Deutschland)

Verkehrsfluss-Diagramm

Datei : KV2007-Kn09_MFspaet_mit-Strab_Prognose.amp


Projekt: VU D-Rath, Theodorstraße - Baumarkt-Fachzentrum + Bürostandort (KV2007)

Knoten: KN 09 - Theodorstr./Zum Gut Heiligendonk/DOME

Stunde: Spitzenstunde MF spät - Prognose-Daten

Fahrzeuge

Zufahrt 1: Theodorstraße (west)

Zufahrt 2: DOME

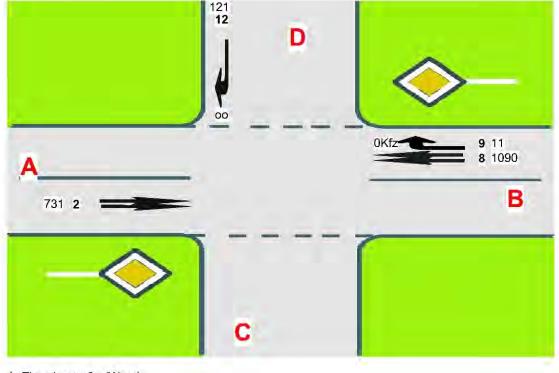
Zufahrt 3: Theodorstraße (ost) Zufahrt 4: Zum Gut Heiligendonk

_					Knotenpunkt	mit Lichtsigi	nalanlage			
Form	blatt 1				Αι	usgangsdate	n			
	Proje k t:	VU D-Rath,	Theodorstra	ße - Baumar	kt-Fachzentr	um + Bürost	andort (KV2	<u>0</u> 07) Stadt	: Düsseldorf	
	Knotenpunkt:	KN09 - The	odorstr./Zum	Gut Heiliger	ndonk/DOME			_ Datum	20.04.2020	
	Zeitabschnitt:	Spitzenstun	de MF spät -	Prognose-D	aten			Bearbeiter	: uh	
Umlaufzeit	t _U : 70 [s]									
Kfz-Verke	hrsströme									
Nr.	q_{LV}	q _{Lkw+Bus}	q_{LkwK}	q_{Kfz}	q_{SV}	f_{SV}		Anzahl	Misch-	bedingt
141.	[Kfz/h]	[Kfz/h]	[Kfz/h]	[Kfz/h]	[Kfz/h]	[-]		Fahrstreifen	fahrstreifen	verträglich
1	27	0	4			1,194		1	nein	nein
2	667	0	30			1,065		2	nein	nein
3	12	0	0			1,000		1	nein	ja
4	21	0	0			1,000		1	nein	ja
5	2	0	0			1,000		1	ja	nein
6	8	0	0			1,000		1	ja	ja
7	8	0	0			1,000		1	nein	nein
8	920	0	32			1,050		2	nein	nein
9	27	0	5			1,234		1	nein	ja
10	46	0	5			1,147		1	ja	ja
11	2	0	0			1,000		1	ja	nein
12	65	0	8			1,164		1	nein	ja
Kfz-Fahrs	treifen									
Zufahrt	Fahrt-	Ne	L	b	f _b	R	f_R	s	f _s	L _{LA} /L _{RA}
Zufahrt	richtung	Nr.	[m]	[m]	[-]	[m]	[-]	[%]	[-]	[m]
1	rechts	11		>= 3,00	1,000	20,00	1,000	0,0	1,000	19
1	gerade	12		>= 3,00	1,000	-	1,000	0,0	1,000	
1	gerade	13		>= 3,00	1,000	1-	1,000	0,0	1,000	
1	links	14		>= 3,00	1,000	20,00	1,000	0,0	1,000	
2	rechts	21		>= 3,00	1,000	20,00	1,000	0,0	1,000	14
2	gerade	21		>= 3,00	1,000	-	1,000	0,0	1,000	
2	links	22		>= 3,00	1,000	20,00	1,000	0,0	1,000	30
3	rechts	31		>= 3,00	1,000	20,00	1,000	0,0	1,000	15
3	gerade	32		>= 3,00	1,000	-	1,000	0,0	1,000	
3	gerade	33		>= 3,00	1,000	-	1,000	0,0	1,000	
3	links	34		>= 3,00	1,000	20,00	1,000	0,0	1,000	
4	rechts	41		>= 3,00	1,000	20,00	1,000	0,0	1,000	18
4	gerade	42		>= 3,00	1,000	_	1,000	0,0	1,000	
4	links	42		>= 3,00	1,000	20,00	1,000	0,0	1,000	30

AMPEL Version 6.23 Seite 1

Form	blatt 1			Knotenpunk	t mit Lichtsig	nalanlage			
1 01111	Matt I			Δ	usgangsdate	en			
	Projekt:	VU D-Rath,	Theodorstra	Be - Baumarkt-Fachzent	rum + Bürost	tandort (KV2	007) Stadi	t: <u>Düsseldorf</u>	f
	Knotenpunkt:	KN09 - The	odorstr./Zum	Gut Heiligendonk/DOM	Ε		Datum	i: 20.04.2020)
	Zeitabschnitt:	Spitzenstun	de MF spät	Prognose-Daten			Bearbeite	r: uh	
Umlaufzei	t t _∪ : 70 [s]								
Fußgänge	er-/Radfahrer	furten		-				_	
	Bez.	q_{Fg}	\mathbf{q}_{Rad}	1. Furt	2. Furt	3. Furt	4. Furt		
Zufahrt	Signalgr.	[Fg/h]	[Rad/h]	Länge	Länge	Länge	Länge		
				[m]	[m]	[m]	[m]		
1	E1	50	20	12,00					
1	E2	50	20	7,00					
2	F3	50	20	13,00					
3	E3	50	20	14,00					
3	E4	50	20	9,00					
4	F1	50	20	7,00					
4	F2	50	20	6,00					
5	E7	50	20	7,00					
6	E8	50	20	7,00					
4	F1+F2	50	20	7,00	6,00				
4	F2+F1	50	20	6,00	7,00				
1+5	E1+E7+E2	50	20	12,00	7,00	7,00			
1+5	E2+E7+E1	50	20	7,00	7,00	12,00			
3+6	E4+E8+E3	50	20	9,00	7,00	14,00			
3+6	E3+E8+E4	50	20	14,00	7,00	9,00			

AMPEL Version 6.23 Seite 2


notenpunkt: eitabschnitt: reströme - I Bez. SG CL C C B B B DL D D A	KN09 - Theo	odorstr./Zum de MF spät -	ße - Baumar Gut Heiliger Prognose-D	ung der Grur kt-Fachzentra ndonk/DOME aten C _{0,i} [Kfz/h] 144 1047 1114 257 257	um + Bürosta		007) Stadt	CDüsseldorf : 20.04.2020 : uh C _{LA,i} [Kfz/h]	C _{RA,i} [Kfz/h]
notenpunkt: eitabschnitt: reströme - I Bez. SG CL C C B B B DL D D A	KN09 - Theo Spitzenstund Kapazitäten t _{B,i} [s] 2,148 1,916 1,800 1,800 1,800 1,800 1,800 1,800 1,800	de MF spät - (strombezo q _{s,i} [Kfz/h] 1676 1879 2000 2000 2000 2000	Gut Heiliger Prognose-D ogen) t _{F,i} [s] 5 38 38 8 8	C _{0,i} [Kfz/h] 144 1047 1114 257 257	C _{D,i} [Kfz/h]	C _{PW,i} [Kfz/h]	Datum Bearbeiter C _{GF,i}	20.04.2020 : uh C _{LA,i}	
Bez. SG CL C B B B B DL D D A	Spitzenstund Kapazitäten t _{B,i} [s] 2,148 1,916 1,800 1,800 1,800 1,800 1,800 1,800 1,800	de MF spät - (strombezo qs,i [Kfz/h] 1676 1879 2000 2000 2000 2000	Prognose-D pgen) t _{F,i} [s] 5 38 38 8 8 8	C _{0,i} [Kfz/h] 144 1047 1114 257 257	C _{D,i} [Kfz/h]	[Kfz/h]	Bearbeiter C _{GF,i}	C _{LA,i}	
Bez. SG CL C C B B B DL D D A	t _{B,i} [s] 2,148 1,916 1,800 1,800 1,800 1,800 1,800 1,800 1,801 1	(strombezo q _{s,i} [Kfz/h] 1676 1879 2000 2000 2000 2000 2000 2000	bgen) t _{F,i} [s] 5 38 38 8 8	C _{0,i} [Kfz/h] 144 1047 1114 257 257	[Kfz/h]	[Kfz/h]	$C_{GF,i}$	C _{LA,i}	
Bez. SG CL C C B B B DL D D A	t _{B,i} [s] 2,148 1,916 1,800 1,800 1,800 1,800 1,800 1,800 1,801	q _{s,i} [Kfz/h] 1676 1879 2000 2000 2000 2000	t _{F,i} [s] 5 38 38 8 8	[Kfz/h] 144 1047 1114 257 257	[Kfz/h]	[Kfz/h]			
SG CL C C B B D D D A	[s] 2,148 1,916 1,800 1,800 1,800 1,800 1,800 1,891	[Kfz/h] 1676 1879 2000 2000 2000 2000 2000	[s] 5 38 38 8 8 8	[Kfz/h] 144 1047 1114 257 257	[Kfz/h]	[Kfz/h]			
C C B B D D D A	1,916 1,800 1,800 1,800 1,800 1,800 1,891	1879 2000 2000 2000 2000 2000 2000	38 38 8 8	1047 1114 257 257	96	257			
C B B D D D A	1,800 1,800 1,800 1,800 1,800 1,891	2000 2000 2000 2000 2000	38 8 8 8	1114 257 257	96	257			
B B DL D A	1,800 1,800 1,800 1,800 1,891	2000 2000 2000 2000	8 8 8	257 257	96	257			
B B DL D A	1,800 1,800 1,800 1,891	2000 2000 2000	8	257	96	257			105
B DL D A	1,800 1,800 1,891	2000	8			200000000		257	
DL D D	1,800 1,891	2000		257	-				
D D A	1,891		5	201					20:
D A		1904	1 - 1	171					
Α	2,222		43	1197					
		1620	43	1018					95
	2,065	1743	10	274	109	224		274	
Α	1,800	2000	10	314					
Α	2,096	1718	10	270					22
	16 1454	/5- h t :5-							
				G. A	D _k	N _{MS 00} :	C _K :	Cui	Cj
		1,70		Name of the last o	2500				[Kfz/h]
		[KiZii]		[MZH]	[KIZ]		[KiZii]	[KiZii]	105
		348	12						104
	1100 00000					200 No. 100 No. 100			104
(87)	100	0.0		31					14
		2	8	01				211	
	200000			21				211	25
			32	21					95
		476	- OZ						119
									119
				8					17
			73						22
		2	70	51				275	
	00			01		2,1 11		210	
		SSTRÖME - Kapazitäten Bez. q _j SG [Kfz/h] C 12 C 348 C 348 CL 31 B 10 B 21 D 32 D 476 D 476 DL 8 A 73	Seströme - Kapazitäten (fahrstreife Bez. q _j q _G SG [Kfz/h] [Kfz/h] C 12 C 348 348 C 348 348 CL 31 B 10 2 B 21 D 32 D 476 476 D 476 DL 8 A 73	Section Sect	Seströme - Kapazitäten (fahrstreifenbezogen) Sez. q _j q _G q _{RA} q _{LA} [Kfz/h] [Kfz/h] [Kfz/h] [Kfz/h] C 12 12 C 348 348 C 348 348 C 31 31 31 B 10 2 8 B 21 21 D 32 32 D 476 476 D 476 476 DL 8 8 A 73 73 8 8 8 8 A 73 73 73	Seströme - Kapazitäten (fahrstreifenbezogen) Sez. q _j q _G q _{RA} q _{LA} n _k [Kfz/h] [Kfz/h] [Kfz/h] [Kfz/h] [Kfz] C 12 12 C 348 348 C 348 348 C 31 31 31 B 10 2 8 B 21 21 D 32 32 D 476 476 D 476 476 D 476 476 D 48 8 A 73 73 73 Section Table 2 T	Seströme - Kapazitäten (fahrstreifenbezogen) Sez. q _j q _G q _{RA} q _{LA} n _k N _{MS,90,j} [Kfz] [Kfz] [Kfz] [Kfz] [Kfz] [Kfz] [Kfz] [Kfz] (Kfz] (Kfz	Bez. q _j q _G q _{RA} q _{LA} n _k N _{MS,90,j} C _{K,j} [Kfz/h] (Kfz/h] (Kfz/h) (Kfz/h)	Seströme - Kapazitäten (fahrstreifenbezogen) Seströme - Kapazitäten (fahrstreifenbezogen)

Form	blatt 3				Knotenpunk	t mit Lichtsiç	gnalanlage			
FOIII	DIATE 3				Berechnung	der Verkehr	squalitäten			
	Proje k t:	VU D-Rath,	Theodorstra	ße - Baumar	kt-Fachzentru	ım + Bürosta	andort (KV20	07) Stadt: <u>I</u>	Düsseldorf	
	Knotenpunkt:	KN09 - The	odorstr./Zum	Gut Heiliger	ndonk/DOME			Datum:_2	20.04.2020	
	Zeitabschnitt:	Spitzenstun	de MF spät -	Prognose-D	aten			Bearbeiter: ı	uh	
Kfz-Verke	hrsströme -	Verkehrsqu	alitäten (fah	rstreifenbez	zogen)		Ť		T	
Nr.	Bez.	Ströme	\mathbf{q}_{j}	\mathbf{x}_{j}	$f_{A,j}$	$N_{GE,j}$	$N_{MS,j}$	L _{95,j}	t _{W j}	QSV
	SG		[Kfz/h]	[-]	[-]	[Kfz]	[Kfz]	[m]	[s]	[-]
11	С	3	12	0,011	0,53	0,006	0,117	4	7,8	Α
12	С	2	348	0,332	0,56	0,288	3,965	47	9,4	Α
13	С	2	348	0,332	0,56	0,288	3,965	47	9,4	Α
14	CL	1	31	0,215	0,09	0,154	0,716	15	33,7	В
21	В	5, 6	10	0,047	0,11	0,027	0,202	6	28,6	В
22	В	4	21	0,082	0,13	0,049	0,409	9	27,6	В
31	D	9	32	0,034	0,59	0,019	0,281	9	6,2	Α
32	D	8	476	0,398	0,63	0,388	4,970	55	7,6	Α
33	D	8	476	0,398	0,63	0,388	4,970	55	7,6	А
34	DL	7	8	0,047	0,09	0,027	0,170	5	30,0	В
41	А	12	73	0,327	0,13	0,279	1,569	26	32,2	В
42	Α	10, 11	53	0,193	0,16	0,134	1,030	19	27,4	В
5 (ÖV)	ÖPNV1	13	6						16,4	С
6 (ÖV)	ÖPNV2	14	6						16,4	С
		90 CAP	999						0.0000	
Gesamt			1888						10,6	
Fußgänge	er- /Radfahre	rfurten							,	
	Bez.	q_{Fg}	q _{Rad}	Anzahl	t _{W,max}					QSV
Zufahrt	SG	[Fg/h]	[Rad/h]	Furten	[s]					[-]
1	E1	50	20	1	65					D
1	E2	50	20	1	65					D
2	F3	50	20	1	37					В
3	E3	50	20	1	65					D
3	E4	50	20	1	65					D
4	F1	50	20	1	20					A
4	F2	50	20	1	28					A
5	E7	50	20	1	50					C
6	E8	50	20	1	50					C
4	F1+F2	50	20	2	28					Α
4	F2+F1	50	20	2	28					Α
1+5	E1+E7+E2	50	20	3	174					
1+5	E2+E7+E1	50	20	3	126					
3+6	E4+E8+E3	50	20	3	127					
3+6	E3+E8+E4	50	20	3	173					
								Gesamtb	ewertung:	D

Knotenpunktbezeichung: KV2007 Knoten TG - Zufahrt Büro-Standort / Tiefgarage

Spitzenstunde MF spät - Prognose-Daten : KV2007-KnTG_MFspaet_Prognose.EIN Name der Datei

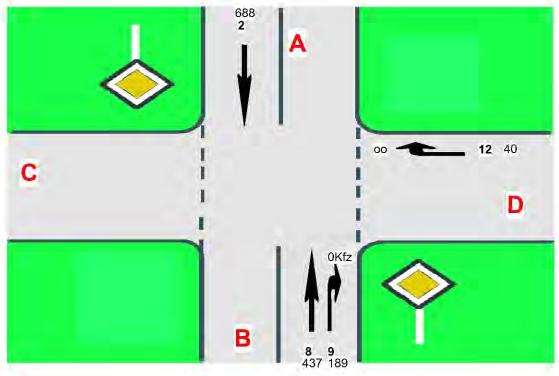
					Ţ	Jbersic	ht von	16:30 b	ois 17:3	30					
Strom	VZ	VZ	VZ	VZ	RS	RS	RS	RS	н	Н	Н	Fz.	Fz.	Fz.	QSV
	ges	mitt	85%	max	mitt	85%	95%	max	ges	mitt	max	ang.	abg.	wart.	
	[min]	[sec]	[sec]	[sec]	[Kfz]	[Kfz]	[Kfz]	[Kfz]	[-]	[-]	[-]	[Kfz]	[Kfz]	[Kfz]	[-]
2	0,0	0,0	0,0	0,0	0,0	0	0	0	0	0,0	0	728	728	0	А
8	0,0	0,0	0,0	0,0	0,0	0	0	0	0	0,0	0	1091	1091	0	Α
9	0,0	0,0	0,0	0,0	0,0	0	0	0	0	0,0	0	12	12	0	Α
12	33,7	17,0	23,0	87,8	0,3	1	1	7	154	1,3	7	119	119	0	Α
Sum	33,7	1,0		87,8	0,1			7		0,1	7	1950			
					ſ	lhersio	ht von	16:30 b	nis 17:3	RO.					

A=Theodorstraße (West)

B=Theodorstraße (Ost)

D=Zufahrt Büro/Tiefgarage

Spiekermann GmbH Consultung Engineers


Düsseldorf

Knotenpunktbezeichung: KV2007 Knoten ZF1 - Zufahrt Am Hülserhof

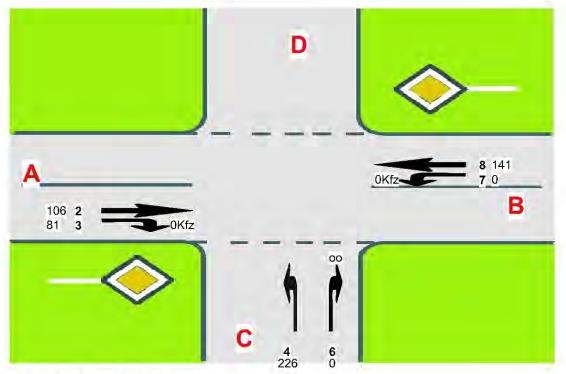
Spitzenstunde MF spät - Prognose-Daten

Name der Datei : KV2007-KnZF1_MFspaet_Prognose.EIN

20	455		3,2	404	-						-		20.	100	
Strom	VZ	VZ	VZ	VZ	RS	RS	RS	RS	Н	Н			Fz.		QSV
	ges	mitt	85%	max	mitt	85%	95%	max	ges	mitt	max	ang.	abg.	wart.	
	[min]	[sec]	[sec]	[sec]	[Kfz]	[Kfz]	[Kfz]	[Kfz]	[-]	[-].	[-]	[Kfz]	[Kfz]	[Kfz]	[-]
2	0,0	0,0	0,0	0,0	0,0	0	0	0	0	0,0	0	683	683	0	А
8	0,0	0,0	0,0	0,0	0,0	0	0	0	0	0,0	0	445	445	0	Α
9	0,0	0,0	0,0	0,0	0,0	0	0	0	0	0,0	0	186	186	0	A
12	9,0	14,1	18,0	56,7	0,1	0	1	3	41	1,1	3	38	38	0	A
Sum	9,0	0,4		56,7	0,0			3		0,0	3	1352			

C=-B=Am Hülserhof (Süd) D=Zufahrt Baumarkt-Fachzentrum A=Am Hülserhof (Nord)

Spiekermann GmbH Consultung Engineers


Düsseldorf

Knotenpunktbezeichung: KV2007 Knoten ZF2 - Zufahrt Zum Gut Heiligendonk

Spitzenstunde MF spät - Prognose-Daten

Name der Datei : KV2007-KnZF2_MFspaet_Prognose.EIN

Strom	VZ	VZ	2.62												
			VZ	VZ	RS	RS	RS	RS	Н	Н	Н	Fz.	Fz.	Fz.	QSV
	ges	mitt	85%	max	mitt	85%	95%	max	ges	mitt	max	ang.	abg.	wart.	
(r	min]	[sec]	[sec]	[sec]	[Kfz]	[Kfz]	[Kfz]	[Kfz]	[-]	[-]	[-]	[Kfz]	[Kfz]	[Kfz]	[-]
2	0,0	0,0	0,0	0,0	0,0	0	0	0	0	0,0	0	104	104	0	A
3	0,0	0,0	0,0	0,0	0,0	0	0	0	0	0,0	0	82	82	0	Α
4 5	58,4	15,4	21,0	84,5	0,5	1	2	6	318	1,4	6	227	226	1	Α
6	0,0	0,0	0,0	0,0	0,0	0	0	0	0	0,0	0	0	0	0	Α
7	0,0	0,0	0,0	0,0	0,0	0	0	0	0	0,0	0	0	0	0	Α
8	0,0	0,0	0,0	0,0	0,0	0	0	0	0	0,0	0	140	140	0	А
Sum 5	58,4	6,3		84,5	0,1			6		0,6	6	552			

A=Zum Gut Heiligendonk (West) C=Zufahrt Baumarkt-Fachzentrum B=Zum Gut Heiligendonk (Ost)

Spiekermann GmbH Consultung Engineers

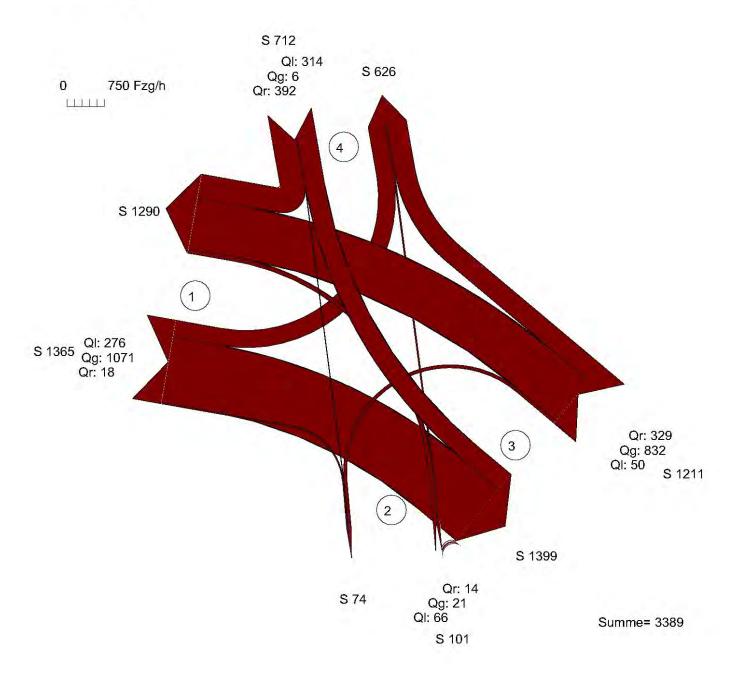
Düsseldorf

Anhang 5

Formblätter zur Ermittlung der Leistungsfähigkeit (Qualitätsstufe des Verkehrsablaufs – QSV) für die untersuchten Knotenpunkte mit den **Prognose-Belastungen am Extremtag**Spitzenstunde am Werktag (Montag bis Freitag) **spät mit Veranstaltungen im ISS-Dome**

Verkehrsfluss-Diagramm

Datei : KV2007-Kn1_MFspaet_mit-OPNV-reduziert_Prognose-Extremtag.amp


Projekt : VU D-Rath, Theodorstraße - Baumarkt-Fachzentrum + Bürostandort (KV2007)

Knoten: KN01 - Am Röhrenwerk/Theodorstr./Am Hülserhof

Stunde: Spitzenstd. MF spaet (reduzierte Freigabezeiten wg. ÖPNV) - Prognose-Extremtag

Fahrzeuge

Zufahrt 1: Theodorstraße (west) Zufahrt 2: Am Röhrenwerk Zufahrt 3: Theodorstraße (ost) Zufahrt 4: Am Hülserhof

Form	blatt 1			- 3	Knotenpunkt	mit Lichtsign	alanlage			
1,81111	old tr				Au	sgangsdater	1			
	Projekt.	VU D-Rath,	Theodorstra	ße - Baumar	kt-Fachzentru	ım + Bürosta	indort (KV2	2007) Stadt	Düsseldorf	
	Older Andrews				Am Hülserhof				04.05.2020	14
- 4	Zeitabschnitt	Spitzenstd.	MF spaet (re	duzierte Frei	gabezeiten w	g. ÖPNV) - I	Prognose-E	xtExematalogiter	uh	
Umlaufzeit	~									
Kfz-Verke	hrsströme								F 75.00	3.5.6
Nr.	q _{LV} [Kfz/h]	q _{Lkw+Bus} [Kfz/h]	q _{LkwK} [Kfz/h]	q _{Kfz} [Kfz/h]	q _{sv} [Kfz/h]	f _{SV} [-]		Anzahl Fahrstreifen	Misch- fahrstreifen	bedingt verträglic
1	266	0	10			1,054		1	nein	nein
2	1050	0	21			1,029		2	nein	nein
3	16	0	2			1.167		1	nein	nein
4	63	0	3			1,068		1	nein	ja
5	19	0	2			1,143		1	ja	nein
6	13	Ó	1			1,107		1	ja	nein
7	49	0	1			1,030		1	nein	nein
8	804	0	28			1,050		2	nein	nein
9	315	0	14			1,064		1	nein	ja
10	302	0	12			1,057		1	nein	ja
11	4	0	2			1,500		1	nein	nein
12	379	0	13			1,050		1	nein	ja
Kfz-Fahrs	treifen									
Zufahrt	Fahrt- richtung	Nr.	L [m]	b [m]	f _b	R [m]	f _R [-]	s [%]	f _s [-]	L _{LA} /L _{RA} [m]
1	rechts	11	fund	>= 3.00	1,000	20,00	1,000	0.0	1,000	pay.
1	gerade	12		>= 3.00	1,000	20,00	1,000	0.0	1,000	
1	gerade	13		>= 3,00	1,000	3	1,000	0.0	1,000	
1	links	14		>= 3,00	1,000	20,00	1.000	0,0	1,000	
2	rechts	21		>= 3,00	1,000	20,00	1,000	0,0	1,000	
2	gerade	21	= =1	>= 3,00	1,000	-	1,000	0,0	1,000	
2	links	22		>= 3,00	1,000	20,00	1,000	0,0	1,000	56
3	rechts	31		>= 3,00	1,000	20,00	1,000	0,0	1,000	100
3	gerade	32		>= 3,00	1,000	В	1,000	0,0	1,000	
3	gerade	33		>= 3,00	1,000	- 2	1,000	0,0	1,000	
3	links	34		>= 3,00	1,000	20,00	1,000	0,0	1,000	11
4	rechts	41		>= 3,00	1,000	20,00	1,000	0,0	1,000	30
4	gerade	42		>= 3,00	1,000		1.000	0,0	1,000	
4	links	43		>= 3,00	1,000	20,00	1,000	0,0	1,000	50

AMPEL Version 6.2.3 Seite 1

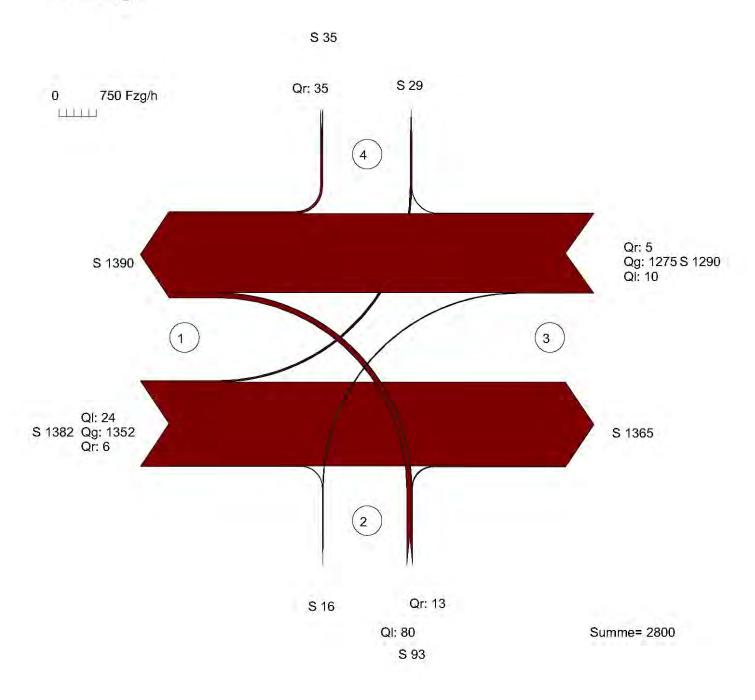
Faces	hietta I			Knotenpunkt	mit Lichtsigr	nalanlage			
Form	blatt 1	L		Au	usgangsdate	n			
	Knotenpunkt.	KN01 - Am	Röhrenwerk/Theod	aumarkt-Fachzentr orstr./Am Hülserho te Freigabezeiten v	f		Datum:	Düsseldorf 04.05.2020 uh	
	t ₁ : 70 [s]	I I I I I I I I I I I I I I I I I I I					9		
Fußgänge	r-/Radfahrer	furten							
Zufahrt	Bez. Signalgr.	q _{Fg} [Fg/h]	q _{Rad} [Rad/h]	1. Furt Länge [m]	2: Furt Länge [m]	3, Furt Länge [m]	4. Furt Länge [m]		
3	E1	50	20	10					
1	E2	50	20	10					
1	E4	50	20	10					
2	F3	50	20	10					
3	E5	50	20	10					
3	E7	50	20	10					
4	F1	50	20	10					
4	F2	50	20	10					
4	F1+F2	50	20	10	10				
4	F2+F1	50	20	10	10				

AMPEL Version 6.23 Seite 2

Enn	nblatt 2				Knotenpunl	kt mit Lichtsi	gnalanlage			
FOII	tiblatt Z			Berechn	ung der Grur	ndlagendate	n für den Kfz	-Verkehr		
	Projekt	VU D-Rath,	Theodorstra	ße - Baumar	kt-Fachzentr	um + Bürost	andort (KV20	007) Stadt:	Düsseldorf	
	Knotenpunkt	KN01 - Am I	Röhrenwerk/	Theodorstr.//	Am Hülserho	f		Datum:	04.05.2020	
	Zeitabschnitt	Spitzenstd.	MF spaet (re	duzierte Frei	gabezeiten v	vg. ÖPNV) -	Prognose-Ex	ktBenatangiter	uh	
Kfz-Verk	ehrsströme -	Kapazitäten	(strombezo	gen)	-1					
Nr.	Bez. SG	t _{B,i} [s]	q _{s,i} [Kfz/h]	t _{F,i} [s]	C _{0,i} [Kfz/h]	C _{D,} [Kfz/h]	C _{PW,} [Kfz/h]	C _{GF,i} [Kfz/h]	C _{LA,i} [Kfz/h]	C _{RA,i} [Kfz/h]
1	CL	1,898	1897	13	379				7,	
2	С	1,853	1943	21	611					
3	CR	2,100	1714	21	539					
4	В	1,923	1872	8	241	10	441		241	
5	В	2,057	1750	8	225					
6	В	1,993	1806	8	232					
7	DL	1,854	1942	6	194	1				
8	D	1,891	1904	20	571					
9	D	1,915	1880	20	564					56-
10	А	1,903	1892	13	378	83	405		378	
11	А	2,700	1333	13	267					
12	AR	1,890	1905	33	925	176		354		530
Kfz-Verk	ehrsströme -	Kapazitäten	(fahrstreife	nbezogen)						
Nr.	Bez.	qj	q _G	q _{RA}	q_{LA}	n _k	N _{MS,90,j}	$C_{K,J}$	C _M J	C_{j}
346	SG	[Kfz/h]	[Kfz/h]	[Kfz/h]	[Kfz/h]	[Kfz]	[Kfz]	[Kfz/h]	[Kfz/h]	[Kfz/h]
11	CR	18		18			1,127			539
12	С	536	536				23,390			61
13	С	536	536				23,390			61
14	CL	276			276		11,318			37
21	В	35	21	14			2,128		228	
22	В	66			66		3,356			24
31	D	329		329	1		10,558			56-
32	D	416	416				14,270			57
33	D	416	416	14		1	14,270			57
34	DL	50			50		2,865			19
41	ÁR	392		392			14,028			53
42	Α	6	6				0,658			26
43	A	314			314		14,893			37
	LLI									
	2 - 21									

Form	blatt 3				Knotenpunk	t mit Lichtsiç	gnalanlage			
1.0110	Diatro				Berechnung	der Verkehr	squalitäten			
	Projekt	VU D-Rath,	Theodorstra	ße - Baumarl	kt-Fachzentru	um + Bürosta	andort (KV20	07) Stadt_I	Düsseldorf	
	Old With The Value	KN01 - Am							04.05.2020	
70 11 2 2 1		Spitzenstd.	1-00-1	0.1.12.5		/g. ÖPNV) -	Prognose-Ex	tBenatagiter:	uh	
Kfz-Verkel		Verkehrsqu	alitäten (fah	rstreifenbez	ogen)				. 1	
Nr.	Bez. SG	Ströme	q _j [Kfz/h]	x _j [-]	f _{A,J} [-]	N _{GE,j} [Kfz]	N _{MS,j} [Kfz]	L _{95,j} [m]	t _{W,j} [s]	QSV [-]
11	CR	3	18	0,033	0,31	0,019	0,262	8	16,8	Α
12	С	2	536	0,877	0,31	6,650	16,517	144	61,9	D
13	С	2	536	0,877	0,31	6,650	16,517	144	61,9	D
14	CL	1	276	0,728	0,20	1,856	6,881	72	43,9	C
21	В	5, 6	35	0,154	0,13	0,101	0,706	14	28,7	В
22	В	4	66	0,274	0,13	0,215	1,374	22	30,7	В
31	D	9	329	0,583	0,30	0,882	6,310	67	26,4	В
32	D	8	416	0,729	0,30	1,907	9,153	90	34,0	В
33	D	8	416	0,729	0,30	1,907	9,153	90	34,0	В
34	DL	7	50	0,258	0,10	0,197	1,095	18	32,8	В
41	AR	12	392	0,740	0,28	2,037	8,964	88	36,8	C
42	Α	11	6	0,022	0,20	0,013	0,106	6	22,7	В
43	Α	10	314	0,831	0,20	3,783	9,641	94	62,9	D
Gesamt			3390						45,6	
Fußgänge	r-/Radfahre	erfurten								
Zufahrt	Bez. SG	q _{Fg} [Fg/h]	q _{Rad} [Rad/h]	Anzahl Furten	t _{W,max} [s]					QSV [-]
1	E1	50	20	1	43					C
1	E2	50	20	1	44					С
1	E4	50	20	1	35					В
2	F3	50	20	1	49					С
3	E5	50	20	-1'-	35					В
3	E7	50	20	1	61					D
4	F1	50	20	1	57					D
4	F2	50	20	1	42					С
4	F1+F2	50	20	2	57					D
4	F2+F1	50	20	2	57					D
								Gesamtb	owort ma:	D

Verkehrsfluss-Diagramm


Datei : KV2007-Kn2_MFspät_Prognose-Extremtag.amp

Projekt : VU D-Rath, Theodorstraße - Baumarkt-Fachzentrum + Bürostandort (KV2007)

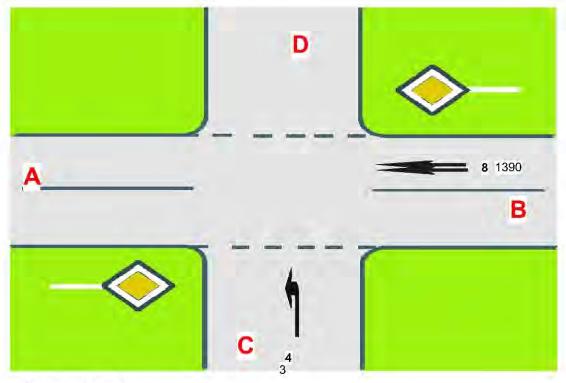
Knoten : KN02 - Theodorstr./Planstr. A/Betriebseinfahrt Stunde : Spitzenstunde MF spät - Prognose-Extremtag

Fahrzeuge

Zufahrt 1 : Theodorstraße (west) Zufahrt 2 : Betriebszufahrt Zufahrt 3 : Theodorstraße (ost)

Zufahrt 4: Planstr. A

Form	blatt 1		Knotenpunkt mit Lichtsignalanlage Ausgangsdaten J D-Rath, Theodorstraße - Baumarkt-Fachzentrum + Bürostandort (KV2007) Stadt: Düsseldorf										
1,500					Au	usgangsdate	n						
	Company of the Compan					um + Bürosta	andort (KV2	The second					
	Knotenpunkt.								04.05.2020	L.			
	Zeitabschnitt.	Spitzenstun	de M⊢ spat -	Prognose-E	xtremtag			Bearbeiter	un				
Umlaufzeit													
Kfz-Verke	hrsströme	100				- E 1		5. 2 cersor=	E.Alban I				
Nr.	q _{LV} [Kfz/h]	q _{Lkw+Bus} [Kfz/h]	q _{LkwK} [Kfz/h]	q _{Kfz} [Kfz/h]	q _{sv} [Kfz/h]	f _{sV} [-]		Anzahl Fahrstreifer	Misch- fahrstreifen	bedingt verträglic			
1	22	0	2			1,125		1	nein	nein			
2	1320	0	32			1,036		2	nein	nein			
3	3	0	3			1,750		1	nein	ja			
4	78	0	2	1		1,038		1	nein	ja			
5	12	0	1			1,115		1	nein	ja			
6	7	0	3			1,450		1	nein	nein			
7	1234	0	41			1,048		2	nein	nein			
8	5	0	0			1,000		1	nein	ja			
9	31	0	4			1,171		- j	nein	nein			
Kfz-Fahrs	treifen									-			
	Fahrt-		L	b	f _b	R	f _R	S	f _s	L _{LA} /L _{RA}			
Zufahrt	richtung	Nr.	[m]	[m]	[-]	[m]	[-]	[%]	[-]	[m]			
1	rechts	11		>= 3,00	1,000	20,00	1,000	0,0	1,000	5			
1	gerade	12		>= 3,00	1,000	-	1,000	0,0	1,000				
1	gerade	13		>= 3,00	1,000	Α.	1,000	0,0	1,000				
1	links	14		>= 3,00	1,000	20,00	1,000	0,0	1,000				
2	rechts	21		>= 3,00	1,000	20,00	1,000	0,0	1,000	3			
2	links	22	10	>= 3,00	1,000	20,00	1,000	0,0	1,000	3			
3	rechts	31		>= 3,00	1,000	20,00	1,000	0,0	1,000	8			
3	gerade	32		>= 3,00	1,000		1,000	0,0	1,000				
3	gerade	33		>= 3,00	1,000		1,000	0,0	1,000				
3	links	34		>= 3,00	1,000	20,00	1,000	0,0	1,000				
4	rechts	41		>= 3,00	1,000	20,00	1,000	0,0	1,000				
Fußgänge	r-/Radfahrer	furten											
Zufahit	Bez. Signalgr.	q _{Eg} [Fg/h]	q _{Rad} [Rad/h]		1. Furt Länge [m]	2. Furt Länge [m]	3, Furt Länge [m]	4. Furt Länge [m]					
1	E1	50	20		10	fini)	fred	poj					
1	E2	50	20		10				1 ==				
2	F2	50	50		10	1							
3	E3	50	20		10	18-9			1 -				
3	E4	50	20		10	11.4.							
4	F1	50	50		10				1 =				
1	E1+E2	50	.20		10	10							
4	E2+E1	50	20		10	10							
3	E4+E3	50	20		10	10							
	6.2.3E3+E4	50	20		10	10							
WELL VEISION		ermann Gr	- 10 F An - F - 10 A	0.60 = F.		,~]		- 200	eldorf				


Form	blatt 2					***************************************	ignalanlage	11.00.00		
1,5111	2,000,00			Berechn	ung der Grur	ndlagendate	n für den Kfz-	Verkehr		
						um + Büros	tandort (KV20	4 500 3000	Düsseldorf	
		KN02 - The	7 - 7 - 1						04.05.2020	
7		Spitzenstun			xtremtag			Bearbeiter	uh	
K1z-Verke		Kapazitäten			32	30	1 2 1	10:		
Nr.	Bez. SG	t _{B,i} [s]	q _{s,i} [Kfz/h]	t _{∈,⊢} [s]	C _{0,i} [Kfz/h]	G _{D,i} [Kfz/h]	C _{PW,⊢} [Kfz/h]	C _{GF,i} [Kfz/h]	C _{LA,i} [Kfz/h]	C _{RA,I} [Kfz/h]
1	CL	2,025	1778	9	254					
2	С	1,864	1931	27	773					
3	С	3,150	1143	27	457	100001				441
4	В	1,868	1927	5	165				165	
5	В	2,008	1793	5	154					154
6	DL	2,610	1379	5	118					
7	D	1,887	1908	25	709					
8	D	1,800	2000	25	743					714
9	Α	2,109	1707	5	146					
			1							
			1							
			+							
									4	
Kfz-Verke	hrsströme -	Kapazitäten	(fahrstreife	nbezogen)						
Nr.	Bez. SG	q _j [Kfz/h]	q _G [Kfz/h]	q _{RA} [Kfz/h]	q _{LA} [Kfz/h]	n _k [Kfz]	N _{MS,90,j} [Kfz]	C _{K,j} [Kfz/h]	C _{MJ} [Kfz/h]	C _j [Kfz/h]
11	С	6		6			0,557			441
12	С	676	676				26,480			773
13	С	676	676				26,480			773
14	CL	24			24	11 - 1	1,615		1	254
21	В	13		13			1,185			154
22	В	80			80		4,458			168
31	D	5		5			0,503			714
32	D	638	638				28,524			709
33	D	638	638				28,524			709
34	DL	10			10		1,042			118
41	Α	35		35			2,339			146

Form	blatt 3					t mit Lichtsig				
1,8,110	oluti o				Berechnung	der Verkehr	squalitäten			
		t. VU D-Rath,				um + Bürosta	indort (KV20	The lates of	Düsseldorf	
		t KN02 - The	7 - 10	to the same of the	and the second second				04.05.2020	
		t. Spitzenstun						Bearbeiter:	uh	
Kfz-Verke		Verkehrsqu					7 1		7	
Nr.	Bez. SG	Ströme	q _j [Kfz/h]	x _j [-]	f _{A,j} [-]	N _{GE,j} [Kfz]	N _{MS,j} [Kfz]	L _{95,j} [m]	t _{W.j} [s]	QSV [-]
11	С	3	6	0,014	0,39	0,008	0,080	6	13,3	Α
12	С	2	676	0,875	0,40	6,962	19,091	165	51,8	D
13	С	2	676	0,875	0,40	6,962	19,091	165	51,8	D
14	CL	1	24	0,094	0,14	0,058	0,463	11	26,9	В
21	В	5	13	0,084	0,09	0,051	0,284	8	30,7	В
22	В	4	80	0,485	0,09	0,558	2,041	28	42,7	С
31	D	8	5	0,007	0,36	0,004	0,067	3	14,5	Α
32	D	7	638	0,900	0,37	9,098	20,809	179	67,0	D
33	D	7	638	0,900	0,37	9,098	20,809	179	67,0	D
34	DL	6	10	0,085	0,09	0,051	0,230	9	31,0	В
41	Α	9	35	0,240	0,09	0,178	0,813	16	34,3	В
K 22 37									Section	
Gesamt			2801						57,7	
Fußgänge	r-/Radfahr	erfurten			1				1	0.330
Zufahrt	Bez. SG	q _{Fg} [Fg/h]	q _{Rad} [Rad/h]	Anzahl Furten	t _{W,max} [s]					QSV [-]
1	E1	50	20	1	42					C
1	E2	50	20	1	50					С
2	F2	50	50	1	34					В
3	E3	50	20	1	48					C
3	E4	50	20		40					В
4	F1	50	50	1	29					Α
1	E1+E2	50	20	2	85					E
1	E2+E1	50	20	2	51					С
3	E4+E3	50	20	2	82					Е
3	E3+E4	50	20	2	66					D
								Gesamtb	ewertung:	É

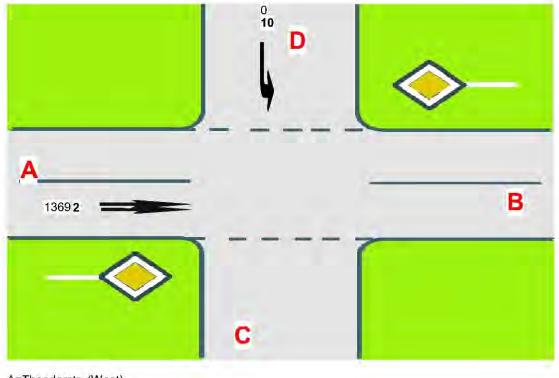
Knotenpunktbezeichung: Knoten 3 - U-Turn Theodorstraße (östlich)

Spitzenstunde MF spät - Prognose-Extremtag : KV2007-Kn3_MFspaet_Prognose-Extremtag.EIN Name der Datei

Strom	VZ	VZ	VZ	٧z	RS	RS	RS	RS	Н	Н	Н	Fz.	Fz.	Fz.	QSV
	ges	mitt	85%	max	mitt	85%	95%	max	ges	mitt	max	ang.	abg.	wart.	
	[min]	[sec]	[sec]	[sec]	[Kfz]	[Kfz]	[Kfz]	[Kfz]	[-]	H	[-]	[Kfz]	[Kfz]	[Kfz]	[-]
4	2,2	44,1	89,0	301,2	0,0	0	0	2	3	1,0	1	3	3	0	D
8	0,0	0,0	0,0	0,0	0,0	0	0	0	0	0,0	0	1394	1394	0	А
Sum	2,2	0,1		301,2	0,0			2		0,0	1	1397			
					Ţ	Jbersic	ht von	16:30 b	ois 17:3	30					

A=Theodorstr. (West) C=U-Turn

B=Theodorstr. (Ost)


Spiekermann GmbH Consultung Engineers

Düsseldorf

Knotenpunktbezeichung: Knoten 4 - U-Turn Theodorstraße (westlich)

Spitzenstunde MF spät - Prognose-Extremtag : KV2007-Kn4_MFspaet_Prognose-Extremtag.EIN Name der Datei

					Ţ	Úbersic	ht von	16:30 b	ois 17:3	30					
Strom	VZ	VZ	VZ	VZ	RS	RS	RS	RS	н	н	Н	Fz.	Fz.	Fz.	QSV
	ges	mitt	85%	max	mitt	85%	95%	max	ges	mitt	max	ang.	abg.	wart.	
	[min]	[sec]	[sec]	[sec]	[Kfz]	[Kfz]	[Kfz]	[Kfz]	[-]	[-]	[-]	[Kfz]	[Kfz]	[Kfz]	[-]
2	0,0	0,0	0,0	0,0	0,0	0	0	0	0	0,0	0	1359	1359	0	Α
10	0,0	0,0	0,0	0,0	0,0	Ò	0	0	0	0,0	0	0	0	0	А
Sum	0,0	0,0		0,0	0,0			0		0,0	0	1359			
					į	Ĵbersic	ht von	16:30 b	ois 17:3	30					

A=Theodorstr. (West)

B=Theodorstr. (Ost)

D=U-Turn

Spiekermann GmbH Consultung Engineers

Düsseldorf

Verkehrsfluss-Diagramm

Datei : KV2007-Kn5_MFspaet_Prognose-Extremtag.amp

Projekt: VU D-Rath, Theodorstraße - Baumarkt-Fachzentrum + Bürostandort (KV2007)

Knoten: KN05 - Abfahrt A52 Ost/Theodorstr.

Stunde: Spitzenstunde MF spät - Prognose-Extremtag

Fahrzeuge

Summe= 2359

Zufahrt 1 : Theodorstraße (west) Zufahrt 2 : Theodorstraße (ost) Zufahrt 3 : Zu-/Abfahrt A52

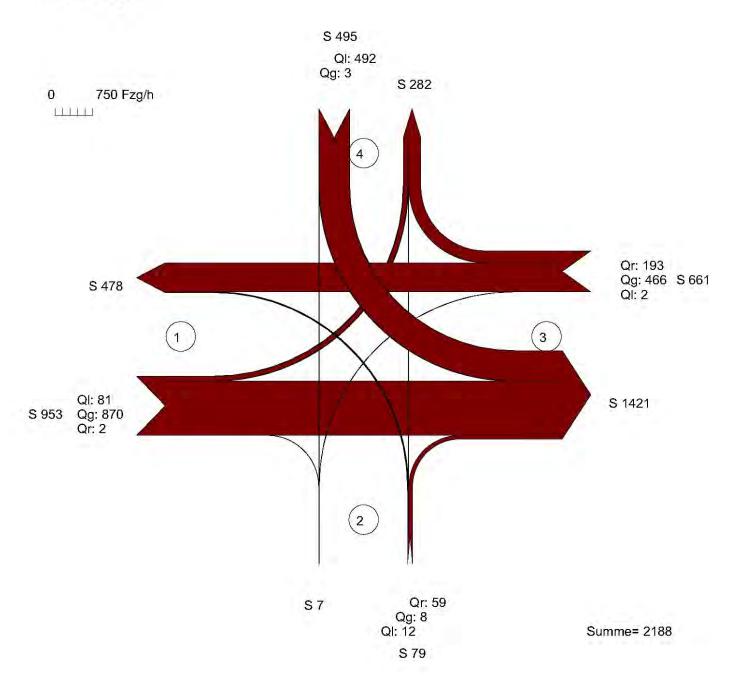
Form	blatt 1				Knotenpunkt	mit Lichtsigr	nalanlage			
1,8111	olutt. 1				Au	usgangsdate	n			
					kt-Fachzentr	um + Bürosta	andort (KV2	007) Stadt		1
	Knotenpunkt:				107.5			- A 100 11	04.05.2020	14.
	Zeitabschnitt.	Spitzenstun	de MF spät -	Prognose-E	xtremtag			Bearbeiter	uh	
Umlaufzeit										
Kfz-Verke	hrsströme					T		I a raci	E Zakon I	1.00
Nr.	q _{LV} [Kfz/h]	q _{Lkw+Bus} [Kfz/h]	q _{LkwK} [Kfz/h]	q _{Kfz} [Kfz/h]	q _{sv} [Kfz/h]	f _{sv} [-]		Anzahl Fahrstreifen	Misch- fahrstreifen	bedingt verträglic
1	458	0	8			1,026	1	2	nein	nein
2	923	0	32			1,050		2	nein	nein
3	506	0	18			1,052		2	nein	nein
4	408	0	6			1,022		2	nein	nein
								+		
Kfz-Fahrs	treifen									-
1.47.4.1	Fahrt-		L	b	f _b	R	f _R	s	fs	L _{LA} /L _{RA}
Zufahrt	richtung	Nr.	[m]	[m]	E-J	[m]	[-]	[%]	[-]	[m]
1	gerade	11	614	>= 3,00	1,000	- C-3	1,000	0.0	1,000	g- g
1	gerade	12		>= 3,00	1,000	1 2	1,000	0.0	1,000	
1	links	13		>= 3,00	1,000	20,00	1,000	0,0	1,000	
1	links	14		>= 3,00	1,000	20,00	1,000	0,0	1,000	
2	gerade	21		>= 3,00	1,000		1,000	0,0	1,000	
2	gerade	22		>= 3,00	1,000		1,000	0,0	1,000	
3	links	31		>= 3,00	1,000	20,00	1,000	0,0	1,000	
3	links	32		>= 3,00	1,000	20,00	1,000	0,0	1,000	
	r-/Radfahrer			5,00	1,000	20,00	1,020	2,0	,,	
J	Bez.	q _{Fg}	q _{Rad}		1. Furt	2. Furt	3. Furt	4. Furt		
Zufahrt	Signalgr.	۹⊦g [Fg/h]	[Rad/h]		Länge	Länge	Länge	Länge		
- Comment of E		0.9,7,1	Production		[m]	[m]	[m]	[m]		

Earn	blatt 2	-			Knotenpunl	kt mit Lichts	ignalanlage			
Form	DIATE Z			Berechn	ung der Grur	ndlagendate	n für den Kfz	-Verkehr		
	Projekt	VU D-Rath,	Theodorstra	ße - Baumar	kt-Fachzentr	um + Büros	tandort (KV20	007) Stadt	Düsseldorf	i i
	Knotenpunkt	KN05 - Abfa	hrt A52 Ost/	Theodorstr.				Datum	04.05.2020	4
	Zeitabschnitt	Spitzenstun	de MF spät -	Prognose-E	xtremtag			Bearbeiter	uh	
Kfz-Verke	hrsströme -	Kapazitäten	(strom bezo	gen)						
Nr.	Bez. SG	t _{B,i} [s]	q _{s,i} [Kfz/h]	t _{∈,⊢} [s]	C _{0,i} [Kfz/h]	G _{D,I} [Kfz/h]	C _{PW,i} [Kfz/h]	C _{GF,i} [Kfz/h]	C _{LA,i} [Kfz/h]	C _{RA,i} [Kfz/h]
1	CL	1,846	1950	20	585				To the	
2	С	1,890	1905	45	1252				1	
3	D	1,893	1902	20	571					
4	AL	1,839	1958	11	336					
	SG [s] [Kfz/h] [Kfz/h]									
Kfz-Verke					a .	n.	Nunana	C	C	C _i
Nr	sg	[Kfz/h]	[Kfz/h]	100			[Kfz]			[Kfz/h]
11										125
12		- 123	478		430		200.00			125
13							3,233,0			58
14		-	11.02		233					58:
21										57
22			262		007					57
31 32		7.77								330
		251			201		5,101			
	1 11									
					-				+	
	1 11									li =

Formt	olatt 3				Knotenpunk	t mit Lichtsig	ınalanlage			
Folitik	лацо				Berechnung	der Verkehr	squalitäten			
	Projekt	t: VU D-Rath,	Theodorstral	ße - Baumark	t-Fachzentru	ım + Bürosta	indort (KV20	07) Stadt_l	Düsseldorf	
K	Cnotenpunk	t. KN05 - Abfa	ahrt A52 Ost/	Theodorstr.				Datum:_	04.05.2020	
Z	eitabschnit	t. Spitzenstur	ide MF spät -	Prognose-Ex	tremtag			Bearbeiter:	uh -	
Kfz-Verkeh	rsströme -	Verkehrsqu	alitäten (fah	rstreifenbez	ogen)			1	T.	
Nr.	Bez. SG	Ströme	q _j [Kfz/h]	x _j [-]	f _{A,j} [-]	N _{GE,j} [Kfz]	N _{MS,j} [Kfz]	L _{95,j} [m]	t _{W,j} [s]	QSV [-]
11	С	2	478	0,382	0.66	0,361	4,614	52	6,5	Α
12	С	2	478	0,382	0,66	0,361	4,614	52	6,5	Α
13	CL	1	233	0,398	0,30	0,388	3,990	45	21,9	В
14	CL	1	233	0,398	0,30	0,388	3,990	45	21,9	В
21	D	3	262	0,459	0,30	0,506	4,641	52	23,1	В
22	D	3	262	0,459	0,30	0,506	4,641	52	23,1	В
31	AL	4	207	0,616	0.17	1,018	4,747	52	37,8	C
32	AL	4	207	0,616	0.17	1,018	4,747	52	37,8	С
- 4										
4.1										
Gesamt	-		2360	- 11					18,7	
Fußgänger	r-/Radfahr	erfurten			T					
Zufahrt	Bez. SG	q _{Fg} [Fg/h]	q _{Rad} [Rad/h]	Anzahl Furten	t _{w,max} [s]					QSV [-]
	30	In Shirt	[ixau/ii]	Laiteti	[9]					[7]
								Gesamtb	ewertuna:	С

Verkehrsfluss-Diagramm

Datei : KV2007-Kn6_MFspaet_Prognose-Extremtag.amp


Projekt: VU D-Rath, Theodorstraße - Baumarkt-Fachzentrum + Bürostandort (KV2007)

Knoten: KN06 - Abfahrt A52 West/Theodorstr./Gladbecker Str.

Stunde: Spitzenstunde MF spät - Prognose-Extremtag

Fahrzeuge

Zufahrt 1 : Theodorstraße (west) Zufahrt 2 : Gladbecker Straße Zufahrt 3 : Theodorstraße (ost) Zufahrt 4 : Zu-/Abfahrt A52

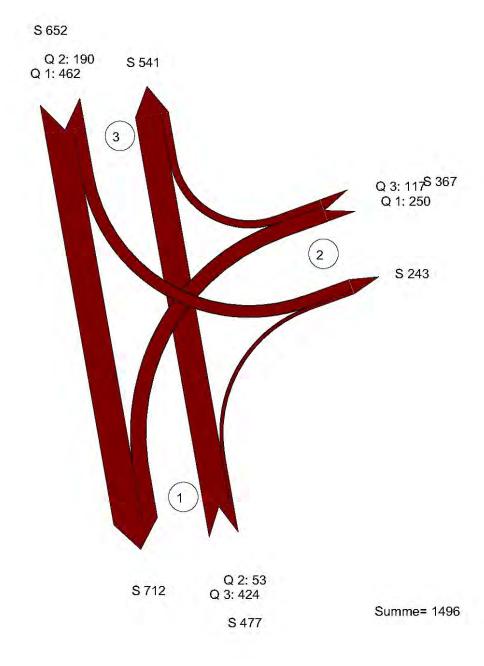
	blott d			- 1	Knotenpunkt	mit Lichtsigr	nalanlage			
Form	blatt 1				Au	usgangsdate	n			
	Projekt. Knotenpunkt. Zeitabschnitt		hrt A52 Wes	t/Theodorstr	/Gladbecker		andort (KV2	THE PERSON NAMED IN	Düsseldorf 04.05.2020 uh	
	t t _{ii} : 70 [s]	-1	p							
	hrsströme									
Nr.	q _{LV} [Kfz/h]	q _{Lkw+Bus} [Kfz/h]	q _{LkwK} [Kfz/h]	q _{Kfz} [Kfz/h]	q _{sv} [Kfz/h]	f _{sv} [-]		Anzahl Fahrstreifer	Misch- fahrstreifen	bedingt verträglic
1	78	0	3			1,056		1	nein	nein
2	850	0	20			1,034		2	ja	nein
3	2	0	0			1,000		1	ja	ja
4	12	0	0			1,000		1	nein	ja
5	8	0	0			1,000		1	ja	nein
6	59	Ó	Ō			1,000		1	ja	nein
7	1	0	1			1,750		1	nein	nein
8	453	0	13			1,042		2	ja	nein
9	186	0	7			1,054		1	ja	nein
10	472	0	20			1,061		2	nein	nein
11	3	0	0			1.000		1	nein	ja
Kfz-Fahrs	dualifa u									
Zufahrt	Fahrt-	Nr.	L	b	fb	R	f_R	s	f _s	L _{LA} /L _{RA}
- H-(-1/16)	richtung	7.00	[m]	[m]	H	[m]	[-J	[%]	H	[m]
11	rechts	11	2 4 1	>= 3,00	1,000	20,00	1,000	0,0	1,000	50
1	gerade	11		>= 3,00	1,000	-	1,000	0,0	1,000	
11	gerade	12		>= 3,00	1,000	1	1,000	0,0	1,000	
1	links	13		>= 3,00	1,000	20,00	1,000	0,0	1,000	
2	rechts	21		>= 3,00	1,000	20,00	1,000	0,0	1,000	
2	gerade	21		>= 3,00	1,000	- 8	1,000	0,0	1,000	
2	links	22		>= 3,00	1,000	20,00	1,000	0,0	1,000	25
3	rechts	31		>= 3,00	1,000	20,00	1,000	0,0	1,000	
3	gerade	31		>= 3,00	1,000	- B	1,000	0.0	1,000	
3	gerade	32	11	>= 3,00	1,000	3	1,000	0,0	1,000	
3	links	33		>= 3,00	1,000	20,00	1,000	0,0	1,000	
4	gerade	41		>= 3,00	1,000	- 200	1,000	0,0	1,000	50
4	links	42		>= 3,00	1,000	20,00	1,000	0,0	1,000	
4	links	43		>= 3,00	1,000	20,00	1,000	0,0	1,000	
Fußgänge	er-/Radfahrer					1	-			
Zufahrt	Bez. Signalgr.	q _{Fg} [Fg/h]	q _{Rad} [Rad/h]		1. Furt Länge [m]	2. Furt Länge [m]	3. Furt Länge [m]	4. Furt Länge [m]		
2	F1	50	50		16,00					

Form	blatt 2					kt mit Lichtsi		A.C.O.O.O.O.O.O.O.		
1.5.00							n für den Kfz			
	Committee Contract	VU D-Rath,					andort (KV20	A SOLUTION OF THE PARTY.	Düsseldorf	
		KN06 - Abfa				Str.			04.05.2020	
20000		Spitzenstun			xtremtag			Bearbeiter	uh	
Kfz-Verke		Kapazitäten	(strom bezo			-		F 95		
Nr.	Bez. SG	t _{B,i} [s]	q _{s,i} [Kfz/h]	t _{F,∖} [s]	C _{0,i} [Kfz/h]	C _{D,i} [Kfz/h]	C _{PW,i} [Kfz/h]	C _{GF,i} [Kfz/h]	C _{LA,i} [Kfz/h]	C _{RA,I} [Kfz/h]
1	CL	1,900	1895	5	162					
2	С	1,862	1933	19	552					
3	С	1,800	2000	19	571				1 - 1	48
4	В	1,800	2000	5	171	73	214		171	
5	В	1,800	2000	5	171					
6	В	1,800	2000	5	171					
7	DL	3,150	1143	5	98					
8	D	1,875	1920	16	466					
9	D	1,898	1897	16	461					
10	AL	1,910	1885	18	512				1	
11	Α	1,800	2000	9	286	73	429		286	
				1					4 -	
Kfz-Verke	hrsströme - Bez.	Kapazitäten q _j	(fahrstreife q _G	nbezogen) q _{RA}	q _{LA}	n _k	N _{MS,90,j}	C _{KJ}	C _M J	C _j
Nr.	SG	[Kfz/h]	[Kfz/h]	[Kfz/h]	[Kfz/h]	[Kfz]	[Kfz]	[Kfz/h]	[Kfz/h]	[Kfz/h]
11	C	436	434	2			16,270		552	
12	С	436	436				16,270			55
13	CL	81			81		4,549			16
21	В	67	8	59	-		3,750		171	
22	В	12	7,2,2		12		1,113		4.0	17
31	D	328	135	193			12,136		463	2
32	D	331	331		- 0.0		12,235			46
33	DL	2			2		0,414			9
41	Α	3	3		4.00		0,456			28
42	AL	246			246		8,176			51
43_	AL	246			246		8.176			51

Formt	olatt 3				Knotenpunk	t mit Lichtsig	ınalanlage			
FUIIIL	Jiatto				Berechnung	der Verkehr	squalitäten			
	Projekt	VU D-Rath,	Theodorstra	ße - Baumark	tt-Fachzentru	um + Bürosta	andort (KV20	07) Stadt:_I	Düsseldorf	
K	Cnotenpunk	KN06 - Abfa	hrt A52 Wes	t/Theodorstr.	/Gladbecker	Str.		Datum:_	04.05.2020	
Z	eitabschnit	Spitzenstun	de MF spät -	Prognose-Ex	ktremtag			Bearbeiter:	uh -	
Kfz-Verkeh	rsströme -	Verkehrsqu	alitäten (fah	rstreifenbez	ogen)			1		
Nr.	Bez. SG	Ströme	q _j [Kfz/h]	x _j [-]	f _{A,J} [-]	N _{GE,j} [Kfz]	N _{MS,j} [Kfz]	L _{95,j} [m]	t _{W,j} [s]	QSV [-]
11	С	2,3	436	0,790	0,29	2,909	10,730	101	42,0	С
12	С	2	436	0,790	0,29	2,909	10,730	101	42,0	C
13	CL	1	81	0,500	0,09	0,594	2,099	29	43,8	С
21	В	5, 6	67	0,392	0,09	0,374	1,606	23	38,2	С
22	В	4	12	0,070	0,09	0,042	0,256	7	30,3	В
31	D	8, 9	328	0,708	0,24	1,671	7,503	76	37,2	С
32	D	8	331	0,710	0,24	1,690	7,579	76	37,3	C
33	DL	7	2	0,020	0,09	0,011	0,047	4	29,7	В
41	Α	11	3	0,010	0,14	0,006	0,056	3	25,8	В
42	AL	10	246	0,480	0,27	0,556	4,563	52	25,3	В
43	AL	10	246	0,480	0,27	0,556	4,563	52	25,3	В
Gesamt			2188						36,7	
Fußgänger	r-/Radfahr	erfurten		T	т	1	1		T	
Zufahrt	Bez.	q _{Fg}	q _{Rad}	Anzahl	t _{w,max}					QSV
	SG	[Fg/h]	[Rad/h]	Furten	[s]					[-]
2	F1	50	.50	1.	42					С
								Gesamtb	ewertung	С

Verkehrsfluss-Diagramm

Datei : KV2007-Kn7_MFspaet_Prognose-Extremtag.amp


Projekt: VU D-Rath, Theodorstraße - Baumarkt-Fachzentrum + Bürostandort (KV2007)

Knoten : KN07 - Am Hülserhof/Zum Gut Heiligendonk Stunde : Spitzenstunde MF spät - Prognose-Extremtag

Fahrzeuge

Zufahrt 1 : Am Hülserhof (süd) Zufahrt 2 : Zum Gut Heiligendonk Zufahrt 3 : Am Hülserhof (nord)

Form	blatt 1				Knotenpunkt	mit Lichtsigr	nalanlage			
T QIIII	Didti 1				Au	usgangsdate	n			
					kt-Fachzentr	um + Bürosta	andort (KV2		Düsseldorf	1
	Knotenpunkt.								04.05.2020	
	Zeitabschnitt.	Spitzenstun	de MF spät -	Prognose-E	xtremtag			Bearbeiter	uh	
Umlaufzeit										
Kfz-Verke	hrsströme					- F 1			E Albana	T. Section
Nr.	q _{LV} [Kfz/h]	q _{Lkw+Bus} [Kfz/h]	q _{LkwK} [Kfz/h]	q _{Kfz} [Kfz/h]	q _{sv} [Kfz/h]	f _{sv} [-]		Anzahl Fahrstreifer	Misch- fahrstreifen	bedingt verträglic
1	403	0	21			1,074		1	ja	nein
2	48	0	5			1,142		1	ja	ja
3	242	0	8			1,048		1	nein	nein
4	112	0	5			1,064		1	nein	nein
5	183	0	7			1,055		7	nein	ja
6	443	Ó	19			1,062		1	nein	nein
Kfz-Fahrs	treifen							Y		
Zufahrt	Fahrt- richtung	Nr.	L [m]	b [m]	f _b	R [m]	f _R [-]	s [%]	f _s [-]	L _{LA} /L _{RA} [m]
4	rechts	11		>= 3,00	1,000	20,00	1,000	0,0	1,000	1:
1	gerade	11		>= 3,00	1,000	-	1,000	0,0	1,000	
2	rechts	21		>= 3,00	1,000	20,00	1,000	0,0	1,000	
2	links	22		>= 3,00	1,000	20,00	1,000	0,0	1,000	
3	gerade	31		>= 3,00	1,000	Ш	1,000	0,0	1,000	
3	links	32		>= 3,00	1,000	20,00	1,000	0,0	1,000	2
Fußgänge	r-/Radfahrer	furten						Ť		
Zufahrt	Bez. Signalgr.	q _{Fg} [Fg/h]	q _{Rad} [Rad/h]		1. Furt Länge [m]	2, Furt Länge [m]	3. Furt Länge [m]	4. Furt Länge [m]		
2	E1	30	20		10,00				1 =	
2	E2	30	20		8,00					
2	E1+E2	30	20		10,00	8,00				
2	E2+E1	30	20	4.	8,00	10,00				

En.	blatt 2				Knotenpun	kt mit Lichtsi	gnalanlage			
Form	INIAIL Z			Berechn	ung der Grur	ndlagendater	n für den Kfz	Verkehr		
	Projekt	VU D-Rath,	Theodorstra	ße - Baumar	kt-Fachzentr	um + Bürosta	andort (KV20	007) Stadt:	Düsseldorf	
	Knotenpunkt	KN07 - Am I	Hülserhof/Zu	m Gut Heilig	endonk			Datum:	04.05.2020	
	Zeitabschnitt	. Spitzenstun	de MF spät -	Prognose-E	xtremtag			Bearbeiter	uh	
Kfz-Verke	hrsströme -	Kapazitäten	(strom bezo	gen)						
Nr.	Bez. SG	t _{B,i} [s]	q _{s,i} [Kfz/h]	t _{F,i} [s]	C _{0,i} [Kfz/h]	G _{D,i} [Kfz/h]	C _{PW,⊩} [Kfz/h]	C _{GF,i} [Kfz/h]	C _{LA,i} [Kfz/h]	C _{RA,I} [Kfz/h]
1	В	1,934	1861	31	851		4,55,4	9		600.23
2	В	2,055	1752	31	801	325	113			43
3	DL	1,886	1909	15	436				1	
4	DR	1,915	1880	24	671					
5	A	1,899	1896	46	1273	196	1	244	440	
6	Α	1,911	1884	46	1265					
Kfz-Verke	hrsströme -	Kapazitäten	(fabrs treife	nbezogen)						
Nr.	Bez. SG	q _j [Kfz/h]	q _G [Kfz/h]	q _{RA} [Kfz/h]	q _{LA} [Kfz/h]	n _k [Kfz]	N _{MS,90,j} [Kfz]	C _{K,j} [Kfz/h]	C _{MJ} [Kfz/h]	C _j [Kfz/h]
	Bez.	qj	q _G	q _{RA}						
Nr.	Bez. SG	q _j [Kfz/h]	q _G [Kfz/h]	q _{RA} [Kfz/h]			[Kfz]		[Kfz/h]	
Nr.	Bez, SG B	q _j [Kfz/h] 477	q _G [Kfz/h]	q _{RA} [Kfz/h] 53			[Kfz] 13,234		[Kfz/h]	[Kfz/h]
Nr. 11 21	Bez SG B DR	q _j [Kfz/h] 477 117	q _G [Kfz/h]	q _{RA} [Kfz/h] 53	[Kfz/h]		[Kfz] 13,234 3,870		[Kfz/h]	[Kfz/h] 67
Nr. 11 21 22	Bez SG B DR	q _j [Kfz/h] 477 117 250	q _G [Kfz/h] 424	q _{RA} [Kfz/h] 53	[Kfz/h]		[Kfz] 13,234 3,870 8,995		[Kfz/h]	[Kfz/h] 67 43
Nr. 11 21 22 31	Bez SG B DR DL	q _j [Kfz/h] 477 117 250 462	q _G [Kfz/h] 424	q _{RA} [Kfz/h] 53	[Kfz/h]		[Kfz] 13,234 3,870 8,995 7,730		[Kfz/h]	[Kfz/h] 67 43 126
Nr. 11 21 22 31	Bez SG B DR DL	q _j [Kfz/h] 477 117 250 462	q _G [Kfz/h] 424	q _{RA} [Kfz/h] 53	[Kfz/h]		[Kfz] 13,234 3,870 8,995 7,730		[Kfz/h]	[Kfz/h] 67 43 126
Nr. 11 21 22 31	Bez SG B DR DL	q _j [Kfz/h] 477 117 250 462	q _G [Kfz/h] 424	q _{RA} [Kfz/h] 53	[Kfz/h]		[Kfz] 13,234 3,870 8,995 7,730		[Kfz/h]	[Kfz/h] 67 43 126
Nr. 11 21 22 31	Bez SG B DR DL	q _j [Kfz/h] 477 117 250 462	q _G [Kfz/h] 424	q _{RA} [Kfz/h] 53	[Kfz/h]		[Kfz] 13,234 3,870 8,995 7,730		[Kfz/h]	[Kfz/h] 67 43 126
Nr. 11 21 22 31	Bez SG B DR DL	q _j [Kfz/h] 477 117 250 462	q _G [Kfz/h] 424	q _{RA} [Kfz/h] 53	[Kfz/h]		[Kfz] 13,234 3,870 8,995 7,730		[Kfz/h]	[Kfz/h] 67 43 126

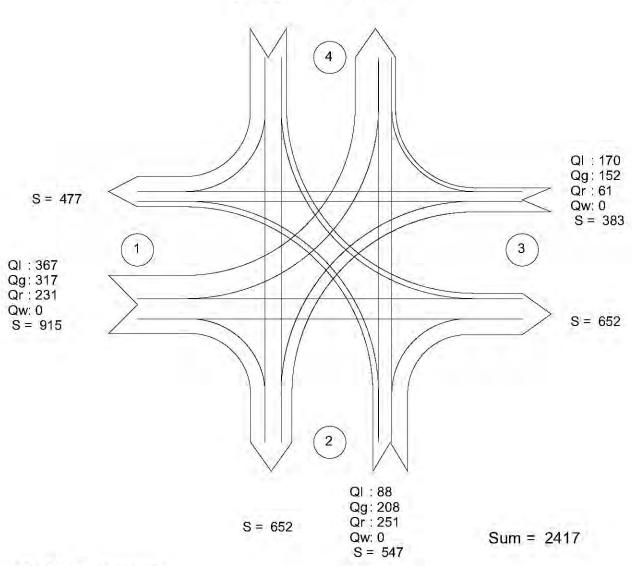
Ze	Projekt notenpunkt eitabschnitt	KN07 - Am Spitzenstun	Hülserhof/Zu	3e - Baumark m Gut Heilige	Berechnung tt-Fachzentru	272-272-27		07) 01-11-1	5	
Ze Kfz-Verkeh	notenpunkt: eitabschnitt rsströme -	KN07 - Am Spitzenstun	Hülserhof/Zu	the state of the same	kt-Fachzentru	ım + Bürosta	ndort /M/20	07) 04-44-1	Section Charles	
Kfz-Verkeh	rsströme - '		de MF spät -		endonk	23, 33, 6	Indoit (KV20		Düsseldorf 04.05.2020	
		Verkehrsqu		Prognose-Ex	xtremtag			Bearbeiter: (uh	
Nr.	Bez.		alitäten (fah	rstreifenbez	ogen)					
	SG	Ströme	q _j [Kfz/h]	x _j [+]	f _{A,j} [-]	N _{GE,j} [Kfz]	N _{MS,j} [Kfz]	L _{95,j} [m]	t _{W.j} [s]	QSV [-]
11	В	1, 2	477	0,619	0,42	1,054	8,348	86	21,0	В
21	DR	4	117	0,174	0,36	0,119	1,679	25	16,1	Α
22	DL	3	250	0,573	0,23	0,839	5,155	57	30,9	В
31	Α	6	462	0,365	0,67	0,335	4,245	49	6,0	Α
32	Α	5	190	0,432	0,23	0,449	3,602	43	26,6	В
	7 1									
						1				
Gesamt			1496						18,3	
Fußgänger	-/Radfahre	rfurten		1	T		1		T	
Zufahrt	Bez.	q_{Fg}	q _{Rad}	Anzahl	t _{W,max}					QSV
	SG	[Fg/h]	[Rad/h]	Furten	[s]					[-]
2	E1	30	20	1	38					В
2	E2	30	20	1	40					В
2	E1+E2	30	20	2	40					В
2	E2+E1	30	20	2	40					В
								Gesamtbe	ewertung:	В

Verkehrsfluss - Diagramm als Kreuzung

Datei: KV2007-Kn8_MFspaet_Prognose-Extremtag_Zeitluecken.krs

Projekt: VU D-Rath, Theodorstraße - Baumarkt-Fachzentrum + Bürostandort

Projekt-Nummer: KV2007


Knoten: KN08 - Kreisverkehr Volkardeyer Straße
Stunde: Spitzenstunde MFspät - Prognose-Extremtag

LLLLL

QI:84 Qg:251 Qr:237 Qw:0 S = 572

S = 636

alle Kraftfahrzeuge

Zufahrt 1: Volkardeyer Str. West Zufahrt 2: Broichhofstr. Süd Zufahrt 3: Volkardeyer Str. Ost Zufahrt 4: Broichhofstr. Nord

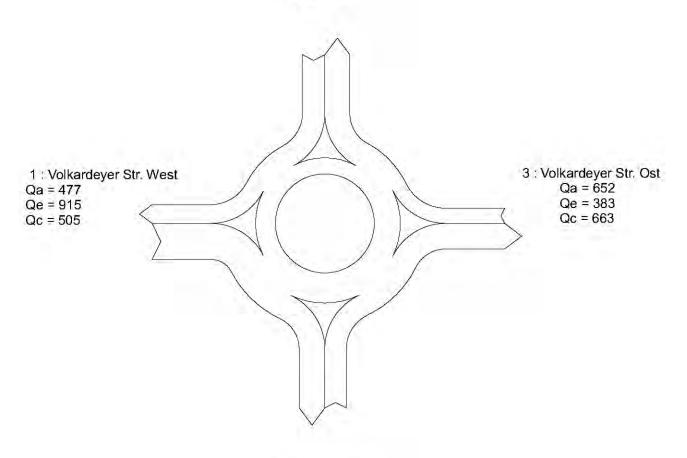
Verkehrsfluss - Diagramm als Kreis

Datei: KV2007-Kn8_MFspaet_Prognose-Extremtag_Zeitluecken.krs

Projekt: VU D-Rath, Theodorstraße - Baumarkt-Fachzentrum + Bürostandort

Projekt-Nummer: KV2007

Knoten: KN08 - Kreisverkehr Volkardeyer Straße
Stunde: Spitzenstunde MFspät - Prognose-Extremtag


0 1000 Fz/h

4 : Broichhofstr. Nord

Qa = 636

Qe = 572

Qc = 410

2 : Broichhofstr. Süd

Qa = 652

Qe = 547

Qc = 768

Sum = 2417

alle Kraftfahrzeuge

Spiekermann GmbH, Düsseldorf

Kapazität, mittlere Wartezeit und Staulängen - mit Fußgängereinfluss

Datei: KV2007-Kn8_MFspaet_Prognose-Extremtag_Zeitluecken.krs

Projekt: VU D-Rath, Theodorstraße - Baumarkt-Fachzentrum + Bürostandort

Projekt-Nummer: KV2007

Knoten: KN08 - Kreisverkehr Volkardeyer Straße
Stunde: Spitzenstunde MFspät - Prognose-Extremtag

Wartezeiten

		n-in	F+R	q-Kreis	q-e-vorh	q-e-max	X	Reserve	Wz	QSV
	Name	166	/h	Pkw-E/h	Pkw-E/h	Pkw-E/h	19	Pkw-E/h	S	-
1	Volkardeyer Str. West	1	0	510	935	1062	0,88	127	26,0	С
2	Broichhofstr. Süd	1	40	780	561	646	0,87	85	37,9	D
3	Volkardeyer Str. Ost	1	40	683	389	754	0,52	365	9,8	Α
4	Broichhofstr. Nord	1	0	421	339	1150	0,29	811	4,4	Α
4	Bypass	1			248	1400	0,18	1152	3,1	Α

Staulängen

		n-in	F+R	q-Kreis	q-e-vorh	q-e-max	L	L-95	L-99	QSV
	Name	-	/h	Pkw-E/h	Pkw-E/h	Pkw-E/h	Pkw-E	Pkw-E	Pkw-E	÷
1	Volkardeyer Str. West	1	0	510	935	1062	4,7	17	24	С
2	Broichhofstr, Süd	1	40	780	561	646	4,2	15	21	D
3	Volkardeyer Str. Ost	1	40	683	389	754	0,7	3	5	Α
4	Broichhofstr. Nord	1	0	421	339	1150	0,3	1	2	Α
4	Bypass	1			248	1400				Α

Gesamt-Qualitätsstufe: D

		Gesamter Verkehr mit Bypass	Verkehr im Kreis ohne Bypass	
Zufluss über alle Zufahrten	3	2472	2224	Pkw-E/h
davon Kraftfahrzeuge	3	2417	2180	Fz/h
Summe aller Wartezeiten	1	14,3	9,3	Fz-h/h
Mittl. Wartezeit über alle Fz		21,3	15,4	s pro Fz

Berechnungsverfahren:

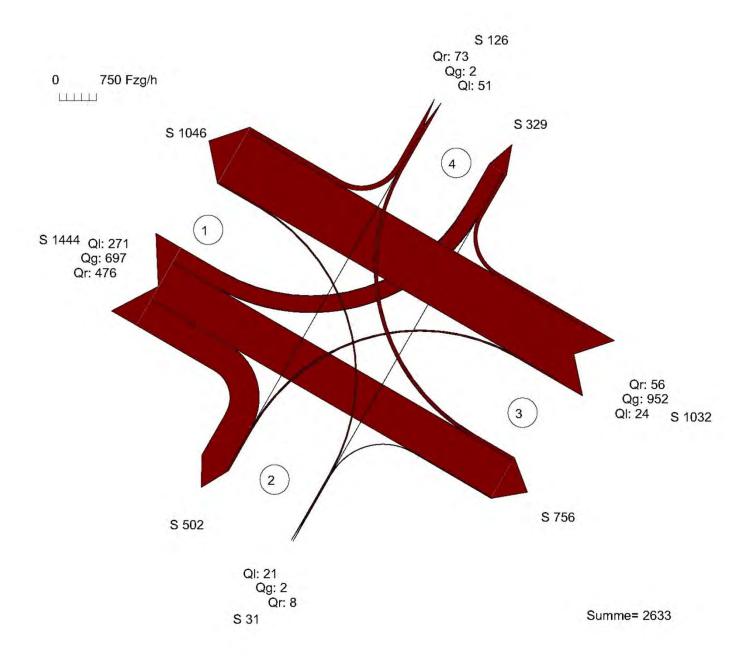
Kapazität : Grenzzeitlücken-Verfahren nach Harders-Formel

Wartezeit : HBS 2015 + HBS 2009 = Akcelik, Troutbeck (1991) mit T = 3600

Staulängen ; Wu, 1997 Fußgänger-Einfluss ; Stuwe, 1992

LOS - Einstufung : HBS (Deutschland)

Verkehrsfluss-Diagramm


Datei : KV2007-Kn09_MFspaet_mit-Strab_Prognose-Extremtag.amp

Projekt: VU D-Rath, Theodorstraße - Baumarkt-Fachzentrum + Bürostandort (KV2007)

Knoten: KN 09 - Theodorstr./Zum Gut Heiligendonk/DOME Stunde: Spitzenstunde MF spät - Prognose-Extremtag

Fahrzeuge

Zufahrt 1: Theodorstraße (west)

Zufahrt 2: DOME

Zufahrt 3: Theodorstraße (ost) Zufahrt 4: Zum Gut Heiligendonk

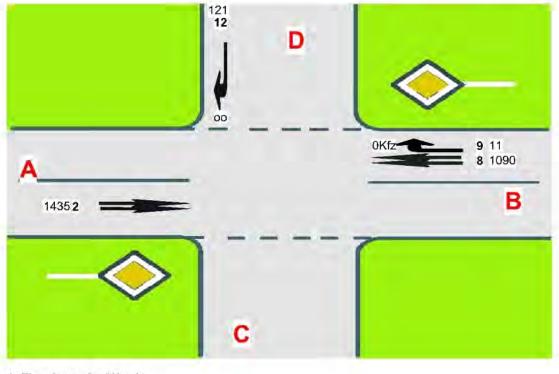
F	h - 44 d				Knotenpunkt	mit Lichtsigi	nalanlage			
FOIIII	blatt 1				Αι	usgangsdate	n			
	Proje k t:	VU D-Rath,	Theodorstra	ße - Baumar	kt-Fachzentr	um + Bürost	andort (KV2	2007) Stadt	: Düsseldorf	
	Knotenpunkt:	KN09 - The	odorstr./Zum	Gut Heiliger	ndonk/DOME			_ Datum	: 04.05.2020	1
	Zeitabschnitt:	Spitzenstun	de MF spät -	Prognose-E	xtremtag			Bearbeiter	: uh	
Umlaufzeit	t t _∪ : 70 [s]									
Kfz-Verke	hrsströme							_		
Nr.	q_{LV}	$q_{Lkw+Bus}$	q_{LkwK}	q_{Kfz}	q_{SV}	f_{SV}		Anzahl	Misch-	bedingt
	[Kfz/h]	[Kfz/h]	[Kfz/h]	[Kfz/h]	[Kfz/h]	[-]		Fahrstreifen	fahrstreifen	verträglich
1	267	0	4			1,022		1	nein	nein
2	667	0	30			1,065		2	nein	nein
3	476	0	0			1,000		1	nein	ja
4	21	0	0			1,000		1	nein	ja
5	2	0	0			1,000		1	ja	nein
6	8	0	0			1,000		1	ja	ja
7	24	0	0			1,000		1	nein	nein
8	920	0	32			1,050		2	nein	nein
9	51	0	5			1,134		1	nein	ja
10	46	0	5			1,147		1	ja	ja
11	2	0	0			1,000		1	ja	nein
12	65	0	8			1,164		1	nein	ja
Kfz-Fahrs	treifen									
7	Fahrt-	N.	L	b	\mathbf{f}_{b}	R	f_R	s	f _s	L _{LA} /L _{RA}
Zufahrt	richtung	Nr.	[m]	[m]	[-]	[m]	[-]	[%]	[-]	[m]
1	rechts	11		>= 3,00	1,000	20,00	1,000	0,0	1,000	19
1	gerade	12		>= 3,00	1,000	1-	1,000	0,0	1,000	
1	gerade	13		>= 3,00	1,000	-	1,000	0,0	1,000	
1	links	14		>= 3,00	1,000	20,00	1,000	0,0	1,000	
2	rechts	21		>= 3,00	1,000	20,00	1,000	0,0	1,000	14
2	gerade	21		>= 3,00	1,000	-	1,000	0,0	1,000	
2	links	22		>= 3,00	1,000	20,00	1,000	0,0	1,000	30
3	rechts	31		>= 3,00	1,000	20,00	1,000	0,0	1,000	15
3	gerade	32		>= 3,00	1,000	-	1,000	0,0	1,000	
3	gerade	33		>= 3,00	1,000	-	1,000	0,0	1,000	
3	links	34		>= 3,00	1,000	20,00	1,000	0,0	1,000	
4	rechts	41		>= 3,00	1,000	20,00	1,000	0,0	1,000	18
4	gerade	42		>= 3,00	1,000	-	1,000	0,0	1,000	
4	links	42		>= 3,00	1,000	20,00	1,000	0,0	1,000	30

AMPEL Version 6.2.3 Seite 1

Form	blatt 1			Knotenpunkt					
				A	usgangsdate	en			
	Proje k t:_	VU D-Rath,	Theodorstraß	 Baumarkt-Fachzentr 	um + Bürost	andort (KV20	007) Stadt	:: Düsseldor	<u>f</u>
	Knotenpunkt:_	KN09 - The	odorstr./Zum (ut Heiligendonk/DOME			Datum	: 04.05.2020)
	Zeitabschnitt:	Spitzenstun	de MF spät - F	rognose-Extremtag			Bearbeiter	: uh	
Umlaufzei	t t _∪ : 70 [s]								
Fußgänge	er-/Radfahrer	furten							_
	Bez.	q_{Fg}	q_{Rad}	1. Furt	2. Furt	3. Furt	4. Furt		
Zufahrt	Signalgr.	[Fg/h]	[Rad/h]	Länge	Länge	Länge	Länge		
				[m]	[m]	[m]	[m]		
1	E1	50	20	12,00					
1	E2	50	20	7,00					
2	F3	50	20	13,00					
3	E3	50	20	14,00					
3	E4	50	20	9,00					
4	F1	50	20	7,00					
4	F2	50	20	6,00					
5	E7	50	20	7,00					
6	E8	50	20	7,00					
4	F1+F2	50	20	7,00	6,00				
4	F2+F1	50	20	6,00	7,00				
1+5	E1+E7+E2	50	20	12,00	7,00	7,00			
1+5	E2+E7+E1	50	20	7,00	7,00	12,00			
3+6	E4+E8+E3	50	20	9,00	7,00	14,00			
3+6	E3+E8+E4	50	20	14.00	7.00	9.00			

AMPEL Version 6.23 Seite 2

	Projekt: (notenpunkt: (eitabschnitt:	VU D-Rath,	Thoodoretra	Berechn	ung der Grur	ndlagendater	n für den Kfz	-Verkehr		
Z Kfz-V erkeh	(notenpunkt:		Thoodoretrai			1000				
Z Kfz-V erkeh							andort (KV20		: Düsseldorf	
Kfz-Verkeh	.chabacilint.							Bearbeiter	: 04.05.2020	
	rsströme -	-			Aucintag			Dearbeiter	. dii	
Nr.	Bez.	t _{B,i}	q _{s,i}	t _{F,i}	C _{0,i}	$C_{D,i}$	$C_{PW,i}$	$C_{GF,i}$	C _{LA,i}	C _{RA,i}
0.00.00	SG	[s]	[Kfz/h]	[s]	[Kfz/h]	[Kfz/h]	[Kfz/h]	[Kfz/h]	[Kfz/h]	[Kfz/h]
1	CL	1,840	1957	20	587					
2	С	1,916	1879	29	805					
3	С	1,800	2000	29	857					82
4	В	1,800	2000	7	229	55	257		229	
5	В	1,800	2000	7	229					
6	В	1,800	2000	7	229					20
7	DL	1,800	2000	14	429					
8	D	1,891	1904	29	816					
9	D	2,041	1764	29	756					73
10	Α	2,065	1743	9	249	123	224		249	
11	Α	1,800	2000	9	286					
12	Α	2,096	1718	9	245					22
Cfz-Verkeh	Service Co.	Kapazitäten	(fahrstreifei	nbezogen)						
Nr.	Bez. SG	q _j	q _G [Kfz/h]	q _{RA} [Kfz/h]	q _{LA} [Kfz/h]	n _k	N _{MS,90,j} [Kfz]	C _{K,j} [Kfz/h]	C _{M,j} [Kfz/h]	C _j [Kfz/h]
11	C	[Kfz/h] 476	[KiZiij	476	[KIZ/H]	[Kfz]	12,733	[KIZ/H]	[KiZ/II]	82
12	С	348	348	470			9,054			80
13	С	348	348				9,054			80
14	CL	271	540		271		8,497			58
21	В	10	2	8	27 1	- 1	0,967		205	- 30
22	В	21		0	21		1,519		200	22
31	D	56		56			2,124			73
32	D	476	476			-	12,702			81
33	D	476	476				12,702			81
34	DL	24			24		1,478			42
41	A	73		73			3,698			22
42	A	53	2		51	1	2,806		250	
							,			


Form	blatt 3				Knotenpunk	t mit Lichtsig	gnalanlage			
Form	Diatto				Berechnung	der Verkehr	squalitäten			
	Proje k t:	VU D-Rath,	Theodorstra	ße - Baumar	kt-Fachzentru	ım + Bürosta	andort (KV20	07) Stadt:_l	Düsseldorf	
	Knotenpunkt:	KN09 - The	odorstr./Zum	Gut Heiliger	ndonk/DOME				04.05.2020	
	Zeitabschnitt:	Spitzenstun	de MF spät -	Prognose-E	xtremtag			Bearbeiter: (uh	
Kfz-Verke	hrsströme -	Verkehrsqu	alitäten (fah	rstreifenbez	zogen)					
Nr.	Bez.	Ströme	q _j	\mathbf{x}_{j}	$f_{A,j}$	$N_{\text{GE,j}}$	$N_{MS,j}$	L _{95,j}	t _{W.j}	QSV
	SG		[Kfz/h]	[-]	[-]	[Kfz]	[Kfz]	[m]	[s]	[-]
11	С	3	476	0,574	0,41	0,849	7,961	76	19,4	Α
12	С	2	348	0,432	0,43	0,452	5,198	58	16,1	Α
13	С	2	348	0,432	0,43	0,452	5,198	58	16,1	Α
14	CL	1	271	0,462	0,30	0,513	4,794	52	23,1	В
21	В	5, 6	10	0,049	0,10	0,028	0,204	6	28,8	В
22	В	4	21	0,092	0,11	0,056	0,421	9	28,6	В
31	D	9	56	0,077	0,41	0,046	0,705	14	12,6	Α
32	D	8	476	0,583	0,43	0,886	7,938	80	19,1	Α
33	D	8	476	0,583	0,43	0,886	7,938	80	19,1	Α
34	DL	7	24	0,056	0,21	0,033	0,404	9	22,1	В
41	А	12	73	0,330	0,13	0,283	1,575	26	32,4	В
42	А	10, 11	53	0,212	0,14	0,152	1,063	19	28,7	В
5 (ÖV)	ÖPNV1	13	6						27,8	D
6 (ÖV)	ÖPNV2	14	6						27,8	D
Gesamt			2632						19,3	
Fußgänge	er-/Radfahre	rfurten								
	Bez.	q_{Fg}	q _{Rad}	Anzahl	t _{W,max}					QSV
Zufahrt	SG	[Fg/h]	[Rad/h]	Furten	[s]					[-]
1	E1	50	20	1	65					D
1	E2	50	20	1	52					С
2	F3	50	20	1	46					С
3	E3	50	20	1	65					D
3	E4	50	20	1	56					D
4	F1	50	20	1	19					Α
4	F2	50	20	1	40					В
5	E7	50	20	1	36					В
6	E8	50	20	1	36					В
4	F1+F2	50	20	2	40					В
4	F2+F1	50	20	2	40					В
1+5	E1+E7+E2	50	20	3	104					
1+5	E2+E7+E1	50	20	3	71					
3+6	E4+E8+E3	50	20	3	68					
3+6	E3+E8+E4	50	20	3	110					
		00	20	3	110					
			I	ı			- 1			

Knotenpunktbezeichung: KV2007 Knoten TG - Zufahrt Büro-Standort / Tiefgarage

Spitzenstunde MF spät - Prognose-Extremtag

Name der Datei : KV2007-KnTG_MFspaet_Prognose-Extremtag.EIN

					Û	Übersic	ht von	16:30 b	ois 17:3	0					
Strom	VZ	VZ	VZ	VZ	RS	RS	RS	RS	н	Н	Н	Fz.	Fz.	Fz.	QSV
	ges	mitt	85%	max	mitt	85%	95%	max	ges	mitt	max	ang.	abg.	wart.	
	[min]	[sec]	[sec]	[sec]	[Kfz]	[Kfz]	[Kfz]	[Kfz]	[-]	[-]	[-]	[Kfz]	[Kfz]	[Kfz]	[-]
2	0,0	0,0	0,0	0,0	0,0	0	0	0	0	0,0	0	1430	1430	0	А
8	0,0	0,0	0,0	0,0	0,0	0	0	0	0	0,0	0	1089	1089	0	Α
9	0,0	0,0	0,0	0,0	0,0	0	0	0	0	0,0	0	10	10	0	Α
12	34,3	17,2	24,0	76,9	0,3	1	2	8	158	1,3	8	119	119	0	Α
Sum	34,3	0,8		76,9	0,1			8		0,1	8	2649			
					0	Übersic	ht von	16:30 b	ois 17:3	30					

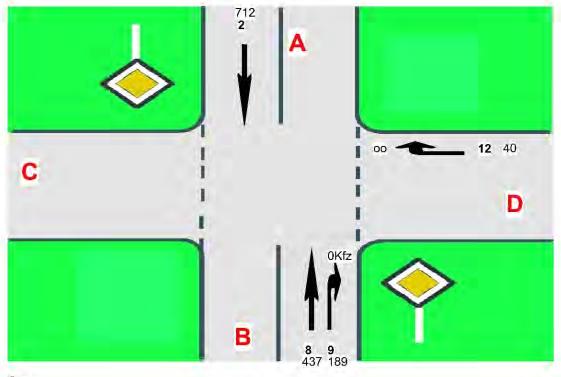
A=Theodorstraße (West)

C=-

B=Theodorstraße (Ost)

D=Zufahrt Büro/Tiefgarage

Spiekermann GmbH Consultung Engineers


Düsseldorf

Knotenpunktbezeichung: KV2007 Knoten ZF1 - Zufahrt Am Hülserhof

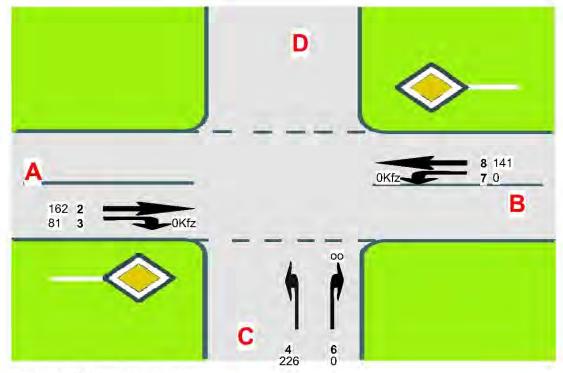
Spitzenstunde MF spät - Prognose-Extremtag

Name der Datei : KV2007-KnZF1_MFspaet_Prognose-Extremtag.EIN

Übersicht von 16:30 bis 17:30															
Strom	VZ	VZ	VZ	VZ	RS	RS	RS	RS	н	н	Н	Fz.	Fz.	Fz.	QSV
	ges	mitt	85%	max	mitt	85%	95%	max	ges	mitt	max	ang.	abg.	wart.	
	[min]	[sec]	[sec]	[sec]	[Kfz]	[Kfz]	[Kfz]	[Kfz]	[-]	[-]	[-]	[Kfz]	[Kfz]	[Kfz]	[-]
2	0,0	0,0	0,0	0,0	0,0	0	0	0	0	0,0	0	711	711	0	Α
8	0,0	0,0	0,0	0,0	0,0	0	0	0	0	0,0	0	435	435	0	Α
9	0,0	0,0	0,0	0,0	0,0	0	0	0	0	0,0	0	190	190	0	Α
12	9,1	14,1	18,0	85,4	0,1	0	1	3	41	1,1	3	39	39	0	A
Sum	9,1	0,4		85,4	0,0			3		0,0	3	1376			
					C	Übersic	ht von	16:30 b	ois 17:3	30					

C=-B=Am Hülserhof (Süd) D=Zufahrt Baumarkt-Fachzentrum A=Am Hülserhof (Nord)

Spiekermann GmbH Consultung Engineers


Düsseldorf

Knotenpunktbezeichung: KV2007 Knoten ZF2 - Zufahrt Zum Gut Heiligendonk

Spitzenstunde MF spät - Prognose-Extremtag

Name der Datei : KV2007-KnZF2_MFspaet_Prognose-Extremtag.EIN

Übersicht von 16:30 bis 17:30															
Strom	VZ	VZ	VZ	VZ	RS	RS	RS	RS	Н	Н	Н	Fz.	Fz.	Fz.	QSV
	ges	mitt	85%	max	mitt	85%	95%	max	ges	mitt	max	ang.	abg.	wart.	
	[min]	[sec]	[sec]	[sec]	[Kfz]	[Kfz]	[Kfz]	[Kfz]	[-]	[-]	[-]	[Kfz]	[Kfz]	[Kfz]	E
2	0,0	0,0	0,0	0,0	0,0	0	0	0	0	0,0	0	167	167	0	Д
3	0,0	0,0	0,0	0,0	0,0	0	0	0	0	0,0	0	81	81	0	Α
4	64,1	17,0	24,0	118,2	0,6	1	2	9	338	1,5	9	227	226	1	Α
6	0,0	0,0	0,0	0,0	0,0	0	0	0	0	0,0	0	0	0	0	Д
7	0,0	0,0	0,0	0,0	0,0	0	0	0	0	0,0	0	0	0	0	Д
8	0,0	0,0	0,0	0,0	0,0	0	0	0	0	0,0	0	141	141	0	Д
Sum	64,1	6,2		118,2	0,1			9		0,5	9	616			

A=Zum Gut Heiligendonk (West) C=Zufahrt Baumarkt-Fachzentrum B=Zum Gut Heiligendonk (Ost) D=-

Spiekermann GmbH Consultung Engineers

Düsseldorf