

Luftschadstoffuntersuchung zum Bebauungsplan Nr. 03/018 – Kölner Straße / Moskauer Straße – Stadtbezirk 3 – Stadtteil Oberbilk in Düsseldorf

Bericht FD 6649-2.4 vom 11.08.2017

Anonymisierte Fassung

Bericht-Nr.: FD 6649-2.4

Datum: 11.08.2017

Ansprechpartner/in: Herr Streuber / Frau Flick

VMPA anerkannte Schallschutzprüfstelle nach DIN 4109

Leitung:

Dipl.-Phys. Axel Hübel

Dipl.-Ing. Heiko Kremer-Bertram Staatlich anerkannter Sachverständiger für Schall- und Wärmeschutz

Dipl.-Ing. Mark Bless

Anschriften:

Peutz Consult GmbH

Kolberger Straße 19 40599 Düsseldorf Tel. +49 211 999 582 60 Fax +49 211 999 582 70 dus@peutz.de

Martener Straße 525 44379 Dortmund Tel. +49 231 725 499 10 Fax +49 231 725 499 19 dortmund@peutz.de

Carmerstraße 5 10623 Berlin Tel. +49 30 310 172 16 Fax +49 30 310 172 40 berlin@peutz.de

Geschäftsführer:

Dr. ir. Martijn Vercammen Dipl.-Ing. Ferry Koopmans AG Düsseldorf HRB Nr. 22586 Ust-IdNr.: DE 119424700

Steuer-Nr.: 106/5721/1489

Bankverbindungen:

Stadt-Sparkasse Düsseldorf Konto-Nr.: 220 241 94 BLZ 300 501 10 DE79300501100022024194 BIC: DUSSDEDDXXX

Niederlassungen:

Mook / Nimwegen, NL Zoetermeer / Den Haag, NL Groningen, NL Paris, F Lyon, F Leuven, B

www.peutz.de

Inhaltsverzeichnis

1	Sit	tuation und Aufgabenstellung	4
2	Вє	earbeitungsgrundlagen, zitierte Normen und Richtlinien	6
3	Вє	eurteilungsgrundlagen	9
4	Er	mittlung der Schadstoffemissionen	11
	4.1	Grundlagen und Verkehrsdaten	11
	4.2	Emissionsfaktoren	12
		4.2.1 Allgemeines	12
		4.2.2 Handbuch für Emissionsfaktoren des Strassenverkehrs (HBEFA)	12
		4.2.3 Emissionsmodell IMMIS ^{em}	14
		4.2.3.1 Einleitung	14
		4.2.3.2 Kraftfahrzeugflottenzusammensetzung	14
		4.2.3.3 Verkehrsqualität (Level of Service)	15
		4.2.3.4 Kaltstartzuschläge	
		4.2.4 Zusätzliche PM ₁₀ -Emissionsfaktoren Straßenverkehr	
		4.2.5 Zusätzliche PM _{2,5} -Emissionsfaktoren Straßenverkehr	
	4.3	Emissionen aus dem Straßenverkehr	19
	4.4	Emissionen der DB-Strecken	20
5	W	eitere Eingangsdaten und Modellbildung	22
	5.1	Meteorologiedaten	22
	5.2	Hintergrundbelastung	23
	5.3	Berechnungsmodell	26
6	Dι	urchführung der Immissionsprognose	28
	6.1	Allgemeine Hinweise	28
	6.2	Vorgehensweise Beurteilung Kurzzeitbelastungen	28
7	Er	gebnisse der Luftschadstoffausbreitungsberechnungen	30
	7.1	Jahresmittelwerte Immissionen Feinstaub (PM ₁₀)	30
		7.1.1 Beurteilung Feinstaubbelastung (PM ₁₀)	31
		7.1.2 Kurzzeitbelastung Immissionen Feinstaub (PM ₁₀)	31
	7.2	Jahresmittelwerte Immissionen Feinstaub (PM _{2,5})	
		7.2.1 Beurteilung Feinstaubbelastung (PM _{2,5})	
	7.3	Jahresmittelwerte Immissionen Stickstoffdioxid (NO ₂)	
		7.3.1 Beurteilung Stickstoffdioxidbelastung (NO ₂)	
		7.3.2 Kurzzeitbelastung Stickstoffdioxid (NO ₂)	
	7.4	Jahresmittelwerte Immissionen Benzol (C ₆ H ₆)	
		7.4.1 Beurteilung Benzolbelastung (C ₆ H ₆)	20

8	Auswirkungen der Planung	38
9	Auswirkungen der Planungen auf den Knotenpunkt Werdener Straße / Kettwiger Straße / Erkrather Straße	39
10	Zusammenfassung	40

1 Situation und Aufgabenstellung

Mit der Aufstellung des Bebauungsplanes Nr. 03/018 – Kölner Straße / Moskauer Straße – Stadtbezirk 3 – Stadtteil Oberbilk in Düsseldorf ist auf dem derzeit von der Deutschen Post genutzten Gelände zwischen der Kölner Straße und der Erkrather Straße im Zentrum von Düsseldorf die Schaffung von Planrecht für Wohnnutzungen und gewerbliche Nutzungen geplant.

Der Vorentwurf des Bebauungsplanes Nr. 03/018 ist in der Anlage 1.1 dargestellt. Die bestehenden Gebäude werden hierbei überplant. In dem aktuellen Bebauungsplanentwurf vom 24.05.2017 sind die Baugrenzen im Bereich der Erkrather Straße in Teilen des MI und WA1 um weniger als 1 m nach Süden bzw. Westen verschoben worden. Die Lage der innerhalb der vorliegenden Untersuchung berücksichtigten Baugrenzen basiert auf dem Bebauungsplanentwurf vom 15.02.2017. Da die Baugrenzen des B-Plan Enwurfes vom 15.02.2017 näher an den Emissionsquellen (Straße) als die des B-Plan Entwurfes vom 24.05.2017 liegen, ist aufgrund der Worst-Case-Bedingungen keine Neuberechnung erforderlich.

Mit der vorliegenden Untersuchung sollen die Auswirkungen der Planungen auf die Luftschadstoffimmissionen im Plangebiet und in der Umgebung durch die angrenzenden Straßen ermittelt und beurteilt werden.

Hierfür werden Luftschadstoffausbreitungsberechnungen in Bezug auf die Luftschadstoffemissionen für die relevanten Luftschadstoffe Feinstaub (PM₁₀ und PM_{2,5}), Stickstoffdioxid (NO₂) und Benzol (C₆H₆) für den Analysefall, den Nullfall sowie zwei verschiedene Planfälle durchgeführt. Hierzu wird das Simulationsprogramm MISKAM (<u>Mi</u>kro<u>skaliges Ausbreitungsmodell</u>) in der aktuellen Version 6.3 verwendet. Die hiermit ermittelten Immissionen werden mit den Grenzwerten der 39. BImSchV verglichen und beurteilt.

Für die Berechnung des Analysefalls wird das Prognosejahr 2015 verwendet. Der Analysefall stellt hierbei die derzeitige Luftschadstoffimmissionssituation bei Berücksichtigung der überplanten Bebauung auf dem Plangelände und der heutigen Straßenführung (ohne Verlängerung der Moskauer Allee) dar.

Für den Null- und die beiden Planfälle wird als Prognosejahr das Jahr 2020 verwendet, wenn frühestens mit einer Fertigstellung des Bauvorhabens zu rechnen ist. Der Nullfall stellt hierbei die zukünftige Luftschadstoffimmissionssituation im Jahr 2020 unter Berücksichtigung der überplanten Bebauung auf dem Plangelände sowie der geplanten Straßenführung (Verlängerung der Moskauer Allee) dar.

In den beiden Planfällen wird die zukünftige Luftschadstoffimmissionssituation im Jahr 2020 für zwei verschiedene Szenarien der zukünftigen Verkehrsbelastung unter Berücksichtigung der geplantne Bebauung auf dem Plangelände sowie der geplanten Straßenführung (Verlängerung der Moskauer Allee) berechnet.

Übersichtslagepläne für den Analysefall, den Nullfall sowie die beiden Planfälle sind in den Anlagen 1.3 bis 1.5 dargestellt.

2 Bearbeitungsgrundlagen, zitierte Normen und Richtlinien

Tite	I / Beschreibung / Bemerkung		Kat.	Datum
[1]	BlmSchG	Gesetz zum Schutz vor schäd-	G	Aktuelle Fassung
	Bundes-Immissionsschutzgesetz	lichen Umwelteinwirkungen		
		durch Luftverunreinigungen,		
		Geräusche, Erschütterungen		
		und ähnliche Vorgänge		
[2]	39. BlmSchV	Bundesgesetzblatt Jahrgang	V	02.08.2010
	39. Verordnung zur Durchführung	2010 Teil I Nr. 40 vom		
	des Bundes-Immissionsschutzge-	05.08.2010, Seite 1065 ff		
	setzes / Verordnung über Luftqua-			
	litätsstandards und Emissions-			
	höchstmengen			
[3]	35. BlmSchV	Bundesgesetzblatt I vom	V	Februar 2007
	Fünfunddreißigste Verordnung zur	07.02.2007		
	Durchführung des Bundes-			
	Immissionsschutzgesetzes / Ver-			
	ordnung zur Kennzeichnung der			
	Kraftfahrzeuge mit geringem Bei-			
F 4 1	trag zur Schadstoffbelastung EG-Richtlinie 96/62/EG	A		07.00.1000
[4]		Amtsblatt der Europäischen	V	27.09.1996
	EG-Richtlinie über die Beurteilung	Gemeinschaft Nr. L 296 vom		
[5]	und die Kontrolle der Luftqualität EG-Richtlinie 1999/30/EG	21.11.1996, Seite 55 Amtsblatt der Europäischen	V	22.04.1999
[0]	EG-Richtlinie über Grenzwerte für	Gemeinschaft Nr. L 163 vom	•	22.04.1000
	Schwefeldioxid, Stickstoffdioxid	29.06.1999, Seite 41, geändert		
	und Stickstoffoxide, Partikel und	durch Entscheidung		
	Blei in der Luft (1. Tochterrichtli-	2001/744/EG vom 17.10.2001		
	nie),	2001/144/EG Voiii 17:10:2001		
[6]	EG-Richtlinie 2000/69/EG	Amtsblatt der Europäischen	V	16.11.2000
	EG-Richtlinie über Grenzwerte für	Gemeinschaft Nr. L 313 vom		
	Benzol und Kohlenmonoxid in der	13.12.2000, Seite 12		
	Luft (2. Tochterrichtlinie)			
[7]	EG-Richtlinie 2002/3/EG	Amtsblatt der Europäischen	V	09.03.2002
	EG-Richtlinie über den Ozonge-	Gemeinschaft Nr. L 67 vom		
	halt in der Luft (3. Tochterrichtli-	09.03.2002, Seite 14		
	nie)			
[8]	EG-Richtlinie 2004/107/EG EG-	Amtsblatt der Europäischen	V	26.01.2005
	Richtlinie über Arsen, Kadmium,	Gemeinschaft Nr. L 23 vom		
	Quecksilber, Nickel und polyzykli-	26.01.2005, Seite 2		
	sche aromatische Kohlenwasser-			
	stoffe in der Luft (4. TR)			
[9]	EG-Richtlinie 2008/50/EG	Amtsblatt der Europäischen	V	11.06.2008
	EG-Richtlinie über Luftqualität und	Gemeinschaft Nr. L 152 vom		
	saubere Luft für Europa	11.06.2008		_

Titel	/ Beschreibung / Bemerkung		Kat.	Datum
[10]	TA Luft Erste AVwV zum Bundes-Immissionsschutzgesetz, technische Anleitung zur Reinhaltung der Luft	Gemeinsames Ministerialblatt, S. 511	VV	24.07.2002
[11]	VDI 3782, Blatt 7 Kfz-Emissionsbestimmung	Kommission Reinhaltung der Luft	RIL	November 2003
[12]	VDI 3782, Blatt 2	Kfz-Immissionsbestimmung, Kommission Reinhaltung der Luft	N	November 2003
[13]	HBEFA , Handbuch für Emissionsfaktoren des Straßenverkehrs, Version 3.3	Infras, Forschung und Beratung, Bern, Schweiz	Lit.	April 2017
	Handbuch IMMISem/luft/lärm zur Version 7	IVU Umwelt GmbH	Lit.	Juni 2017
	Update of Emission Factors for EURO 5 and EURO 6 vehicles for the HBEFA Version 3.2	Institute for Internal Combusti- on Engines and Thermodyna- mics, Graz	Lit.	06.12.2013
[16]	Diesel light duty vehicle NOx emission factors	European Research Group on Mobile Emission Sources	Lit.	09.10.2015
[17]	PM10-Emissionen an Außerortsstraßen – mit Zusatzuntersuchung zum Vergleich der PM10-Konzentrationen an der A1 Hamburg und Ausbreitungsrechnungen	Berichte der Bundesanstalt für Straßenwesen (BASt), Heft V125, BASt, BergGladbach	Lit.	Juni 2005
[18]	Einbindung des HBEFA 3.1 in das FIS Umwelt und Verkehr sowie Neufassung der Emissionsfak- toren für Aufwirbelung und Abrieb des Straßenverkehrs	Düring, I., Lohmeyer, A. Für das sächsische Landesamt für Umwelt, Landwirtschaft und Geologie	Lit.	Juni 2011
[19]	EMEP/EEA Air pollutant emissionen inventory guide book 2009, EEA Technical Report 2009	European Environment Agency	Lit.	2009
[20]	Abgas-Emissionsfaktoren von Nutzfahrzeugen in der BRD für das Bezugsjahr 1990	Berichte 5/95 des Umwelt- bundesamtes	Lit.	1995
	Automatische Klassifizierung der Luftschadstoff-Immissionsmes- sungen aus dem LIMBA-Meßnetz, Anwendung, 3. Teilbericht	IVU Umwelt GmbH, im Auftrag des Umweltbundesamtes	Lit.	Juli 2002
[22]	AKTERM-Zeitreihe des Jahres 2003 der DWD-Station 10400 Düsseldorf-Flughafen	Deutscher Wetterdienst	Lit.	2003
[23]		Landesamt für Natur, Umwelt und Verbraucherschutz; www.lanuv.nrw.de	Lit.	2002 - 2015

Titel	/ Beschreibung / Bemerkung		Kat.	Datum
[24]	Jahresbericht 2005	Landesamt für Natur, Umwelt und Verbraucherschutz	Lit.	2006
[25]	Umweltbericht 2006	Landesamt für Natur, Umwelt und Verbraucherschutz	Lit.	2007
[26]	Luftreinhalteplan Ruhrgebiet – Bereich "Westliches Ruhrgebiet"	Bezirksregierung Düsseldorf	Lit.	04.08.2008
[27]	Luftreinhalteplan Düsseldorf	Bezirksregierung Düsseldorf	Lit.	01.11.2008 i.d.F der Bekanntma- chung vom 30.10.2008
[28]	Luftreinhalteplan Düsseldorf 2013	Bezirksregierung Düsseldorf	Lit.	In der Fassung vom 20.12.2012
[29]	Luftmessbericht 2014 – Luftbelastung in Düsseldorf	Umweltamt Landeshauptstadt Düsseldorf	Lit.	Juni 2015
[30]	RLuS 2012 Richtlinien zur Ermittlung der Luft- qualität an Straßen ohne oder mit lockerer Randbebauung	Forschungsgesellschaft für Straßen- und Verkehrswesen	RIL	Ausgabe 2012
[31]	Bebauungsplan Nr.03/018 – Vorentwurf	Zur Verfügung gestellt durch HJP Planer	Р	Eingang 15.02.2017 / 24.05.2017
[32]	Straßenverkehrsbelastungszahlen	Zur Verfügung gestellt durch das Amt für Verkehrsmanage- ment der Stadt Düsseldorf im Rahmen der Planungen zum Vorgängervorhaben "Quartier M"	Р	29.10.2010
[33]	Verkehrsuntersuchung Projektent- wicklung Living Central	Lindschulte + Kloppe Inge- nieurgesellschaft mbH	Lit	28.07.2016
[34]	Verkehrszahlen Projektentwick- lung Grand Central	Lindschulte + Kloppe Inge- nieurgesellschaft mbH	Lit	22.02.2017 24.02.2017
[35]	Luftschadstoffemissionsdaten der DB-Strecken 2400, 2416, 2525, 2550, 2650 und 2670 im Bereich nördlich des Düsseldorf-HBF auf Basis des Fahrplanes 2013	DB Umweltzentrum Berlin	Р	14.09.2015
[36]	Luftschadstoffemissionsdaten der DB-Strecke 2411 im Bereich der geplanten Ortsumgehung auf Basis des Fahrplanes 2013	DB Umweltzentrum Berlin	Р	11.12.2015

Kategorien:

G V Gesetz Ν Norm Verordnung Verwaltungsvorschrift Runderlass Richtlinie Buch, Aufsatz, Bericht Planunterlagen / Betriebsangaben RIL Lit P ٧٧

RdErl.

3 Beurteilungsgrundlagen

In der vorliegenden Luftschadstoffuntersuchung sind die Auswirkungen der Planungen zum Bebauungsplanes Nr. 03/018 – Kölner Straße / Moskauer Straße – Stadtbezirk 3 – Stadtteil Oberbilk – auf das Plangebiet und die Umgebung zu untersuchen. Grundlage der Bewertung bildet dabei ein Vergleich der prognostizierten Schadstoffimmissionen für verschiedene Luftschadstoffe mit den vom Gesetzgeber festgelegten Immissionsgrenzwerten.

Im Rahmen der Harmonisierung der europäischen Normen und Richtlinien sind europaweit Rahmenrichtlinien zur Ermittlung und Beurteilung der Luftqualität festgesetzt worden. Grundlage hierfür ist die Luftqualitätsrahmenrichtlinie der Europäischen Gemeinschaft Nr. 96/62/EG vom 27.09.1996 [4]. Die darin beschriebenen Ziele und Prinzipien werden in z.Z. vier "Tochterrichtlinien" präzisiert.

Seit dem 11.06.2008 sind die Luftqualitätsrahmenrichtlinie [4] und die ersten drei Tochterrichtlinien [5][6][7] zur "Richtlinie 2008/50/EG über Luftqualität und saubere Luft für Europa" zusammengefasst worden [9]. Hierin wurden die bisherigen Immissionsgrenzwerte bestätigt und ein neuer Zielwert für Feinstaub (PM_{2,5}) eingeführt.

Mit Inkrafttreten der 22. BImSchV (2002) wurden die in den ersten drei Tochterrichtlinien festgelegten Immissionsgrenzwerte für die hier zu betrachtenden Luftschadstoffe Stickstoffdioxid (NO_2), Benzol (C_6H_6) und Feinstaub (PM_{10}) im September 2002 in deutsches Recht übernommen und waren seitdem als Beurteilungsgrundlage heranzuziehen. Sie ersetzte die bis dahin geltenden Immissionswerte der alten 22. BImSchV vom Oktober 1993.

Im Jahr 2007 wurden die Immissionsgrenzwerte der vierten Tochterrichtlinie [8] (z.B. für Ozon) in die 22. BImSchV mit aufgenommen. Diese wurden bisher in der 23. BImSchV festgelegt. Durch die Integration dieser Grenzwerte in die 22. BImSchV wurde die 23. BImSchV 2006 aufgehoben.

Mit Einführung der 39. BImSchV [2] "39. Verordnung zur Durchführung des Bundes-Immissionsschutzgesetzes (Verordnung über Luftqualitätsstandards und Emissionshöchstmengen)" am 02.08.2010 erfolgte dann die Umsetzung der Richtlinie 2008/50/EG in deutsches Recht. Die 39. BImSchV hebt weiterhin die 22. sowie 33. BImSchV auf. Mit Ausnahme der neuen Ziel- und Grenzwerte für Feinstaub (PM_{2,5}) ergeben sich für die übrigen Grenzwerte gegenüber der 22. und 33. BImSchV keine Veränderungen.

Die verkehrsrelevanten Immissionsgrenzwerte der 39. BImSchV sind als Auszug in der nachfolgenden Tabelle 3.1 aufgeführt.

Tabelle 3.1: Auszug Immissionsgrenzwerte (**fett** gedruckt) der verkehrsrelevanten Luftschadstoffe gemäß 39. BImSchV [2]

		Luftschadstoff									
	SO ₂	SO ₂	SO ₂	NO ₂	NO ₂	NO ₂	PM ₁₀	PM ₁₀	PM _{2,5}	C ₆ H ₆	СО
Jahr	μg/m³	μg/m³	μg/m³	μg/m³	mg/m³						
2013	350	125	500	200	40	400	50	40	26,4	5	10
2014	350	125	500	200	40	400	50	40	25,7	5	10
2015	350	125	500	200	40	400	50	40	25	5	10
Тур	IGW, SMW	IGW, TMW	ALM, SMW	IGW, SMW	IGW, JMW	ALM, SMW	IGW, TMW	IGW, JMW	IGW, JMW	IGW, JMW	IGW, AMW
Zulässige Überschrei- tungen pro Jahr	24	3	-	18	keine	-	35	keine	keine	keine	keine

IGW: Immissionsgrenzwert bei 293 °K, 101,3 kPa; ALM: Alarmschwelle; SCW: Schwellenwert

JMW: Jahresmittelwert; TMW: Tagesmittelwert; AMW: Achtstundenmittelwert; SMW: Stundenmittelwert

Seit dem 01.01.2015 gelten die in Tabelle 3.1 aufgeführten, endgültigen, Immissionsgrenzwerte für Feinstaub PM_{2,5}. Bis zu diesem Stichtag war in der 39. BImSchV eine Toleranzmarge von 5 μ /m³ festgelegt, welche jährlich ab dem 01.01.2009 um ein Siebentel bis auf dem Wert 0 zum 01.01.2015 vermindert wurde. Die Immissionsgrenzwerte der übrigen Luftschadstoffe gelten bereits seit dem 01.01.2005 bzw. 01.01.2010 ohne Toleranzmargen.

Die zulässigen 35 Überschreitungstage des Tagesmittelwertes für PM_{10} von 50 $\mu g/m^3$ entsprechen in etwa einem 90-Perzentil-Wert von 50 μ/m^3 . Die zulässigen 18 Überschreitungen pro Kalenderjahr des maximalen Stundenwertes von 200 $\mu g/m^3$ für NO_2 entsprechen in etwa dem 99,8-Perzentil-Wert von 200 μ/m^3 .

Die Immissionsgrenzwerte der 39. BImSchV [2] zum Schutz der menschlichen Gesundheit werden dabei gemäß Anlage 3 Punkt A.2.c der 39. BImSchV an folgenden Orten <u>nicht</u> beurteilt:

- an Orten innerhalb von Bereichen, zu denen die Öffentlichkeit keinen Zugang hat und in denen es keine festen Wohnunterkünfte gibt;
- [...] auf dem Gelände von Arbeitsstätten, für die alle relevanten Bestimmungen über Gesundheit und Sicherheit am Arbeitsplatz gelten;
- auf den Fahrbahnen der Straßen und, sofern Fußgänger und Fußgängerinnen für gewöhnlich dorthin keinen Zugang haben, auf dem Mittelstreifen der Straßen.

4 Ermittlung der Schadstoffemissionen

4.1 Grundlagen und Verkehrsdaten

Grundlage für die Berechnung der Schadstoffemissionen der das Plangebiet umgebenden Straßen sind Verkehrsmengen gemäß dem Verkehrsgutachten zum Bebauungsplan mit Berücksichtigung der Prognosen [33][34].

Für den **Analysefall 2015** wird die derzeitige Verkehrsbelastung unter Berücksichtigung der heutigen Straßenführung (ohne Verlängerung der Moskauer Allee) angesetzt [33][34].

Für den **Nullfall 2020** werden die Verkehrsmengen der zukünftigen Verkehrsbelastung ohne Planvorhaben, aber mit Verlängerung der Moskauer Straße und ohne Realisierung der Ortsumgehung Oberbilk angesetzt [34].

Für die beiden Planfälle werden zwei verschiedene verkehrliche Situationen untersucht:

Zum einen wird der **Planfall 2020** "**Basisszenario**", welcher die zukünftige Verkehrsbelastung mit Berücksichtigung der Zusatzverkehre des Planvorhabens nach Realisierung der Ortsumgebung Oberbilk darstellt [33][34] und zum anderen der **Planfall 2020** "**Szenario 1a**", welcher die zukünftige Verkehrsbelastung mit Berücksichtigung der Zusatzverkehre durch das Planvorhaben sowie die Verlängerung der Moskauer Straße, aber <u>ohne</u> Realisierung der Ortsumgebung Oberbilk darstellt [34], untersucht.

In Abstimmung mit dem Umweltamt der Landeshauptstadt Düsseldorf wird auf allen Straßenabschnitten ein pauschaler Anteil von leichten Nutzfahrzeugen (LNFz) von 5% berücksichtigt. Mangels fehlender Angaben wird auf allen Straßenabschnitten ein pauschaler Anteil von schweren Nutzfahrzeugen (SNFz) von 3,5 % berücksichtigt.

Für die Ermittlung der Emissionen wird das Emissionsmodell IMMIS^{em} (Version 7.001, Juni 2017) [14] auf Basis des Handbuchs für Emissionsfaktoren (HBEFA 3.3) [13] herangezogen. In IMMIS^{em} sind weiterhin Ansätze für die im HBEFA nicht behandelten PM₁₀ und PM_{2,5} Feinstaubemissionen durch Abrieb und Wiederaufwirbelung auf Grundlage von Literaturansätzen [18][19] hinterlegt und werden bei der Emissionsermittlung entsprechend berücksichtigt (siehe auch Kapitel 4.2.4).

Als Prognosejahr für den Null- und die beiden Planfälle wird das Jahr 2020 verwendet, wenn frühstens mit einer Fertigstellung des Bauvorhabens zu rechnen ist. Für den Analysefall wird das Jahr 2015 als Prognosejahr verwendet.

4.2 Emissionsfaktoren

4.2.1 Allgemeines

Grundlage für die Berechnung der Emissionen der Straßen unter Berücksichtigung der Verkehrsmengen und Lkw-Anteile sind so genannte spezifische Emissionsfaktoren. Sie geben an, welche Schadstoffmenge pro Streckenabschnitt und Zeiteinheit für Pkw, Lkw, etc., freigesetzt werden. Dabei sind die Emissionsfaktoren vom Bezugsjahr abhängig und berücksichtigen u.a. den technischen Fortschritt der Fahrzeugflotten.

4.2.2 Handbuch für Emissionsfaktoren des Strassenverkehrs (HBEFA)

Die Luftschadstoffemissionen der im Untersuchungsgebiet verkehrenden Kraftfahrzeuge werden auf Grundlage des "Handbuchs für Emissionsfaktoren des Straßenverkehrs (HBE-FA)" in der aktuellen Version 3.3 mit Stand Juni 2017 [13] ermittelt.

Das HBEFA 3.3 stellt dabei ein "Schnellupdate" des HBFEA 3.2 dar, welches höhere Stickoxidemissionen für Diesel-Pkw der Abgasnormen Euro-4, Euro-5 und Euro-6 berücksichtigt. Das Handbuch für Emissionsfaktoren des Strassenverkehrs (nachfolgend kurz HBEFA 3.3) stellt hierzu Emissionsfaktoren für die gängigsten Fahrzeugtypen zur Verfügung (PKW, Leichte LNFz und schwere Nutzfahrzeuge SNFz, Linien- und Reisebusse sowie Motorräder), differenziert nach Emissionskonzepten (Euro 0 bis Euro VI) sowie nach verschiedenen Verkehrssituationen, Längsneigungen der Fahrbahn in Schritten von 2% von -6% bis +6%, und Tempolimits.

Mit Einführung des HBEFA ab der Version 3.x wurden als eine wesentliche Änderung gegenüber der Version 2.1 von 2004 die Verkehrssituationen neu definiert. Es liegen nun 276 mögliche Verkehrssituationen vor, welche sich in ländlich bzw. städtische Prägung, dem Straßentyp, dem geltenden Tempolimit sowie vier Verkehrsqualitäten gliedern. Die Verkehrsqualität (Level of Service – kurz LOS) auf einem Straßenabschnitt wird in vier Stufen im HBEFA 3.3 berücksichtigt. Diese sind "freier Verkehr" (LOS1), "dichter Verkehr" (LOS2), "gesättigter Verkehr (LOS3) und "Stop&Go" (LOS4). Für jede dieser Qualitätsstufen liegen ebenfalls Emissionsfaktoren vor. Die sich hieraus ergebenden möglichen Verkehrssituationen des HBEFA 3.3 sind in der folgenden Tabelle 4.1 dargestellt:

Tabelle 4.1: Verkehrssituationen gemäß HBEFA 3.3 [13]

	Straßentyp	Verkehrs-					Т	emp	olim	it						
Gebiet		zustand; (LOS) Level of Ser- vice	30	40	20	09	70	80	06	100	110	120	130	>130		
ral)	Autobahn	ဇ္						х	х	х	х	х	х	х		
ıt (ru	Semi-Autobahn	top+							х		х					
präg	Fern-, Bundesstraße	rt, S				х	х	х	х	х	х					
Ländlich geprägt (rural)	Hauptverkehrsstraße, gerade	flüssig, gesättigt, dicht, Stop+Go			х	х	х	х	х	х						
dlicl	Hauptverkehrsstraße, kurvig				х	х	х	х	х	х						
Lär	Sammelstraße, gerade		sig, gesä	ig, gesä			х	х	х	х						
	Sammelstraße, kurvig				sig, 6	Sig,			х	х	х	х				
	Erschließungsstraße	flüss	х	х	х											
(olg	Autobahn							х	х	х	х	х	х			
(Agć	Stadt-Autobahn					х	х	х	х	х	х					
rägt	Fern-, Bundesstraße						х	х	х	х	х					
gep	Städt. Magistrale / Ringstraße				х	х	х	х	х							
Städtisch geprägt (Agglo)	Hauptverkehrsstraße				х	х	х	х								
tädti	Sammelstraße				х	х										
» ا	Erschließungsstraße		х	х	х											

Für die mit einem Kreuz markierten Verkehrssituationen liegen Emissionsfaktoren vor.

Für Hauptverkehrsstraßen mit Lichtsignalanlagen (gemäß HBEFA 2.1: LSA) liegt im HBEFA 3.3 kein eigener Straßentyp mehr vor. Die Berücksichtigung von Haltezeiten an Lichtsignalanlagen erfolgt durch einen angepassten "Stop+Go" Anteil der Emissionen im Stauraum vor einer Ampel.

Das HBEFA enthält, wie bereits erwähnt, keine Emissionsansätze für PM_{10} - und $PM_{2.5}$ - Emissionen durch Aufwirbeln von Staub von Straßen, Reifenabrieb sowie Kupplungs- und Bremsverschleiß. Hierauf wird in den Kapiteln 4.2.4 und 4.2.5 näher eingegangen.

Aufgrund der Vielzahl von Parametern für eine Straße, der Verkehrsmengen, Fahrzustände und Flottenzusammensetzungen ist seit der Version 3.x des HBEFA der Aufwand, alle benötigten spezifischen Emissionsfaktoren für einen Straßenabschnitt manuell zu einem für den jeweils betrachten Straßenschnitt repräsentativen Emissionsfaktor zusammenzufassen stark angestiegen. Daher wird nachfolgend auf das Emissionsmodell IMMIS^{em} (Version 7.001, Juni 2017) zurückgegriffen, welches die Emissionsfaktoren des HBFEA 3.3 vollständig enthält und diese unter Berücksichtigung weiterer Aspekte für einen Straßenabschnitt zusammenstellt.

4.2.3 Emissionsmodell IMMISem

4.2.3.1 Einleitung

Dem Emissionsmodell IMMIS^{em} in der jeweils aktuellen Fassung [14] liegen die spezifischen Emissionsfaktoren des HBEFA in der jeweils aktuellen Fassung zugrunde.

4.2.3.2 Kraftfahrzeugflottenzusammensetzung

Zur Berechnung eines Emissionsfaktors eines Luftschadstoffes sind Angaben zum Bezugsjahr der zu erstellenden Luftschadstoffberechnung, das Prognosejahr, erforderlich, da die Zusammensetzung der Kraftfahrzeugflotte sich in Abhängigkeit des Prognosejahres aufgrund von Gesetzgebung zu Emissionshöchstgrenzen ständig verändert. Neuere Fahrzeuge mit höheren Abgasnormen ersetzen dabei zunehmend alte Fahrzeuge, was insgesamt zu einer Abnahme des Luftschadstoffausstoßes der Gesamtflotte führt. Bei gleicher Anzahl von Kraftfahrzeugen in gleicher Zusammensetzung von PKW, LNFz und SNFz, sinken die Emissionen der Gesamtflotte somit von Jahr zu Jahr.

Den Emissionsberechnungen liegt die Standardfahrzeugflotte des HBEFA zugrunde (BAU – Business as usual). Grundsätzlich kann die Flottenzusammensetzung vollständig verändert und so an eine Fahrzeugflotte angepasst werden, welche real im Untersuchungsgebiet verkehrt. Da die in einem Untersuchungsgebiet real vorliegende Flotte, die sogenannte dynamische Flottenzusammensetzung, aber nur durch technisch und insbesondere datenschutzrechtlich sehr aufwendige Kennzeichenerfassungen ermitteln lässt, und diese Flotte dann auch nur für genau diesen Straßenabschnitt repräsentativ ist, liegen solche Daten in der Regel nicht vor. Daher erfolgt die Berechnung der Luftschadstoffemissionen üblicherweise mit der Standardfahrzeugflotte des HBEFA.

Die Standardfahrzeugflotte des HBEFA berücksichtigt keine Flottenveränderungen durch Fahrverbote innerhalb von Umweltzonen. Das Emissionsmodell bietet hier die Möglichkeit Fahrverbote spezifisch für die geltende Umweltzonenregelung zu definieren und diese gezielt für einzelne Straßenabschnitte zu aktivieren. Hierdurch können auch Grenzbereiche von Umweltzonen in denen Abschnitte dann außerhalb der Umweltzone liegen, sowie Autobahnen auf denen in der Regel ebenfalls keine Fahrverbote gelten, berücksichtigt werden.

Bei der Definition von Fahrverboten werden Fahrzeugschichten gemäß ihrer Abgasnorm (z.B. EURO 2) und Fahrzeugart (Pkw; SNFz usw.) aus der Gesamtflotte herausgenommen und durch neue Fahrzeuge ersetzt, sodass die bestehenden Verhältnisse zwischen den zulässigen Fahrzeugschichten mit ausreichenden Abgasnormen erhalten bleiben.

4.2.3.3 Verkehrsqualität (Level of Service)

Im Verlauf eines Tages liegen auf einem innerstädtischen Straßenabschnitt in der Regel verschiedene Verkehrsqualitäten (Level of Service, kurz LOS) vor. Diese wird mit den vier Stufen "freier Verkehr" (LOS1), "dichter Verkehr" (LOS2), "gesättigter Verkehr (LOS3) und "Stop&Go" (LOS4) im HBEFA 3.3 berücksichtigt. Mit höherem Level of Service, also abnehmender Verkehrsqualität nehmen die Luftschadstoffemissionen, also der Luftschadstoffausstoß der Kraftfahrzeuge, zu.

Das HBEFA definiert im Gegensatz zum "Handbuch für die Bemessung von Straßenverkehrsanlagen" (HBS, Ausgabe 2015, Teil S - Stadtstraßen) nur vier statt sechs Qualitätsstufen. Im Rahmen von Verkehrsuntersuchungen zur Leistungsfähigkeit von Straßenabschnitten werden die Qualitätsstufen gemäß HBS angewendet. Um diese mit den Qualitätsstufen des HBEFA zu vergleichen, werden die Qualitätsstufen gemäß HBEFA und HBS mit Ihren Definitionen in der nachfolgenden Tabelle 4.2 gegenübergestellt.

Tabelle 4.2: Qualitätsstufen des Verkehrsablaufs gemäß HBEFA und HBS

HBEFA - Level of Service (LOS) HBS - Qualität des Verkehrsablaufs (QSV) Flüssig – frei und stetig fließender Verkehr, A – Die Kraftfahrer werden im fließenden Verkehr äu-Konstante, eher hohe Geschwindigkeit, Ge-Bert selten von anderen Kraftfahrern beeinflusst. Die schwindigkeitsbandbreiten: 90 bis >130 km/h Verkehrsdichte ist sehr gering. Störungen aus der Erauf Autobahnen, 45-60 km/h auf Straßen mit schließungsfunktion sind unerheblich. Die Bewe-Tempolimit von 50 km/h. Verkehrsqualität A-B gungsfreiheit der Kraftfahrer ist nicht eingeschränkt. gemäß HCM (Highway Capacity Manual). Der Verkehrsfluss ist frei. **B** - Die Anwesenheit anderer Kraftfahrzeuge im flie-Benden Verkehr macht sich bemerkbar. Störungen aus der Erschließungsfunktion schränken die Bewegungsfreiheit der Kraftfahrer nur unerheblich ein. Der Verkehrsfluss ist nahezu frei. C - Die individuelle Bewegungsmöglichkeit der Kraft-<u>Dicht</u> – flüssiger Verkehrsfluss bei starkem Verkehrsvolumen, vergleichsweise konstante fahrer hängt in erhöhtem Maße vom Verhalten der üb-Geschwindigkeit, Geschwindigkeitsbandbreirigen Kraftfahrer im fließenden Verkehr ab. Störungen ten: 70-90 km/h auf Autobahnen, 30-45 km/h aus der Erschließungsfunktion machen sich deutlich auf Straßen mit Tempolimit 50 km/h. Verbemerkbar. Die Bewegungsfreiheit ist spürbar eingekehrsqualitätsstufen C-D gemäß HCM schränkt. Der Verkehrszustand ist stabil. (Highway Capacity Manual). **D** - Der Verkehrsablauf im fließenden Verkehr ist gekennzeichnet durch hohe Verkehrsstärken und erhebliche Störungen aus der Erschließungsfunktion. Dies schränkt die Bewegungsfreiheit deutlich ein. Es treten ständige Interaktionen zwischen den Kraftfahrern auf bis hin zu gegenseitigen Behinderungen. Der Verkehrszustand ist noch stabil. Gesättigt – unstetiger Verkehrsfluss mit star- E – Es treten ständig gegenseitige Behinderungen

ken Geschwindigkeitsschwankungen bei gesättigtem / gebundenem Verkehrsfluss, erzwungene Zwischenstopps möglich, Geschwindigkeitsbandbreiten: 30-70 km/h auf Autobahnen, 15-30 km/h auf Straßen mit Tempolimit 50 km/h. Verkehrsqualitätsstufe E gemäß HCM (Highway Capacity Manual).

zwischen den Kraftfahrern im fließenden Verkehr auf. Eine Bewegungsfreiheit ist nur noch in sehr geringem Umfang gegeben. Geringfügige Zunahmen der Verkehrsstärke oder der Störungen aus der Erschlie-Bungsfunktion können zu Staubildung und Stillstand führen. Der Verkehrszustand ist instabil. Für die betrachtete Fahrtrichtung wird die Kapazität der Strecke erreicht.

Stop+Go - starke Stauerscheinungen bis Verkehrszusammenbruch, Geschwindigkeitsschwankungen bei allgemeinen tiefer Geschwindigkeit. Geschwindigkeitsbandbreiten: Straßen mit Tempolimit 50 km/h.

<u>F</u> - Die Nachfrage ist in der betrachteten Richtung größer als die Kapazität. Der Verkehr bricht zusammen, d.h. es kommt stromaufwärts zum Stillstand und Stau im Wechsel mit Stop-and-go-Verkehr. Diese 5-30 km/h auf Autobahnen, 5-15 km/h auf Situation löst sich erst nach einem deutlichen Rückgang der Verkehrsnachfrage wieder auf. Die Strecke ist in der betrachteten Richtung überlastet.

Die Verkehrsqualität in einem Straßenabschnitt hängt dabei von der Gebietseinstufung (ländlich oder städtisch), dem Straßentyp, der Anzahl vorhandener Fahrstreifen, dem Tagesgang, der Verkehrsmenge mit Schwerverkehrsanteil und einem Wichtungsfaktor für schwere Nutzfahrzeuge ab. Diese Faktoren bestimmen, welche die Kapazität ein Straßenabschnitt in Fahrzeugen pro Stunde und Fahrstreifen hat. In Abhängigkeit von Schwellenwerten, welche weiter nach innerorts (IO), außerorts (AO) und Autobahn (AB) klassifiziert sind, ergeben sich die Kapazitäten bei deren Überschreitung die Verkehrsqualität in den nächsten LOS wechselt.

Im Emissionsmodell liegen hierzu entsprechende Angaben zu Kapazitäten, Schwellenwerten und Tagesgängen vor. Für Tagesgänge stehen die vier standardisierten Tagesgänge "small peak", "doublepeak", wide peak" und "no peak" zur Verfügung. Diese beschreiben im wesentlichen das Auftreten keiner, einer oder zweier ausgeprägter Verkehrsspitzen im Tagesverlauf. Im Falle von Einfall- und Ausfallstraßen einer Stadt sind diese Tagesgänge, falls keine ausgeprägte Doppelspitze vorliegt, den Fahrtrichtungen aus bzw. in die Stadt entsprechend zuzuordnen, falls z.B: morgens deutlich mehr Pendler eine Stadt verlassen als in die Stadt einfahren und abends umgekehrt. Grundsätzlich können auch reale Tagesgänge aus entsprechenden Verkehrserfassungen im Untersuchungsgebiet berücksichtigt werden.

Aus den oben beschriebenen Eingangsdaten ergibt sich schlussendlich der Anteil der Fahrzeuge pro Tag, welche sich auf einem Straßenabschnitt mit einer bestimmten Verkehrsqualität bewegen. Je Verkehrsqualität steht wiederum ein bereits gemäß der Flottenzusammensetzung usw. zusammengefasster Emissionsfaktor zur Verfügung, welcher dann gemäß den Anteilen am LOS weiter zusammengefasst wird.

4.2.3.4 Kaltstartzuschläge

Ein Kraftfahrzeug stößt, nachdem es ab- bzw. ausgekühlt ist, mehr Luftschadstoffe aus als nach Erreichen der Betriebstemperatur. Im Durchschnitt ist davon auszugehen, dass ein Fahrzeug erst nach einer Standzeit von 8 Stunden vollständig ausgekühlt, bzw. der Außentemperatur angeglichen ist.

Je nach Standzeit, Außentemperatur und Fahrstrecke (z.B. nur innerstädtisch oder nach kurzer Zeit auf der Autobahn) ist die Betriebstemperatur nach kürzerer oder längerer Zeit bzw. Fahrstrecke erreicht. Die Differenz zwischen den erhöhten Emissionen während des Erreichens der Betriebstemperatur und den Emissionen im betriebswarmen Zustand wird als Kaltstartzuschlag bezeichnet. Maßgeblich für den erhöhten Luftschadstoffausstoß ist die Aufheizphase des Katalysators, welcher erst nach der Aufheizphase seine vollständige Reinigungsleistung erreicht.

Otto-Fahrzeuge ohne Katalysator können zu Beginn der Fahrt weniger Stickoxide (NO_x) ausstoßen als bei betriebswarmem Zustand, da die hier niedrigere Verbrennungstemperatur dann zu geringeren NO_x-Emissionen führt (negativer Kaltstartzuschlag). Solche Fahrzeuge sind in der Kraftfahrzeugflotte in Deutschland aber praktisch nicht mehr vorhanden.

Das HBEFA stellt Kaltstartzuschläge in [g/Start] differenziert nach Luftschadstoffen und Emissionskonzepte und weiter aufgeteilt nach Fahrtweite, Standzeit und Temperatur zur Verfügung.

Für das Emissionsmodell IMMIS^{em} wurden diese gemäß VDI 3782 Blatt 7 [11] basierend auf Fahrtweitenverteilungen, Standzeitenverteilungen, Verkehrsverteilungen und Temperaturganglinien in [g/km] umgerechnet. Hieraus ergeben sich jeweils Kaltstartfaktoren für die drei funktionalen Straßentypen "Wohn-; residential", "Geschäfts-; commercial" und "Einfallstraßen; radial Streets".

4.2.4 Zusätzliche PM₁₀-Emissionsfaktoren Straßenverkehr

Da im HBEFA selbst keine Angaben zu Emissionsfaktoren für Partikelemissionen (PM₁₀) durch Reifen- und Straßenabrieb, sowie Bremsbelags- und Kupplungsverschleiß enthalten sind, wird bei der Emissionsberechnung mit IMMIS_{em} für diese Emissionsbeiträge auf Literaturansätze [18] zurückgegriffen. Darin wurden die in der nachfolgenden Tabelle 4.3 zusammengestellten Emissionsfaktoren für Aufwirbeln und Abrieb entwickelt.

Tabelle 4.3: Spezifische PM₁₀-Emissionsfaktoren für Aufwirbelung und Abrieb (AWAR) in Abhängigkeit der Verkehrssituation, unabhängig von einem Bezugsjahr

Verkehrssituation gemäß HBEFA 3.3	Pkw und LNF	Lkw
	[mg/km]	[mg/km]
Alle ländlichen VS unabhängig vom Tempolimit und LOS	30	130
Agglo/AB/; Agglo/Semi-AB/ unabhängig vom Tempolimit und LOS	30	130
Agglo/HVS/xx/flüssig unabhängig von Tempolimit	26	100
Agglo/HVS/xx/dicht unabhängig von Tempolimit	33	350
Agglo/HVS/xx/gesättigt unabhängig von Tempolimit	35	500
Agglo/HVS/xx/StGo unabhängig von Tempolimit	45	1200
Agglo/Sammel/xx/flüssig unabhängig von Tempolimit	26	100
Agglo/Sammel/xx/dicht unabhängig von Tempolimit	33	350
Agglo/Sammel/xx/gesättigt unabhängig von Tempolimit	40	700
Agglo/Sammel/xx/StGo unabhängig von Tempolimit	45	1200
Agglo/Erschließung/30/flüssig	26	280
Agglo/Erschließung/40/flüssig	30	320
Agglo/Erschließung/xx/flüssig für Tempolimit größer/gleich 50km/h	33	350
Agglo/Erschließung/xx/dicht unabhängig vom Tempolimit	35	500
Agglo/Erschließung/xx/gesättigt unabhängig vom Tempolimit	45	1200
Agglo/Erschließung/xx/StGo unabhängig vom Tempolimit	45	1200
Agglo/Fernstraße-City/xx/flüssig unabhängig vom Tempolimit	26	100
Agglo/Fernstraße-City/xx/dicht unabhängig vom Tempolimit	33	350
Agglo/Fernstraße-City/xx/gesättigt unabhängig vom Tempolimit	40	700
Agglo/Fernstraße-City/xx/StGo unabhängig vom Tempolimit	45	1200

Unter Verwendung der o.g. PM_{10} -Emissionsfaktoren für Abrieb und Aufwirbelung, die zu den Emissionen aus dem Auspuff hinzugerechnet werden, lassen sich PM_{10} -Zusatzemissionen ermitteln.

4.2.5 Zusätzliche PM_{2,5}-Emissionsfaktoren Straßenverkehr

Durch Reifenabrieb, Brems- und Straßenabrieb entstehen auch zusätzliche PM_{2,5}-Emissionen. Gemäß dem Emission Inventory Guidebook der EMEP [19] lassen die Emissionsfaktoren für Feinstaub PM_{2,5} in Abhängigkeit von der Art des Abriebs, der Geschwindigkeit, der Fahrzeugklasse und dem Beladungsgrad ermitteln.

4.3 Emissionen aus dem Straßenverkehr

Bei der Berechnung der Emissionen der zu untersuchenden Straßen gehen zusätzlich zu den Verkehrsdaten (DTV und Lkw-Anteil) weitere Faktoren wie die Straßenneigung, Fahrzustände, Kaltstartfaktoren und Tagesgänge, sofern vorhanden ein. Liegen einzelne Angaben nicht vor, so werden für die jeweilige Situation geeignete typisierte Angaben verwendet.

Grundlage für die Berechnung der Schadstoffemissionen der das Plangebiet umgebenden Straßen sind Verkehrsmengen gemäß dem Verkehrsgutachten zum Bebauungsplan mit Berücksichtigung der Bestandszahlen und der Prognosen [33][34].

Für den **Analysefall 2015** wird die derzeitige Verkehrsbelastung unter Berücksichtigung der heutigen Straßenführung (ohne Verlängerung der Moskauer Allee) angesetzt [33][34].

Für den **Nullfall 2020** werden die Verkehrsmengen der zukünftigen Verkehrsbelastung ohne Planvorhaben, aber mit Verlängerung der Moskauer Straße und ohne Realisierung der Ortsumgehung Oberbilk angesetzt [34].

Für die beiden Planfälle werden zwei verschiedene verkehrliche Situationen untersucht:

Zum einen wird der **Planfall 2020** "**Basisszenario**", welcher die zukünftige Verkehrsbelastung mit Berücksichtigung der Zusatzverkehre des Planvorhabens nach Realisierung der Ortsumgebung Oberbilk darstellt [33][34] und zum anderen der **Planfall 2020** "**Szenario 1a**", welcher die zukünftige Verkehrsbelastung mit Berücksichtigung der Zusatzverkehre durch das Planvorhaben sowie die Verlängerung der Moskauer Straße, aber <u>ohne</u> Realisierung der Ortsumgebung Oberbilk darstellt [34], untersucht.

In Abstimmung mit dem Umweltamt der Landeshauptstadt Düsseldorf wird auf allen Straßenabschnitten ein pauschaler Anteil von leichten Nutzfahrzeugen (LNFz) von 5% berücksichtigt. Mangels fehlender Angaben wird auf allen Straßenabschnitten ein pauschaler Anteil von schweren Nutzfahrzeugen (SNFz) von 3,5 % berücksichtigt.

Das Untersuchungsgebiet liegt innerhalb der Umweltzone Düsseldorf [28]. Für Umweltzone gilt seit dem 01.07.2014 die Stufe 3 (nur noch Fahrzeuge mit grünen Plaketten dürfen in die Umweltzone einfahren). Die sich hieraus ergebenden Veränderungen der Flottenzusammensetzung und somit der Luftschadstoffemissionen werden bei der Ermittlung der Emissionen entsprechend berücksichtigt.

Die sich ergebenden Verkehrsmengen und Emissionen sind in der Anlage 2.2 für den "Analysefall 2015", den "Nullfall 2020" und die beiden "Planfälle 2020" (Basisszenario und Szenario 1a) dargestellt.

4.4 Emissionen der DB-Strecken

Die Emissionsdaten der im Untersuchungsgebiet verlaufenden Strecken der DB AG in Düsseldorf wurden vom Umweltzentrum der Deutschen Bahn AG ermittelt [35][36]. Die Emissionsdaten beziehen sich auf den Fahrplan des Jahres 2013.

Da durch das Umweltzentrum der Deutschen Bahn AG zurzeit noch keine Emissionsdaten für zukünftige Fahrpläne zur Verfügung gestellt werden können, werden die unten genannten Emissionsansätze des Jahres 2013 unverändert auch für das Prognosejahr 2020 verwendet.

Die Feinstaubemissionen des Schienenverkehrs (Abgasemissionen und Emissionen durch Fahrtdraht-, Brems- und Rad- / Schienenkontaktabrieb) fallen zu 100% in die Fraktion PM_{10} , ohne Anteile in der Fraktion $PM_{2,5}$. Für Benzol (C_6H_6) liegen keine Emissionsdaten bzw. Emissionen vor.

Tabelle 4.4: Luftschadstoffemissionen der DB-Strecken nördlich des HBF Düsseldorf [35]

	Emission [g/m*Tag]						
Strecke	NO _x	PM ₁₀					
	Abgas	Abgas	Abrieb				
2525_KD_KDFL (2 Gleise)	5,317	0,151	0,251				
2550_KD_KFO (2 Gleise)	0,171	0,004	0,141				
2650_KD_KDFF (2 Gleise)	0,105	0,002	0,853				
2416_GLW2_GLW3 (1 Gleis)	0,139	0,002	0,057				
2400_KD_KDW (2 Gleise)	0,076	0,001	0,477				
2670_KD_GLW7 (1 Gleis)	0,137	0,002	0,372				

Tabelle 4.5: Luftschadstoffemissionen der DB-Strecke östlich des Plangebietes [36]

		Emission [g/m*Tag]		
Strecke	NO _x	PM ₁₀		
	Abgas	Abgas	Abrieb	
2411_KDRE_KDL (1 Gleis)	0,470	0,014	0,078	

Die Emissionen wurden im digitalen Simulationsmodell als Linienquellen mit einer Höhe von 0,6m über Bahndamm für die Emissionen durch den Abrieb und 4,0m über Grund für die Abgasemissionen modelliert und ggfs. auf mehrere Gleise (Linienquellen) aufgeteilt.

Die Lage der Gleise der einzelnen Strecken ist in Anlage 1.2 dargestellt.

In den Anlagen der Gesamtbelastungen für Feinstaub (PM₁₀) und Stickstoffdioxid (NO₂) sind diese Zusatzimmissionen entsprechend mit berücksichtigt worden.

5 Weitere Eingangsdaten und Modellbildung

5.1 Meteorologiedaten

Die Windstatistiken der DWD-Station Düsseldorf-Flughafen des Jahres 2003 ist für das Untersuchungsgebiet repräsentativ zur Berechnung des Windfeldes. Die Station liegt in ebenem Gelände am Flughafen von Düsseldorf. Die Messstelle (Anemometerhöhe 10 m) ist unverbaut.

Die Kenngrößen der Windgeschwindigkeiten wurden auf Grundlage kontinuierlicher Windgeschwindigkeitsmessungen an der Station Düsseldorf-Flughafen des DWD ermittelt. Für die Immissionsprognose wurden Messreihen mit jeweils Einstunden-Mittelwerten in Windrichtungssektoren à 10° ausgewertet und deren Häufigkeiten ermittelt.

Die Häufigkeitsverteilungen der Windrichtungen und Windgeschwindigkeiten sind in der folgenden Abbildung 5.1 dargestellt. Es dominieren südwestliche, südöstliche und nordöstliche Windrichtungen bei einer mittleren Windgeschwindigkeit von ca. 3,8 m/s (Jahresmittelwert).

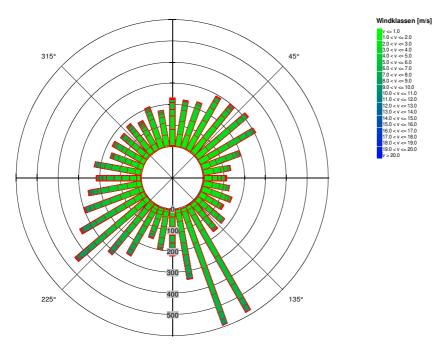


Abb. 5.1: Häufigkeitsverteilung der Windrichtungen und Windgeschwindigkeiten an der DWD-Station 10400 Düsseldorf-Flughafen des Jahres 2003 [22]

Anemomenterhöhe: 10m über Gelände; Datenquelle: DWD

5.2 Hintergrundbelastung

Die Schadstoffkonzentration an einem Immissionsort (Aufpunkt) setzt sich aus der großräumig vorhandenen sogenannten Hintergrundbelastung und der Zusatzbelastung aus lokalem Verkehr zusammen.

Die Hintergrundbelastung wiederum setzt sich zusammen aus den Immissionen von Industrie/Gewerbe, Hausbrand und häuslichen Schadstoffimmissionen sowie außerhalb des Untersuchungsraumes liegendem Verkehr und weitläufigem Schadstofftransport. Die Hintergrundbelastung ist also diejenige Belastung, die ohne die bei der Modellbildung berücksichtigten Straßen im Untersuchungsraum vorliegen würde.

Der Ansatz der Hintergrundbelastung hat eine bedeutende Auswirkung auf die Ergebnisse der Immissionsuntersuchung, da insbesondere bei Stickstoffdioxid und PM₁₀ im innerstädtischen Bereich bereits mehr als die Hälfte der zulässigen Immissionen gemäß 39. BImSchV durch die Hintergrundbelastung vorliegt.

Messdaten zur (Hintergrund)-Belastung an einer Vielzahl von Messstationen in NRW liegen durch das Luftqualitätsmessnetz (LUQS) des Landesamtes für Natur, Umwelt und Verbraucherschutz (LANUV) vor [23]. Die statistischen Kenngrößen der verkehrsrelevanten Schadstoffe werden regelmäßig veröffentlicht. Eine Aufstellung der Jahreskenngrößen von Messstationen im näheren Umfeld von Düsseldorf ist in Tabelle 5.1 dargestellt.

Bei Luftmessstationen wird in Hintergrundmessstationen und Verkehrsstationen unterschieden. Während die Schadstoffsituation an den Hintergrundstationen stark durch die o.g. großräumig vorhandene Vorbelastung bestimmt wird, kommen bei den Verkehrsstationen hohe Immissionsbeiträge der angrenzenden, stark befahrenen Straßen hinzu.

Allgemein wird für die Zukunft davon ausgegangen, dass sich aufgrund von technischen Minderungsmaßnahmen die Schadstoff-Gesamtemissionen und somit auch die Hintergrundbelastung verringern werden. Die Quantifizierung dieser zu erwartenden Verringerung der Hintergrundbelastung ist jedoch mit Ungenauigkeiten verbunden.

Tabelle 5.1: EU-Jahreskenngrößen gemessener Schadstoffkonzentrationen an LUQS-Messstationen des LANUV NRW, 2003 – 2015; [23]

			Anzahl Tage			
Messstation /Quelle	Jahr	JMW NO ₂	JMW Benzol	JMW PM _{2,5}	JMW PM ₁₀	mit Mittelwert PM ₁₀ > 50 μg/m ³
Düsseldorf-	2003	44	1.9	-	30	31
Reisholz	2004	39	-	-	26	21
0.4	2005	38	1,4	-	26	22
(Vorstädtische Hintergrundstation)	2006	-	-	-	28*	_*
Timergrandstation)	2007	-**	-**	_**	-**	_**
	2006	28	-	-	24	14
	2007	27	-	-	24	13
	2008	30	-	-	24	10
Düsseldorf-	2009	31	-	17	24	9
Lörick	2010	30	-	18	25	12
(Städtische	2011	28	-	17	25	21
Hintergrundstation)	2012	27	-	15	23	15
	2013	28	-	16	23	8
	2014	27	-	14	19	6
	2015	25	-	13	19	7
	2006	-	-	-	25	16
	2007	-	-	-	24	18
	2008	-	-	-	23	10
Krefeld-	2009	-	-	-	22	13
Linn	2010	-	-	-	23	9
(Städtische	2011	-	-	-	26	25
Hintergrundstation)	2012	-	-	-	21	12
	2013	-	-	-	25	13
	2014	-	-	-	16	5
	2015	-	-	-	16	5
	2006	32	-	-	23	14
	2007	32	-	-	23	15
	2008	32	-	-	21	7
Ratingen-	2009	33	-	-	22	11
Tiefenbroich	2010	31	-	-	22	11
(Vorstädtische	2011	29	-	-	23	19
Hintergrundstation)	2012	29	-	-	23	19
	2013	26	_	-	20	8
	2014	26	-	-	16	5
	2015	26	-	-	16	5

^{*} Kein vollständiges Messjahr; ** Keine automatische Messung mehr seit 2007

Für die Ermittlung der regionalen Hintergrundbelastung für das Untersuchungsgebiet wird unter anderem auf die im Luftreinhalteplan 2013 der Stadt Düsseldorf [28] dargestellten Daten zum regionalen Hintergrundniveau zurückgegriffen. Diese beziehen sich auf das Jahr 2010 und wurden aus den Mittelwerten der Messwerte der LUQS-Stationen Wesel, Hattingen, Datteln, Düsseldorf-Lörick, Köln-Chorweiler und Hürth gebildet.

Wird das regionale Hintergrundniveau analog aus aktuellen Messwerten ermittelt, zeigt sich eine Abnahme der Luftschadstoffbelastung, welche sich auch allgemein in den Messwerten widerspiegelt (siehe Tabelle 5.2). Der regionale Hintergrund bildet diejenige Luftschadstoffbelastung ab, welche ohne die Stadt Düsseldorf vorhanden wäre. Für eine Luftschadstoffimmissionsberechnung im Stadtgebiet von Düsseldorf ist daher die urbane Hintergrundbelastung notwendig, welche zusätzlich die Luftschadstoffimmissionen aus dem nicht lokalen Straßenverkehr, dem Hausbrand, dem Gewerbe und der Industrie, Offroad-Verkehren, dem Schienenverkehr und der Luftfahrt usw. enthält.

Der Luftreinhalteplan 2013 [28] macht keine direkten Angaben mehr zur urbanen Hintergrundbelastung für Düsseldorf. Daher wird dieser hier analog der Vorgehensweise aus dem Luftreinhalteplan 2009 der Stadt Düsseldorf [27] aus den aktuellen Messwerten der LUQS-Stationen Düsseldorf-Lörick, Ratingen-Tiefenbroich und Krefeld-Linn gebildet.

Auch im Jahr 2015 spiegelt sich der bereits im Jahr 2014 beobachtete überproportionale Rückgang der Messwerte und Trends gegenüber den Vorjahren für Feinstaub (PM₁₀ und PM_{2,5}) auf gleichem Niveau wie 2014 wieder. Somit ist nun davon auszugehen, dass dieser deutliche Rückgang in 2014 kein statistischer Ausreißer war. Der stagnierende bzw. leicht abnehmende Trend für Stickstoffdioxid (NO₂) bleibt erhalten [23].

Um jedoch allgemein eine höhere Sicherheit bei der Ermittlung der Luftschadstoffhintergrundbelastung zu erreichen, werden nachfolgend in Abstimmung mit dem Umweltamt der Landeshauptstadt Düsseldorf, die Messwerte der jeweils letzten drei Jahre für die oben angegebenen Messstationen arithmetisch gemittelt und als Bezugsjahr das jeweils mittlere Jahr berücksichtigt.

Tabelle 5.2: Luftschadstoffhintergrundbelastung und Bezugsjahr für das Plangebiet

Jahresmittelwert [μg/m³]	PM _{2,5}	PM ₁₀	NO ₂
Regionale Hintergrundbelastung 2010 [28]	-	24	26
Regionale Hintergrundbelastung 2015 analog zu [28]	14,0	17,7	21,3
Regionale Hintergrundbelastung 2013-2015 (2014)	15,2	19,1	22,4
Urbane Hintergrundbelastung 2005 [27]	-	22	30
Urbane Hintergrundbelastung 2015 analog zu [27]	13,0	17,0	25,5
Urbane Hintergrundbelastung 2013-2015 (2014)	14,3	18,9	26,3

Da die urbane Hintergrundbelastung definitionsgemäß die regionale Hintergrundbelastung und zusätzlich die nicht lokale städtische Luftschadstoffausbelastung enthält, liegen die Jahresmittelwerte der urbanen Hintergrundbelastung über den Jahresmittelwerten der regionalen Hintergrundbelastung. Dies ist gemäß Tabelle 5.2 nicht für alle Jahre und Luftschadstoffe der Fall. Dies liegt darin begründet, das für die Ermittlung der regionalen Hintergrundbelastung gemäß den Luftreinhalteplänen von 2009 [27] und 2013 [28] Messwerte von zum Teil verschiedenen Messstationen verwendet wurden.

Zur Ermittlung der urbanen Hintergrundbelastung für das Prognosejahr 2020 wird, wie bereits beschrieben, die urbane Hintergrundbelastung der Jahre 2013-2015 mit dem Bezugsjahr 2014 mit in RLuS 2012 [30] hinterlegten Reduktionsfaktoren für Groß- und Mittelstädte hochgerechnet. Die sich hieraus ergebende urbane Hintergrundbelastung für das Prognosejahr 2020 ist in der folgenden Tabelle 5.3 wiedergegeben.

Tabelle 5.3: Luftschadstoffhintergrundbelastung und Bezugsjahr für das Plangebiet

Jahresmittelwert [μg/m³]	PM _{2,5}	PM ₁₀	NO ₂	C ₆ H ₆
Regionale Hintergrundbelastung 2010 [28]	-	24	26	-
Regionale Hintergrundbelastung 2015 analog zu [28]	14,0	17,7	21,3	-
Regionale Hintergrundbelastung 2013-2015 (2014)	15,2	19,1	22,4	
Urbane Hintergrundbelastung 2005 [27]	-	22	30	1,4*
Urbane Hintergrundbelastung 2015 analog zu [27]	13,0	17,0	25,5	-
Urbane Hintergrundbelastung 2013-2015 (2014)	14,3	18,9	26,3	
Urbane Hintergrundbelastung 2020 auf Basis (2014)	13,4	17,7	21,8	1,2

^{*} Für Benzol liegen keine Angaben im Luftreinhalteplan vor, daher wird auf den letzten Messwert der Messstation Düsseldorf-Reisholz aus dem Jahr 2005 zurückgegriffen und dieser für 2020 von 2005 aus hochgerechnet.

5.3 Berechnungsmodell

Die Berechnung der Schadstoffimmissionen für das Plangebiet und die Umgebung wurde mit dem Rechenmodell MISKAM (<u>Mikroskaliges Ausbreitungsmodell</u>, Version 6.3 von November 2013) in der 64-Bit-Version durchgeführt. Dieses Ausbreitungsmodell wird an der Universität Mainz entwickelt bzw. weiterentwickelt und entspricht dem aktuellen Wissensstand der mikroskaligen Strömungs- und Ausbreitungssimulation.

Bei der Modellbildung wird das zu untersuchende Rechengebiet in quaderförmige Rechenzellen unterteilt. Die Ergebnisdarstellung erfolgt für das interessierende zentrale Rechengebiet (Untersuchungsraum), während die Windfeldsimulation darüber hinaus auch für ein so genanntes äußeres Rechengebiet durchgeführt wird, um die Rand- und Übergangsbedingungen abbilden zu können.

Durch Gebäude blockierte Zellen werden als Strömungshindernisse undurchlässig abgebildet, sodass auch der Einfluss von Gebäuden etc. berücksichtigt werden kann. Durch die Wahl des äußeren Rechengebietes mit einer deutlich größeren Abmessung als das innere Rechengebiet wird die Unabhängigkeit der Modellergebnisse von der Gebietsgröße erreicht.

Das innere Rechengebiet hat eine Ausdehnung von 450,0 x 450,0 Metern mit einem äquidistanten Raster von 1,5 x 1,5 Metern, das äußere Rechengebiet hat eine Ausdehnung von ca. 1260 x 1260 Metern.

In vertikaler Richtung besteht der Modellraum aus 44 mit zunehmender Höhe mächtiger werdenden Schichten bis zur Modelloberkante in ca. 500 Meter Höhe gemäß der Anforderungen an die Modellentwicklung. Die Schichten in Bodennähe werden hierbei fein aufgelöst.

Ein Lageplan des Berechnungsmodells für den Analysefall mit Darstellung der berücksichtigten Gebäude ist in der Anlage 1.3 sowie in den Ergebnisdarstellungen der einzelnen Immissionsberechnungen dargestellt.

Lagepläne der Berechnungsmodelle für den Nullfall und die beiden Planfälle für das Plangebiet mit Darstellung der berücksichtigten Gebäude sind in den Anlagen 1.4 und 1.5 sowie in den Ergebnisdarstellungen der einzelnen Immissionsberechnungen dargestellt.

6 Durchführung der Immissionsprognose

6.1 Allgemeine Hinweise

Die Ermittlung der Schadstoffimmissionen für die untersuchten Schadstoffe erfolgt auf der Basis von Einzelsimulationen, bei denen die jeweils mittlere stündliche Verkehrs- und Emissionsstärke zugrunde gelegt wird. Dabei werden für jeden der untersuchten Windrichtungssektoren zu 10° alle vorliegenden Windgeschwindigkeitsklassen berücksichtigt.

In einem ersten Berechnungsschritt wird für die Einzelsimulationen das Wind- und Turbulenzfeld im inneren und äußeren Rechengebiet iterativ errechnet. Daran schließt sich für jede Einzelsimulation die Berechnung der Immissionen der jeweiligen Schadstoffe in einer Ausbreitungsrechnung an.

Die Jahresmittelwerte der verkehrsbedingten Zusatzbelastungen werden durch Auswertung der Häufigkeiten der auftretenden Ereignisse (Kombination aus Windrichtung, Windgeschwindigkeit und Emissionsbedingung) mit den berechneten Schadstoffimmissionen statistisch ermittelt. Zu dieser Zusatzbelastung wird die Hintergrundbelastung hinzugezogen, sodass sich die Gesamtbelastung ergibt, die mit den Immissionsgrenzwerten der 39. BImSchV verglichen wird.

6.2 Vorgehensweise Beurteilung Kurzzeitbelastungen

Als Kriterium zur Überprüfung der Kurzzeitbelastung für PM_{10} gibt die 39. BImSchV einen 24-Stunden-Grenzwert von 50 μ g/m³ vor, der nicht öfter als 35-mal im Jahr überschritten werden darf. Dies entspricht in etwa dem 90-Perzentil-Wert. Da die deutlich vom Abrieb und der Aufwirbelung bestimmten Emissionsansätze für PM_{10} sowie die zur Verfügung stehenden Vorbelastungsdaten jedoch nur Abschätzungen darstellen, können mit den zurzeit zur Verfügung stehenden PM_{10} -Emissionsmodellen Tagesmittelwerte nicht verlässlich prognostiziert werden.

Gemäß einer Vorgehensweise aus einem Bericht der Bundesanstalt für Straßenwesen [17], dem die Auswertung von Messstellendaten zugrunde liegt, besteht eine gute Korrelation zwischen der Anzahl der Tage mit einem Tagesmittelwert >50 $\mu g/m^3$ PM₁₀ und dem Jahresmittelwert PM₁₀. Anhand einer aus den Messauswertungen entwickelten Regressionsfunktion kann daher auf Basis des berechneten Jahresmittelwertes die Anzahl der Tage mit einem Tagesmittelwert >50 $\mu g/m^3$ PM₁₀ abgeschätzt werden.

Ausgehend von der "best fit"-Regressionsfunktion wird das Kurzzeitkriterium der 39. BImSchV (bis zu 35 Überschreitungstagen) eingehalten, wenn der PM₁₀-Jahresmittelwert

einen Wert von ca. 31 μ g/m³ nicht übersteigt. Ausgehend von der "best fit"-Regressionsfunktion, erhöht um die 1-fache Standardabweichung, kann mit hoher Wahrscheinlichkeit davon ausgegangen werden, dass das Kurzzeitkriterium der 39. BlmSchV (bis zu 35 Überschreitungstagen) erfüllt ist, wenn der PM₁₀-Jahresmittelwert einen Wert von 29 μ g/m³ nicht übersteigt.

Gemäß dem aktuellen Luftreinhalteplan Ruhrgebiet [26] wird ab einem Jahresmittelwert von 30 μ g/m³ mit hoher Wahrscheinlichkeit der Grenzwert von 35 Überschreitungstagen mit einem Tagesmittelwert >50 μ g/m³ PM₁₀ erreicht.

Bezüglich der NO_2 -Kurzzeitbelastung sieht die 39. BImSchV die Prüfung auf Überschreitung eines Stundenmittelwertes von 200 μ g/m³ an maximal 18 Stunden im Jahr vor. Dies entspricht in etwa einem 99,8-Perzentil-Wert.

Die Berechnung von Perzentilwerten der Gesamtbelastung ist bei rechnerischen Simulationen aber mit großen Unsicherheiten behaftet, da die Hintergrundbelastung, die einen großen Beitrag zur Gesamtimmission liefert, nur als Jahresmittelwert berücksichtigt werden kann.

Statistische Auswertungen von Messwerten an Dauermessstationen [21] haben aber zu einer Formel geführt, mit deren Hilfe die Wahrscheinlichkeit, dass der Stundenmittelwert NO $_2$ von 200 $\mu g/m^3$ an mehr als 18 h im Jahr auftritt, abgeschätzt werden kann. Grundlage bildet der Jahresmittelwert der Stickoxidimmissionen (NO $_x$). Dieses Verfahren wird im vorliegenden Fall angewendet.

Die Luftschadstoffkonzentrationen in einer bodennahen Schicht (h = 1,5m) werden flächendeckend ermittelt und in den Anlagen dargestellt. Darüber hinaus werden die Gesamtimmissionen der berechneten Schadstoffe für einzelne repräsentative Immissionsorte (vgl. Kennzeichnung in Anlagen) tabellarisch dargestellt. Die ausgewählten Immissionsorte zeigen die höchsten Immissionswerte oder die größten Veränderungen der Immissionen entlang der Bebauung auf.

7 Ergebnisse der Luftschadstoffausbreitungsberechnungen

7.1 Jahresmittelwerte Immissionen Feinstaub (PM₁₀)

Die Ergebnisse der Immissionsberechnungen der Jahresmittelwerte für Feinstaub (PM_{10}) für die ausgewählten Immissionsorte sind in der nachfolgenden Tabelle 7.1 zusammengestellt und in den Anlagen 3.1 bis 3.7 für den Analysefall, den Nullfall und die beiden Planfälle (Basisszenario und Szenario 1a) für das gesamte Untersuchungsgebiet mit Kennzeichnung der Lage der Immissionsorte dargestellt.

Tabelle 7.1: Jahresmittelwerte Feinstaub (PM₁₀)

Immissionsort			Jahresmittelwerte [µg/m³] Feinstaub (PM10)						
	Nr.	Beschreibung	IGW JMW	A 2015	N 2020	P_Bs 2020	P_S1a 2020	Delta P_Bs-N*	Delta P_S1a-N⁺
	1	Kölner Straße 146	40	20,5	19,4	19,8	19,4	0,4	0,0
	2	Kölner Straße 125	40	20,8	19,1	20,1	19,2	1,0	0,1
bunc	3	Mögliche Bebauung gemäß B-Plan Nr.5676 49	40	19,3	18,5	20,6	18,9	2,1	0,4
Umgebung	4	Mögliche Bebauung gemäß B-Plan Nr.5676 49	40	19,2	18,0	19,4	18,1	1,4	0,1
	5	Erkrather Straße 76a	40	20,4	19,4	18,1	19,4	-1,3	0,0
	6	Erkrather Straße 66	40	21,2	20,0	19,6	20,5	-0,4	0,5
	7	Erkrather Straße 30	40	21,4	20,1	19,4	20,6	-0,7	0,5
	8	Erkrather Straße 24	40	29,6	27,2	23,6	25,3	-3,6	-1,9
	9	Freifläche / Bauteil Nr. 2	40	20,3	19,2	20,1	19,1	0,9	-0,1
	10	Freifläche / Bauteil Nr. 10	40	19,3	18,2	19,6	18,4	1,4	0,2
_	11	Freifläche / Bauteil Nr. 10	40	19,2	18,0	19,3	18,2	1,3	0,2
ebie	12	Freifläche / Bauteil Nr. 9	40	19,2	18,0	18,4	18,1	0,4	0,1
Plangebiet	13	Freifläche / Bauteil Nr. 8	40	19,9	18,8	19,1	19,7	0,3	0,9
□	14	Freifläche / Bauteil Nr. 7	40	20,1	19,0	19,5	20,5	0,5	1,5
	15	Freifläche / Bauteil Nr. 7	40	20,6	19,2	19,3	20,3	0,1	1,1
	16	Freifläche / Bauteil Nr. 5	40	20,7	19,4	20,1	20,6	0,7	1,2
	17	Freifläche / Bauteil Nr. 3a	40	22,0	20,8	20,8	20,6	0,0	-0,2

A 2015: Analysefall 2015; N 2020: Nullfall 2020; P_Bs 2020: Planfall Basisszenario 2020; P_S1a 2020: Planfall Szenario 1a 2020

^{*} siehe auch Anlage 3.6

^{*}siehe auch Anlage 3.7

7.1.1 Beurteilung Feinstaubbelastung (PM₁₀)

Der Jahresmittelwert für Feinstaub (PM $_{10}$) von 40 µg/m³ wird an allen betrachteten Immissionsorten mit maximal 29,6 µg/m³ im Analysefall 2015, 27,2 µg/m³ Nullfall 2020 und 23,6 µg/m³ im Planfall 2020 des Basisszenarios bzw. 25,3 µg/m³ im Planfall 2020 des Szenarios 1a (alle im Bereich des Immissionsortes 8, Erkrather Straße 24) deutlich eingehalten.

Im gesamten Untersuchungsgebiet wird der Jahresmittelwert für Feinstaub (PM_{10}) von $40~\mu g/m^3$ nur innerhalb der Tunnelstrecken der Erkrather Straße und der Kölner Straße unterhalb des Bahndammes im Bereich des Düsseldorfer Hauptbahnhofs überschritten. Im übrigen Untersuchungsgebiet wird der Jahresmittelwert somit eingehalten.

7.1.2 Kurzzeitbelastung Immissionen Feinstaub (PM₁₀)

Ausgehend von den Erkenntnissen des LANUV NRW, dass es ab 29 $\mu g/m^3$ mit geringer Wahrscheinlichkeit, ab 32 $\mu g/m^3$ mit hoher Wahrscheinlichkeit zu mehr als 35 Überschreitungstagen mit mehr als 50 $\mu g/m^3$ Feinstaub kommt [24], ist bei einem Jahresmittelwert von maximal 29,6 $\mu g/m^3$ im Analysefall mit geringer Wahrscheinlichkeit mit mehr als 35 Überschreitungstagen zu rechnen. Im Nullfall sowie in den beiden Planfällen ist bei maximalen Jahresmittelwerten von 27,2 $\mu g/m^3$, 23,6 $\mu g/m^3$ bzw. 25,3 $\mu g/m^3$ (alle im Bereich des Immissionsortes 8, Erkrather Straße 24) nicht mit mehr als 35 Überschreitungstagen zu rechnen. Der obengenannte Immissionsort stellt hierbei ein Einzelfall dar, welcher z.B. durch ein Tunnelportal beeinflusst wird.

Außer im Nahbereich der Tunnelstrecken der Kölner Straße bzw. der Erkrather Straße liegt der Jahresmittelwert für Feinstaub (PM_{10}) im gesamten Untersuchungsgebiet außerhalb von den Fahrstreifen unterhalb von 29 $\mu g/m^3$, so dass hier nicht mit mehr als 35 Überschreitungstagen zu rechnen ist.

7.2 Jahresmittelwerte Immissionen Feinstaub (PM_{2,5})

Die Ergebnisse der Immissionsberechnungen der Jahresmittelwerte für Feinstaub (PM_{2,5}) für die ausgewählten Immissionsorte sind in der nachfolgenden Tabelle 7.2 zusammengestellt und in den Anlagen 4.1-4.6 für den Analysefall, den Nullfall und die beiden Planfälle (Basisszenario und Szenario 1a) für das gesamte Untersuchungsgebiet mit Kennzeichnung der Lage der Immissionsorte dargestellt.

Tabelle 7.2: Jahresmittelwerte Feinstaub (PM_{2,5})

Immissionsort			Jahresmittelwerte [μg/m³] Feinstaub (PM2,5)						
	Nr.	Beschreibung	IGW JMW	A 2015	N 2020	P_Bs 2020	P_S1a 2020	Delta P_Bs-N*	Delta P_S1a-N⁺
	1	Kölner Straße 146	25	15,2	14,3	14,4	14,3	0,1	0,0
	2	Kölner Straße 125	25	15,0	13,7	14,1	13,8	0,4	0,1
gung	3	Mögliche Bebauung gemäß B-Plan Nr.5676 49	25	14,4	13,7	14,7	13,9	1,0	0,2
Umgebung	4	Mögliche Bebauung gemäß B-Plan Nr.5676 49	25	14,4	13,5	14,3	13,7	0,8	0,2
	5	Erkrather Straße 76a	25	15,1	14,2	13,6	14,2	-0,6	0,0
	6	Erkrather Straße 66	25	15,6	14,6	14,3	14,7	-0,3	0,1
	7	Erkrather Straße 30	25	15,5	14,4	14,0	14,5	-0,4	0,1
	8	Erkrather Straße 24	25	18,9	17,2	15,3	16,0	-1,9	-1,2
	9	Freifläche / Bauteil Nr. 2	25	14,6	13,7	14,0	13,7	0,3	0,0
	10	Freifläche / Bauteil Nr. 10	25	14,4	13,6	14,3	13,7	0,7	0,1
_	11	Freifläche / Bauteil Nr. 10	25	14,4	13,5	14,2	13,7	0,7	0,2
pig	12	Freifläche / Bauteil Nr. 9	25	14,4	13,5	13,7	13,6	0,2	0,1
Plangebiet	13	Freifläche / Bauteil Nr. 8	25	14,8	13,9	14,0	14,3	0,1	0,4
≝	14	Freifläche / Bauteil Nr. 7	25	14,9	14,0	14,2	14,7	0,2	0,7
	15	Freifläche / Bauteil Nr. 7	25	15,1	14,1	14,0	14,4	-0,1	0,3
	16	Freifläche / Bauteil Nr. 5	25	14,6	13,6	13,9	14,2	0,3	0,6
	17	Freifläche / Bauteil Nr. 3a	25	14,4	13,5	13,5	13,5	0,0	0,0

A 2015: Analysefall 2015; N 2020: Nullfall 2020; P_Bs 2020: Planfall Basisszenario 2020; P_S1a 2020: Planfall Szenario 1a 2020

7.2.1 Beurteilung Feinstaubbelastung (PM_{2,5})

Der Jahresmittelwert für Feinstaub (PM_{2,5}) von 25,0 μ g/m³ wird an allen betrachteten Immissionsorten mit maximal 18,9 μ g/m³ im Analysefall, 17,2 μ g/m³ im Nullfall und maximal 15,3 μ g/m³ im Planfall 2020 des Basisszenarios bzw. 16,0 μ g/m³ im Planfall 2020 des Szenarios 1a (alle im Bereich des Immissionsortes 8, Erkrather Straße 24) sowie im gesamten Untersuchungsgebiet deutlich eingehalten.

^{*} siehe auch Anlage 4.5

^{*}siehe auch Anlage 4.6

7.3 Jahresmittelwerte Immissionen Stickstoffdioxid (NO₂)

Die Ergebnisse der Immissionsberechnungen der Jahresmittelwerte für Stickstoffdioxid (NO₂) für die ausgewählten Immissionsorte sind in der nachfolgenden Tabelle 7.3 zusammengestellt und in den Anlagen 5.1 bis 5.7 für den Analysefall, den Nullfall und die beiden Planfälle (Basisszenario und Szenario 1a) für das gesamte Untersuchungsgebiet mit Kennzeichnung der Lage der Immissionsorte dargestellt. Überschreitungen des Jahresmittelwertes sind **fett** gedruckt dargestellt.

Tabelle 7.3: Jahresmittelwerte Stickstoffdioxid (NO₂)

Tabelle 7.3. Salifestificeworks offensional (1462)									
Immissionsort			Jahresmittelwerte [µg/m³] Stickstoffdioxid (NO2)						
	Nr	Beschreibung	IGW JMW	A 2015	N 2020	P_Bs 2020	P_S1a 2020	Delta P_Bs-N*	Delta P_S1a-N⁺
	1	Kölner Straße 146	40	34,2	30,2	29,9	28,5	-0,3	-1,7
	2	Kölner Straße 125	40	33,1	26,0	29,6	26,5	3,6	0,5
bund	3	Mögliche Bebauung gemäß B-Plan Nr.5676 49	40	27,9	25,2	33,2	27,0	8,0	1,8
Umgebung	, 4	Mögliche Bebauung gemäß B-Plan Nr.5676 49	40	27,9	23,3	29,0	24,1	5,7	0,8
	5	Erkrather Straße 76a	40	33,6	28,6	23,8	28,8	-4,8	0,2
	6	Erkrather Straße 66	40	36,8	31,2	29,3	32,9	-1,9	1,7
	7	Erkrather Straße 30	40	36,4	30,8	27,9	32,3	-2,9	1,5
	8	Erkrather Straße 24	40	54,0	44,8	37,2	41,3	-7,6	-3,5
	9	Freifläche / Bauteil Nr. 2	40	30,6	26,1	29,3	26,1	3,2	0,0
	10	Freifläche / Bauteil Nr. 10	40	27,8	23,9	29,7	24,9	5,8	1,0
_	11	Freifläche / Bauteil Nr. 10	40	27,7	23,4	28,7	24,4	5,3	1,0
pie	12	Freifläche / Bauteil Nr. 9	40	28,0	23,5	25,2	24,0	1,7	0,5
Plangebiet	13	Freifläche / Bauteil Nr. 8	40	31,5	26,8	27,6	30,0	0,8	3,2
<u>e</u>	14	Freifläche / Bauteil Nr. 7	40	32,3	27,5	29,2	33,1	1,7	5,6
	15	Freifläche / Bauteil Nr. 7	40	33,4	28,2	27,5	31,2	-0,7	3,0
	16	Freifläche / Bauteil Nr. 5	40	30,6	25,9	28,5	30,3	2,6	4,4
	17	Freifläche / Bauteil Nr. 3a	40	30,5	26,4	26,5	26,2	0,1	-0,2

A 2015: Analysefall 2015; N 2020: Nullfall 2020; P_Bs 2020: Planfall Basisszenario 2020; P_S1a 2020: Planfall Szenario 1a 2020

7.3.1 Beurteilung Stickstoffdioxidbelastung (NO₂)

Der Jahresmittelwert für Stickstoffdioxid (NO₂) von 40 μg/m³ wird im Analysefall im Bereich des Immissionsortes 8 (Erkrather Straße 24) um bis zu 14,0 μg/m³ sowie im Nahbereich zu

^{*} siehe auch Anlage 5.6

^{*}siehe auch Anlage 5.7

den Tunnelstrecken der Erkrather Straße und der Kölner Straße und im Kreuzungsbereich Erkrather Straße / Kölner Straße / Worringer Straße überschritten.

Im Nullfall ergibt sich durch die Verlängerung der Moskauer Straße und die Verkehrsverlagerung im Bereich des Immissionsortes 8 eine deutliche Absenkung der Stickstoffdioxid-Immissionen, sodass im Nullfall der Jahresmittelwert nur noch um 4,8 $\mu g/m^3$ überschritten wird. Auch im Bereich der Tunnelstrecken der Erkrather Straße und der Kölner Straße ergeben sich Absenkungen der Stickstoffdioxid-Immissionen.

Durch die Realisierung der Ortsumgehung Oberbilk wird im Planfall 2020 des Basisszenarios der Jahresmittelwert im Bereich des Immissionsortes 8 und im Nahbereich des Tunnelportals auf der Erkrather Straße zukünftig eingehalten werden. Im Nahbereich des Tunnelportals auf der Kölner Straße führt die Verkehrsverlagerung im Planfall 2020 des Basisszenarios durch die Realisierung der Ortsumgebung Oberbilk jedoch zu einer Erhöhung der Stickstoffdioxid-Immissionen und zu Grenzwertüberschreitungen außerhalb der Fahrstreifen im Straßenraum.

Im Bereich der verlängerten Moskauer Straße ergeben sich im Planfall 2020 des Basisszenarios gegenüber dem Nullfall 2020 Erhöhungen der Stickstoffdioxid-Konzentrationen um bis zu 8 $\mu g/m^3$ (Immissionsorte 3 und 4) aufgrund der Verkehrsverlagerung nach Realisierung der Ortsumgehung Oberbilk im Planfall.

Im Planfall 2020 des Szenarios 1a wird der Jahresmittelwert im Bereich des Immissionsortes 8 mit einem Wert von 41,3 μ g/m³ und im Nahbereich des Tunnelportals auf der Erkrather Straße um maximal 1,3 μ g/m³ überschritten. Trotz Verkehrssteigerung liegt im Bereich des Immissionsortes 8 jedoch im Vergleich mit dem Prognose-Nullfall eine Minderung der Stickstoffdioxid-Immissionen um bis zu 3,5 μ g/m³ vor. Die durch die Planung hervorgerufenen Änderungen des lokalen Windfeldes wirken sich somit im diesem Fall positiv auf die Stickstoffdioxid-Immissionen im Nahbereich des Tunnelportales auf der Erkrather Straße aus.

Im gesamten übrigen Untersuchungsgebiet und vor allem im Plangebiet selbst liegt für den Analysefall, den Nullfall und die beiden Planfälle der Jahresmittelwert für Stickstoffdioxid (NO $_2$) außerhalb von den Fahrstreifen unterhalb von 40 $\mu g/m^3$ und wird somit eingehalten.

7.3.2 Kurzzeitbelastung Stickstoffdioxid (NO₂)

Ausgehend von den berechneten Jahresmittelwerten der NO_x -Zusatzbelastung und der entsprechenden Messwerte der Hintergrundbelastung NO_x wurde die Wahrscheinlichkeit einer Überschreitung der zulässigen 18 Stunden mit Stundenmittelwerten einer NO_2 -Konzentration > 200 μ g/m³ für ausgewählte Immissionsorte mit dem in Kapitel 7 beschriebenen Verfahren abgeschätzt.

Tabelle 7.4: Überschreitungswahrscheinlichkeit des Auftretens von mehr als 18 Stunden mit 1-h Mittelwert Stickstoffdioxid (NO₂) über 200 μg/m³ in bodennaher Schicht

	Immissionsort		Wahrscheinlichkeit von mehr als 18 zulässigen Überschreitungen des 1-h Mittelwertes von 200 μg/m³ NO₂ pro Jahr in %			
Nr.	Beschreibung	Analysefall 2015	Nullfall 2020	Planfall-Basis- szenario 2020	Planfall-Sze- nario 1a 2020	
1	Kölner Straße 146	2,4	1,8	1,8	1,7	
2	Kölner Straße 125	2,2	1,4	1,8	1,5	
3	Mögliche Bebauung gemäß B- Plan Nr.5676 49	1,6	1,4	2,2	1,5	
4	Mögliche Bebauung gemäß B- Plan Nr.5676 49	1,6	1,3	1,7	1,3	
5	Erkrather Straße 76a	2,3	1,7	1,3	1,7	
6	Erkrather Straße 66	2,9	2,0	1,7	2,2	
7	Erkrather Straße 30	2,8	1,9	1,6	2,1	
8	Erkrather Straße 24	14,7	5,6	3,0	4,3	
9	Freifläche / Bauteil Nr. 2	1,9	1,5	1,7	1,5	
10	Freifläche / Bauteil Nr. 10	1,6	1,3	1,8	1,4	
11	Freifläche / Bauteil Nr. 10	1,6	1,3	1,7	1,3	
12	Freifläche / Bauteil Nr. 9	1,6	1,3	1,4	1,3	
13	Freifläche / Bauteil Nr. 8	2,0	1,5	1,6	1,8	
14	Freifläche / Bauteil. Nr. 7	2,1	1,6	1,7	2,2	
15	Freifläche / Bauteil Nr. 7	2,3	1,6	1,6	2,0	
16	Freifläche / Bauteil Nr. 5	1,9	1,4	1,7	1,8	
17	Freifläche / Bauteil Nr. 3a	1,9	1,5	1,5	1,5	

Aus Tabelle 7.4 geht hervor, dass die Wahrscheinlichkeit, dass das Kurzzeitkriterium der 39. BlmSchV nicht eingehalten wird, für den Nullfall 2020 mit maximal 5,6 % und die beiden Planfällen 2020 mit maximal 3,0 % beim Basisszenario und mit maximal 4,3 % beim Szenario 1a gering ist. Im Analysefall liegt im Bereich des Immissionsortes 8 (Erkrather Straße 24) eine Wahrscheinlichkeit von maximal 14,7 % vor.

Auswertungen von Messergebnissen an Verkehrsmessstationen des LANUV NRW zeigen jedoch, dass auch bei NO₂-Jahresmittelwerten mit deutlich höheren Konzentrationen wie im vorliegenden Fall für alle Immissionsorte ermittelt, das Kurzzeitkriterium der 39. BImSchV eingehalten wurde (vgl. Tabelle 7.5). Daher kann davon ausgegangen werden, dass in der Realität das Kurzzeitkriterium der 39. BImSchV im gesamten Untersuchungsgebiet eingehalten wird.

Tabelle 7.5: Messwerte NO₂ an Verkehrsmessstationen des LANUV [23]

Messstation	Jahr	Тур	Jahresmittelwert NO ₂ [μg/m³]	Anzahl der Überschreitungen des 1-h-Messwertes von 200 µg/m³	
	2005		60	3	
	2006		59	1	
	2007		64	4	
	2008		60	1	
Dortmund	2009		63	7	
Brackeler Straße	2010	Verkehrsstation	62	3	
Diackelei Stiaije	2011		60	6	
	2012		54	2	
	2013		54	1	
	2014		52	1	
	2015		49	0	
	2005		70	0	
	2006		71	0	
	2007		71	4	
	2008		74	0	
Düsseldorf	2009		70	6	
Corneliusstraße	2010	Verkehrsstation	67	13	
Comenussitabe	2011		64	2	
	2012		64	4	
	2013		61	0	
	2014		60	0	
	2015		59	0	
Düsseldorf	2004		53	0	
Mörsenbroich	2005		52	0	
	2006	Verkehrsstation	52	0	
* Station seit 2008 außer Be-	2007		54	0	
trieb	2008		_*	_*	
	2005		51	0	
	2006		51	0	
	2007		51	2	
	2008		50	0	
Focon	2009		56	5	
Essen Gladbecker Straße	2010	Verkehrsstation	54	0	
CIAUDECKEI STIADE	2011		50	0	
	2012		47	0	
	2013		46	0	
	2014		45	0	
	2015		43	1	

7.4 Jahresmittelwerte Immissionen Benzol (C₆H₆)

Die Ergebnisse der Immissionsberechnungen der Jahresmittelwerte für Benzol (C_6H_6) für die ausgewählten Immissionsorte sind in der nachfolgenden Tabelle 7.6 zusammengestellt und in den Anlagen 6.1 bis 6.5 für den Analysefall, den Nullfall und die beiden Planfälle (Basisszenario und Szenario 1a) für das gesamte Untersuchungsgebiet mit Kennzeichnung der Lage der Immissionsorte dargestellt.

Tabelle 7.6: Jahresmittelwerte Benzol (C₆H₆)

		Immissionsort			Jahı		elwerte [µ ol (C6H6)	-	
	Nr.	Beschreibung	IGW JMW	A 2015	N 2020	P_Bs 2020	P_S1a 2020	Delta P_Bs-N*	Delta P_S1a-N⁺
	1	Kölner Straße 146	5	1,6	1,4	1,5	1,4	0,1	0,0
	2	Kölner Straße 125	5	1,6	1,3	1,4	1,3	0,1	0,0
gund	3	Mögliche Bebauung gemäß B-Plan Nr.5676 49	5	1,4	1,3	1,5	1,3	0,2	0,0
Umgebung	4	Mögliche Bebauung gemäß B-Plan Nr.5676 49	5	1,5	1,3	1,4	1,3	0,1	0,0
	5	Erkrather Straße 76a	5	1,6	1,4	1,3	1,4	-0,1	0,0
	6	Erkrather Straße 66	5	1,7	1,5	1,8	2,1	0,3	0,6
	7	Erkrather Straße 30	5	1,7	1,4	1,6	2,0	0,2	0,6
	8	Erkrather Straße 24	5	2,6	2,1	2,4	2,9	0,3	0,8
	9	Freifläche / Bauteil Nr. 2	5	1,5	1,3	1,4	1,3	0,1	0,0
	10	Freifläche / Bauteil. Nr. 10	5	1,4	1,3	1,4	1,3	0,1	0,0
۱_	11	Freifläche / Bauteil. Nr. 10	5	1,4	1,3	1,4	1,3	0,1	0,0
pie	12	Freifläche / Bauteil Nr. 9	5	1,5	1,3	1,3	1,3	0,0	0,0
Plangebiet	13	Freifläche / Bauteil Nr. 8	5	1,5	1,3	1,6	1,8	0,3	0,5
🖁	14	Freifläche / Bauteil Nr. 7	5	1,6	1,4	1,8	2,1	0,4	0,7
	15	Freifläche / Bauteil Nr. 7	5	1,6	1,4	1,6	1,9	0,2	0,5
	16	Freifläche / Bauteil Nr. 5	5	1,5	1,3	1,6	1,7	0,3	0,4
	17	Freifläche / Bauteil Nr. 3a	5	1,4	1,2	1,2	1,3	0,0	0,1

A 2015: Analysefall 2015; N 2020: Nullfall 2020; P_Bs 2020: Planfall Basisszenario 2020; P_S1a 2020: Planfall Szenario 1a 2020

^{*} siehe auch Anlage 6.5

^{*}siehe auch Anlage 6.6

7.4.1 Beurteilung Benzolbelastung (C₆H₆)

Der Jahresmittelwert für Benzol (C_6H_6) von 5,0 $\mu g/m^3$ wird an allen betrachteten Immissionsorten mit maximal 2,6 $\mu g/m^3$ im Analysefall 2015 sowie mit maximal 2,1 dB(A) im Nullfall 2020 und mit maximal 2,4 dB(A) im Planfall 2020 des Basisszenarios bzw. mit maximal 2,9 dB(A) im Planfall 2020 des Szenarios 1a eingehalten.

Im gesamten Untersuchungsgebiet wird der Jahresmittelwert ebenfalls im Analysefall 2015 sowie im Null- und den beiden Planfällen 2020 nur im Bereich der Tunnelstrecken der Erkrather Straße und der Kölner Straße unterhalb des Bahndammes überschritten. Im übrigen Untersuchungsgebiet wird der Jahresmittelwert somit eingehalten.

8 Auswirkungen der Planung

Die Auswirkungen der Realisierung der Ortsumgehung Oberbilk inklusive der Zusatzverkehre des Planvorhabens im Planfall 2020 (**Basisszenario**) sind in den jeweiligen Anlagensätzen 3.6, 4.5, 5.6 und 6.5 für die untersuchten Luftschadstoffe Feinstaub (PM_{10} und $PM_{2,5}$), Stickstoffdioxid (NO_2) und Benzol (C_6H_6) als Differenz der Immissionen der Jahresmittelwerte (Planfall 2020 – Basisszenario minus Nullfall 2020) dargestellt.

Es ist zu erkennen, dass es durch die Verlagerung der Verkehre im Basisszenario nach der Realisierung der Ortsumgehung Oberbilk auf der Kölner Straße, der Moskauer Straße sowie in der Fortführung der Moskauer Straße zu Erhöhungen von Luftschadstoffimmissionen kommt. Hierdurch werden einzelne Immissionsorte und Bereiche entlang dieser Straßen mit höheren Immissionen beaufschlagt, Überschreitungen der Jahresmittelwerte für PM₁₀, PM_{2,5}, NO₂ oder C₆H₆ liegen jedoch nur im Nahbereich des Tunnelportals der Kölner Straße und nicht im Bereich der Immissionsorte vor.

Die Erkrather Straße wird im Basisszenario durch die Ortsumgehung Oberbilk und die damit einhergehende Verkehrsverlagerung sowie die verkehrliche Abtrennung im Kreuzungsbereich Erkrather Straße und der Verbindungsstraße zwischen der Erkrather Straße und Moskauer Straße entlastet.

Die Auswirkungen der Zusatzverkehre des Planvorhabens ohne Realisierung der Ortsumgebung Oberbilk im Planfall 2020 (**Szenario 1a**) sind in den jeweiligen Anlagensätzen 3.7, 4.6, 5.7 und 6.6 für die untersuchten Luftschadstoffe Feinstaub (PM_{10} und $PM_{2.5}$), Stickstoffdioxid (NO_2) und Benzol (C_6H_6) als Differenz der Immissionen der Jahresmittelwerte (Planfall 2020 – Basisszenario minus Nullfall 2020) dargestellt.

Im Szenario 1a ist durch die Zusatzverkehre aus der Projektentwicklung vor allem im Bereich Straßenraum der Ekrather Straße und der Kölner Straße eine Erhöhung der Luftschadstoffimmissionen zu erkennen. Eine Überschreitung des Jahresmittelwertes für Stickstoffdioxid (NO2) liegt im Bereich des Immissionsortes 8 vor. Trotz Verkehrssteigerung liegt im Bereich des Immissionsortes 8 jedoch im Vergleich mit dem Prognose-Nullfall eine Minderung der Stickstoffdioxid-Immissionen um bis zu 3,5 μ g/m³ vor. Die durch die Planung hervorgerufenen Änderungen des lokalen Windfeldes wirken sich somit im diesem Fall positiv auf die Stickstoffdioxid-Immissionen im Nahbereich des Tunnelportales auf der Erkrather Straße aus. Überschreitungen der Jahresmittelwerte für Feinstaub (PM10 und PM2,5) und Benzol (C6H6) liegen keine im Bereich der betrachteten Immissionsorte vor.

9 Auswirkungen der Planungen auf den Knotenpunkt Werdener Straße / Kettwiger Straße / Erkrather Straße

Aktuelle Schadstoffberechnungen im Kreuzungsbereich des Knotenpunktes Werdener Straße / Kettwiger Straße / Erkrather Straße für ein anderes Bauvorhaben haben ergeben, dass unter Berücksichtigung der Zusatzbelastung des Bauvorhabens im Planfall 2018 die Grenzwerte für Feinstaub (PM2,5 und PM10), Stickstoffdioxid (NO2) und Benzol (C6H6) sowie die Kurzzeitkriterien der 39. BlmSchV deutlich eingehalten werden

Aufgrund der deutlichen Einhaltung aller Jahresmittelwerte ist auch unter Berücksichtigung der Mehrverkehre aus dem Planvorhaben "GrandCentral" trotz Erhöhung des DTV-Wertes und der damit einhergehenden Erhöhung der Stausituationen nicht mit einer Überschreitung der Jahresmittelwerte und Kurzzeitkriterien zu rechnen.

10 Zusammenfassung

Der Auftraggeber plant mit der Aufstellung des Bebauungsplanes Nr. 03/018 – Kölner Straße / Moskauer Straße – Stadtbezirk 3 – Stadtteil Oberbilk in Düsseldorf die Schaffung von Planrecht für Wohnnutzungen und gewerbliche Nutzungen.

Hierfür wurden Luftschadstoffausbreitungsberechnungen in Bezug auf die Luftschadstoffemissionen für die relevanten Luftschadstoffe Feinstaub (PM_{10} und $PM_{2,5}$), Stickstoffdioxid (NO_2) und Benzol (C_6H_6) durchgeführt und mit den Grenzwerten der 39. BImSchV verglichen und beurteilt.

Der Jahresmittelwert für Feinstaub (PM_{10}) von 40 µg/m³ wird an allen betrachteten Immissionsorten mit maximal 29,6 µg/m³ im Analysefall 2015, 27,2 µg/m³ Nullfall 2020 und 23,6 µg/m³ im Planfall 2020 des Basisszenarios bzw. 25,3 µg/m³ im Planfall 2020 des Szenarios 1a (alle im Bereich des Immissionsortes 8, Erkrather Straße 24) deutlich eingehalten. Im gesamten Untersuchungsgebiet wird der Jahresmittelwert für Feinstaub (PM_{10}) von 40 µg/m³ nur innerhalb der Tunnelstrecken der Erkrather Straße und der Kölner Straße unterhalb des Bahndammes im Bereich des Düsseldorfer Hauptbahnhofs überschritten. Im übrigen Untersuchungsgebiet wird der Jahresmittelwert somit eingehalten.

Ausgehend von den Erkenntnissen des LANUV NRW, dass es ab 29 $\mu g/m^3$ mit geringer Wahrscheinlichkeit, ab 32 $\mu g/m^3$ mit hoher Wahrscheinlichkeit zu mehr als 35 Überschreitungstagen mit mehr als 50 $\mu g/m^3$ Feinstaub kommt [24], ist bei einem Jahresmittelwert von maximal 29,6 $\mu g/m^3$ im Analysefall mit geringer Wahrscheinlichkeit mit mehr als 35 Überschreitungstagen zu rechnen. Im Nullfall sowie in den beiden Planfällen ist bei maximalen Jahresmittelwerten von 27,2 $\mu g/m^3$, 23,6 $\mu g/m^3$ bzw. 25,3 $\mu g/m^3$ (alle im Bereich des Immissionsortes 8, Erkrather Straße 24) nicht mit mehr als 35 Überschreitungstagen zu rechnen. Der obengenannte Immissionsort stellt hierbei ein Einzelfall dar, welcher z.B. durch ein Tunnelportal beeinflusst wird.

Außer im Nahbereich der Tunnelstrecken der Kölner Straße bzw. der Erkrather Straße liegt der Jahresmittelwert für Feinstaub (PM_{10}) im gesamten Untersuchungsgebiet außerhalb von den Fahrstreifen unterhalb von 29 $\mu g/m^3$, so dass hier nicht mit mehr als 35 Überschreitungstagen zu rechnen ist.

Der Jahresmittelwert für Feinstaub ($PM_{2.5}$) von 25,0 μ g/m³ wird an allen betrachteten Immissionsorten mit maximal 18,9 μ g/m³ im Analysefall, 17,2 μ g/m³ im Nullfall und maximal 15,3 μ g/m³ im Planfall 2020 des Basisszenarios bzw. 16,0 μ g/m³ im Planfall 2020 des Sze-

narios 1a (alle im Bereich des Immissionsortes 8, Erkrather Straße 24) sowie im gesamten Untersuchungsgebiet deutlich eingehalten.

Der Jahresmittelwert für Stickstoffdioxid (NO_2) von 40 $\mu g/m^3$ wird im Analysefall im Bereich des Immissionsortes 8 (Erkrather Straße 24) um bis zu 14,0 $\mu g/m^3$ sowie im Nahbereich zu den Tunnelstrecken der Erkrather Straße und der Kölner Straße und im Kreuzungsbereich Erkrather Straße / Kölner Straße / Worringer Straße überschritten.

Im Nullfall ergibt sich durch die Verlängerung der Moskauer Straße und die Verkehrsverlagerung im Bereich des Immissionsortes 8 eine deutliche Absenkung der Stickstoffdioxid-Immissionen, sodass im Nullfall der Jahresmittelwert nur noch um $4.8~\mu g/m^3$ überschritten wird. Auch im Bereich der Tunnelstrecken der Erkrather Straße und der Kölner Straße ergeben sich Absenkungen der Stickstoffdioxid-Immissionen.

Durch die Realisierung der Ortsumgehung Oberbilk wird im Planfall 2020 des Basisszenarios der Jahresmittelwert im Bereich des Immissionsortes 8 und im Nahbereich des Tunnelportals auf der Erkrather Straße zukünftig eingehalten werden. Im Nahbereich des Tunnelportals auf der Kölner Straße führt die Verkehrsverlagerung im Planfall 2020 des Basisszenarios durch die Realisierung der Ortsumgebung Oberbilk jedoch zu einer Erhöhung der Stickstoffdioxid-Immissionen und zu Grenzwertüberschreitungen außerhalb der Fahrstreifen im Straßenraum.

Im Bereich der verlängerten Moskauer Straße ergeben sich im Planfall 2020 des Basisszenarios gegenüber dem Nullfall 2020 Erhöhungen der Stickstoffdioxid-Konzentrationen um bis zu 8 $\mu g/m^3$ (Immissionsorte 3 und 4) aufgrund der Verkehrsverlagerung nach Realisierung der Ortsumgehung Oberbilk im Planfall.

Im Planfall 2020 des Szenarios 1a wird der Jahresmittelwert im Bereich des Immissionsortes 8 mit einem Wert von 41,3 μ g/m³ und im Nahbereich des Tunnelportals auf der Erkrather Straße um maximal 1,3 μ g/m³ überschritten. Trotz Verkehrssteigerung liegt im Bereich des Immissionsortes 8 jedoch im Vergleich mit dem Prognose-Nullfall eine Minderung der Stickstoffdioxid-Immissionen um bis zu 3,5 μ g/m³ vor. Die durch die Planung hervorgerufenen Änderungen des lokalen Windfeldes wirken sich somit im diesem Fall positiv auf die Stickstoffdioxid-Immissionen im Nahbereich des Tunnelportales auf der Erkrather Straße aus.

Im gesamten übrigen Untersuchungsgebiet und vor allem im Plangebiet selbst liegt für den Analysefall, den Nullfall und die beiden Planfälle der Jahresmittelwert für Stickstoffdioxid (NO $_2$) außerhalb von den Fahrstreifen unterhalb von 40 $\mu g/m^3$ und wird somit eingehalten.

Die Wahrscheinlichkeit, dass das Kurzzeitkriterium der 39. BImSchV nicht eingehalten wird, ist für den Nullfall 2020 mit maximal 5,6 % und die beiden Planfällen 2020 mit maximal 3,0 %

beim Basisszenario und mit maximal 4,3 % beim Szenario 1a sehr gering. Im Analysefall liegt im Bereich des Immissionsortes 8 (Erkrather Straße 24) eine Wahrscheinlichkeit von maximal 14,7 % vor.

Auswertungen von Messergebnissen an Verkehrsmessstationen des LANUV NRW zeigen jedoch, dass auch bei NO₂-Jahresmittelwerten mit deutlich höheren Konzentrationen wie im vorliegenden Fall für alle Immissionsorte ermittelt, das Kurzzeitkriterium der 39. BImSchV eingehalten wurde. Daher kann davon ausgegangen werden, dass in der Realität das Kurzzeitkriterium der 39. BImSchV im gesamten Untersuchungsgebiet eingehalten wird.

Der Jahresmittelwert für Benzol (C_6H_6) von 5,0 µg/m³ wird an allen betrachteten Immissionsorten mit maximal 2,6 µg/m³ im Analysefall 2015 sowie mit maximal 2,1 dB(A) im Nullfall 2020 und mit maximal 2,4 dB(A) im Planfall 2020 des Basisszenarios bzw. mit maximal 2,9 dB(A) im Planfall 2020 des Szenarios 1a eingehalten. Im gesamten Untersuchungsgebiet wird der Jahresmittelwert ebenfalls im Analysefall 2015 sowie im Null- und den beiden Planfällen 2020 nur im Bereich der Tunnelstrecken der Erkrather Straße und der Kölner Straße unterhalb des Bahndammes überschritten. Im übrigen Untersuchungsgebiet wird der Jahresmittelwert somit eingehalten.

Die Ergebnisse der Immissionsberechnungen zeigen, dass im Basisszenario durch die Verlagerung der Verkehre nach Realisierung der Ortsumgehung Oberbilk auf der Kölner Straße, der Moskauer Straße sowie der Fortführung der Moskauer Straße Erhöhungen in den Luftschadstoffimmissionen vorliegen.

Hierdurch werden einzelne Immissionsorte und Bereiche entlang dieser Straßen mit höheren Immissionen beaufschlagt, Überschreitungen der Jahresmittelwerte für Feinstaub (PM10 und PM2,5), Stickstoffdioxid (NO2) und Benzol (C6H6) liegen jedoch nur im Nahbereich des Tunnelportals der Kölner Straße und nicht im Bereich der Immissionsorte vor.

Die Erkrather Straße wird durch die Ortsumgehung und die damit einhergehende Verkehrsverlagerung sowie die verkehrliche Abtrennung im Kreuzungsbereich Erkrather Straße und der Verbindungsstraße zwischen der Erkrather Straße und Moskauer Straße entlastet.

Im Szenario 1a ist durch die Zusatzverkehre aus der Projektentwicklung vor allem im Bereich Straßenraum der Ekrather Straße und der Kölner Straße eine Erhöhung der Luftschadstoffimmissionen zu erkennen.

Eine Überschreitung des Jahresmittelwertes für Stickstoffdioxid (NO2) liegt im Bereich des Immissionsortes 8 vor. Trotz Verkehrssteigerung liegt im Bereich des Immissionsortes 8 jedoch im Vergleich mit dem Prognose-Nullfall eine Minderung der Stickstoffdioxid-Immissionen um bis zu $3.5~\mu g/m^3$ vor. Die durch die Planung hervorgerufenen Änderungen des loka-

len Windfeldes wirken sich somit im diesem Fall positiv auf die Stickstoffdioxid-Immissionen im Nahbereich des Tunnelportales auf der Erkrather Straße aus.

Überschreitungen der Jahresmittelwerte für Feinstaub (PM10 und PM2,5) und Benzol (C6H6) liegen keine im Bereich der betrachteten Immissionsorte vor.

Dieser Bericht besteht aus 43 Seiten und 6 Anlagen.

Peutz Consult GmbH

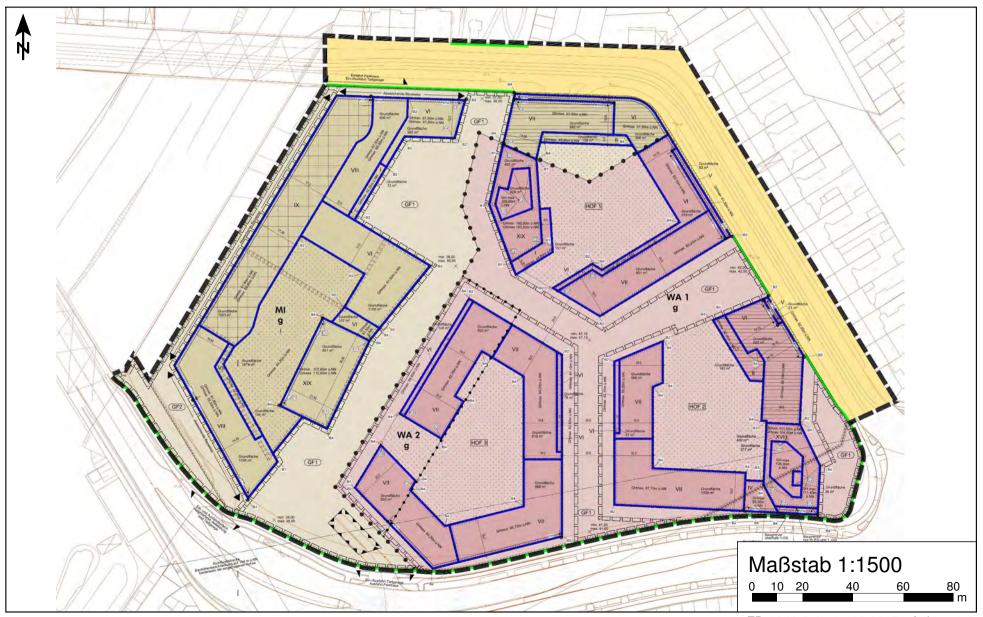
ppa. Dipl.-Phys. Axel Hübe

i.V. Martin Pelzer

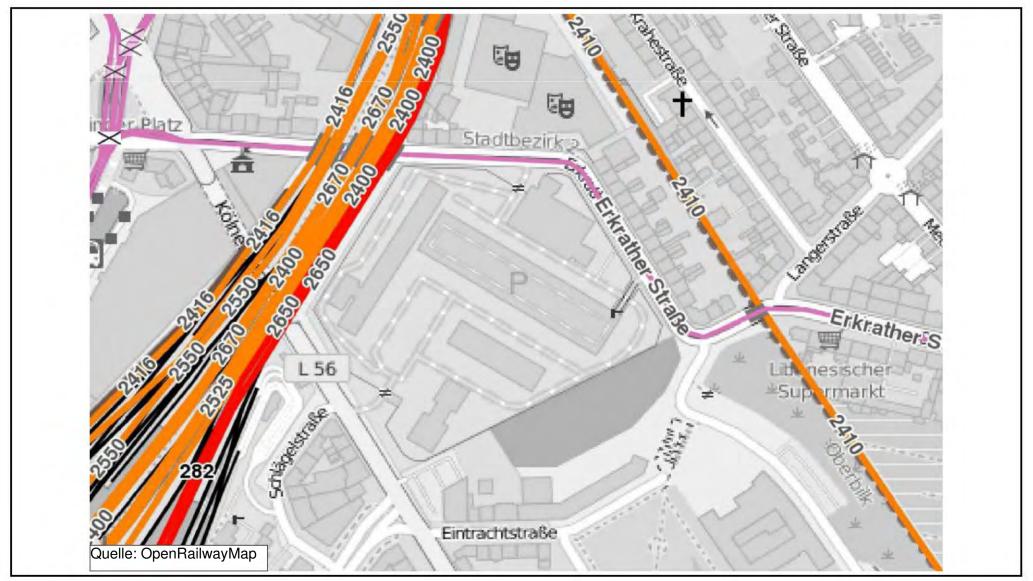
FD 6649-2.4 11.08.2017

Seite 43 von 45

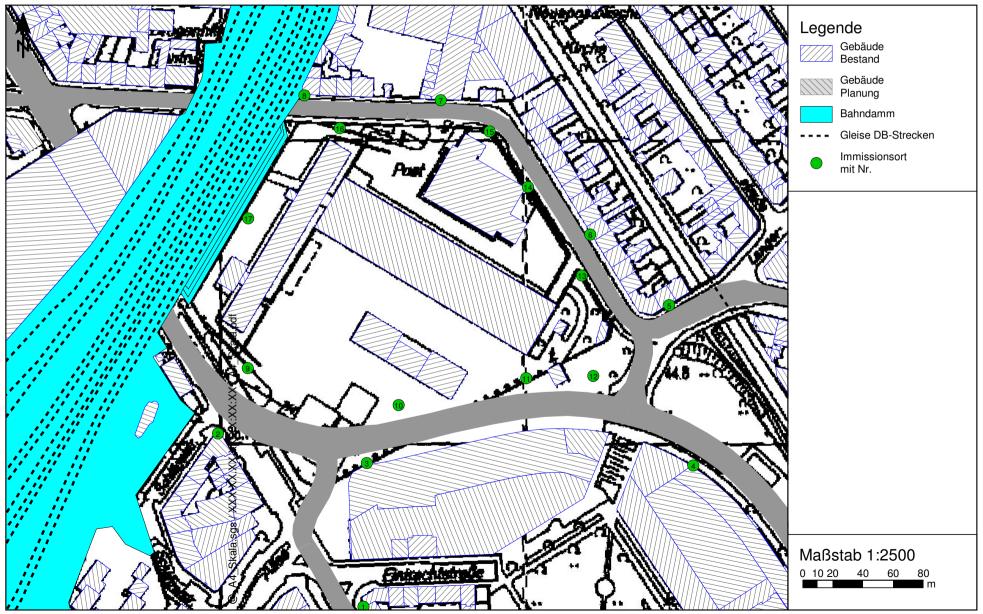
<u>Anlagenverzeichnis</u>

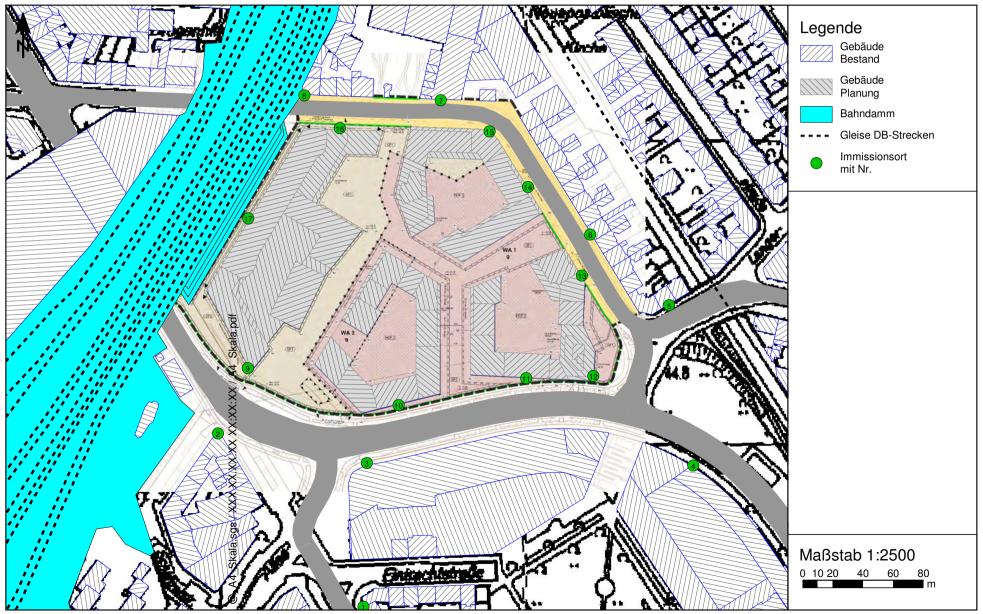

Anlage 1.1	Städtebauliches Konzept zum Bebauungsplan Nr. 03/018 – Kölner Straße / Moskauer Straße - Living Central - Stand: 18.04.2016
Anlage 1.2	DB-Strecken im Untersuchungsgebiet zum Bebauungsplan Nr. 03/018
Anlage 1.3	Übersichtslageplan mit Darstellung der Situation "Analysefall 2015"
Anlage 1.4	Übersichtslageplan mit Darstellung der Situation "Nullfall 2020"
Anlage 1.5	Übersichtslageplan mit Darstellung der Situation "Planfall 2020 (Basisszenario bzw. Szeanario 1a)"
Anlage 2.1	Übersichtslageplan mit Darstellung der Straßenabschnitte für die Emissionsberechnungen
Anlage 2.2	Emissionsansätze und Eingangsdaten für den "Analysefall 2015", den "Nullfall 2020", den "Planfall 2020 – Basisszenario" und den "Planfall 2020 – Szanario 1a"
Anlagen 3.1 bis 3.4	Feinstaub (PM10) Gesamtbelastung (Jahresmittelwert, Bodennähe h=1,5m) für den "Analysefall 2015", "Nullfall 2020", "Planfall 2020 – Basisszenario" und "Planfall 2020 – Szanario 1a"
Anlage 3.5	Feinstaub (PM10) Zusatzbelastung Schiene (Jahresmittelwert, Bodennähe $h=1,5m$)
Anlage 3.6	Änderung des Jahresmittelwertes von Feinstaub (PM10) (Planfall Basisszenario- Nullfall)
Anlage 3.7	Änderung des Jahresmittelwertes von Feinstaub (PM10) (Planfall Szenario 1a - Nullfall)
Anlagen 4.1 bis 4.4	Feinstaub (PM2,5) Gesamtbelastung (Jahresmittelwert, Bodennähe h=1,5m) für den "Analysefall 2015", "Nullfall 2020", "Planfall 2020 – Basisszenario" und "Planfall 2020 – Szanario 1a"

Anlage 4.5 Änderung des Jahresmittelwertes von Feinstaub (PM2,5) (Planfall Basisszenario- Nullfall) Anlage 4.6 Änderung des Jahresmittelwertes von Feinstaub (PM2,5) (Planfall Szenario 1a - Nullfall) Stickstoffdioxid (NO2) Gesamtbelastung (Jahresmittelwert, Bodennähe Anlagen 5.1 bis 5.4 h=1,5m) für den "Analysefall 2015", "Nullfall 2020", "Planfall 2020 - Basisszenario" und "Planfall 2020 - Szanario 1a" Anlage 5.5 Stickoxid (NOx) Zusatzbelastung Schiene (Jahresmittelwert, Bodennähe h=1,5m) Anlage 5.6 Änderung des Jahresmittelwertes von Stickstoffdioxid (NO2) (Planfall Basisszenario - Nullfall) Anlage 5.7 Änderung des Jahresmittelwertes von Stickstoffdioxid (NO2) (Planfall Szenario 1a - Nullfall) Anlagen Benzol (C6H6) Gesamtbelastung (Jahresmittelwert, Bodennähe h=1,5m) für 6.1 bis 6.4 den "Analysefall 2015", "Nullfall 2020", "Planfall 2020 - Basisszenario" und "Planfall 2020 - Szanario 1a" Anlage 6.5 Änderung des Jahresmittelwertes von Benzol (C6H6) (Planfall Basisszenario- Nullfall) Anlage 6.6 Änderung des Jahresmittelwertes von Benzol (C6H6) (Planfall Szenario 1a -Nullfall)


Vorentwurf des Bebauungsplanes Nr. 03/018 - Kölner Straße / Moskauer Straße in Düsseldorf

DB-Strecken im Untersuchungsgebiet zum Bebauungsplan Nr. 03/018 – Kölner Straße / Moskauer Straße - in Düsseldorf


Übersichtslageplan mit Darstellung des "Analysefalls 2015" für den Bebauungsplan Nr. 03/018 - Kölner Straße / Moskauer Straße - in Düsseldorf


Übersichtslageplan mit Darstellung des "Nullfalls 2020" für den Bebauungsplan Nr. 03/018 - Kölner Straße / Moskauer Straße - in Düsseldorf

Übersichtslageplan mit Darstellung des "Planfalls 2020 (Basisszenario oder Szenario 1a)" für den Bebauungsplan Nr. 03/018 - Kölner Straße / Moskauer Straße - in Düsseldorf

Emissionsansätze und Eingangsdaten für den "Analysefall 2015", "Nullfall 2020" und die "Planfälle 2020 – Basisszenarion und Szenario 1a" für den Bebauungsplan Nr. 03/018 – Kölner Straße / Moskauer Straße - Stadtbezirk 3 – Stadtteil Oberbilk in Düsseldorf

Analysefall 2015

Lfd. Straßenname	DTV	Anteil SNFz	Anteil LNF	UWZ*	Ver	Verkehrssitutation Ste		Steigung	Anzahl Fahrspuren	Tempo- Limit	Typ Kalt- Start	Typ Tages- Gang	LOS1	LOS2	LOS3	LOS4	PM ₁₀	PM _{2,5}	NO _x	C ₆ H ₆
[-]	[Kfz/24h]	[%]	[%]					[%]	[-]	[km/h]			[%]	[%]	[%]	[%]	[kg/km*d]	[kg/km*d]	[kg/km*d]	[kg/km*d]
1 [01] Kölner Str.n.Erkrath.Str.	21900	3,5	5	Ja	Agglomeration	Hauptverkehrsstraße	Ю	0,0	4	50	radial	doublepeak	7,3	92,7	0,0	0,0	1,066	0,499	11,022	0,125
2 [02] Kölner Str. s. Erkrath.St	17100	3,5	5	Ja	Agglomeration	Hauptverkehrsstraße	0	-1,0	4	50	radial	doublepeak	7,3	92,7	0,0	0,0	0,833	0,390	8,514	0,098
3 [03] Kölner Str.n.Mosk.Str.	17800	3,5	5	Ja	Agglomeration	Hauptverkehrsstraße	0	1,0	2	50	radial	doublepeak	3,6	64,7	31,7	0,0	0,920	0,409	9,247	0,103
4 [04] Kölner Str.s.Mosk.Str.	17800	3,5	5	Ja	Agglomeration	Hauptverkehrsstraße	0	1,0	2	50	radial	doublepeak	3,6	64,7	31,7	0,0	0,920	0,409	9,247	0,103
5 [05] Kölner Str.s.Mosk.Str.	16600	3,5	5	Ja	Agglomeration	Hauptverkehrsstraße	Ю	0,0	2	50	radial	doublepeak	3,6	79,5	16,9	0,0	0,839	0,380	8,566	0,095
6 [06] Worringer Platz	7700	3,5	5	Ja	Agglomeration	Hauptverkehrsstraße	0	1,0	2	50	radial	doublepeak	10,3	89,7	0,0	0,0	0,376	0,180	4,245	0,045
7 [07] Erkrather Str.ö.Wor.Platz	12200	3,5	5	Ja	Agglomeration	Hauptverkehrsstraße	0	1,0	4	50	radial	doublepeak	10,3	89,7	0,0	0,0	0,588	0,278	6,050	0,070
8 [08] Erkrather Str.n.Mosk.Str.	13000	3,5	5	Ja	Agglomeration	Hauptverkehrsstraße	0	3,0	4	50	radial	doublepeak	10,3	89,7	0,0	0,0	0,629	0,298	6,499	0,075
9 [09] Erkrather Str.ö.Mosk.Str.	13000	3,5	5	Ja	Agglomeration	Hauptverkehrsstraße	Ю	-2,0	4	50	radial	doublepeak	10,3	89,7	0,0	0,0	0,627	0,297	6,380	0,075
10 [10] zw Mosku.Erkrath.Str	2200	3,5	5	Ja	Agglomeration	Erschließungsstraße	Ю	-2,0	3	50	commercial	doublepeak	100,0	0,0	0,0	0,0	0,110	0,049	1,062	0,037
11 [11] Moskauer Str.w.Erkr.Str.	0	3,5	5	Ja	Agglomeration	Erschließungsstraße	Ю	3,0	2	50	commercial	doublepeak	100,0	0,0	0,0	0,0	0,000	0,000	0,000	0,000
12 [12] Moskauer Str.ö.Erkr.Str.	2200	3,5	5	Ja	Agglomeration	Erschließungsstraße	Ю	0,0	2	50	commercial	doublepeak	83,1	16,9	0,0	0,0	0,113	0,049	1,065	0,037

^{*} UWZ = Innerhalb Umweltzone (Ja/Nein)

Nullfall 2020

Lfd. Nr.	Straßenname	DTV	Anteil SNFz	Anteil LNF	UWZ*	Ver	Verkehrssitutation			Anzahl Fahrspuren	Tempo- Limit	Typ Kalt- Start	Typ Tages- Gang	LOS1	LOS2	LOS3	LOS4	PM ₁₀	PM _{2,5}	NO _x	C ₆ H ₆
[-]		[Kfz/24h]	[%]	[%]					[%]	[-]	[km/h]			[%]	[%]	[%]	[%]	[kg/km*d]	[kg/km*d]	[kg/km*d]	[kg/km*d]
1	[01] Kölner Str.n.Erkrath.Str.	22200	3,5	5	Ja	Agglomeration	Hauptverkehrsstraße	Ю	0,0	4	50	radial	doublepeak	5,2	94,8	0,0	0,0	1,037	0,455	7,591	0,105
2	[02] Kölner Str. s. Erkrath.St	17400	3,5	5	Ja	Agglomeration	Hauptverkehrsstraße	O	-1,0	4	50	radial	doublepeak	7,3	92,7	0,0	0,0	0,807	0,357	6,069	0,082
3	[03] Kölner Str.n.Mosk.Str.	18000	3,5	5	Ja	Agglomeration	Hauptverkehrsstraße	Ю	1,0	2	50	radial	doublepeak	3,6	64,7	31,7	0,0	0,888	0,371	6,579	0,086
4	[04] Kölner Str.s.Mosk.Str.	16600	3,5	5	Ja	Agglomeration	Hauptverkehrsstraße	Ю	1,0	2	50	radial	doublepeak	3,6	79,5	16,9	0,0	0,801	0,342	5,949	0,079
5	[05] Kölner Str.s.Mosk.Str.	14700	3,5	5	Ja	Agglomeration	Hauptverkehrsstraße	Ю	0,0	2	50	radial	doublepeak	3,6	87,9	8,5	0,0	0,700	0,302	5,102	0,070
6	[06] Worringer Platz	7700	3,5	5	Ja	Agglomeration	Hauptverkehrsstraße	Ю	1,0	2	50	radial	doublepeak	10,3	89,7	0,0	0,0	0,356	0,160	2,989	0,037
7	[07] Erkrather Str.ö.Wor.Platz	11400	3,5	5	Ja	Agglomeration	Hauptverkehrsstraße	Ю	1,0	4	50	radial	doublepeak	14,2	85,8	0,0	0,0	0,516	0,233	3,945	0,054
8	[08] Erkrather Str.n.Mosk.Str.	13000	3,5	5	Ja	Agglomeration	Hauptverkehrsstraße	O	3,0	4	50	radial	doublepeak	10,3	89,7	0,0	0,0	0,598	0,267	4,806	0,062
9	[09] Erkrather Str.ö.Mosk.Str.	13000	3,5	5	Ja	Agglomeration	Hauptverkehrsstraße	Ю	-2,0	4	50	radial	doublepeak	10,3	89,7	0,0	0,0	0,597	0,266	4,620	0,062
10	[10] zw Mosku.Erkrath.Str	1800	3,5	5	Ja	Agglomeration	Erschließungsstraße	Ю	-2,0	3	50	commercial	doublepeak	100,0	0,0	0,0	0,0	0,086	0,036	0,614	0,026
11	[11] Moskauer Str.w.Erkr.Str.	3800	3,5	5	Ja	Agglomeration	Erschließungsstraße	Ю	3,0	4	50	commercial	doublepeak	100,0	0,0	0,0	0,0	0,181	0,076	1,364	0,054
12	[12] Moskauer Str.ö.Erkr.Str.	2100	3,5	5	Ja	Agglomeration	Erschließungsstraße	Ю	0,0	4	50	commercial	doublepeak	100,0	0,0	0,0	0,0	0,100	0,042	0,665	0,030

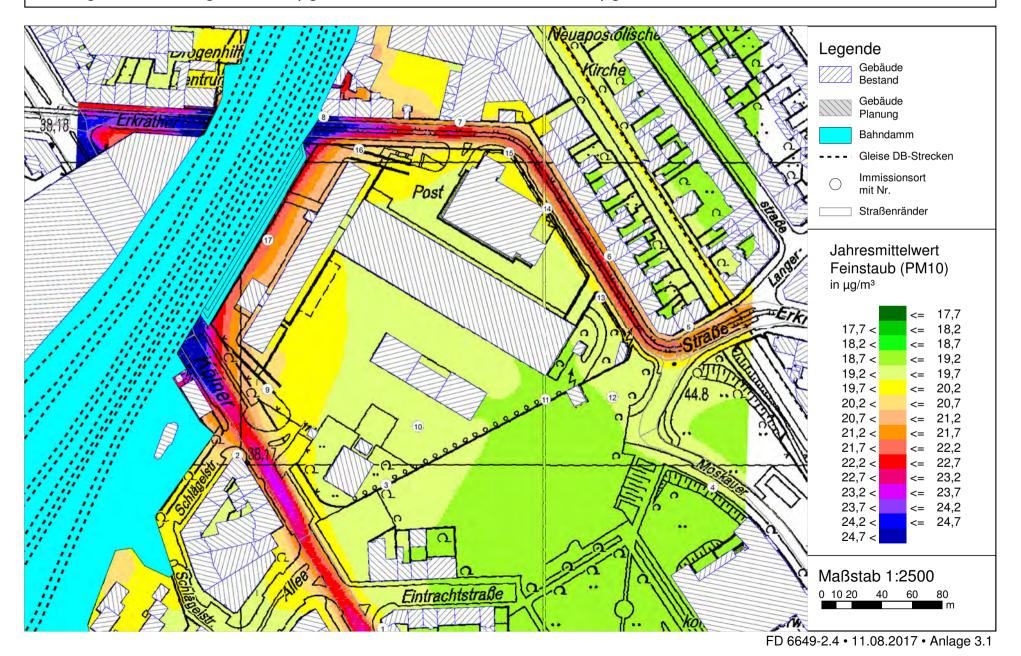
^{*} UWZ = Innerhalb Umweltzone (Ja/Nein)

Emissionsansätze und Eingangsdaten für den "Analysefall 2015", "Nullfall 2020" und die "Planfälle 2020 – Basisszenarion und Szenario 1a" für den Bebauungsplan Nr. 03/018 – Kölner Straße / Moskauer Straße - Stadtbezirk 3 – Stadtteil Oberbilk in Düsseldorf

Planfall 2020 - Basisszenario

Lfd. Nr.	Straßenname	DTV	Anteil SNFz	Anteil LNF	UWZ*	Ver	Verkehrssitutation		Steigung	Anzahl Fahrspuren	Tempo- Limit	Typ Kalt- Start	Typ Tages- Gang	LOS1	LOS2	LOS3	LOS4	PM ₁₀	PM _{2,5}	NO _x	C ^e H ^e
[-]		[Kfz/24h]	[%]	[%]					[%]	[-]	[km/h]			[%]	[%]	[%]	[%]	[kg/km*d]	[kg/km*d]	[kg/km*d]	[kg/km*d]
1	[02] Kölner Str. s. Erkrath.St	35500	3,5	5	Ja	Agglomeration	Hauptverkehrsstraße	Ю	-1,0	4	50	radial	doublepeak	3,6	64,7	31,7	0,0	1,752	0,732	12,976	0,169
2	[03] Kölner Str.n.Mosk.Str.	35500	3,5	5	Ja	Agglomeration	Hauptverkehrsstraße	Ю	1,0	2	50	radial	doublepeak	1,6	8,7	3,9	85,8	3,032	0,814	20,434	0,185
3	[04] Kölner Str.s.Mosk.Str.	17900	3,5	5	Ja	Agglomeration	Hauptverkehrsstraße	Ю	1,0	2	50	radial	doublepeak	3,6	64,7	31,7	0,0	0,883	0,369	6,543	0,085
4	[05] Kölner Str.s.Mosk.Str.	17900	3,5	5	Ja	Agglomeration	Hauptverkehrsstraße	Ю	0,0	2	50	radial	doublepeak	3,6	64,7	31,7	0,0	0,883	0,369	6,431	0,085
5	[07.1] Erkrather Str.ö.Wor.P	8600	3,5	5	Ja	Agglomeration	Erschließungsstraße	Ю	1,0	4	50	commercial	doublepeak	14,2	85,8	0,0	0,0	0,466	0,180	3,462	0,124
6	[07.2] Erkrather Str.ö.Wor.P	6400	3,5	5	Ja	Agglomeration	Erschließungsstraße	Ю	3,0	4	50	commercial	doublepeak	49,4	50,6	0,0	0,0	0,330	0,132	2,555	0,092
7	[08] Erkrather Str.n.Mosk.Str.	8400	3,5	5	Ja	Agglomeration	Erschließungsstraße	Ю	-2,0	4	50	commercial	doublepeak	14,2	85,8	0,0	0,0	0,455	0,176	3,444	0,121
8	[10] zw Mosku.Erkrath.Str	8400	3,5	5	Ja	Agglomeration	Erschließungsstraße	Ю	-2,0	3	50	commercial	doublepeak	10,3	89,7	0,0	0,0	0,458	0,176	3,471	0,121
9	[11] Moskauer Str.w.Erkr.Str.	19600	3,5	5	Ja	Agglomeration	Hauptverkehrsstraße	Ю	3,0	4	50	radial	doublepeak	7,3	92,7	0,0	0,0	0,911	0,403	7,263	0,094
10	[12] Moskauer Str.ö.Erkr.Str.	19600	3,5	5	Ja	Agglomeration	Hauptverkehrsstraße	Ю	0,0	4	50	radial	doublepeak	7,3	92,7	0,0	0,0	0,909	0,401	6,685	0,092

^{*} UWZ = Innerhalb Umweltzone (Ja/Nein)

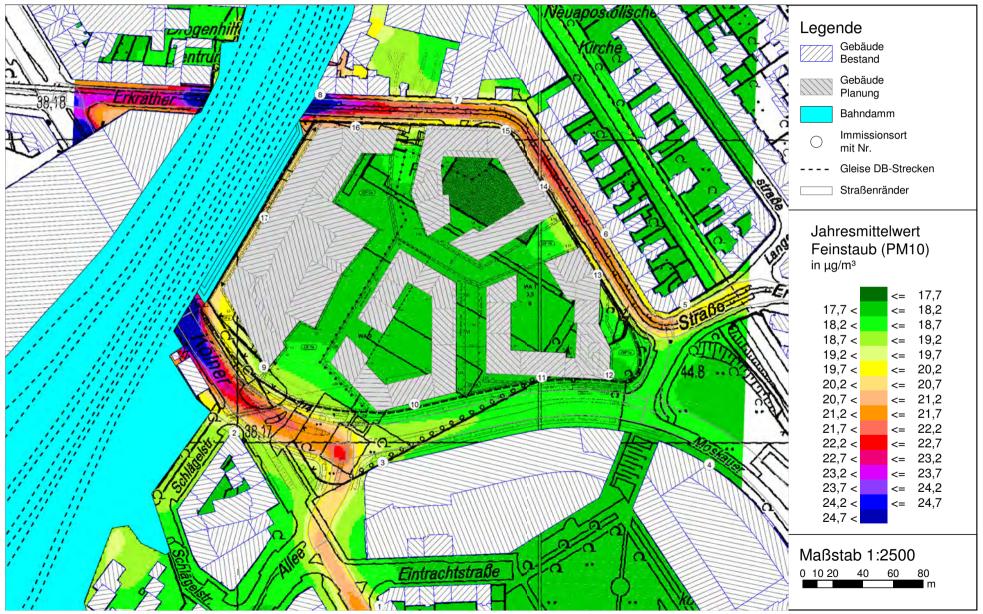

Planfall 2020 - Szenario 1a

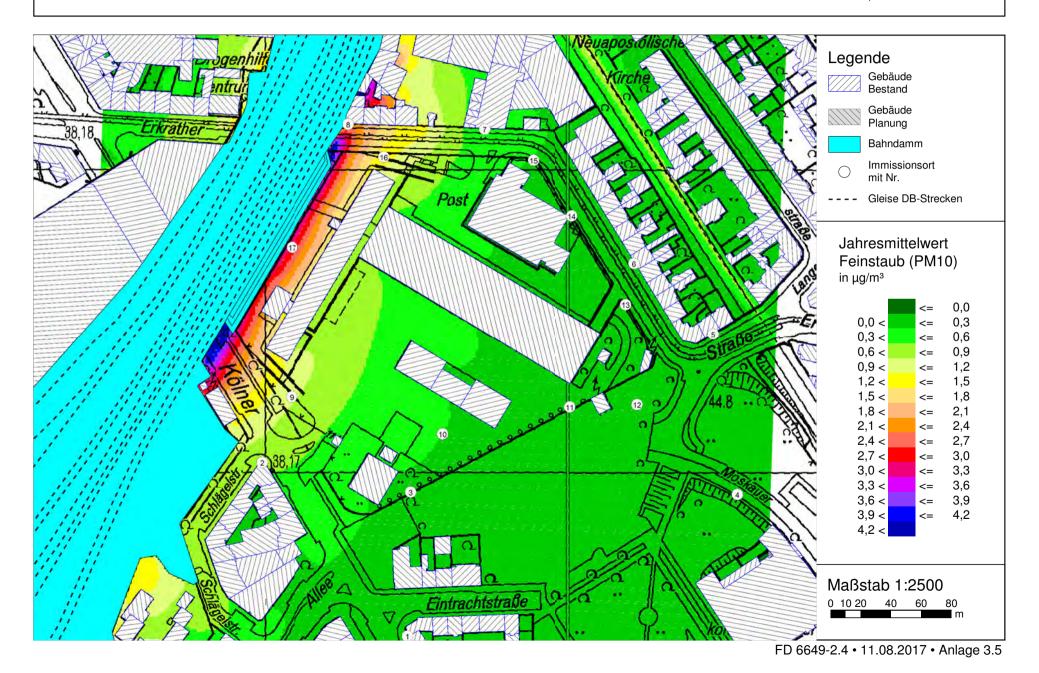
Lfd Nr.	Straßenname	DTV	Anteil SNFz	Anteil LNF	UWZ*	Ver	Verkehrssitutation		Steigung	Anzahl Fahrspuren	Tempo- Limit	Typ Kalt- Start	Typ Tages- Gang	LOS1	LOS2	LOS3	LOS4	PM ₁₀	PM _{2,5}	NO _x	C ^e H ^e
[-]		[Kfz/24h]	[%]	[%]					[%]	[-]	[km/h]			[%]	[%]	[%]	[%]	[kg/km*d]	[kg/km*d]	[kg/km*d]	[kg/km*d]
1	[01] Kölner Str.n.Erkrath.Str.	23300	3,5	5	Ja	Agglomeration	Hauptverkehrsstraße	Ю	0,0	4	50	radial	doublepeak	5,2	94,8	0,0	0,0	1,088	0,478	7,968	0,110
2	[02] Kölner Str. s. Erkrath.St	19000	3,5	5	Ja	Agglomeration	Hauptverkehrsstraße	Ю	-1,0	4	50	radial	doublepeak	7,3	92,7	0,0	0,0	0,881	0,389	6,627	0,090
3	[03] Kölner Str.n.Mosk.Str.	19000	3,5	5	Ja	Agglomeration	Hauptverkehrsstraße	Ю	1,0	2	50	radial	doublepeak	3,6	51,4	28,1	16,9	1,074	0,400	7,745	0,092
4	[04] Kölner Str.s.Mosk.Str.	15300	3,5	5	Ja	Agglomeration	Hauptverkehrsstraße	Ю	1,0	2	50	radial	doublepeak	3,6	79,5	16,9	0,0	0,738	0,315	5,484	0,073
5	[05] Kölner Str.s.Mosk.Str.	15300	3,5	5	Ja	Agglomeration	Hauptverkehrsstraße	Ю	0,0	2	50	radial	doublepeak	3,6	79,5	16,9	0,0	0,738	0,315	5,378	0,073
6	[06] Worringer Platz	7500	3,5	5	Ja	Agglomeration	Hauptverkehrsstraße	Ю	1,0	2	50	radial	doublepeak	10,3	89,7	0,0	0,0	0,347	0,156	2,911	0,036
7	[07] Erkrather Str.ö.Wor.Platz	12300	3,5	5	Ja	Agglomeration	Erschließungsstraße	Ю	1,0	4	50	commercial	doublepeak	7,3	92,7	0,0	0,0	0,673	0,258	5,025	0,177
8	[08] Erkrather Str.n.Mosk.Str.	13600	3,5	5	Ja	Agglomeration	Erschließungsstraße	Ю	3,0	4	50	commercial	doublepeak	7,3	92,7	0,0	0,0	0,745	0,287	5,886	0,196
9	[09] Erkrather Str.ö.Mosk.Str.	13800	3,5	5	Ja	Agglomeration	Hauptverkehrsstraße	Ю	-2,0	4	50	radial	doublepeak	10,3	89,7	0,0	0,0	0,634	0,283	4,904	0,065
10	[10] zw Mosku.Erkrath.Str	2600	3,5	5	Ja	Agglomeration	Hauptverkehrsstraße	Ю	-2,0	3	50	radial	doublepeak	100,0	0,0	0,0	0,0	0,083	0,051	0,840	0,012
11	[11] Moskauer Str.w.Erkr.Str.	4600	3,5	5	Ja	Agglomeration	Hauptverkehrsstraße	Ю	3,0	4	50	radial	doublepeak	100,0	0,0	0,0	0,0	0,147	0,091	1,584	0,022
12	[12] Moskauer Str.ö.Erkr.Str.	4600	3,5	5	Ja	Agglomeration	Hauptverkehrsstraße	Ю	0,0	4	50	radial	doublepeak	100,0	0,0	0,0	0,0	0,145	0,090	1,392	0,021

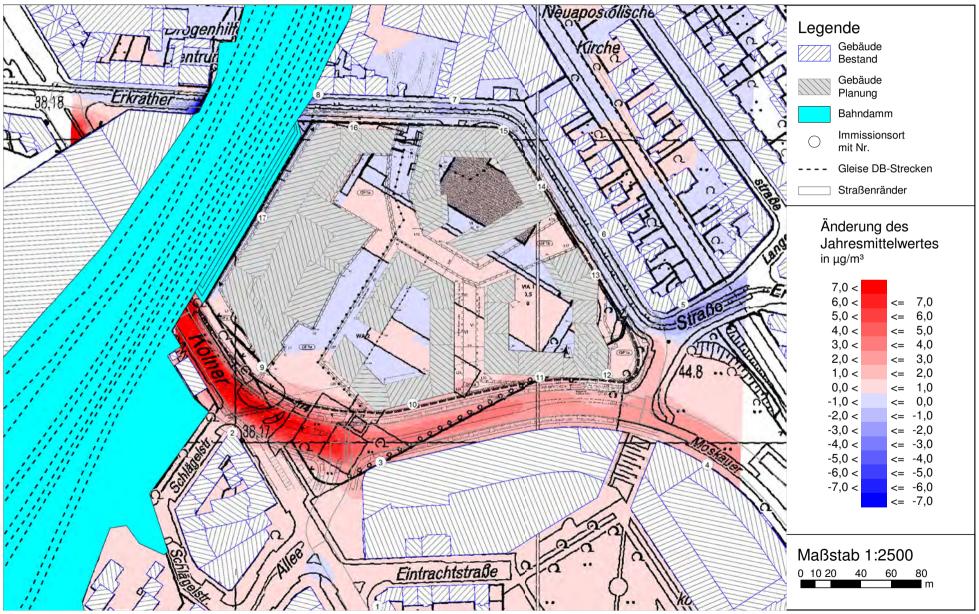
^{*} UWZ = Innerhalb Umweltzone (Ja/Nein)

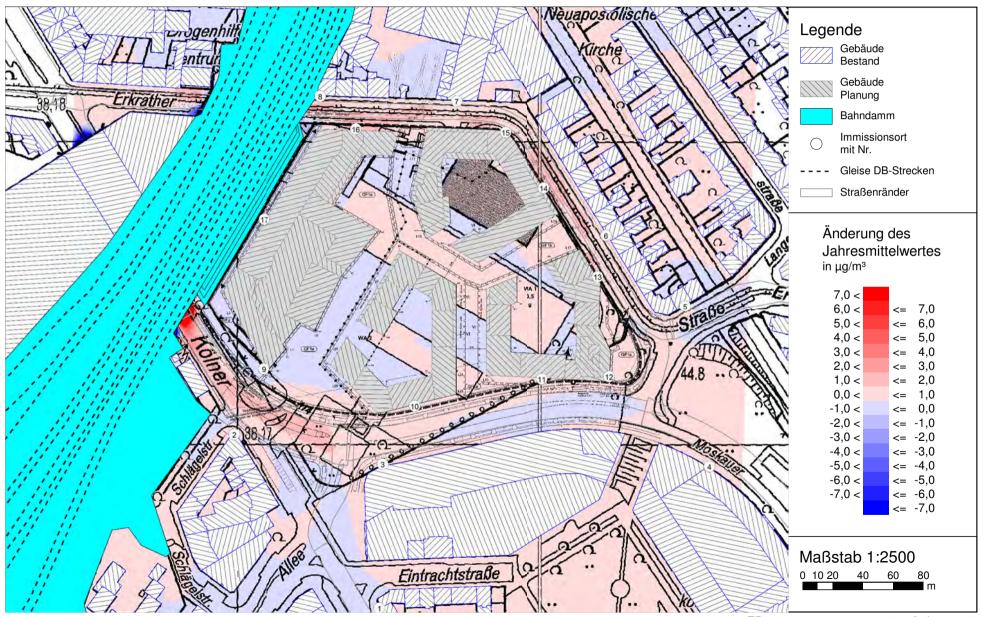
Feinstaub (PM10) Gesamtbelastung (JMW, h=1,5m) für den "Analysefall 2015" für den Bebauungsplan Nr. 03/018 - Kölner Straße / Moskauer Straße - in Düsseldorf mit einer Hintergrundbelastung von 18,9 μ g/m³ - Grenzwert 39. BImSchV: 40 μ g/m³

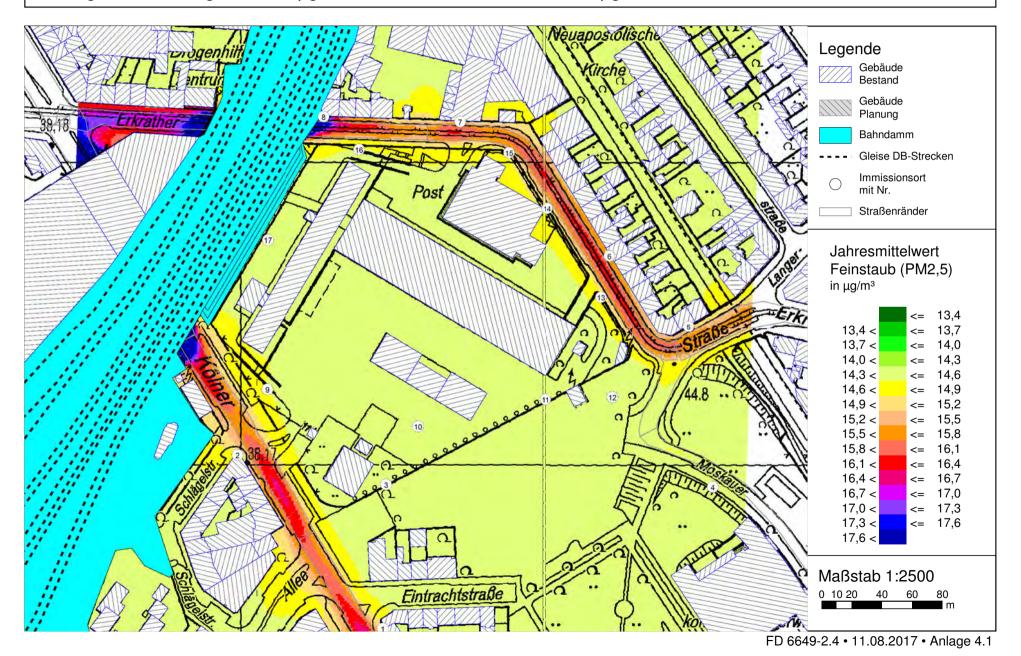
Feinstaub (PM10) Gesamtbelastung (JMW, h=1,5m) für den "Nullfall 2020" für den Bebauungsplan Nr. 03/018 - Kölner Straße / Moskauer Straße - in Düsseldorf mit einer Hintergrundbelastung von 17,7 μg/m³ - Grenzwert 39. BlmSchV: 40 μg/m³


Feinstaub (PM10) Gesamtbelastung (JMW, h=1,5m) für den "Planfall 2020 - Basisszenario für den Bebauungsplan Nr. 03/018 - Kölner Straße / Moskauer Straße - in Düsseldorf mit einer Hintergrundbelastung von 17,7 μ g/m³ - Grenzwert 39. BImSchV: 40 μ g/m³


Feinstaub (PM10) Gesamtbelastung (JMW, h=1,5m) für den "Planfall 2020 - Szenario 1a" für den Bebauungsplan Nr. 03/018 - Kölner Straße / Moskauer Straße - in Düsseldorf mit einer Hintergrundbelastung von 17,7 μ g/m³ - Grenzwert 39. BlmSchV: 40 μ g/m³


Feinstaub (PM10) Zusatzbelastung (JMW, h=1,5m) durch den Schienenverkehr der DB-Strecken mit den Emissionen gemäß dem Fahrplan 2013

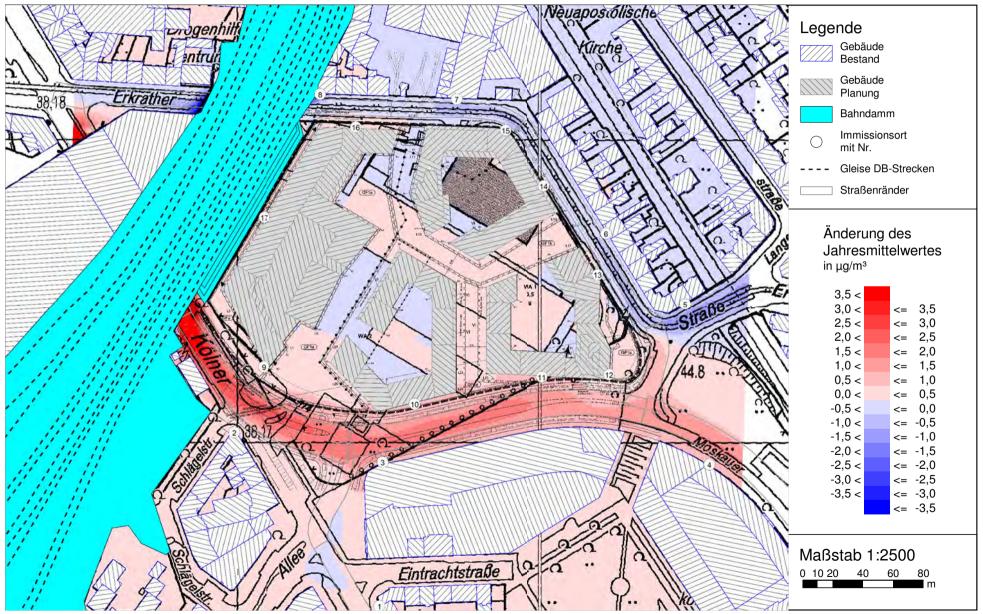

Änderung des Jahresmittelwertes von Feinstaub (PM10) für den Bebauungsplan Nr. 03/018 - Kölner Straße / Moskauer Straße - in Düsseldorf (Planfall 2020 'Basisszenario' minus Nullfall 2020)

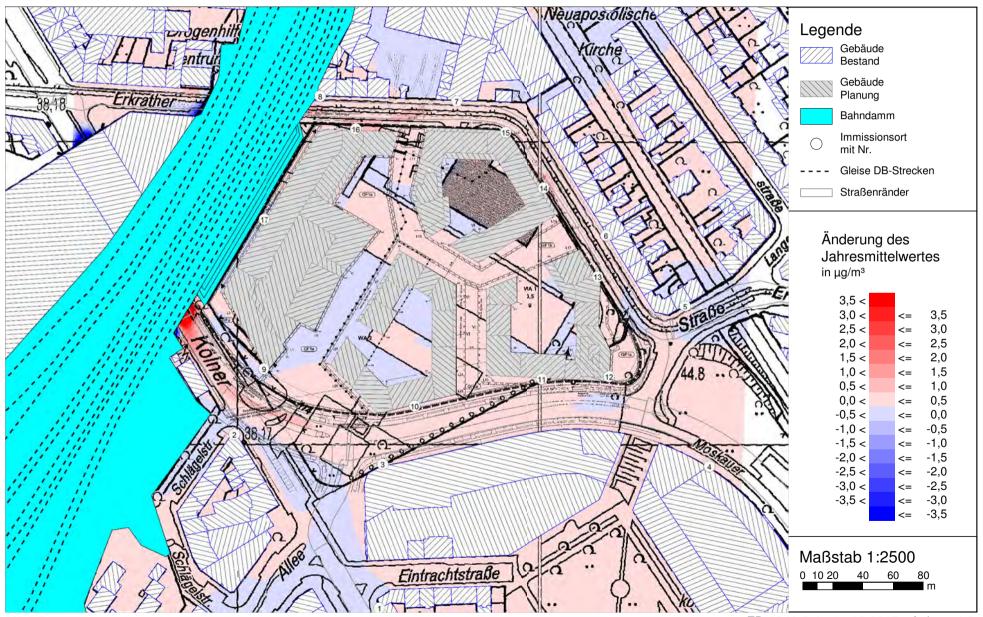

Änderung des Jahresmittelwertes von Feinstaub (PM10) für den Bebauungsplan Nr. 03/018 - Kölner Straße / Moskauer Straße - in Düsseldorf (Planfall 2020 'Szenario 1a' minus Nullfall 2020)

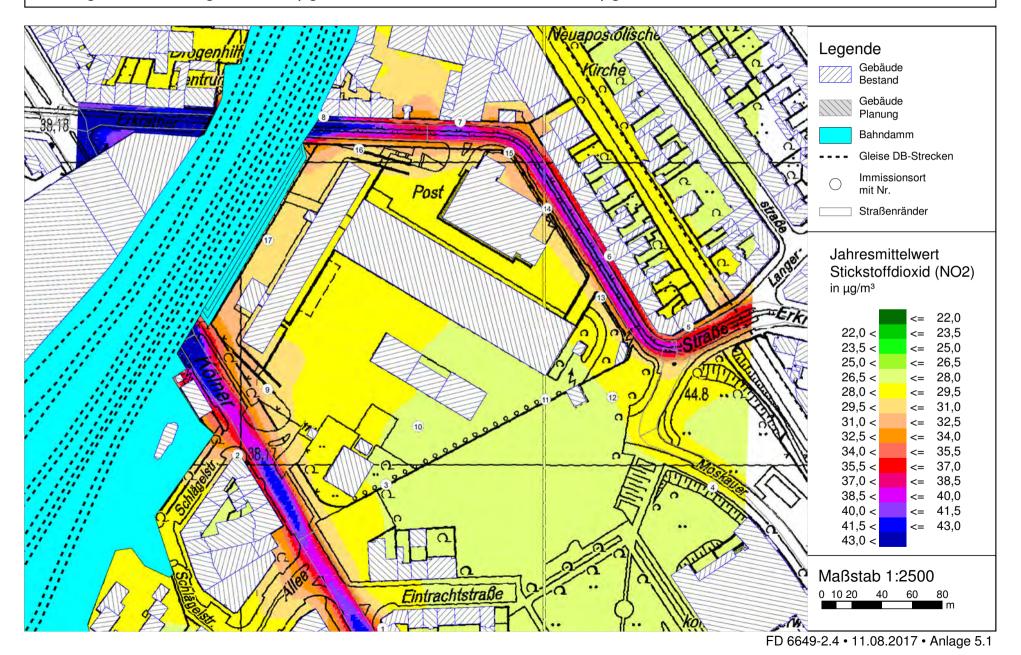
Feinstaub (PM2,5) Gesamtbelastung (JMW, h=1,5m) für den "Analysefall 2015" für den Bebauungsplan Nr. 03/018 - Kölner Straße / Moskauer Straße - in Düsseldorf mit einer Hintergrundbelastung von 14,3 μ g/m³ - Grenzwert 39. BImSchV: 25 μ g/m³


Feinstaub (PM2,5) Gesamtbelastung (JMW, h=1,5m) für den "Nullfall 2020" für den Bebauungsplan Nr. 03/018 - Kölner Straße / Moskauer Straße - in Düsseldorf mit einer Hintergrundbelastung von 13,4 μ g/m³ - Grenzwert 39. BImSchV: 25 μ g/m³

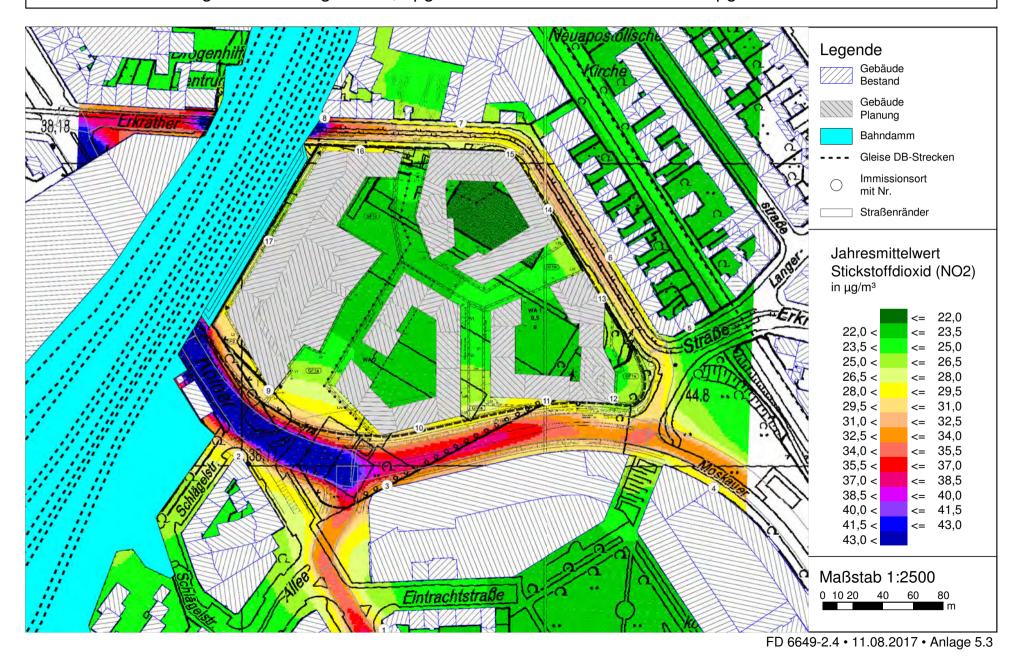
Feinstaub (PM2,5) Gesamtbelastung (JMW, h=1,5m) für den "Planfall 2020 - Basisszenaric für den Bebauungsplan Nr. 03/018 - Kölner Straße / Moskauer Straße - in Düsseldorf mit einer Hintergrundbelastung von 13,4 μ g/m³ - Grenzwert 39. BlmSchV: 25 μ g/m³


Feinstaub (PM2,5) Gesamtbelastung (JMW, h=1,5m) für den "Planfall 2020 - Szenario 1a" für den Bebauungsplan Nr. 03/018 - Kölner Straße / Moskauer Straße - in Düsseldorf mit einer Hintergrundbelastung von 13,4 μ g/m³ - Grenzwert 39. BImSchV: 25 μ g/m³

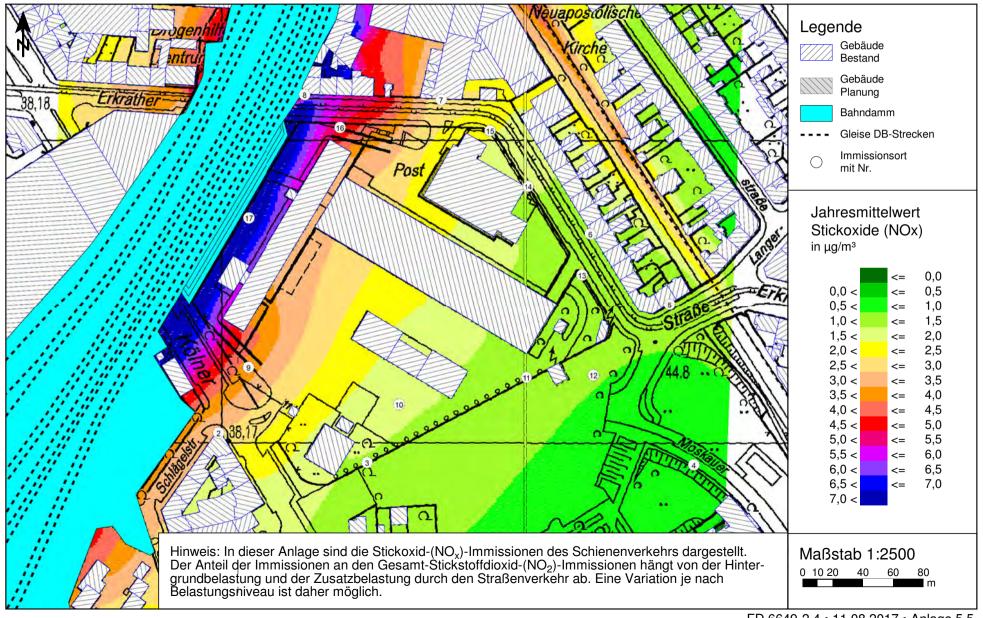

Änderung des Jahresmittelwertes von Feinstaub (PM2,5) für den Bebauungsplan Nr. 03/018 - Kölner Straße / Moskauer Straße - in Düsseldorf (Planfall 2020 'Basisszenario' minus Nullfall 2020)

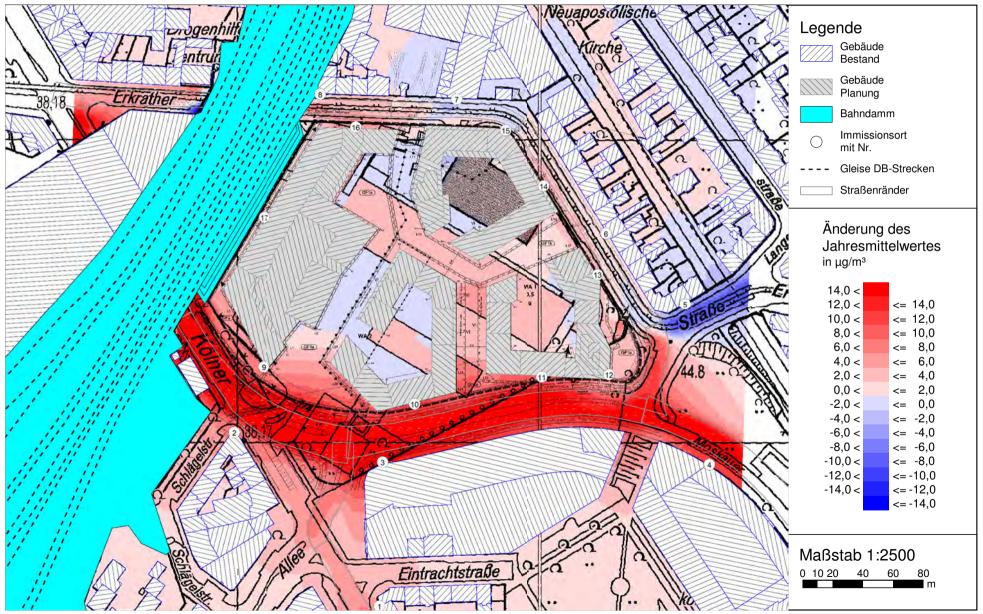

Änderung des Jahresmittelwertes von Feinstaub (PM2,5) für den Bebauungsplan Nr. 03/018 - Kölner Straße / Moskauer Straße - in Düsseldorf (Planfall 2020 'Szenario 1a' minus Nullfall 2020)

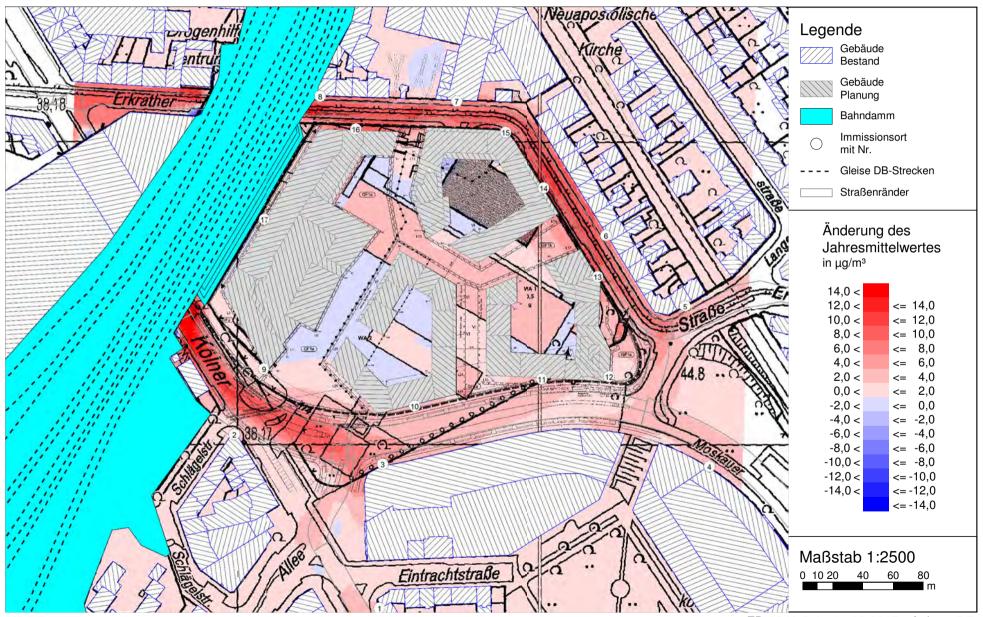
Stickstoffdioxid (NO2) Gesamtbelastung (JMW, h=1,5m) für den "Analysefall 2015" für den Bebauungsplan Nr. 03/018 - Kölner Straße / Moskauer Straße - in Düsseldorf mit einer Hintergrundbelastung von 26,3 μg/m³ - Grenzwert 39. BImSchV: 40 μg/m³

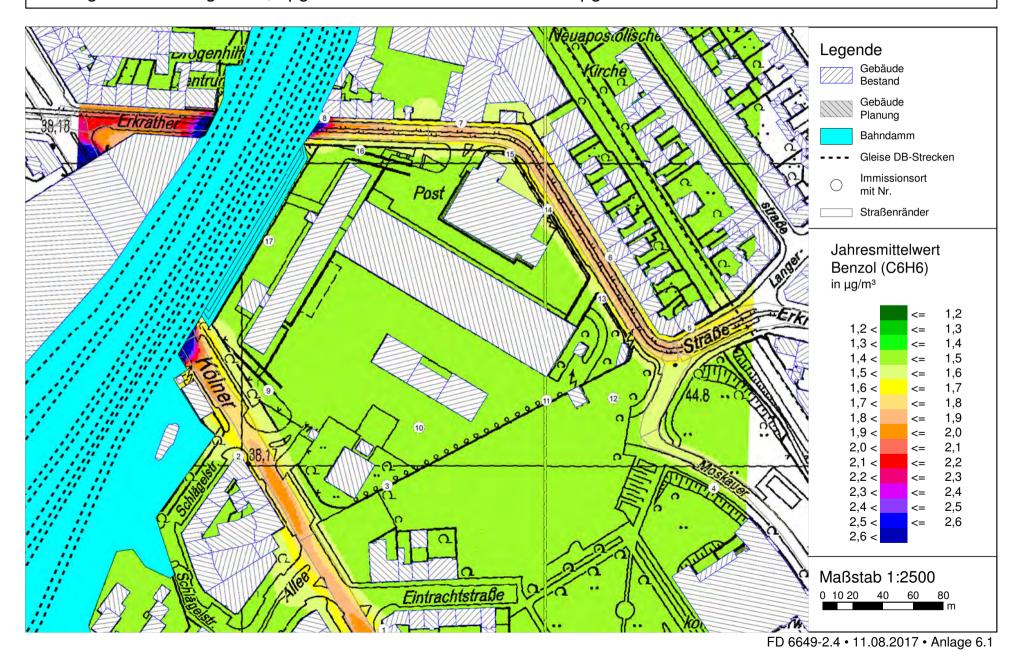

Stickstoffdioxid (NO2) Gesamtbelastung (JMW, h=1,5m) für den "Nullfall 2020" für den Bebauungsplan Nr. 03/018 - Kölner Straße / Moskauer Straße - in Düsseldorf mit einer Hintergrundbelastung von 21,8 μg/m³ - Grenzwert 39. BlmSchV: 40 μg/m³

Stickstoffdioxid (NO2) Gesamtbelastung (JMW, h=1,5m) für den "Planfall 2020 - Basisszenario" für den Bebauungsplan Nr. 03/018 - Kölner Straße / Moskauer Straße - in Düsseldorf mit einer Hintergrundbelastung von 21,8 μg/m³ - Grenzwert 39. BImSchV: 40 μg/m³


Stickstoffdioxid (NO2) Gesamtbelastung (JMW, h=1,5m) für den "Planfall 2020-Szenario1a für den Bebauungsplan Nr. 03/018 - Kölner Straße / Moskauer Straße - in Düsseldorf mit einer Hintergrundbelastung von 21,8 µg/m³ - Grenzwert 39. BlmSchV: 40 µg/m³


Stickoxid (NOx) Zusatzbelastung (JMW, h=1,5m) durch den Schienenverkehr der DB-Strecken mit den Emissionen gemäß dem Fahrplan 2013

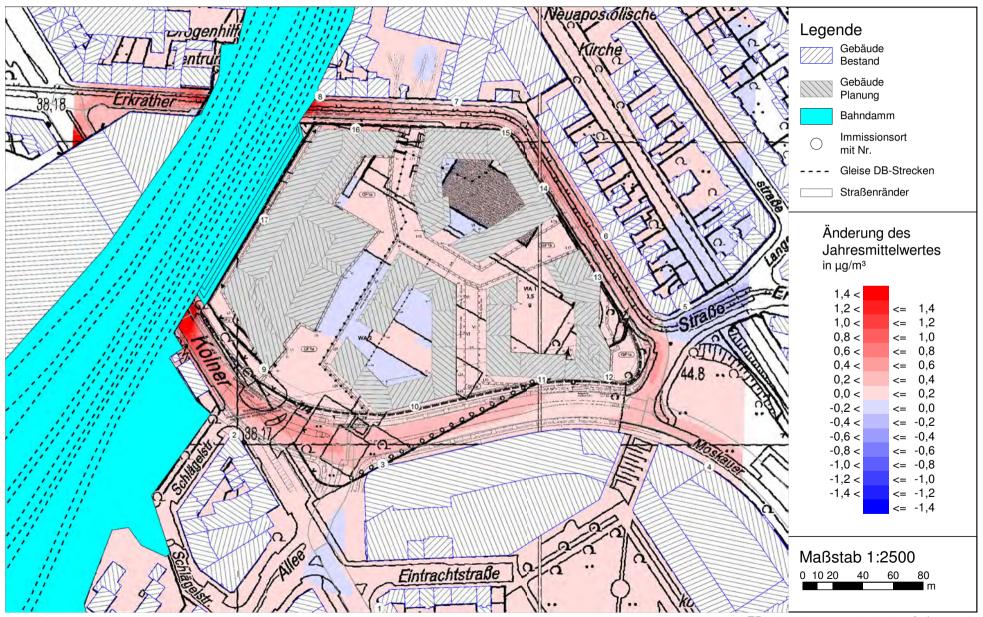

Änderung des Jahresmittelwertes von Stickstoffdioxid (NO₂) für den Bebauungsplan Nr. 03/018 - Kölner Straße / Moskauer Straße - in Düsseldorf (Planfall 2020 'Basisszenario' minus Nullfall 2020)

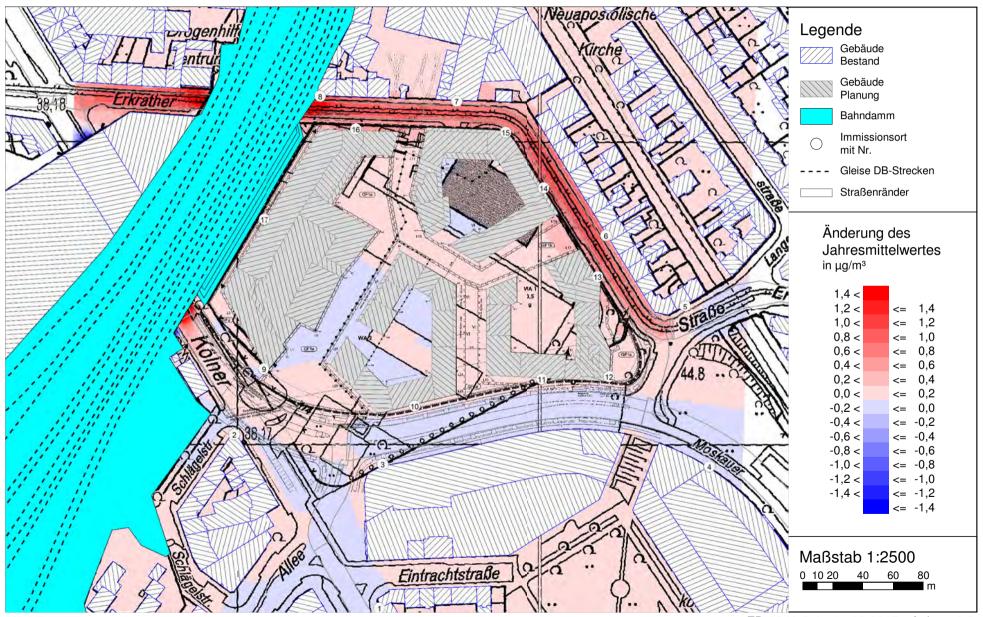

Änderung des Jahresmittelwertes von Stickstoffdioxid (NO₂) für den Bebauungsplan Nr. 03/018 - Kölner Straße / Moskauer Straße - in Düsseldorf (Planfall 2020 'Szenario 1a' minus Nullfall 2020)

Benzol (C6H6) Gesamtbelastung (JMW, h=1,5m) für den "Analysefall 2015" für den Bebauungsplan Nr. 03/018 - Kölner Straße / Moskauer Straße - in Düsseldorf mit einer Hintergrundbelastung von 1,4 μ g/m³ - Grenzwert 39. BlmSchV: 5 μ g/m³

Benzol (C6H6) Gesamtbelastung (JMW, h=1,5m) für den "Nullfall 2020" für den Bebauungsplan Nr. 03/018 - Kölner Straße / Moskauer Straße - in Düsseldorf mit einer Hintergrundbelastung von 1,2 μg/m³ - Grenzwert 39. BlmSchV: 5 μg/m³

Benzol (C6H6) Gesamtbelastung (JMW, h=1,5m) für den "Planfall 2020 - Basisszenario" für den Bebauungsplan Nr. 03/018 - Kölner Straße / Moskauer Straße - in Düsseldorf mit einer Hintergrundbelastung von 1,2 μ g/m³ - Grenzwert 39. BImSchV: 5 μ g/m³


Benzol (C6H6) Gesamtbelastung (JMW, h=1,5m) für den "Planfall 2020 - Szenario 1a" für den Bebauungsplan Nr. 03/018 - Kölner Straße / Moskauer Straße - in Düsseldorf mit einer Hintergrundbelastung von 1,2 μ g/m³ - Grenzwert 39. BImSchV: 5 μ g/m³


Änderung des Jahresmittelwertes von Benzol (C_6H_6) für den Bebauungsplan Nr. 03/018 - Kölner Straße / Moskauer Straße - in Düsseldorf (Planfall 2020 'Basisszenario' minus Nullfall 2020)

Änderung des Jahresmittelwertes von Benzol (C₆H₆) für den Bebauungsplan Nr. 03/018 - Kölner Straße / Moskauer Straße - in Düsseldorf (Planfall 2020 'Szenario 1a' minus Nullfall 2020)

