

Verkehrsuntersuchung Bebauungsplan Nr. 03/018 – Kölner Straße/Moskauer Straße – Stadtbezirk 3 – Stadtteil Oberbilk

Bericht

Stand: 3. März 2017

im Auftrag der Living Central Beteiligungs-GmbH

LINDSCHULTE + KLOPPE

Ingenieurgesellschaft mbH Stresemannstraße 26 40210 Düsseldorf Telefon 0211. 36 11 37 - 0

Projektbearbeitung: Dipl.-Ing. Hendrik Halbe

Inhalt

1.	Ausgangslage und Aufgabenstellung	1
2.	Darstellung der Ist Situation	2
2.1	Verkehrserschließung und Verkehrsführung MIV	2
2.2	Nahverkehrsnetz	4
2.3	Ruhender Verkehr	5
2.4	Fuß- und Radwegenetz	7
2.5	Derzeitige Verkehrsbelastungen	8
3.	Beschreibung der Planungen	9
3.1	Projektentwicklung Grand Central	9
3.2	Ortsumgehung Oberbilk	.10
3.3	Tangierende Planung Entwicklung Mindener Straße	.11
4.	Abschätzung der Verkehrserzeugung im Kfz-Verkehr	12
4.1	Vorgehen	.12
4.2	Verkehrserzeugung Plangebiet	.12
4.3	Verkehrserzeugung Capitol-Theater	.14
5.	Darstellung der Prognosesituation	16
5.1	Erschließungskonzept für den MIV	.16
5.2	Verkehrsverteilung	.17
5.3	Zukünftig zu erwartende Verkehrsbelastungen	.21
6.	Bewertung der Leistungsfähigkeit	25
6.1	Vorgehen	.25
6.2	Knotenpunkt Kölner Straße / Worringer Platz / Erkrather Straße	.27
6.3	Knotenpunkt Kruppstraße / Kölner Straße / Werdener Straße	.29
6.4	Knotenpunkt Kölner Str. / Moskauer Str. / Ludwig-Erhard-Allee / TG	.31
6.5	Knotenpunkt Werdener Straße / Kettwiger Straße / Erkrather Straße	.34
6.6	Knotenpunkt Moskauer Straße / Erkrather Straße	.36
6.6.1	südlicher signalisierter Teilknoten	.36
6.6.2	nördlicher unsignalisierter Teilknoten	.37
6.7	Tiefgaragenerschließung Erkrather Straße	.38
7.	Ortsumgehung Oberbilk	40
8.	Zusammenfassung	42

Abbildungen

_		
Abbildung 1:	Lage des Plangebiets	1
Abbildung 2:	Verkehrserschließung des Plangebiets	2
Abbildung 3:	Straßenraum Kölner Straße	3
Abbildung 4:	Straßenraum Moskauer Straße und Erkrather Straße	3
Abbildung 5:	Knotenpunkte im Bereich des Plangebiets	3
Abbildung 6:	Anbindung des Plangebiets an das Nahverkehrsnetz	4
Abbildung 7:	Parkmöglichkeiten im Umfeld des Plangebiets	5
Abbildung 8:	Parkflächen Kölner Straße und Parkpalette Capitol-Theater	6
Abbildung 9:	Radwege im Umfeld des Plangebiets	7
Abbildung 10:	relevante Knotenpunkte	8
Abbildung 11:	Lageplan Projektentwicklung Grand Central	9
Abbildung 12:	Planung Moskauer Straße (Teilausbau der 1. Ausbaustufe)	10
Abbildung 13:	Neuverkehr Entwicklung Mindener Straße	11
Abbildung 14:	Tagesganglinie des Quell- und Zielverkehrs des Plangebiets	14
Abbildung 15:	Tagesganglinie Quell- und Zielverkehr Besucher Capitol-Theater	15
Abbildung 16:	Erschließung des Plangebiets	16
Abbildung 17:	Verkehrsverteilung Parkpalette	18
Abbildung 18:	Verkehrsverteilung Tiefgarage Moskauer Straße	18
Abbildung 19:	Verkehrsverteilung Hotel	19
Abbildung 20:	Verkehrsverteilung Erschließungspunkte Erkrather Straße	19
Abbildung 21:	Verkehrsverteilung Lieferverkehr über die Hotelzufahrt	20
Abbildung 22:	Verkehrsaufkommen Parkpalette	22
Abbildung 23:	Verkehrsaufkommen Tiefgarage Moskauer Straße	22
Abbildung 24:	Verkehrsaufkommen Hotel	23
Abbildung 25:	Verkehrsaufkommen Erschließungspunkte Erkrather Straße	23
Abbildung 26:	Verkehrsaufkommen Lieferverkehr über die Hotelzufahrt	24
Abbildung 27:	Ergebnisse Kölner Straße / Worringer Platz / Erkrather Straße	27
Abbildung 28:	Ergebnisse Kruppstraße / Kölner Straße / Werdener Straße	29
Abbildung 29:	Ergebnisse Kölner Straße / Moskauer Straße (Teilknoten 1)	31
Abbildung 30:	Ergebnisse Kölner Straße / Ludwig-Erhard-Allee (Teilknoten 2)	32
Abbildung 31:	Ergebnisse Werdener Str. / Kettwiger Str. / Erkrather Str	34
Abbildung 32:	Ergebnisse Moskauer Str. / Erkrather Str. (sign. Teilknoten)	36
Abbildung 33:	Ergebnisse Moskauer Str. / Erkrather Str. (unsign. Teilknoten)	37
Abbildung 34:	Prinzipskizze Zufahrt Erkrather Straße	38
Abbildung 35:	Belastungen an der neuen Tiefgaragenzufahrt	39
Abbildung 36:	Szenarien: Tagesbelastung Umfeld Plangebiet	41

Tabellen

Tabelle 2: Eingangsgrößen Verkehrserzeugung 12 Tabelle 3: Quell- und Zielverkehr des Plangebietes 14 Tabelle 4: Verkehrserzeugung Besucher Capitol-Theater 15 Tabelle 5: Verteilung Neuverkehr auf die Zufahrten 17 Tabelle 6: Signalprogramme 26 Tabelle 7: Vergleich Verkehrsmengen Untersuchungen 44	Tabelle 1:	Verkehrszählungen im Umfeld des Plangebiets	8
Tabelle 4: Verkehrserzeugung Besucher Capitol-Theater	Tabelle 2:	Eingangsgrößen Verkehrserzeugung	.12
Tabelle 5: Verteilung Neuverkehr auf die Zufahrten	Tabelle 3:	Quell- und Zielverkehr des Plangebietes	.14
Tabelle 6: Signalprogramme26	Tabelle 4:	Verkehrserzeugung Besucher Capitol-Theater	.15
	Tabelle 5:	Verteilung Neuverkehr auf die Zufahrten	.17
Tabelle 7: Vergleich Verkehrsmengen Untersuchungen44	Tabelle 6:	Signalprogramme	.26
	Tabelle 7:	Vergleich Verkehrsmengen Untersuchungen	.44

Anlagen

- Anlage 1: Ergebnisse der Verkehrszählung
- Anlage 2: Verkehrserzeugungsrechnung
- Anlage 3: Knotenstrompläne
- Anlage 4: Leistungsfähigkeitsnachweise

1. Ausgangslage und Aufgabenstellung

Das Plangebiet umfasst ein ca. 37.000 m² großes Areal an der Kölner Straße in Düsseldorf. Der gesamte Bereich soll einer neuen Nutzung zugeführt werden (Projektentwicklung Grand Central). Im Rahmen des Verfahrens zum *Bebauungsplan Nr. 03/018 – Kölner Straße/Moskauer Starße – Stadtbezirk 3 – Stadtteil Oberbilk* ist die Verkehrssituation darzustellen.

In Abbildung 1 ist die Lage des Plangebiets dargestellt.

Abbildung 1: Lage des Plangebiets

Die Darstellung der Verkehrssituation erfolgt unter Berücksichtigung der im Umfeld des Plangebiets vorgesehenen Straßenneu- und Umbaumaßnahmen. Als wesentliche Maßnahme ist hierbei die Ortsumgehung Oberbilk zu nennen und insbesondere der für die Erschließung des Plangebiets notwendige Abschnitt der Ortsumgehung (Verlängerung Moskauer Straße und neuer Knotenpunkt Moskauer Straße / Kölner Straße). Da der Realisierungshorizont der Gesamtmaßnahme Ortsumgehung Oberbilk derzeit unklar ist, wird im Rahmen der vorliegenden Verkehrsuntersuchung ausschließlich dieser für die Projektentwicklung notwendige Abschnitt der Ortsumgehung als verkehrlich relevante zwingend notwendige Maßnahme vorausgesetzt.

Ziel der Verkehrsuntersuchung ist es, die zukünftig zu erwartende Verkehrssituation unter Berücksichtigung der aus der Projektentwicklung resultierenden Neuverkehre zu bewerten.

2. Darstellung der Ist Situation

2.1 Verkehrserschließung und Verkehrsführung MIV

Das Plangebiet wird von der Kölner Straße im Westen sowie von der Erkrather Straße im Norden und im Osten begrenzt. Beide Straßen haben eine hohe Verkehrsbedeutung und stellen wichtige Verkehrsachsen im Düsseldorfer Hauptverkehrsstraßennetz dar. An den meisten Knotenpunkten wird der Verkehr durch Lichtsignalanlagen geregelt (vgl. Abbildung 2).

Entlang der südlichen Plangebietsgrenze soll zukünftig die Moskauer Straße verlängert und über einen neuen Knotenpunkt Moskauer Straße / Kölner Straße / Ludwig-Erhard-Allee mit der Kölner Straße verbunden werden. Die Realisierung dieses Abschnittes ist als vorgezogene Maßnahme der Ortsumgehung - insbesondre aufgrund der Höhenentwicklung der neuen Moskauer Straße - für die Erschließung des Plangebiets zwingend erforderlich.

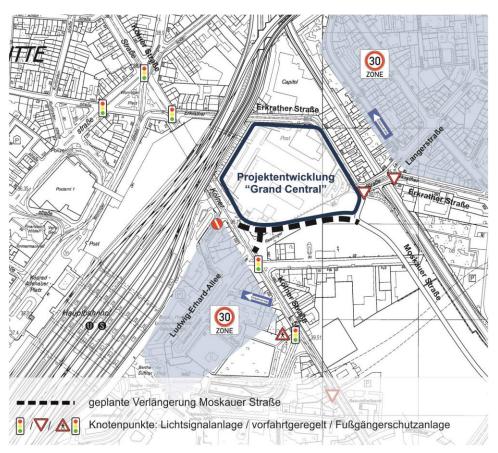


Abbildung 2: Verkehrserschließung des Plangebiets

Die Kölner Straße ist zweistreifig ausgebaut und stellt heute eine wichtige Verbindung in Nordwest-Südost-Richtung dar. Die Verbindungsfunktion der Kölner Straße wird erst nach der Realisierung der Gesamtmaßnahme Ortsumgehung Oberbilk an Bedeutung verlieren. Durch die Realisierung der notwendigen vorgezogenen Maßnahme wird am neuen Knotenpunkt Kölner Straße / Moskauer Straße / Ludwig-Erhard-Allee durch ein zweimaliges Abbiegen der Verkehrsfluss jedoch wesentlich erschwert.

Die Erkrather Straße ist zwei- und vierstreifig ausgebaut und stellt heute eine wichtige Verbindung in Ost-West-Richtung dar. Die Verbindungsfunktion der Erkrather Straße wird ebenfalls erst nach der Realisierung der Gesamtmaßnahme Ortsumgehung Oberbilk an Bedeutung verlieren. Entlang der Erkrather Straße verlaufen Straßenbahnschienen, die von der Rheinbahn als Zulaufstrecke zum Betriebshof Lierenfeld genutzt werden.

Im direkten Umfeld des Plangebiets befinden sich die Ludwig-Erhard-Allee (rückwärtige Erschließung des Hauptbahnhofes) und die Langerstraße (Wohngebiet mit Blockrandbebauung), welche als Tempo 30-Zonen ausgewiesen sind.

Die nachfolgenden Abbildungen zeigen die im Bereich des Plangebiets liegenden Straßen.

Abbildung 3: Straßenraum Kölner Straße

Abbildung 4: Straßenraum Moskauer Straße und Erkrather Straße

Abbildung 5: Knotenpunkte im Bereich des Plangebiets

2.2 Nahverkehrsnetz

Die Erschließung durch den öffentlichen Personennahverkehr (ÖPNV) ist ein Kriterium, das die Qualität des ÖPNV beschreibt. Im Nahverkehrsplan der Stadt Düsseldorf werden dazu Einzugsradien für Haltestellen definiert. Die Gebiete, die sich innerhalb dieser Radien befinden, sind demnach durch den ÖPNV gut erschlossen. In Abhängigkeit der Verkehrsmittel werden folgende Radien für den Kernbereich Düsseldorfs definiert:

- Straßenbahn- und Bushaltestellen: 300 m (Richtwert), 400 m (Grenzwert)
- U-Bahn / Stadtbahnhaltestellen: 600 m

Das Plangebiet liegt innerhalb der Einzugsradien der Haltestellen:

- Düsseldorf Hbf
- Worringer Platz
- Handelszentrum / Moskauer Straße
- Langerstraße

In Abbildung 6 ist das Plangebiet mit den relevanten umliegenden Haltestellen dargestellt.

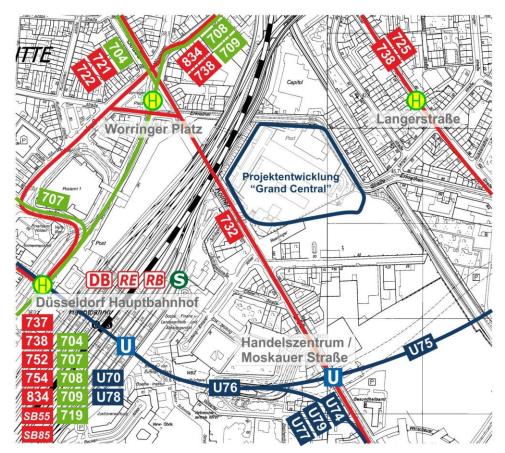


Abbildung 6: Anbindung des Plangebiets an das Nahverkehrsnetz

Die bedeutendste Haltestelle ist der Düsseldorfer Hauptbahnhof, der als Fernverkehrsknotenpunkt (höchste Bahnhofskategorie) eine Vielzahl der Stadtbahnlinien der Rheinbahn AG und einige wichtige Straßenbahnlinien mit dem überregionalen ICE- und IC-Netz sowie dem regionalen RE-, S- und RB-Netz verknüpft. Der Fußweg vom Plangebiet zum Düsseldorfer Hauptbahnhof beträgt ca. 400 m. Die Haltestelle Worringer Platz ist ebenfalls für die Erschließung des Plangebiets von Bedeutung, da diese von vielen Straßenbahnlinien angefahren wird, die auch den Düsseldorfer Hauptbahnhof anfahren. Die fußläufige Entfernung vom Plangebiet zum Worringer Platz beträgt ca. 250 m. Die Haltestelle Handelszentrum / Moskauer Straße wird von den Linien U75 und U76 bedient. Die fußläufige Entfernung dorthin beträgt ca. 390 m. Die Haltestelle Langerstraße wir nur von der Buslinie 738 bedient. Die fußläufige Entfernung zu dieser Haltestelle beträgt ca. 300 m.

Aufgrund der Nähe zum Hauptbahnhof als zentraler ÖPNV-Verknüpfungspunkt mit einer Vielfalt an Linienangeboten, ist die Erschließung des Plangebiets durch den ÖPNV überdurchschnittlich gut.

2.3 Ruhender Verkehr

Im direkten Umfeld des Plangebiets sind unterschiedliche Parkmöglichkeiten vorhanden (vgl. Abbildung 7).

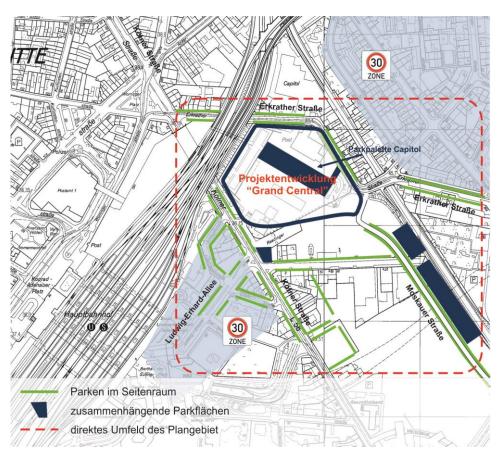


Abbildung 7: Parkmöglichkeiten im Umfeld des Plangebiets

Das Parken im Seitenraum ist abschnittsweise entlang der Kölner Straße, der Moskauer Straße und der Erkrather Straße erlaubt. Meist sind die Parkstände als straßenbegleitende Längsparkstände angeordnet. Teilweise ist auch Schrägoder Senkrechtparken möglich.

Der Bereich um die Langerstraße ist ein Wohngebiet mit Blockrandbebauung. Hier ist im gesamten Gebiet Parken im Seitenraum möglich.

An der Kölner Straße, auf Höhe der Ludwig-Erhard-Allee, und im Bereich der Moskauer Straße ist jeweils eine großräumige zusammenhängende Parkfläche vorhanden. Das Parken ist dort nicht geregelt. Diese Flächen haben teilweise einen schlechten Ausbauzustand und sind nicht beschildert. Nach Verlängerung der Moskauer Straße stehen diese Flächen nicht mehr als Parkflächen zur Verfügung.

Das Dach des noch bestehenden Gebäudes der Post auf dem Plangebiet ist von der Erkrather Straße aus befahrbar und als Parkpalette ausgebaut. Die Parkpalette dient dem Capitol-Theater nördlich des Plangebiets als Parkplatz (vgl. Abbildung 8).

Abbildung 8: Parkflächen Kölner Straße und Parkpalette Capitol-Theater.

2.4 Fuß- und Radwegenetz

Im Umfeld des Plangebiets sind abschnittsweise gesonderte Radverkehrsanlagen vorhanden.

An der Kölner Straße, im Bereich der Bahnhofs-Unterführung, verläuft beidseitig ein Radweg im Seitenraum. Im weiteren Verlauf in südliche Richtung sind auf der Kölner Straße beidseitig Radfahrstreifen markiert. Die Moskauer Straße stellt einen Abschnitt des geplanten Radhauptnetzes der Stadt Düsseldorf dar. Weiterhin sind Radwege entlang der Ludwig-Erhard-Allee und auf der Süd-West-Seite der Moskauer Straße vorhanden. Die Radwege im Bereich der Bahnhofs-Unterführung sowie die Radwege entlang der Ludwig-Erhard-Allee sind nicht benutzungspflichtig.

Abbildung 9 zeigt die Radwege im Umfeld des Plangebiets.

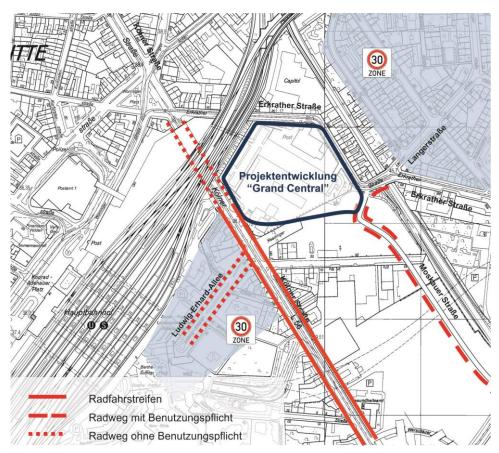


Abbildung 9: Radwege im Umfeld des Plangebiets

Im Umfeld des Plangebiets sind gut ausgebaute Anlagen für den Fußgängerverkehr vorhanden. Die Querungsstellen sind im Bereich der Knotenpunkte meistens lichtsignalgesichert.

2.5 Derzeitige Verkehrsbelastungen

In Abstimmung mit der Stadt Düsseldorf wurden fünf Knotenpunkte als relevant für die Untersuchung definiert. In Abbildung 10 sind die für die Verkehrsuntersuchung relevanten Knotenpunkte dargestellt.

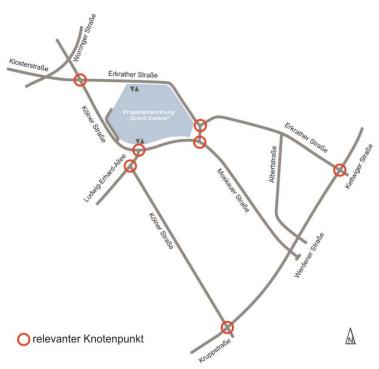


Abbildung 10: relevante Knotenpunkte

Die Verkehrsuntersuchung basiert auf Daten von Verkehrszählungen an den relevanten Knotenpunkten. In Tabelle 1 ist eine Übersicht der Verkehrszählungen dargestellt. Die Zählergebnisse sind in Anlage 1 dargestellt.

Knotenpunkt	Zählung am	Zählung durch
Kölner Straße / Worringer Platz / Erkrather Straße (14-91)	24.02.2015	Stadt Düsseldorf
Kruppstraße / Kölner Straße / Werdener Straße (51-05)	09.06.2015	Stadt Düsseldorf
Kölner Straße / Ludwig-Erhard-Allee (51-18)	16.04.2013	L+K
Werdener Straße / Kettwiger Straße / Erkrather Straße (52-02)	16.04.2013	Stadt Düsseldorf
Moskauer Straße / Erkrather Straße (52-33)	16.04.2013	L+K

Tabelle 1: Verkehrszählungen im Umfeld des Plangebiets

3. Beschreibung der Planungen

3.1 Projektentwicklung Grand Central

In dem Plangebiet ist ein Nutzungsmix geplant. Den größten Anteil nimmt die Wohnnutzung in Form von frei finanzierten Wohnungen, Eigentumswohnungen sowie geförderten Wohnungen ein. In dem Gebäude parallel zum Bahndamm soll ein Hotel sowie eine Parkpalette realisiert werden. Darüber hinaus sind zwei Kitas, Einzelhandel, Gastronomie sowie ein Fitness-Bereich geplant, der allerdings nur den Anwohnern und den Beschäftigten im Plangebiet zur Verfügung stehen soll. Eine Tiefgarage, die über die Erkrather und über die Moskauer Straße erschlossen wird, liegt unterhalb des Plangebiets.

In Abbildung 11 ist ein Lageplan der Projektentwicklung Grand Central (Ausschnitt aus dem Bebauungsplanentwurf) dargestellt.

Abbildung 11: Lageplan Projektentwicklung Grand Central

Das benachbarte Capitol-Theater nördlich des Plangebiets erhält, über eine Baulast geregelt, 221 Besucherstellplätze in der geplanten Parkpalette. Die Anzahl der Stellplätze entspricht der heutigen im Gebiet vorhandenen Menge an Stellplätzen, so dass die entsprechenden Verkehrsmengen in der derzeitigen Belastung enthalten sind. Die durch die Besucher des Capitol-Theaters verursachte Verkehrsmenge tritt aufgrund der Abendveranstaltungen außerhalb der Spitzenstunden auf. Vor diesem Hintergrund werden die entsprechenden Verkehre bei der Bewertung der Leistungsfähigkeit der relevanten Knotenpunkte nicht berücksichtigt.

3.2 Ortsumgehung Oberbilk

Die verkehrliche Situation im direkten Umfeld des Plangebiets wird sich durch die Planungen zur Ortsumgehung Oberbilk zukünftig verändern. Die Planungen zur Ortsumgehung Oberbilk umfassen folgende Stufen:

- 1. Ausbaustufe: Ausbau der Moskauer Straße zwischen Erkrather Straße und Werdener Straße sowie Neubau zwischen Werdener Straße und Karl-Geusen-Straße
- Endausbau: Neubau zwischen Ortsumgehung / Ronsdorfer Straße und Siegburger Straße

Der Realisierungshorizont dieser Maßnahmen ist derzeit unklar. Für die Erschließung der Projektentwicklung ist jedoch ein Teilausbau der 1. Ausbaustufe (Verlängerung Moskauer Straße und neuer Knotenpunkt Moskauer Straße / Kölner Straße) zwingend erforderlich. Die Abbildung 12 zeigt diesen Teil der Planung.



Abbildung 12: Planung Moskauer Straße (Teilausbau der 1. Ausbaustufe)

3.3 Tangierende Planung Entwicklung Mindener Straße

Auf dem Gelände des ehemaligen Güterbahnhofs Lierenfeld an der Mindener Straße soll zukünftig ein Wohngebiet entstehen. Der für die vorliegende Untersuchung relevante Knotenpunkt Kruppstraße / Kölner Straße / Werdener Straße ist auch für die Erschließung dieses Wohngebiets von Bedeutung. Daher sind die Neuverkehre, die in einem entsprechenden Gutachten (Erschließung Mindener Straße in Düsseldorf-Oberbilk, Grontmij, Februar 2015) beziffert werden, zu berücksichtigen. Die entsprechenden Neuverkehre, die auch für die vorliegende Untersuchung relevant sind, sind in Abbildung 13 dargestellt. Die Verteilung am Knotenpunkt Kruppstraße / Kölner Straße / Werdener Straße erfolgte entsprechend der Annahmen des o.g. Gutachtens. Die Verteilung am Knotenpunkt Werdener Straße / Kettwiger Straße / Erkrather Straße wurde entsprechend aktueller Abbiegeverhältnisse angenommen, da hierzu im o.g. Gutachten keine Aussagen getroffen worden sind.

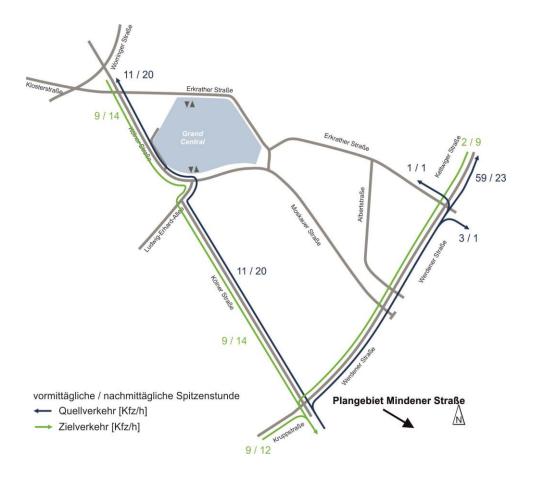


Abbildung 13: Neuverkehr Entwicklung Mindener Straße

4. Abschätzung der Verkehrserzeugung im Kfz-Verkehr

4.1 Vorgehen

Die Abschätzung der durch die Planung verursachten Verkehrsmenge wurde mit dem Programm "Abschätzung des Verkehrsaufkommens durch Vorhaben der Bauleitplanung - Ver_Bau" (Stand März 2015) ermittelt.

Das Programm bietet ein überschlägiges Verfahren zur Abschätzung des Verkehrsaufkommens, so dass sich die Anwendung eines EDV-gestützten Verkehrsmodells erübrigt. Das Programm ermöglicht es, das erzeugte Verkehrsaufkommen in einer integrierten Vorgehensweise, d.h. unter Beachtung aller Verkehrsmittel, abzuschätzen.

Zusätzlich zu den Tagesbelastungen der verschiedenen Verkehrsmittel können über die im Programm integrierten Ganglinien Stundenbelastungen für Strecken oder Knotenpunkte und für Parkplätze ermittelt werden.

4.2 Verkehrserzeugung Plangebiet

Die Abschätzung der Verkehrserzeugung basiert auf den in Tabelle 2 dargestellten Eingangsgrößen (Basis Flächenkonzept B-Plan Februar 2017).

Nutzung	Eingangsgröße
Wohnen gefördert	147 WE
Wohnen frei finanziert / betreut	461 WE
Wohnen Eigentum	389 WE
Hotel	7.749 m² BGF
Einzelhandel	1.505 m² VF
Einzelhandel (Nahversorgung)	635 m² BGF
Kita	140 Plätze
Fitness (eingeschränkter Nutzerkreis)	2.189 m² BGF
Gastronomie	611 m² BGF
Lager / Büro (wenig Publikumsverkehr)	468 m² BGF

Tabelle 2: Eingangsgrößen Verkehrserzeugung

Die Abschätzung der Verkehrserzeugung für die Planung ist detailliert in Anlage 2 dargestellt. Es wurden entweder Mittelwerte oder die ungünstigeren Werte bei den für die Berechnung nutzungsspezifischen Wertespektren angesetzt.

Grundsätzlich sind bei der Abschätzung des Verkehrsaufkommens von Einzelhandelsnutzungen Verbund-, Mitnahme- und Konkurrenzeffekte von Bedeutung, die eine Reduktion der Neuverkehrsmenge der Kunden bewirken.

Verbundeffekte werden üblicherweise dann angesetzt, wenn unterschiedliche Nutzungen an einem Standort gebündelt sind und dadurch Wegekopplungen zu erwarten sind. Im Allgemeinen beträgt der Verbundeffekt zwischen 10% und 30%. Für die Einzelhandelsnutzung wurde ein Verbundeffekt von 20% angesetzt.

Mitnahmeeffekte berücksichtigen, dass es sich bei der in der Abschätzung der Verkehrserzeugung bestimmten Verkehrsmenge nicht ausschließlich um Neuverkehre handelt, sondern ein Teil der Kunden ihre Fahrt lediglich unterbrechen, um einzukaufen (z.B. Einkauf auf der Fahrt von der Arbeit nach Hause). Somit führt auch der Ansatz eines Mitnahmeeffekts zu einer geringeren Neuverkehrsmenge. Je nach Lage der geplanten Nutzung beträgt der Mitnahmeeffekt zwischen 5% und 35%. Der Mitnahmeeffekt ist umso höher, je besser die betrachtete Nutzung an das Straßennetz angebunden ist und je günstiger die Nutzung an Hauptachsen des Berufsverkehrs liegt. Im vorliegenden Fall wurde für die Einzelhandelsnutzung ein Mitnahmeeffekt von 20% angesetzt. Bei der Fitnessnutzung wurde aufgrund des eingeschränkten Nutzerkreises bestehend aus Bewohnern und Beschäftigten des Gebietes ein Mitnahmeeffekt von 95% angesetzt.

Konkurrenzeffekte werden üblicherweise immer dann angesetzt, wenn eine Einzelhandelsnutzung in unmittelbarer Nähe einer konkurrierenden Nutzung der gleichen Branche betrachtet wird. Daher ist bei der Abschätzung des Verkehrsaufkommens ein Konkurrenzeffekt von 15 % bis 30 % anzusetzen. Die Höhe des Abschlags hängt vor allem von der Größe des Einzugsbereichs bzw. der Anzahl potenzieller Kunden ab. Für die geplanten Nutzungen wurden keine Konkurrenzeffekte angesetzt.

Die für Fitness vorgesehenen Flächen stehen nur einem eingeschränkten Nutzerkreis bestehend aus Bewohnern sowie Mitarbeitern des Plangebiets zur Verfügung. Die Kundenfahrten wurden entsprechend gemindert. Bei den verbliebenen Kundenfahrten wurde angenommen, dass es sich hierbei um Mitarbeiter handelt, die an einem freien Tag das Fitnessstudio aufsuchen.

Die für die Nahversorgung gedachte Einzelhandelsnutzung ist nicht verkehrsrelevant, da keine Kundenfahrten entstehen. Kundenfahrten wurden daher nicht berücksichtigt.

Es werden insgesamt 17.342 Wege pro Tag (alle Nutzergruppen) erzeugt. Daraus resultieren rund **3.192 Kfz-Fahrten am Tag**.

Aus der prognostizierten Verkehrsbelastung wurde die Tagesganglinie für das Plangebiet ermittelt. Bei der Ermittlung der Stundenwerte wurde die prozentuale Verteilung des Kfz-Tagesverkehrsaufkommens auf die einzelnen Stundenintervalle aus Ganglinien (FGSV - Hinweise zur Abschätzung des Verkehrsaufkommens von Gebietstypen, HSVV-Vorgehen, SrV Düsseldorf 2008 sowie eigene Annahmen) angesetzt. Hierbei wurden für die unterschiedlichen Verkehrszwecke (Beschäftigten-, Kunden- und Güterverkehr) die jeweils spezifischen Anteile angenommen. In Abbildung 14 sind die Ganglinien des gesamten Quell- und Zielverkehrs dargestellt.

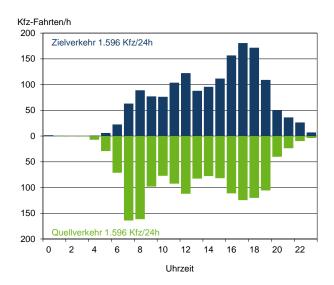


Abbildung 14: Tagesganglinie des Quell- und Zielverkehrs des Plangebiets

Als Spitzenstundenbelastung werden für das gesamte Plangebiet vormittags $(08:00-09:00\ \text{Uhr})$ maximal 250 Kfz/h und nachmittags $(17:00-18:00\ \text{Uhr})$ maximal 305 Kfz/h prognostiziert (vgl. Tabelle 3).

Kfz-Fahrten	am Tag [Kfz/24h]	06 - 10 Uhr [Kfz/4h]	vormittägliche Spitzenstunde [Kfz/h]	15 - 19 Uhr [Kfz/4h]	nachmittägliche Spitzenstunde [Kfz/h]
Quellverkehr	1.596	495	161	438	125
Zielverkehr	1.596	252	89	621	181
Summe	3.192	747	250	1.059	306

Tabelle 3: Quell- und Zielverkehr des Plangebietes

4.3 Verkehrserzeugung Capitol-Theater

Für die schalltechnische Untersuchung im weiteren Planungsverlauf ist die Kenntnis der durch die Besucher des Capitol-Theaters erzeugten Verkehrsmenge von Bedeutung, da den Besuchern zukünftig in der Parkpalette Stellplätze zur Verfügung gestellt werden.

Das Capitol-Theater verfügt über einen Saal mit 1.250 Plätzen sowie einen Club mit flexiblem Nutzungskonzept und bei Reihenbestuhlung maximal 475 Plätzen. Im Capitol werden Theater- und Musicalvorführungen gezeigt. Darüber hinaus sind Konzerte und andere Eventveranstaltungen insbesondere im Club möglich. Entsprechend des derzeitigen Programms finden im Saal an im Mittel 20 Tagen pro Monat Veranstaltungen statt. Der Club ist dagegen mit Veranstaltungen an 5-10 Tagen pro Monat weniger ausgelastet. Der überwiegende Anteil der Veranstaltungen beginnt um 20 Uhr. Vereinzelte Veranstaltungen haben abweichende Startzeiten und beginnen um 19 Uhr bzw. 21 Uhr oder sonntags um 14 Uhr.

Zur Abschätzung der Verkehrserzeugung wurden die in Tabelle 4 dargestellten Annahmen getroffen.

Kennwerte	gewählter Wert	Ergebnis
Eingangsgröße:	1.250 Plätze	
Besucherverkehr		
Auslastung	80%	
Besucher	1.000	
Wege/Besucher	2,0	→ 2.000 Wege/24h
MIV-Anteil	60%	
Pkw-Besetzungsgrad	2,5	→ 480 Kfz/24h

Tabelle 4: Verkehrserzeugung Besucher Capitol-Theater

Die Besucher erzeugen insgesamt 2.000 Wege pro Tag. Daraus resultieren 480 Kfz-Fahrten am Tag (Summe Quell- und Zielverkehr). Von den zu erwartenden 240 Fahrzeugen haben 221 Fahrzeuge einen durch Ablöse gesicherten Stellplatz in der Parkpalette.

Aus der prognostizierten Verkehrsbelastung wurde die Tagesganglinie für den Besucherverkehr ermittelt. Die Ermittlung der Stundenwerte basiert auf Annahmen der prozentualen Verteilung des Kfz-Tagesverkehrsaufkommens auf die einzelnen Stundenintervalle auf Basis des derzeitigen Spielplans (Veranstaltungsbeginn 20 Uhr, Ende 22:30 Uhr).

In Abbildung 15 sind die Ganglinien des Quell- und Zielverkehrs des Capitol-Theaters dargestellt.

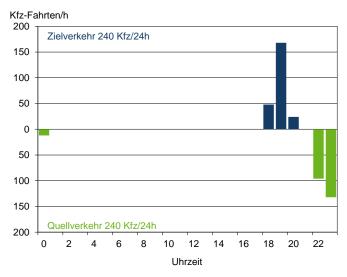


Abbildung 15: Tagesganglinie Quell- und Zielverkehr Besucher Capitol-Theater

5. Darstellung der Prognosesituation

5.1 Erschließungskonzept für den MIV

Das Plangebiet wird für den motorisierten Verkehr über die Erkrather Straße, die geplante verlängerte Moskauer Straße sowie über eine private Erschließungsstraße an der westlichen Plangebietsgrenze erschlossen.

Die Erschließung des Plangebiets ist in Abbildung 16 schematisch dargestellt.

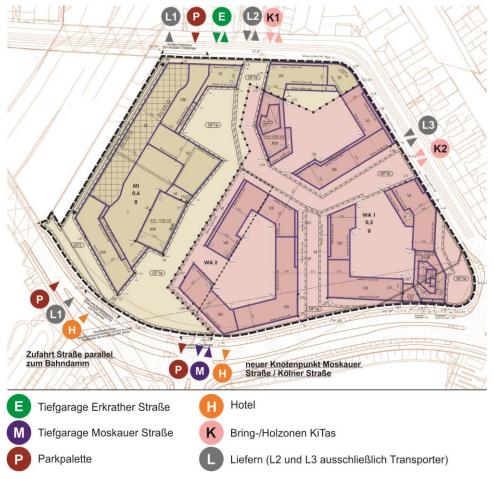


Abbildung 16: Erschließung des Plangebiets

Unterhalb des Plangebiets sollen zwei Tiefgaragen liegen: eine wird über die Erkrather Straße (E) und eine über die Moskauer Straße (M) erschlossen. Die Tiefgaragen sind vorrangig den Bewohnern vorenthalten.

Über eine private Straße parallel zum Bahndamm werden die Hotelvorfahrt (H) sowie teilweise die Parkpalette (P) erschlossen. Die Parkpalette ist vorrangig für Mitarbeiter, Kunden und Besucher der Bewohner vorgesehen. Darüber hinaus wird schwerer Lieferverkehr (L1) über die private Straße parallel zum Bahndamm angebunden. Für leichten Lieferverkehr (Fahrzeugen unter 7,5t) bestehen oberirdische Andienmöglichkeiten an den Zugängen / Zufahrten ins Plangebiet.

Die Kurzzeitstellplätze der Kitas sind zum derzeitigen Zeitpunkt noch nicht endgültig verortet, sie sollen aber an den Zugängen / Zufahrten in unmittelbarer Nähe zur jeweiligen Kita angeordnet werden.

Die Verteilung der Neuverkehrsmenge auf die einzelnen Erschließungspunkte ist in Tabelle 5 dargestellt.

Erschließungspunkte	Kfz/24h	Anteil
L1 (Ausfahrt Erkrather Str.)	31	1%
P (Zufahrt Parkpalette Erkrather Str.)	339	11%
E (Bewohner-Tiefgarage Erkrather Str.)	763	24%
L2+K1 (Erkrather Str.)	200	6%
L3+K2 (Erkrather Str.)	130	4%
P+M+H (neuer Knotenpunkt Moskauer Str.)	1.283	40%
P+L1+H (Hotelzufahrt Moskauer Str.)	446	14%
Plangebiet	3.192	100%

Tabelle 5: Verteilung Neuverkehr auf die Zufahrten

5.2 Verkehrsverteilung

Die weiträumige Verkehrsverteilung der Neuverkehre erfolgte in Abstimmung mit der Stadt Düsseldorf und wurde bereits im Rahmen des Wettbewerbsverfahrens festgelegt. In den nachfolgenden Abbildungen ist bedingt durch die unterschiedlichen Erschließungspunkte des Plangebiets die Verkehrsverteilung einzelner Nutzergruppen separat dargestellt.

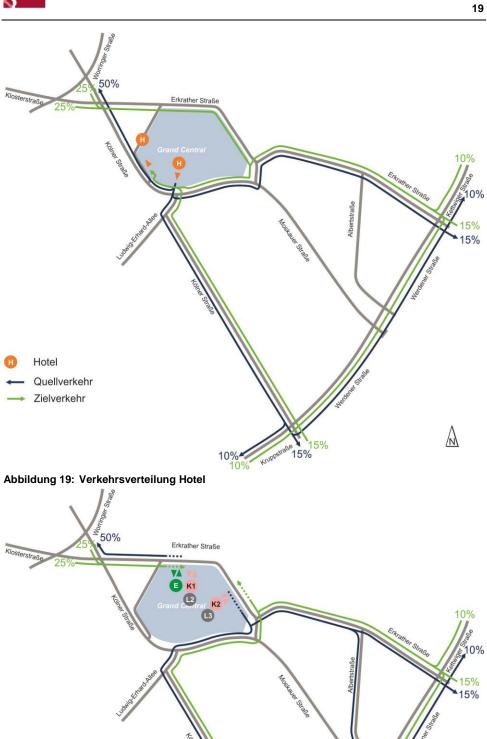

Abbildung 17: Verkehrsverteilung Parkpalette

Abbildung 18: Verkehrsverteilung Tiefgarage Moskauer Straße

Tiefgarage Erkrather Straße K1 K2 Bring-/Holzonen Kitas 19 leichter Lieferverkehr Quellverkehr Zielverkehr Kruppstraße 15%

Abbildung 20: Verkehrsverteilung Erschließungspunkte Erkrather Straße

Abbildung 21: Verkehrsverteilung Lieferverkehr über die Hotelzufahrt

5.3 Zukünftig zu erwartende Verkehrsbelastungen

Für die Bewertung der Leistungsfähigkeit wurden folgende Belastungszustände definiert:

- Bestand: derzeitige Verkehrsbelastung (Zähldaten)
- Nullfall: Verlängerung Moskauer Straße und Entwicklung Mindener Straße (Zähldaten + Differenzbelastungen resultierend aus der Netzerweiterung Moskauer Straße + Neuverkehr Mindener Straße)
- Planfall: Berücksichtigung der Projektentwicklung Grand Central (Zähldaten + Differenzbelastungen resultierend aus der Netzerweiterung Moskauer Straße + Neuverkehr Mindener Straße + Neuverkehr Projektentwicklung Grand Central)

Die Auswirkungen der Verlängerung der Moskauer Straße zwischen Kölner Straße und Werdener Straße auf die Verkehrsbelastung wurde in Abstimmung mit der Stadt Düsseldorf durch Differenzbetrachtungen des Verkehrsmodells der Stadt Düsseldorf berücksichtigt. Darüber hinaus wurde die entsprechende Neuverkehrsmenge der Wohnbauentwicklung Mindener Straße auf dem alten Güterbahnhof Lierenfeld berücksichtigt. Die Neuverkehrsmenge der Projektentwicklung Grand Central ergibt sich aus der Abschätzung der Verkehrserzeugung.

Die Verkehrsuntersuchung berücksichtigt die vormittägliche und die nachmittägliche Spitzenstunde. Dabei wurden die für die jeweiligen Knotenpunkte individuellen Spitzenstunden gem. Bestandsbelastung zu Grunde gelegt. Die Spitzenstunden der Knotenpunkte liegen vormittags im Bereich zwischen 7:15 bis 9:00 Uhr und nachmittags zwischen 16:15 bis 17:45 Uhr. Die Berechnung der Planfallbelastung erfolgte durch Addition der Spitzenstundenwerte am Vormittag und Nachmittag mit der maximalen Neuverkehrsmenge im entsprechenden Zeitbereich.

Die zukünftig zu erwartende Verkehrsbelastung wurde für die relevanten Knotenpunkte bestimmt:

- Kölner Straße / Worringer Platz / Erkrather Straße (14-91)
- Kruppstraße / Kölner Straße / Werdener Straße (51-05)
- Kölner Straße / Moskauer Straße / Ludwig-Erhard-Allee (51-18)
- Werdener Straße / Kettwiger Straße / Erkrather Straße (52-02)
- Moskauer Straße / Erkrather Straße (52-33)

Die entsprechenden Knotenstrompläne sind in Anlage 3 dargestellt.

Die Verteilung der Neuverkehrsmenge auf das Straßennetz ist für die einzelnen Zufahrtsbereiche in den nachfolgenden Abbildungen für die beiden Spitzenstunden sowie als Tageswert dargestellt.



Abbildung 22: Verkehrsaufkommen Parkpalette



Abbildung 23: Verkehrsaufkommen Tiefgarage Moskauer Straße

Abbildung 24: Verkehrsaufkommen Hotel

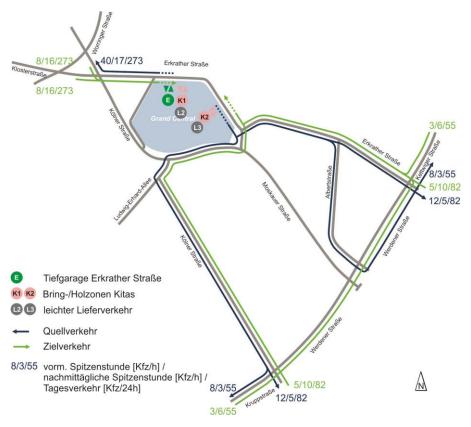


Abbildung 25: Verkehrsaufkommen Erschließungspunkte Erkrather Straße

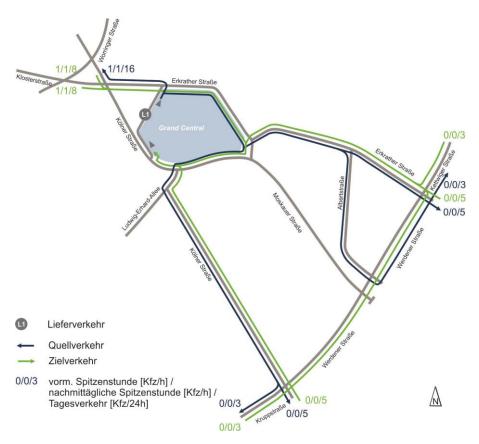


Abbildung 26: Verkehrsaufkommen Lieferverkehr über die Hotelzufahrt

6. Bewertung der Leistungsfähigkeit

6.1 Vorgehen

Der Nachweis der Qualität des Verkehrsablaufes erfolgt gemäß "Handbuch für die Bemessung von Straßenverkehrsanlagen" (HBS), Ausgabe 2009. Das HBS enthält standardisierte Verfahren zu einer hinreichend zuverlässigen Beschreibung der Gesetzmäßigkeiten des Verkehrsablaufes. Mit diesen Methoden wird die Kapazität einer Straßenverkehrsanlage in Abhängigkeit von den verkehrlichen, aber auch entwurfstechnischen Randbedingungen bestimmt. Für die unterschiedlichen Ausbauformen von Straßenverkehrsanlagen werden unterhalb dieser Kapazität vergleichbare Qualitätsstufen des Verkehrsablaufes definiert (Stufe A bis F).

Die **Stufe A** beschreibt einen Verkehrsablauf, bei dem sich die Verkehrsteilnehmer äußerst selten beeinflussen. Sie besitzen die gewünschte Bewegungsfreiheit in dem Umfang, wie sie auf der Verkehrsanlage zugelassen ist. Der Verkehrsfluss ist frei. Die Stufe A stellt aus Sicht der Verkehrsablaufes die günstigste Bewertung dar.

Bei der **Stufe B** macht sich die Anwesenheit anderer Verkehrsteilnehmer bemerkbar, bewirkt aber nur eine geringe Beeinflussung des Einzelnen. Der Verkehrsfluss ist nahezu frei.

Bei der **Stufe C** hängt die individuelle Bewegungsmöglichkeit vom Verhalten der übrigen Verkehrsteilnehmer ab. Die Bewegungsfreiheit ist spürbar eingeschränkt, der Verkehrszustand ist noch stabil.

Die **Stufe D** beschreibt einen Verkehrsablauf, der durch hohe Belastungen gekennzeichnet ist, die zu deutlichen Beeinträchtigungen in der Bewegungsfreiheit der Verkehrsteilnehmer führen. Interaktionen zwischen den Verkehrsteilnehmern finden nahezu ständig statt. Der Verkehrszustand ist noch stabil.

Bei der **Stufe E** treten ständig gegenseitige Behinderungen zwischen den Verkehrsteilnehmern auf. Die Bewegungsfreiheit ist nur in sehr geringem Umfang gegeben. Geringfügige Verschlechterungen der Einflussgrößen können zum Zusammenbruch des Verkehrsflusses führen. Der Verkehr bewegt sich im Bereich zwischen Stabilität und Instabilität. Die Kapazität wird erreicht.

Bei der **Stufe F** ist die Nachfrage größer als die Kapazität. Die Verkehrsanlage ist überlastet.

Im Rahmen von Leistungsfähigkeitsnachweisen wird üblicherweise die Qualitätsstufe D als Grenzstufe betrachtet, die noch eine akzeptable Qualität des Verkehrsablaufes, insbesondere in den Spitzenstunden, gewährleistet. Die Stufen E und F sollten möglichst vermieden werden.

Die Bewertung der Qualität des Verkehrsablaufes an den relevanten Knotenpunkten erfolgt mit der Software "HBS-Rechenprogramm, Version 2009" für die zukünftig zu erwartende Situation am Normalwerktag.

Verfahrensbedingt können mit dem HBS-Verfahren nur Knotenpunkte mit Signalprogrammen in Festzeitsteuerung berücksichtigt werden. Um bei den Knotenpunkten mit Bahneingriff die dadurch resultierenden Freigabezeitanpassungen

zu berücksichtigen, wurden bei den Knotenpunkten mit Bahneingriff die Freigabezeiten entsprechend der Anzahl der fahrplanmäßigen Eingriffe gemittelt.

Am Knotenpunkt Kölner Str. / Moskauer Str. / Ludwig-Erhard-Allee wird aufgrund der geometrisch ungünstigen Knotenpunktfolgen und Fahrwege bis zur Herstellung der Ortsumgehung Oberbilk eine suboptimale Abwicklung der Verkehre im Zuge der Kölner Straße hinzunehmen sein, was durch die Nachweise für Einzelknoten gem. HBS nicht dargestellt wird.

Die Bewertung der Leistungsfähigkeit basiert auf den in Tabelle 6 dargestellten Signalprogrammen.

Knotenpunkt	Programm	Stand
Kölner Straße / Worringer Platz / Erkrather Straße 14-91	vormittags: P02 nachmittags: P01	05.01.2009
Kruppstraße / Kölner Straße / Werdener Straße 51-05	vormittags: P02 nachmittags: P03	28.10.2010
Kölner Straße / Moskauer Straß / Ludwig-Erhard-Allee 51-18	vormittags: P02 nachmittags: P03	Planung: 05.05.2009 ⁽¹⁾
Werdener Straße / Kettwiger Straße / Erkrather Straße 52-02	vormittags: P04 nachmittags: P04	17.06.2003
Moskauer Straße / Erkrather Straße 52-33	vormittags: P02 nachmittags: P03	Planung: 06.05.2009 ⁽¹⁾

⁽¹⁾ Planung im Zuge der Planungen zur Ortsumgehung Oberbilk des Büros AlbrechtConsult

Tabelle 6: Signalprogramme

Die Ergebnisse der Bewertung der Leistungsfähigkeit werden nachfolgend für die relevanten Knotenpunkte dargestellt. Die entsprechenden HBS-Formblätter sind in Anlage 4 dargestellt

6.2 Knotenpunkt Kölner Straße / Worringer Platz / Erkrather Straße

Die Ergebnisse der Leistungsfähigkeitsabschätzung zeigt Abbildung 27.

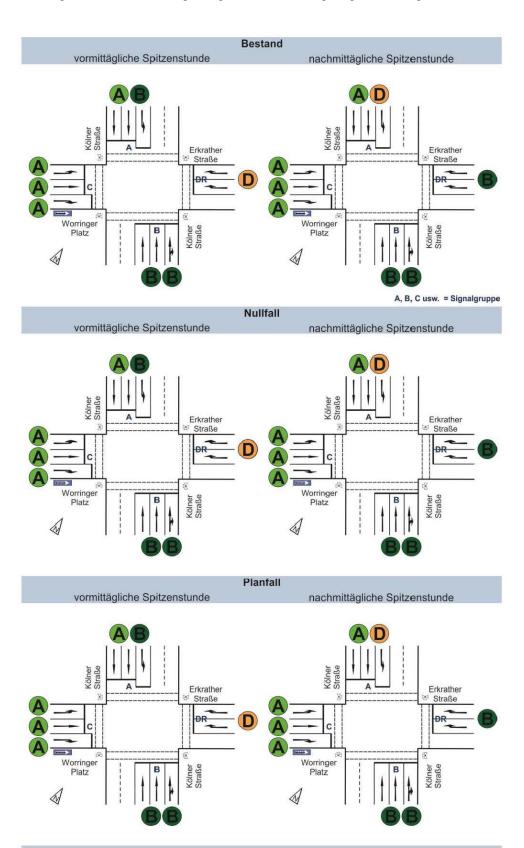


Abbildung 27: Ergebnisse Kölner Straße / Worringer Platz / Erkrather Straße

Bestand

In der vormittäglichen Spitzenstunde kann der Verkehr an diesem Knotenpunkt mit Ausnahme der Zufahrt Erkrather Straße leistungsfähig abgewickelt werden. Hierfür muss das Signalprogramm geringfügig geändert werden und die Freigabezeit der entsprechenden Signalgruppe DR verlängert werden. Rechnerisch reicht eine Verlängerung der Freigabezeit der Signalgruppe DR um 2 s aus. Eine Verlängerung auf Kosten der Freigabezeiten der Signalgruppen A und B ist möglich, da hier genügend Potential vorhanden ist.

Nachmittags ergibt die Berechnung einen leistungsfähigen Verkehrsablauf ohne Änderungen am Signalprogramm.

Nullfall

Auf Basis des bestehenden Signalprogramms wird ebenfalls im Nullfall vormittags an Signalgruppe DR ein nicht leistungsfähiger Verkehrsablauf erwartet. Eine Verlängerung der Freigabezeit um 2 s verbessert die Qualitätsstufe auf D. Eine Verlängerung auf Kosten der Freigabezeiten der Signalgruppen A und B ist möglich, da hier genügend Potential vorhanden ist.

Nachmittags ergibt die Berechnung einen leistungsfähigen Verkehrsablauf ohne Änderungen am Signalprogramm.

Planfall

Im Planfall zeigt sich die gleiche Situation wie im Bestand: Für die vormittägliche Spitzenstunde ist die Freigabezeit der Signalgruppe DR der Zufahrt Erkrather Straße um 2 s zu Lasten der Freigabezeiten der Signalgruppen A und B zu verlängern, um einen leistungsfähigen Verkehrsablauf zu gewährleisten.

Nachmittags wird der durchsetzende Linksabbiegestrom in die Erkrather Straße (Signalgruppe AL) nicht leistungsfähig abgewickelt. Eine Verlängerung der Nachlaufzeit um 2s zu Lasten von Signalgruppe B hat einen leistungsfähigen Verkehrsablauf zur Folge.

6.3 Knotenpunkt Kruppstraße / Kölner Straße / Werdener Straße

Die Ergebnisse der Leistungsfähigkeitsabschätzung zeigt Abbildung 28.

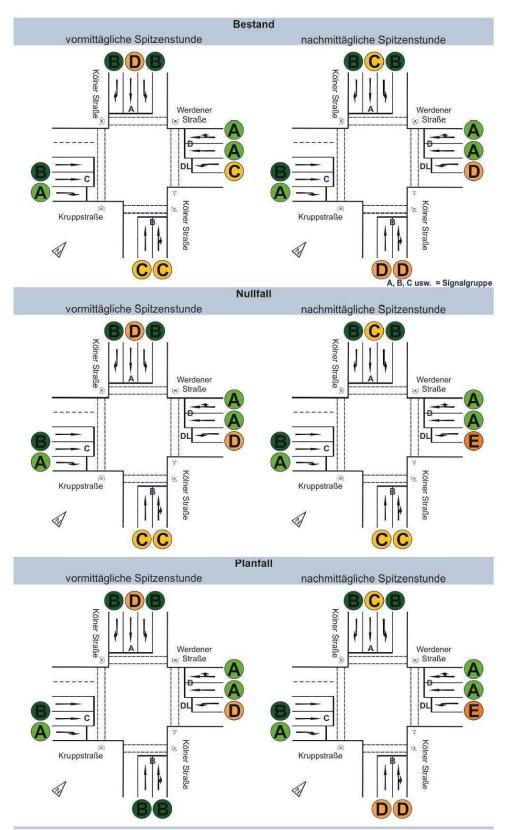


Abbildung 28: Ergebnisse Kruppstraße / Kölner Straße / Werdener Straße

Bestand

Für die vormittägliche Spitzenstunde ergibt die Berechnung für den Geradeausfahrer in der Zufahrt Kölner Straße Nord (Signalgruppe A) einen nicht leistungsfähigen Verkehrsablauf mit Qualitätsstufe E. Durch Verlängerung der Freigabezeit um rechnerisch 1s zu Lasten der Freigabezeiten der Zufahrten Kruppstraße und Werdener Straße (Signalgruppen C und D) ist ein leistungsfähiger Verkehrsablauf möglich.

Nachmittags ist unter derzeitiger Belastung der Verkehrsablauf ohne Anpassungen am Signalprogramm leistungsfähig.

Nullfall

Im Nullfall wird vormittags ohne Änderung des Signalprogramms ein leistungsfähiger Verkehrsablauf erwartet.

Nachmittags sinkt beim durchsetzenden Linksabbieger Werdener Straße (Sg DL) die Qualitätsstufe auf E. Zur Verbesserung der Qualität wäre ein Nachlauf zu Lasten anderer Signalgruppen nötig. Dies lässt sich aber signaltechnisch nicht umsetzen ohne andere Verkehrsströme nicht mehr leistungsfähig abfließen zu lassen.

Planfall

Die Ergebnisse der vormittäglichen Spitzenstunde sind im Planfall mit denen im Bestand vergleichbar: eine Freigabezeitverlängerung um 1s ist in der Zufahrt Kölner Straße Nord (Signalgruppe A) zu Lasten der Freigabezeiten der Zufahrten Kruppstraße und Werdener Straße (Signalgruppen C und D) für einen leistungsfähigen Verkehrsablauf notwendig.

Nachmittags sind die Ergebnisse für den Planfall prinzipiell vergleichbar mit den Ergebnissen des Nullfalls: Der Linksabbieger Werdener Straße wird nicht leistungsfähig abgewickelt. Ein Nachlauf hierfür ist nicht realisierbar.

6.4 Knotenpunkt Kölner Str. / Moskauer Str. / Ludwig-Erhard-Allee / TG

Die Leistungsfähigkeitsabschätzung basiert auf den neusten Stand der Ausbauplanung Moskauer Straße, die im Bereich des Teilknotens 2 die neuen Radverkehrsstreifen in der Kölner Straße sowie einen zweiter Rechtsabbiegefahrstreifen in der Zufahrt Kölner Straße (Signalgruppe DR) berücksichtigen.

Die Ergebnisse der Leistungsfähigkeitsabschätzung für den Teilknotenpunkt 1 zeigt Abbildung 29.

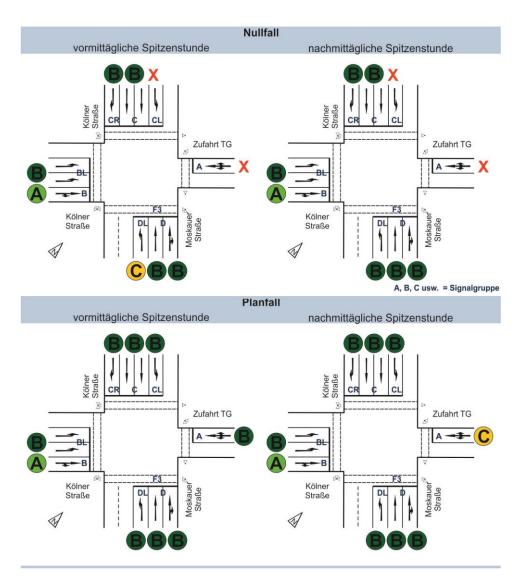


Abbildung 29: Ergebnisse Kölner Straße / Moskauer Straße (Teilknoten 1)

Die Ergebnisse der Leistungsfähigkeitsabschätzung für den Teilknotenpunkt 2 sind in Abbildung 30 dargestellt.

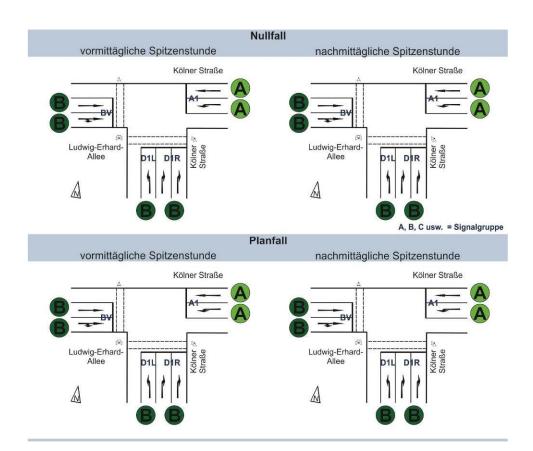


Abbildung 30: Ergebnisse Kölner Straße / Ludwig-Erhard-Allee (Teilknoten 2)

Nullfall

VORMITTÄGLICHE SPITZENSTUNDE

Am Knotenpunkt Kölner Straße / Moskauer Straße / Ludwig-Erhard-Allee kann der Verkehr in der vormittäglichen Spitzenstunde leistungsfähig abgewickelt werden. Voraussetzung hierfür ist eine Anpassung des Signalprogrammentwurfs am Teilknoten 1.

Am Teilknoten 1 ist die Freigabezeit für die Signalgruppe BL um 5 s zu verlängern, indem der Freigabezeitbeginn entsprechend nach vorne verlegt wird. Dies erfolgt zu Lasten der Signalgruppen C, D sowie F3, die über genügend Kapazitätsreserven verfügen. Die kritische Rückstaulänge von 45 m vor der Signalgruppe BL wird dabei eingehalten. In diesem Zusammenhang sollte die Signalgruppe B um 11 s zu Lasten der Signalgruppe F3 verlängert werden, was der Kapazität der südlichen und durch die Nähe beider Teilknoten zueinander kritischen Teilknotenpunktzufahrt zu Gute kommt. Die Freigabezeit der Signalgruppe F3 beträgt dann 28 s.

NACHMITTÄGLICHE SPITZENSTUNDE

In der nachmittäglichen Spitzenstunde kann der Verkehr leistungsfähig abgewickelt werden, sofern der Signalprogrammentwurf für den Teilknotenpunkt 1 ge-

ringfügig verändert wird. Die Freigabezeit für die Signalgruppe BL ist um 4 s zu verlängern, indem entsprechend der Änderungen des Morgenspitzenprogramms der Freigabezeitbeginn um 4 s nach vorne verlegt wird. Hierdurch beträgt der Rückstau an Signalgruppe BL 45 m und erreicht ein unkritisches Maß.

Anpassungen am Signalprogramm des Teilknotens 2 sind für den Nachmittag nicht notwendig.

Planfall

VORMITTÄGLICHE SPITZENSTUNDE

Am Teilknoten 1 wird vormittags ein leistungsfähiger Verkehrsablauf erwartet, sofern auch im Planfall der Signalprogrammentwurf geändert wird. BL ist um 6s zu verlängern. Darüber hinaus ist es notwendig die Freigabezeit der Signalgruppe DL um 2 s auf insgesamt 7 s durch Verschieben des Freigabezeitendes zu verlängern.

Am Teilknoten 2 ist auch im Planfall mit einem leistungsfähigen Verkehrsablauf zu rechnen.

NACHMITTÄGLICHE SPITZENSTUNDE

Nachmittags wird an beiden Teilknoten ein leistungsfähiger Verkehrsablauf bei Anpassung des Signalprogrammentwurfs erwartet. An Teilknoten 1 ist die Freigabezeit der Signalgruppe BL um 5 s zu verlängern, um den kritischen Rückstau in den zweiten Teilknotenpunkt zu reduzieren.

Am Teilknoten 2 ist auch im Planfall mit einem leistungsfähigen Verkehrsablauf zu rechnen.

6.5 Knotenpunkt Werdener Straße / Kettwiger Straße / Erkrather Straße

Die Ergebnisse der Leistungsfähigkeitsabschätzung zeigt Abbildung 31.

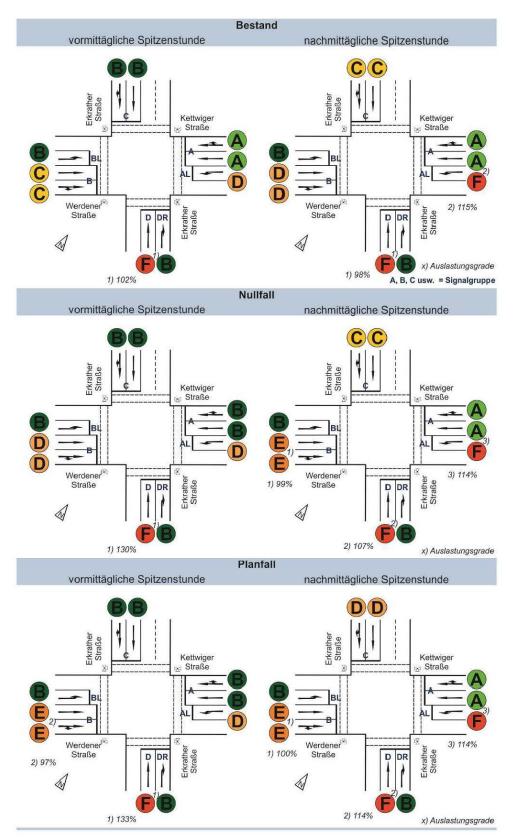


Abbildung 31: Ergebnisse Werdener Str. / Kettwiger Str. / Erkrather Str.

Bestand

Für die vormittägliche Spitzenstunde wird der Geradeausstrom der Zufahrt Erkrather Straße Süd (Signalgruppe D) mit der Qualitätsstufe F bewertet (Auslastungsgrad 102 %). Theoretisch hätte eine Freigabezeitverlängerung um 2 s eine Verbesserung der Qualitätsstufe auf D zur Folge. Hierfür müsste jedoch die Freigabezeit des Linksabbiegers aus der Kettwiger Straße (Signalgruppe AL) entsprechend gekürzt werden, was zur Folge hätte, dass dann dieser Strom nur noch die Qualitätsstufe F erhalten würde.

In der nachmittäglichen Spitzenstunde wird zusätzlich zum Geradeausstrom der Zufahrt Erkrather Straße Süd (Signalgruppe D: Qualitätsstufe F, Auslastungsgrad 98 %) der Linksabbiegestrom aus der Kettwiger Straße (Signalgruppe AL) mit der Qualitätsstufe F bewertet (Auslastungsgrad 115 %). Die Signalgruppe D benötigt für einen leistungsfähigen Verkehrsablauf eine Freigabezeitverlängerung von 1 s, für die Signalgruppe AL ist ein Zuschlag von 3 s notwendig. Es treten somit in beiden Phasen nicht leistungsfähige Verkehrsströme auf. Eine signaltechnische Lösung ist an diesem Knotenpunkt nicht möglich.

Nullfall

Für den Nullfall wird eine mit dem Bestand vergleichbare Verkehrssituation erwartet: um einen leistungsfähigen Verkehrsablauf vormittags zu gewährleisten, müsste für Signalgruppe D (Auslastungsgrad 130 %) eine Freigabezeitverlängerung von 5 s realisiert werden, was nicht mehr leistungsfähigen Verkehrsablauf beim Linksabbieger Kettwiger Straße (Signalgruppe AL) zur Folge hätte.

Nachmittags fehlen dieser Signalgruppe (Auslastungsgrad 107 %) 2 s und der Signalgruppe AL (Auslastungsgrad 114 %) 3 s für einen leistungsfähigen Verkehrsablauf. Darüber hinaus ist im Nullfall die Zufahrt Werdener Straße an der Grenze zur Leistungsfähigkeit angelangt (Qualitätsstufe E, Auslastungsgrad 99 %). Die entsprechende Signalgruppe B benötigt für eine Verbesserung des Verkehrsablaufs eine Freigabezeitverlängerung von rechnerisch 1 s. Es treten somit in beiden Phasen nicht leistungsfähige Verkehrsströme auf. Eine signaltechnische Lösung ist auch im Nullfall an diesem Knotenpunkt nicht möglich.

Planfall

Die Verkehrssituation im Planfall ist vergleichbar wie zuvor beschrieben: vormittags müsste für die Signalgruppe D (Auslastungsgrad 133 %) eine Freigabezeitverlängerung von 6 s realisiert werden. Darüber hinaus hat Signalgruppe B die Grenze der Leistungsfähigkeit erreicht (Qualitätsstufe E, Auslastungsgrad 97%).

In der nachmittäglichen Spitzenstunde benötigt die Signalgruppen D (Auslastungsgrad 113 %) eine Freigabezeitverlängerung von 3 s und AL (Auslastungsgrad 114 %) eine Verlängerung von 3 s. Die Zufahrt Werdener Straße (Signalgruppe B) ist an der Grenze der Leistungsfähigkeit angelangt (Qualitätsstufe E, Auslastungsgrad 100 %). Es treten somit in beiden Phasen nicht leistungsfähige Verkehrsströme auf. Eine signaltechnische Lösung ist auch im Planfall an diesem Knotenpunkt nicht möglich.

6.6 Knotenpunkt Moskauer Straße / Erkrather Straße

6.6.1 südlicher signalisierter Teilknoten

Die Ergebnisse der Leistungsfähigkeitsabschätzung zeigt Abbildung 32.

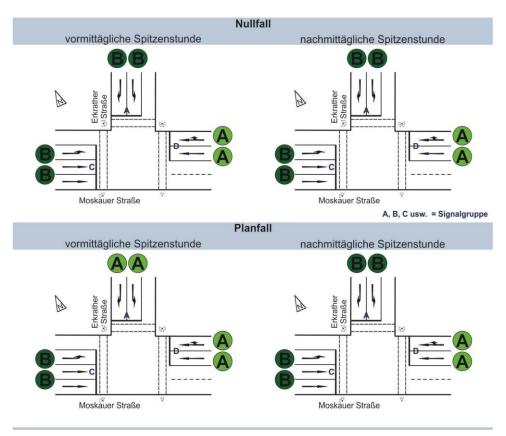


Abbildung 32: Ergebnisse Moskauer Str. / Erkrather Str. (sign. Teilknoten)

Nullfall

In beiden Spitzenstunden werden ausschließlich gute bis sehr gute Qualitätsstufen erzielt. Vormittags übersteigt jedoch an der Zufahrt Erkrather Straße der Rückstau des Rechtsabbiegers das verträgliche Maß von rund 35 m um 5 m. Eine Freigabezeitverlängerung der entsprechenden Signalgruppe A von 1 s reduziert rechnerisch den Rückstau auf das kritische Maß von 35 m. Die Freigabezeitverlängerung sollte zu Lasten der Freigabezeit der Signalgruppe C erfolgen. Nachmittags ist der Rückstau unkritisch.

Planfall

Beim Planfall werden ebenfalls gute bis sehr gute Qualitätsstufen erzielt. Der Rückstau des Rechtsabbiegers an der Zufahrt Erkrather Straße beträgt 50 m und reicht daher im Vergleich zum Nullfall deutlicher in den benachbarten unsignalisierten Teilknotenpunkt hinein. Rechnerisch kann der Rückstau nur durch eine Freigabezeitverlängerung von 11 s auf ein verträgliches Maß gesenkt werden. Da die übrigen Verkehrsströme ausreichende Kapazitätsreserven haben, kann die Freigabezeitverlängerung zu Lasten der beiden Signalgruppen C und D erfolgen.

6.6.2 nördlicher unsignalisierter Teilknoten

Ergebnisse der Leistungsfähigkeitsabschätzung zeigt Abbildung 33.

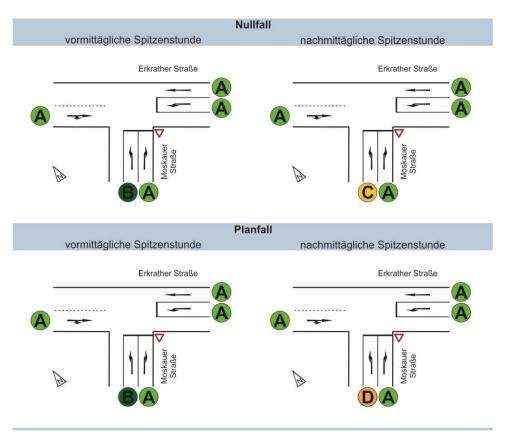


Abbildung 33: Ergebnisse Moskauer Str. / Erkrather Str. (unsign. Teilknoten)

Nullfall

Am nördlichen unsignalisierten Teilknotenpunkt werden im Nullfall in beiden Spitzenstunden sehr gute bis befriedigende Qualitätsstufen erzielt. Der Rückstau in der südlichen Knotenpunktzufahrt Moskauer Straße ist unkritisch.

Planfall

Im Planfall wird in der vormittäglichen Spitzenstunde sehr gute bis befriedigende Qualitätsstufen erwartet. Nachmittags erhält der untergeordnete Linksabbieger in der Moskauer Straße nur noch die Qualitätsstufe D. Alle weiteren Ströme erhalten gute bis sehr gute Qualitätsstufen.

6.7 Tiefgaragenerschließung Erkrather Straße

Die Erschließung der Tiefgarage an der Erkrather Straße soll über eine Rampe erfolgen. Die Rampe liegt in unmittelbarer Nähe zur Zufahrt zur Parkpalette. In Abbildung 34 ist das Prinzip der Erschließung über die Erkrather Straße skizziert.

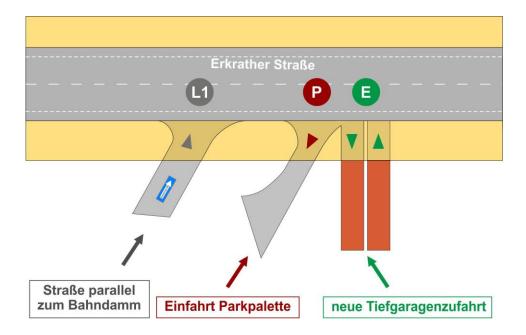


Abbildung 34: Prinzipskizze Zufahrt Erkrather Straße

Durch die neue Lage der Tiefgaragenerschließung für einen Teil der Bewohner sind theoretisch für einen Teil der aus Süden kommenden Verkehre neue Routenoptionen über den Worringer Platz denkbar. Die bisher angenommene Verteilung über die neue Moskauer Straße (vgl. Kapitel 5.2) ist jedoch im Vergleich zur Route über den Worringer Platz attraktiver. Es wird daher damit gerechnet, dass die neue Lage der Tiefgaragenerschließung keine signifikanten Auswirkungen auf die Verteilung der Neuverkehre auf das Straßennetz und die angrenzenden Knotenpunkte haben wird.

Durch die derzeitige Planung ergibt sich die in Abbildung 35 dargestellte Verkehrsbelastung

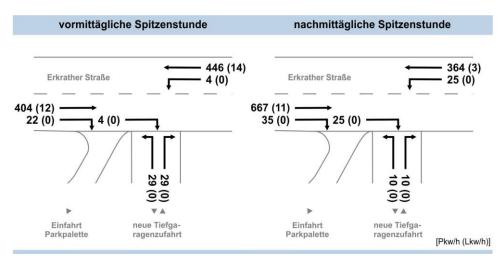


Abbildung 35: Belastungen an der neuen Tiefgaragenzufahrt

Die Leistungsfähigkeit dieser Situation wurde für die vormittägliche und nachmittägliche Spitzenstunde bewertet. Ein Knotenpunkt mit zwei in unmittelbarer Nähe liegenden Zufahrten sowie Einmündungen mit Bahneingriff sind im HBS-Verfahren nicht vorgesehen. Daher wurden im Sinne einer Betrachtung auf der sicheren Seite die Einfahrt zur Parkpalette und die neue Tiefgaragenzufahrt als eine Zufahrt betrachtet. Der Bahneingriff wurde verfahrensbedingt nicht berücksichtigt. Es wurde eine unsignalisierte Einmündung mit Minimalausbau, d.h. ohne gesonderte Abbiegefahrstreifen, betrachtet.

Die entsprechenden HBS-Formblätter sind in Anlage 4 aufgeführt.

Es ist in beiden Spitzenstunden mit einem leistungsfähigen Verkehrsablauf zu rechnen. Der Quellverkehr der Tiefgarage wird mit Qualitätsstufe B abgewickelt. Alle übrigen Verkehrsströme werden mit der Qualitätsstufe A bewertet.

7. Ortsumgehung Oberbilk

Im Vorfeld des derzeitigen Planungsprozesses wurden im Rahmen der Planungen zur Ortsumgehung Oberbilk Leistungsfähigkeitsnachweise an den für die Ortsumgehung Oberbilk relevanten Knotenpunkten durchgeführt (vgl. "Ortsumgehung Oberbilk", Albrecht-Consult). Hierfür wurden Spitzenstundenmodelle für beide Spitzenstunden durch die Stadt Düsseldorf erstellt und Verkehrsprognosen für die vormittägliche und nachmittägliche Spitzenstunde nach Realisierung der Ortsumgehung Oberbilk abgeleitet. Die Auswirkungen, die sich aus dem Endausbau der Ortsumgehung Oberbilk ergeben, wurden über eine Betrachtung der Leistungsreserven für die unmittelbar angrenzenden Knotenpunkte berücksichtigt (vgl. Verkehrsuntersuchung Projektentwicklung "Quartier M" Kölner Straße 114 in Düsseldorf, LINDSCHULTE + KLOPPE Ingenieurgesellschaft, Dezember 2010). Bei teilweise optimierten Signalprogrammen wurde ein leistungsfähiger Verkehrsablauf nachgewiesen.

Aus den o.g. Spitzenstundenmodellen wurden durch die Stadt Düsseldorf Tageswerte ermittelt und die Basis-Verkehrsbelastung gebildet, die auch Eingang in die schalltechnische Untersuchung fand. Aufbauend auf dieser Basis-Verkehrsbelastung wurde ein Entwicklungskonzept im Plangebiet untersucht und somit das **Basisszenario** (Ortsumgehung + Projektentwicklung Quartier M) gebildet. Im damaligen Entwicklungskonzept für die Projektentwicklung Quartier M waren ein hoher Anteil an Büronutzung und Einzelhandel sowie rund 660 Wohneinheiten vorgesehen. Die entsprechende Neuverkehrsmenge betrug damals rund 7.150 Kfz-Fahrten/24h und war mehr als doppelt so hoch, als die entsprechende Neuverkehrsmenge der derzeitigen Planung.

Im Rahmen einer Betrachtung eines neuen Nutzungskonzeptes wurde unter Berücksichtigung aktueller Zähldaten ein Prognoseszenario (**Szenario 1a**) für das erweiterte Umfeld (inkl. Knotenpunkte Werdener Straße) gebildet. In diesem Szenario hat die Verlängerung der Moskauer Straße als vorgezogene Maßnahme der Ortsumgehung Oberbilk nicht die angemessene Bedeutung entsprechend ihres vierstreifigen Ausbaus als Hauptverkehrsstraße erlangt.

Nachfolgend sind die derzeitigen Tagesbelastungen sowie die Tagesbelastungen der verschiedenen Szenarien im Umfeld der Projektentwicklung dargestellt.

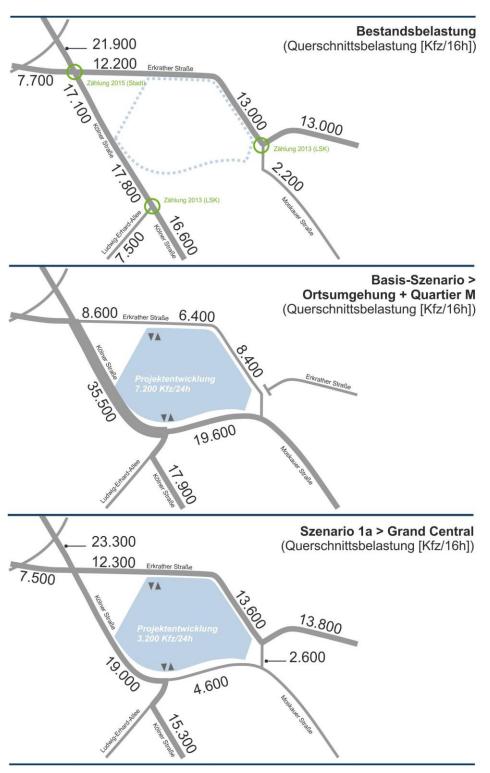


Abbildung 36: Szenarien: Tagesbelastung Umfeld Plangebiet

8. Zusammenfassung

Auf dem Gelände des ehemaligen Verteilerzentrums der Deutschen Post / DHL ist ein Nutzungsmix bestehend aus Wohnungen, Kitas, Hotel, Einzelhandel sowie untergeordnet aus nicht publikumsintensiver Büronutzung, nahversorgungsrelevantem Einzelhandel und Gastronomie geplant. Unterhalb des Plangebiets entstehen Tiefgaragen, die den Bewohnern vorenthalten sind. Alle übrigen Stellplätze werden in einer Parkpalette an der westlichen Plangebietsgrenze zum Bahndamm hin nachgewiesen.

Das Plangebiet wird durch die Kölner Straße, die Erkrather Straße und zukünftig durch die verlängerte Moskauer Straße begrenzt. Die Erschließung erfolgt von der neuen verlängerten Moskauer Straße und der Erkrather Straße aus. Das Hotel im westlichen Teil des Plangebiets sowie die Parkpalette werden über eine Erschließungsstraße, die das Plangebiet an der Westseite begrenzt, erschlossen. Die Anlieferung des Plangebiets durch Lkw erfolgt ebenfalls über diese Straße von der Moskauer Straße aus.

In der vorliegenden Verkehrsuntersuchung wurde die durch die geplanten Nutzungen entstehende Neuverkehrsmenge abgeschätzt und die Verkehrssituation für die vormittägliche und nachmittägliche Spitzenstunde an den folgenden **relevanten Knotenpunkten** bewertet:

- Kölner Straße / Worringer Platz / Erkrather Straße
- Kruppstraße / Kölner Straße / Werdener Straße
- Kölner Straße / Moskauer Straße / Ludwig-Erhard-Allee (geplant)
- Werdener Straße / Kettwiger Straße / Erkrather Straße
- Moskauer Straße / Erkrather Straße (geplant)

Im Rahmen der vorliegenden Verkehrsuntersuchung wurden folgende **Belastungszustände** definiert:

- Bestand: derzeitige Verkehrsbelastung (Zähldaten)
- Nullfall: Verlängerung Moskauer Straße und Entwicklung Mindener Straße (Zähldaten + Differenzbelastungen resultierend aus der Netzerweiterung Moskauer Straße + Neuverkehr Mindener Straße)
- Planfall: Berücksichtigung der Verkehrsverlagerungen von der Erkrather Straße zur Moskauer Straße sowie der Projektentwicklung Grand Central (aufbauend auf den Nullfall + Neuverkehr Projektentwicklung Grand Central)

Das durch die Planung **erzeugte Verkehrsaufkommen** beträgt 3.192 Kfz-Fahrten am Tag. Vormittags werden maximal 250 Kfz/h und nachmittags maximal 306 Kfz/h prognostiziert (jeweils Summe Quell- und Zielverkehr).

Bei der **Verteilung der Neuverkehre** wurde in Absprache mit der Stadt Düsseldorf die Annahme getroffen, dass 50 % der Neuverkehre über den Worringer Platz und 50 % über die Moskauer Straße / Kölner Straße verkehren.

Die Bewertung der Leistungsfähigkeit an den relevanten Knotenpunkten erfolgte auf Basis des HBS-Verfahrens. Grundlage hierfür waren aktuelle Signalprogramme der bestehenden Knotenpunkte. Für die im Zusammenhang der Verlängerung der Moskauer Straße geplanten Knotenpunkte wurden Signalprogramme verwendet, die im Rahmen der Planungen zur Ortsumgehung Oberbilk konzipiert wurden. Bei Knotenpunkten mit Bahneingriff wurden entsprechend der fahrplanmäßigen Bahnanforderungen mittlere Freigabezeiten angesetzt.

Es zeigt sich, dass insbesondere der Knotenpunkt Werdener Straße / Kettwiger Straße / Erkrather Straße schon im Bestand sehr ausgelastet ist. Vormittags ist der Geradeausstrom aus der Erkrather Straße Süd zu 102% ausgelastet. Die Qualitätsstufe beträgt F. Änderungen am Signalprogramm, die eine Verlängerung der entsprechenden Signalgruppe zur Folge hätte, lassen sich nicht ohne die Leistungsfähigkeit eines anderen Verkehrsstroms negativ zu beeinflussen durchführen.

Nachmittags ist zusätzlich zum Geradeausstrom Erkrather Straße Süd (Auslastung 98%, Qualitätsstufe F) der Linksabbiegestrom der Kettwiger Straße mit 115% ausgelastet und die Qualitätsstufe beträgt entsprechend F.

Am Knotenpunkt Kruppstraße / Kölner Straße / Werdener Straße wird ab dem Nullfall nachmittags die Qualität des Linksabbiegestroms der Werdener Straße mit E bewertet. Auch hier ist im Bestand und im Planfall der Geradeausstrom der Zufahrt Kölner Straße zu 94% ausgelastet und erhält die Qualitätsstufe E. Zur Verbesserung der Qualität wäre ein Nachlauf zu Lasten anderer Signalgruppen nötig. Dies lässt sich aber signaltechnisch nicht umsetzen ohne andere Verkehrsströme nicht mehr leistungsfähig abfließen zu lassen.

An den übrigen relevanten Knotenpunkten wird ein leistungsfähiger Verkehrsablauf erwartet. Teilweise sind hierfür geringe Änderungen an den Signalprogrammen notwendig.

Die Belastungszustände, die den Endausbau der Ortsumgehung Oberbilk berücksichtigen, wurden bereits in vorangegangenen Untersuchungen vor dem Hintergrund verkehrsintensiverer Nutzungskonzepte betrachtet (vgl. Verkehrsuntersuchung Projektentwicklung "Quartier M" Kölner Straße 114 in Düsseldorf, LINDSCHULTE + KLOPPE Ingenieurgesellschaft, Dezember 2010).

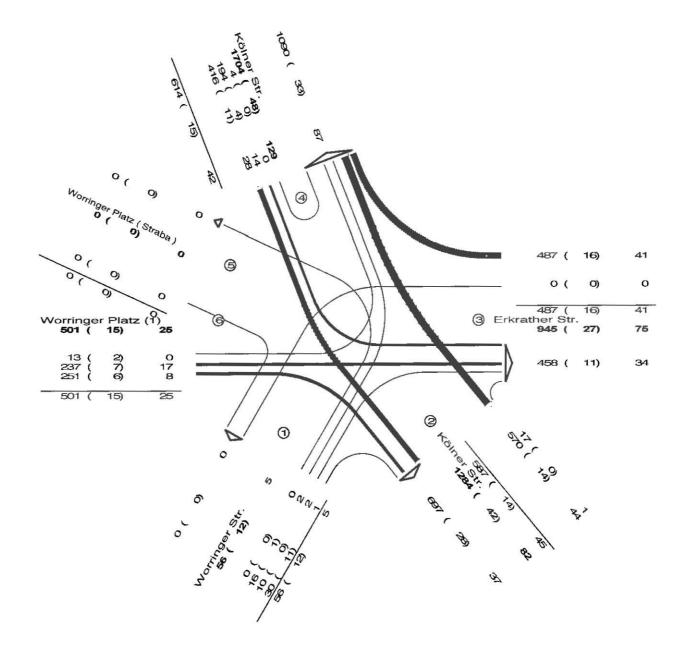
Nachfolgend ist in Tabelle 7 der Quell- und Zielverkehr für das gesamte Plangebiet entsprechend des damaligen Nutzungskonzepts mit einem höheren Anteil an Gewerbe- und Einzelhandelsnutzung dargestellt und mit den entsprechenden Werten auf Basis der derzeitigen Planungen mit mehrheitlicher Wohnnutzung verglichen.

	VU "Quartier M" 2010	VU B-Plan 03/018 ("Grand Central")
Quellverkehr vormittägliche Spitzenstunde	188 Kfz/h	161 Kfz/h
Quellverkehr nachmittägliche Spitzenstunde	395 Kfz/h	125 Kfz/h
Zielverkehr vormittägliche Spitzenstunde	328 Kfz/h	89 Kfz/h
Zielverkehr nachmittägliche Spitzenstunde	256 Kfz/h	181 Kfz/h
gesamter Tagesverkehr	7.144 Kfz/24h	3.192 Kfz/24h

Tabelle 7: Vergleich Verkehrsmengen Untersuchungen

Aufgrund der veränderten Nutzungsstruktur im Plangebiet haben sich die Lastrichtungen verändert und insbesondere die durch die aktuelle Planung hervorgerufene Neuverkehrsmenge ist geringer, als die des damaligen Nutzungskonzepts. Die Leistungsfähigkeit für den Endausbau der Ortsumgehung Oberbilk wurde bereits für das damalige Nutzungskonzept in der o.g. Untersuchung nachgewiesen. Ein erneuter Nachweis ist daher nicht mehr notwendig.

Anlage 1: Ergebnisse der Verkehrszählung


Kölner Str. / Erkrather Str.

Zählstelle : 14x91x04

Platz : Worringer Platz

Datum : Dienstag, 24.02.2015 : 06:00 - 14:00 Uhr Block : 07:45 - 08:45 Uhr

Spitzenstd 1 Worringer Str.
2 Kölner Str.
3 Erkrather Str.
4 Kölner Str.
5 Worringer Platz (Straba)
6 Worringer Platz (1)

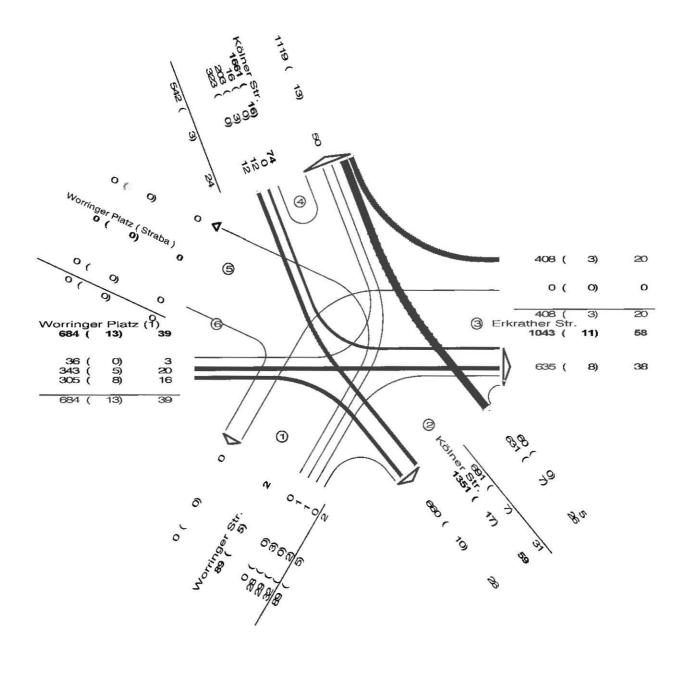
Kfz (SV) Lfw

Kfz=Lfw + Pkw + Lkw + Lz + Bus + Krd

SV=Lkw + Lz + Bus

Lfw=Lfw

350 700 Kfz Kölner Str. / Erkrather Str.


Zählstelle : 14x91x04

: Worringer Platz Platz

: Dienstag, 24.02.2015 Datum Block

: 14:00 - 22:00 Uhr : 17:00 - 18:00 Uhr Spitzenstd

1 Worringer Str.
2 Kölner Str.
3 Erkrather Str.
4 Kölner Str.
5 Worringer Platz (Straba)
6 Worringer Platz (1)

Kfz (SV) Lfw

Kfz=Lfw + Pkw + Lkw + Lz + Bus + Krd

SV=Lkw + Lz + Bus

Lfw=Lfw

Kruppstr. / Kölner Str. / Werdener Str.

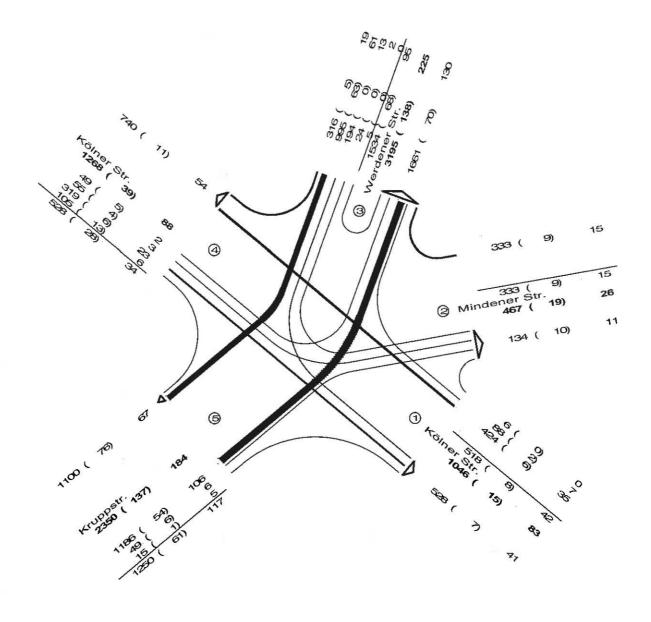
Zählstelle

: 51x05

Platz

: Oberbilker Markt

Datum


Dienstag, 09.06.2015

Block

: 06:00 - 14:00 Uhr : 08:00 - 09:00 Uhr

Spitzenstd

1 Kölner Str. 2 Mindener Str. 3 Werdener Str. 4 Kölner Str. 5 Kruppstr.

Kfz (SV) Lfw

Kfz=Lfw + Pkw + Lkw + Lz + Bus + Krd

SV=Lkw + Lz + Bus

750 1500 Kfz

Lfw=Lfw

Kruppstr. / Kölner Str. / Werdener Str.

Zählstelle

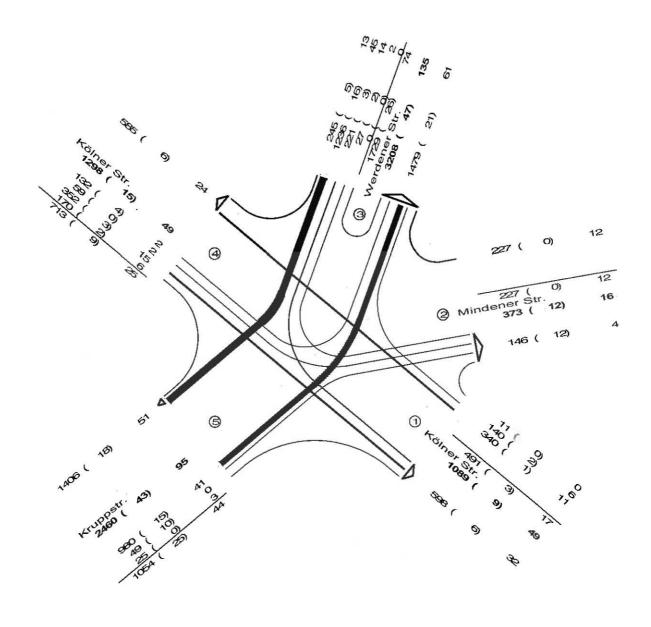
: 51x05

Platz

Oberbilker Markt

Datum

: Dienstag, 09.06.2015


Block

: 14:00 - 22:00 Uhr

: 17:00 - 18:00 Uhr

Spitzenstd

1 Kölner Str. 2 Mindener Str. 3 Werdener Str. 4 Kölner Str. 5 Kruppstr.

Kfz (SV) Lfw

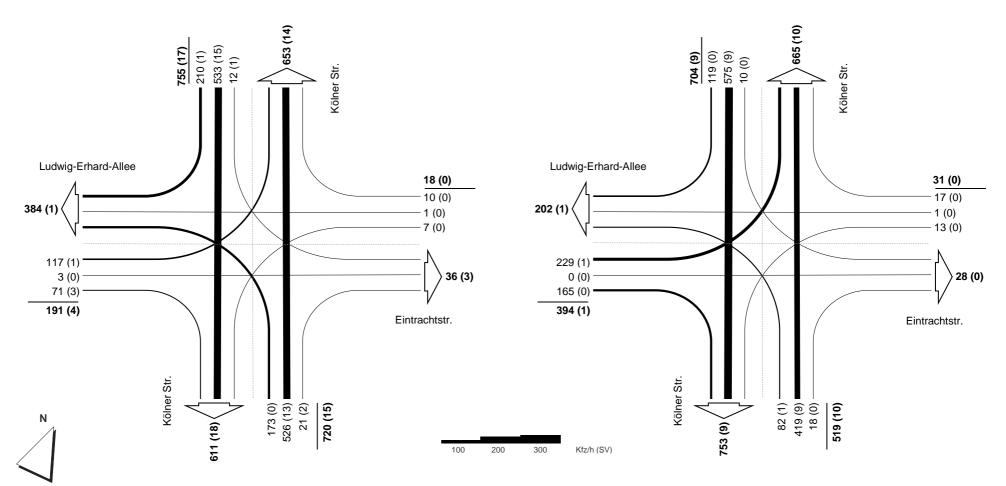
Kfz=Lfw + Pkw + Lkw + Lz + Bus + Krd

SV=Lkw + Lz + Bus

750

1500 Kfz

Lfw=Lfw


Knotenstrombelastung - Kölner Straße / Ludwig-Erhard-Allee

Bestand am 16.04.2013 vormittägliche Spitzenstunde

Zählzeitraum: 06:00 - 22:00 Uhr dargestellte Belastungen: 07:45 - 08:45 Uhr

Bestand am 16.04.2013 nachmittägliche Spitzenstunde

Zählzeitraum: 06:00 - 22:00 Uhr dargestellte Belastungen: 16:45 - 17:45 Uhr

Bearbeiter: Dk Datum: 02.05.2013

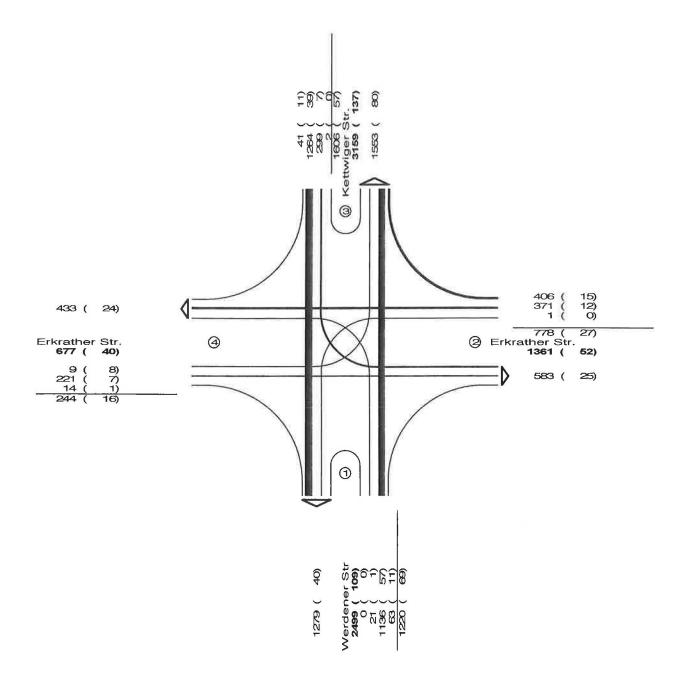
Erkrather Str. / Kettwiger Str.

Zählstelle

: 52x02x02

Platz

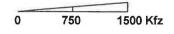
Datum


: Dienstag, 16.04.2013

Block

: 06:00 - 14:00 Uhr : 07:15 - 08:15 Uhr

Spitzenstd


1 Werdener Str 2 Erkrather Str. 3 Kettwiger Str. 4 Erkrather Str.

Kfz (SV)

Kfz=Pkw + Lkw + Lz + Bus + Krd

SV=Lkw + Lz + Bus

Erkrather Str. / Kettwiger Str.

Zählstelle

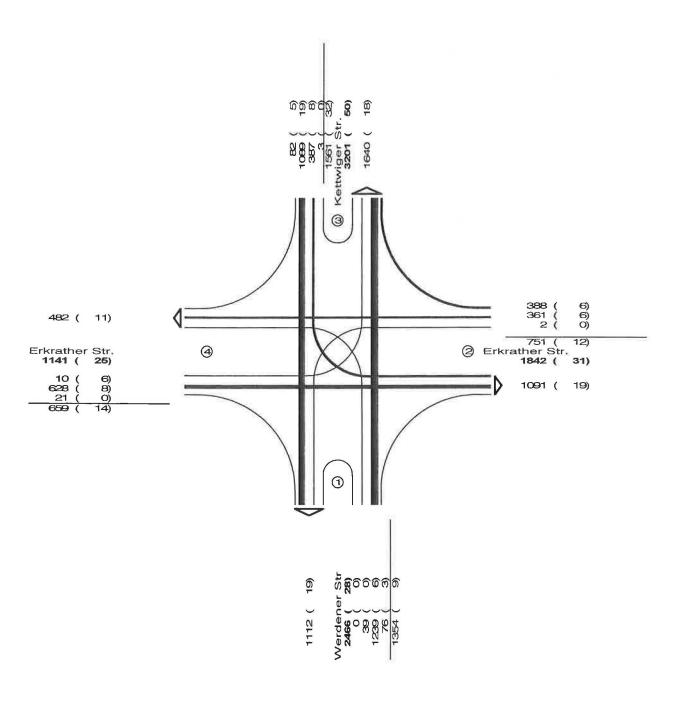
: 52x02x02

Platz

Datum

: Dienstag, 16.04.2013

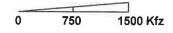
Block


: 14:00 - 22:00 Uhr

Spitzenstd

: 16:15 - 17:15 Uhr

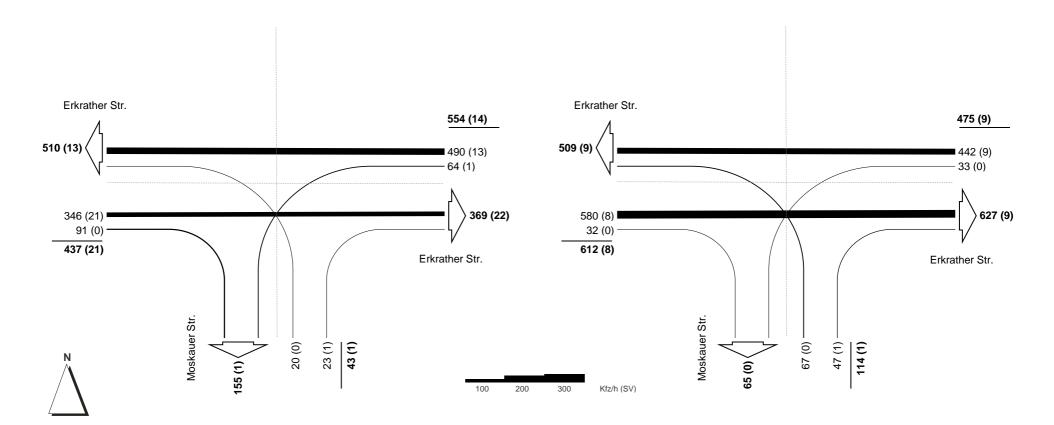
1 Werdener Str 2 Erkrather Str. 3 Kettwiger Str. 4 Erkrather Str.



Kfz (SV)

Kfz=Pkw + Lkw + Lz + Bus + Krd

SV=Lkw + Lz + Bus


Knotenstrombelastung - Erkrather Straße / Moskauer Straße

Bestand am 20.03.2013 vormittägliche Spitzenstunde

Zählzeitraum: 06:00 - 22:00 Uhr dargestellte Belastungen: 08:30 - 09:30 Uhr

Bestand am 20.03.2013 nachmittägliche Spitzenstunde

Zählzeitraum: 06:00 - 22:00 Uhr dargestellte Belastungen: 16:30 - 17:30 Uhr

Bearbeiter: Dk Datum: 02.05.2013

Anlage 2: Verkehrserzeugungsrechnung

Verkehrserzeugungsrechnung (gesamtes Plangebiet)

NUTZERMENGEN												
	, we	Einwohner / Besch	äftigte		Besucher / Ki	unden		Güterverkehi	•			
Nutzung (Bestand)	WE BGF [m²]	Wertespektrum	spez. Wert	Anzahl	Wertespektrum	spez. Wert	Anzahl	Wertespektrum	spez. Wert	Anzahl		
Wohnen gefördert	147 WE	1,8 Personen pro Haushalt 2	1,80	265	Abschätzung über Anzal	hl der Einwohne	er	Abschätzung über Anzahl o	er Einwohner			
Wohnen frei finanziert	461 WE	1,8 Personen pro Haushalt 2	1,80	830	Abschätzung über Anzal	hl der Einwohne	er	Abschätzung über Anzahl o	er Einwohner			
Wohnen Eigentum	389 WE	1,8 Personen pro Haushalt 2	1,80	700	Abschätzung über Anzal	hl der Einwohne	er	Abschätzung über Anzahl o	er Einwohner			
Hotel	7749 BGF	50-150 qm BGF / Besch. 9	100	66 ¹⁰	Abschätzung über Anzahl	der Beschäftigt	en en	Abschätzung über Anzahl de	r Beschäftigten			
Einzelhandel	1505 VKF	20-50 qm BGF / Besch. 16	35	46 ⁴⁴	1,0-2,5 Kunden / qm VKF 17	1,75	2.634	0,75-2,25 Lkw-Fahrten / 100 qm VKF 15	1,5	23		
Einzelhandel (Nahversorgung)	635 BGF	20-50 qm BGF / Besch. 16	35	15 44	1,0-2,5 Kunden / qm VKF 17	1,75	889 ¹⁸	0,75-2,25 Lkw-Fahrten / 100 qm VKF 15	1,5	8 18		
Kita	140 Plätze 25	0,06-0,10 Besch. / Platz 22	0,1	14	1 Besucher / Platz	1	140	nicht relevant				
Fitness	2189 BGF	125-165 qm BGF / Besch. 1	145	13 ¹⁰	15-50 Besucher / 100qm BGF 42	32,5	711	nicht relevant				
Gastronomie	611 BGF	40-80 qm BGF / Besch. 30	60,0	9 10	Abschätzung über Anzahl	der Beschäftigt	en	Abschätzung über Anzahl de	r Beschäftigten			
Lager/Büro	468 BGF	10-50 gm BGF / Besch. 31	30.0	13 ¹⁰	Abschätzung über Anzahl	der Beschäftigt	'en	Abschätzung über Anzahl de	r Beschäftigten			

TAGESVERKEHRSMEN	GEN (nach Nutzur	ng)									
	Ì	Wegehäufigkeit		Anzahl		Besetzungsgrad		Verbund-	Mitnahme-	10.1	Kfz-Fahrten / 24h
Nutzergruppen	Anzahl	Wertespektrum	spez. Wert	Wege	MIV-Anteil ⁴	Wertespektrum	spez. Wert	effekt	effekt	Minderung	(QV+ZV)
Wohnen gefördert									l.		
Einwohner	265	3,70 Wege/Einwohner ³	3,7	981	30%	1,2-1,3 Personen/Pkw 5	1,25	-	-	19% ³³	191
Besucher	-	max. 5% der Einwohnerwege 6	5%	49	33%	1,2-1,3 Personen / Pkw 7	1,25	-	-	-	14
Lieferverkehr	-	0,05 Fahrten / Einwohner 8	0,05	-	-	-	-	-	-	-	14
	•									Summe	219
Wohnen frei finanziert											
Einwohner	830	3,70 Wege/Einwohner ³	3,7	3.071	30%	1,2-1,3 Personen/Pkw 5	1,25	-	-	19% ³³	597
Besucher	-	max. 5% der Einwohnerwege 6	5%	154	33%	1,2-1,3 Personen / Pkw 7	1,25	-	-	-	42
Lieferverkehr	-	0,05 Fahrten / Einwohner 8	0,05	-	-	-	-	-	-	-	42
				•	•				•	Summe	681
Wohnen Eigentum											
Einwohner	700	3,70 Wege/Einwohner ³	3,7	2.590	30%	1,2-1,3 Personen/Pkw 5	1,25	-	-	19% ³³	503
Besucher	-	max. 5% der Einwohnerwege 6	5%	130	33%	1,2-1,3 Personen / Pkw 7	1,25	-	-	-	34
Lieferverkehr	-	0,05 Fahrten / Einwohner 8	0,05	-	-	-	-	-	-	-	36
							,			Summe	573
Hotel											
Beschäftigte	66	2,5-3,0 Wege / Besch. 11	2,75	182	50%	1,1 Personen / Pkw 12	1,1	-	-	-	83
Besucher	-	3-15 Wege / Besch. 13	9,0	594	33%	1,1-1,5 Personen / Pkw 14	1,3	-	-	-	151
Lieferverkehr	-	0,4-0,6 Fahrten / Besch. 15	0,5	-	-	-	-	-	-	-	34
					1				ı	Summe	268
Einzelhandel											
Beschäftigte	46	2,0-2,5 Wege / Besch. 20	2,25	104	50%	1,1 Personen / Pkw 12	1,1	-	-	-	48 '
Kunden	2.634	2 Wege / Kunde	2	5.268	33%	1,2 Personen / Pkw 21	1,2	20% 23	20% 24	-	928
Lieferverkehr	23	-	-	-	-	-	-	-	-	-	24 1
							,			Summe	1.000
Einzelhandel (Nahversorgung)										
Beschäftigte	15	2,0-2,5 Wege / Besch. 20	2,25	34	50%	1,1 Personen / Pkw 12	1,1		-	-	16 *
Kunden	889	2 Wege / Kunde	2	1.778	33%	1,2 Personen / Pkw ²¹	1,2	-	-	100% 32	0
Lieferverkehr	8	-	-	-	-	-	-	-	-	-	8
				•	•				•	Summe	24
Kita											
Beschäftigte	14	2,5-3,0 Wege / Besch. 11	2,5	35	50%	1,1 Personen / Pkw 12	1,1	-	-	-	16
Besucher	140	2 Wege / Kind	2	280	40%	0,5 Personen / Pkw 26	0,5	-	-	-	224
Lieferverkehr	-	-	-	-	-	-	-	-	-	-	nicht relevant
							,			Summe	240
Fitness											
Beschäftigte	13	2,0-2,5 Wege / Besch. 43	2,25	29	50%	1,1 Personen / Pkw 12	1,1	-	-	-	14
Besucher	711	2 Wege / Besucher	2	1.422	75% ³⁵	1,0-1,2 Person / Pkw 27	1,10	-	95% ²⁹	-	48
Lieferverkehr	-	-	-	-	-	-	-	-	-	-	nicht relevant
	•				•				•	Summe	62
Gastronomie											
Beschäftigte	9	2,0-2,5 Wege / Besch. 34	2,25	20	50%	1,1 Personen / Pkw 12	1,1	-	-	-	10
Besucher	-	30-60 Wege / Besch. 36	45	405	33%	1,3-1,9 Personen / Pkw 37	1,60	-	-	-	84
Lieferverkehr	-	0,5-0,8 Fahrten / Besch. 38	0,65		-	-	-	-	-	-	6
	l l				•			1		Summe	100
Lager/Büro											
Beschäftigte	13	2,5-3,0 Wege / Besch. 11	2,75	36	50%	1,1 Personen / Pkw 12	1,1	-	-	- 1	16
Besucher	_	0,5-1,5 Wege / Besch. 39	1	13	33%	1,0-1,1 Personen / Pkw 40	1,05	-	-	-	4
Lieferverkehr	_	5-30% der Fahrten der Beschäftigten 41	17,5%	-	_	-	_	_	_	-	4
	ı		,	i .				l		Summe	24
Gesamtplangebiet										Summe	3.191
											*gerunde

LINDSCHULTE + KLOPPE Ingenieurgesellschaft

- 1 HSVV: Freizeit: Fitness
- ² SrV 2013: Größe eines durchschnittlichen Düsseldorfer Haushaltes
- ³ SrV 2013: durchschnittliche Mobilitätsrate der Düsseldorfer
- ⁴ MIV-Anteile in Abstimmung Stadt Düsseldorf (aus vorherigen Untersuchungen)
- FGSV: Besetzungsgrad Einwohnerverkehr
- ⁶ FGSV: Anteil des Besucherverkehrs für Wohnnutzung
- FGSV: Pkw-Besetzungsgrad im Besucherverkehr
- 8 HSVV: Lkw-Fahrtenhäufigkeit für Wohnnutzung
- 9 FGSV: Bruttogeschossfläche (BGF) je Beschäftigtem in Abhängigkeit von der Branche: Hotel ohne und mit Konferenzbereich
- 10 FGSV: Anwesenheitsfaktor für gewerbliche Nutzung 80-90%, Annahme: 85%
- ¹¹ FGSV: Spezifische Wegehäufigkeit im Beschäftigtenverkehr: Handwerk, Dienstleistung, Büro
- 12 FGSV: Pkw-Besetzungsgrad im Beschäftigtenverkehr
- 13 HSVV: Wegehäufigkeit im Besucher-/Kundenverkehr und Geschäftsverkehr (mit hohem Kundenverkehr): Hotels ohne Konferenzzentrum
- ¹⁴ HSVV: Pkw-Besetzungsgrad im Besucher-/Kundenverkehr: Hotel Mo-Fr
- ¹⁵ HSVV: Lkw-Fahrtenhäufigkeit für die Nutzungsart "Dienstleistungen": Hotel
- ¹⁶ FGSV: Spezifische (Brutto-)Geschossfläche je Beschäftigtem in Abhängigkeit von der Branche: kleinflächiger Einzelhandel
- 17 FGSV: Kunden- und Besucheraufkommen (Kassen- und Schaukunden) je qm Verkaufsfläche je mittlerem Werktag, kleinflächiger Einzelhandel
- 18 FGSV: VKF beträgt 70 90% der BGR, Annahme: 80%
- ¹⁹ HSVV: Lkw-Fahrtenhäufigkeit je 100 qm Verkaufsfläche (Mo-Fr): kleinflächiger Einzelhandel, sonstiges
- 20 FGSV: Wegehäufigkeit im Beschäftigtenverkehr im Einzelhandel, Berücksichtigung hoher Anteil an Teilzeitkräften mit weniger Wegen
- ²¹ HSVV: Pkw-Besetzungsgrad in Abhängigkeit der Branche (Mo-Fr): kleinflächiger Einzelhandel
- 22 HSVV: Beschäftigtenzahl je Platz in Abhängigkeit der Einrichtung: Kita
- 23 HSVV: allgemein 5-35%
- 24 HSVV: integrierte Lage 5-35%
- 25 1 x 4-zügig, 1 x 3-zügig mit je 20 Plätzen
- ²⁶ "virtueller" Besetzungsgrad zur Berücksichtigung von Bringen und Holen
- 27 HSVV: Pkw-Besetzungsgrad Fitness-Center
- ²⁹ kein öffentliches Fitnessstudio. Eingeschränkter Nutzerkreis bestehend aus Bewohnern und Beschäftigten des Gebietes
- 30 FGSV: Restaurants/Gastronomie
- 31 FGSV: unternehmensorientierte Dienstleistungen
- 32 nur für die Nahversorgung relevant
- 33 Teilnahme am Verkehrsgeschehen (SrV 2013)
- 34 FGSV: Wegehäufigkeit im Beschäftigtenverkehr Bereich Freizeit / Kultur / Sport
- 35 HSVV: Spannbreite integrierte Lage 70-80%
- 36 HSVV: Wegehäufigkeit bei Gastronomie / Restaurants
- 37 HSVV: Pkw-Besetzungsgrad im Besucher-/Kundenverkehr: Gastronomie Mo-Fr
- 38 HSVV: Lkw-Fahrtenhäufigkeit für Restaurants / Gastronomie
- 39 FGSV: Dienstleistung mit wenig Publikumsverkehr
- 40 FGSV: Besetzungsgrad übliche Gewerbenutzung
- ⁴¹ FGSV: externer Wirtschaftsverkehr z.B. Geschäftsvertreter sowie Liefer-, Versorgungs- und Servicefahrten (Müll, Reparaturen usw.)
- 42 HSVV: Freizeit: Fitness
- 43 FGSV: Wege je Beschäftigtem (Freizeit)
- 44 FGSV: Anwesenheitsfaktor für gewerbliche Nutzung 80-90%, Annahme: 85% / VKF beträgt 70 90% der BGR, Annahme: 80%

Verkehrserzeugungsrechnung (Plangebiet) - Stundenwerte

Plangebiet		hr ges. Plai [Kfz/24h]	ngebiet	relevanter	r Anteil		nter Neuver [Kfz/24h]	kehr
	QV	ZV	Summe	QV	ZV	QV	ZV	Summe
Wohnen (Bewohner)	646	646	1.291	100%	100%	646	646	1.291 1
Wohnen (Besucher)	45	45	90	100%	100%	45	45	90 ²
Hotel (Beschäftigte)	42	42	83	100%	100%	42	42	83 ³
Hotel (Besucher)	76	76	151	100%	100%	76	76	151 4
Einzelhandel (Beschäftigte)	24	24	48	100%	100%	24	24	48 5
Einzelhandel (Kunden)	464	464	928	100%	100%	464	464	928 ⁶
Einzelhandel Nahv. (Beschäftigte)	8	8	16	100%	100%	8	8	16 ⁷
Einzelhandel Nahv. (Kunden)	0	0	0	100%	100%	0	0	0 8
Kita (Beschäftigte)	8	8	16	100%	100%	8	8	16 ⁷
Kita (Besucher)	112	112	224	100%	100%	112	112	224 8
Fitness (Beschäftigte)	7	7	14	100%	100%	7	7	14 ⁹
Fitness (Besucher)	24	24	48	100%	100%	24	24	48 ¹
Gastronomie (Beschäftigte)	5	5	10	100%	100%	5	5	10 ¹
Gastronomie (Besucher)	42	42	84	100%	100%	42	42	84 1
Lager/Büro (Beschäftigte)	8	8	16	100%	100%	8	8	16 ¹
Lager/Büro (Besucher)	2	2	4	100%	100%	2	2	4 1
Lieferverkehr (Wohnen)	46	46	92	100%	100%	46	46	92 ¹
Lieferverkehr (Hotel)	17	17	34	100%	100%	17	17	34 ¹
Lieferverkehr (Einzelhandel)	12	12	24	100%	100%	12	12	24 1
Lieferverkehr (Einzelhandel Nahvers.	4	4	8	100%	100%	4	4	8 ¹
Lieferverkehr (Kita)	-	-	-	100%	100%	0	0	0 1
Lieferverkehr (Fitness)	-	-	-	100%	100%	0	0	0 1
Lieferverkehr (Gastro)	3	3	6	100%	100%	3	3	6 ¹
Lieferverkehr (Lager/Büro)	2	2	4	100%	100%	2	2	4 1
			3.191					3.191

Quelle der Ganglinie

- SrV Düsseldorf 2008: Tagesganglinien Wohnen gesamt
- ² FGSV: Hinweise zur Abschätzung von Gebietstypen (EAR 1991/95)
- 3 HSVV: Beschäftigte Schichtbetrieb (EAR 1991/95)
- 4 HSVV: Kunden Gewerbe, Hotel (FH Köln 2001)
- 5 HSVV: Beschäftigte Einkauf (FH Köln 2001)
- FGSV: Hinweise zur Abschätzung von Gebietstypen (EAR 1991/95) Ladenschluss 20 Uhr
- HSVV: Beschäftigte Einkauf (FH Köln 2001)
- 8 FGSV: Hinweise zur Abschätzung von Gebietstypen (EAR 1991/95) Ladenschluss 20 Uhr
- 7 eigene Annahme
- 8 HSVV: Kunden sonstiges, Kindertagesstätte
- 9 eigene Annahme
- HSVV: Fitness-Center montags (intensivster Tag nachmittags), Annahme Verweildauer von etwa einer Stunde
- 11 eigene Annahme (Restaurant m. Mittagstisch)
- eigene Annahme (Restaurant m. Mittagstisch)
- 13 FGSV: Beschäftigte: Berufsverkehr
- 14 HSVV: Kunden Gewerbe, Büro Sonstiges (innenstadtnah)
- 15 FGSV: Hinweise zur Abschätzung von Gebietstypen (EAR 1991/95)

	Wohnen (Bev	vohner)			Wohnen (Bes	ucher)			Hotel (Besch	äftigte)			Hotel (Besuch	ner)			Einzelhande	I (Beschäftig	te)		Einzelhandel (Kunden)		
Stunde	Quellve	,	Zielve		Quellve		Zielvei	kehr	Quellve	0 ,	Zielver	kehr	Quellve	,	Zielver	kehr	Quelly	erkehr	Zielver		Quellver	,	Zielver	kehr
	646	6	64	6	45		45	5	42	2	42	2	76		76		24	4	24	ı	464		46-	4
	Anteil [%]	Kfz/h	Anteil [%]	Kfz/h	Anteil	Kfz/h	Anteil	Kfz/h	Anteil	Kfz/h	Anteil	Kfz/h	Anteil	Kfz/h	Anteil	Kfz/h	Anteil	Kfz/h	Anteil	Kfz/h	Anteil	Kfz/h	Anteil	Kfz/h
00-01					0,5	0,2									2,1	1,6								
01-02	0,1	0,6													0,5	0,4								
02-03	0,1	0,6																						
03-04	0,1	0,6			0,4	0,2																		
04-05	1,1	7,1			0,3	0,1					1,0	0,4												
05-06	4,3	27,8	0,1	0,6					1,0	0,4	6,8	2,8							1,0	0,2				
06-07	10,3	66,5	0,2	1,3	2,0	0,9	3,0	1,4	2,0	0,8	22,2	9,2	1,9	1,4					3,6	0,9				
07-08	20,7	133,6	0,7	4,5	3,0	1,4	3,3	1,5	4,5	1,9	28,7	11,9	9,2	6,9					10,6	2,5			2,7	12,5
08-09	15,4	99,4	2,2	14,2	3,5	1,6	1,5	0,7	5,3	2,2	8,8	3,6	22,3	16,8	1,3	1,0	0,2	0,0	35,4	8,5	3,5	16,2	5,1	23,4
09-10	7,2	46,5	2,6	16,8	1,8	0,8	2,0	0,9	3,5	1,5	1,8	0,7	10,2	7,7	1,5	1,1	2,5	0,6	6,7	1,6	5,4	25,1	8,7	40,1
10-11	4,3	27,8	2,6	16,8	1,3	0,6	2,3	1,0	3,3	1,3	1,0	0,4	3,3	2,5	2,1	1,6	2,4	0,6	1,9	0,5	7,6	35,3	8,8	40,6
11-12	2,9	18,7	5,2	33,6	3,5	1,6	4,0	1,8	2,5	1,0	0,5	0,2	1,1	0,8	2,3	1,7	2,3	0,6	1,0	0,2	8,6	39,9	7,4	34,1
12-13	2,5	16,1	5,9	38,1	4,5	2,0	4,9	2,2	13,0	5,4	5,2	2,2	2,1	1,6	5,9	4,5	8,7	2,1	4,6	1,1	8,7	40,4	6,8	31,3
13-14	3,6	23,2	5,6	36,1	3,3	1,5	3,5	1,6	11,8	4,9	13,4	5,6	2,1	1,6	4,7	3,5	15,7	3,8	12,7	3,0	5,9	27,4	5,0	23,0
14-15	4,2	27,1	6,6	42,6	4,5	2,0	5,0	2,3	6,0	2,5	5,4	2,2	3,6	2,7	4,4	3,3	6,2	1,5	16,1	3,9	6,0	27,8	6,1	28,1
15-16	4,4	28,4	9,1	58,7	3,4	1,5	5,3	2,4	7,0	2,9	1,8	0,7	3,3	2,5	6,8	5,1	8,7	2,1	2,0	0,5	5,9	27,4	7,0	32,2
16-17	5,1	32,9	13,3	85,9	4,8	2,1	6,0	2,7	11,8	4,9	1,3	0,5	4,7	3,5	7,4	5,6	15,8	3,8	1,7	0,4	8,4	39,0	9,7	44,8
17-18	4,8	31,0	13,1	84,6	8,0	3,6	12,0	5,4	13,8	5,7	1,0	0,4	7,9	6,0	13,6	10,3	16,0	3,8	1,3	0,3	10,6	49,2	12,0	55,7
18-19	4,2	27,1	11,4	73,6	11,5	5,2	15,2	6,8	7,0	2,9	0,3	0,1	11,3	8,5	15,1	11,4	7,0	1,7	1,1	0,3	13,6	63,1	14,1	65,4
19-20	3,1	20,0	7,1	45,8	12,7	5,7	17,8	8,0	2,5	1,0	0,4	0,2	10,2	7,7	12,3	9,3	8,5	2,0	0,3	0,1	12,6	58,5	7,1	32,7
20-21	0,9	5,8	5,1	32,9	9,5	4,3	9,9	4,5	2,0	0,8			4,2	3,2	10,1	7,6	5,1	1,2			3,2	14,8		
21-22	0,6	3,9	4,6	29,7	8,5	3,8	2,3	1,0	1,3	0,5	0,7	0,3	2,1	1,6	6,4	4,8	0,5	0,1						
22-23	0,1	0,6	3,7	23,9	8,0	3,6	1,3	0,6	1,5	0,6			0,5	0,4	2,3	1,7	0,2	0,0						
23-24			0,9	5,8	5,3	2,4	1,0	0,5		0,2					1,2	0,9	0,2	0,0						
Σ	100,0	645,5	100,0	645,5	100,0	45,0	100,0	45,0	<u> </u>	41,5	100,0	41,5		75,5	100,0	75,5	100,0	24,0	100,0	24,0	100,0	464,0	100,0	464,0
TAG		608,06		615,16		38,52		43,99		40,26		38,28		75,12		70,89		23,90		23,76		464,00		464,00
NACHT		37,44	1	30,34		6,48		1,01		1,25	1	3,22	1	0,38	1	4,61		0,10		0,24		0,00		0,00

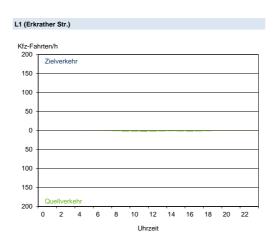
	Einzelhandel	Nahv. (Bes	chäftigte)		Einzelhandel	Nahv. (Kun	nden)		Kita (Beschäf	ftigte)			Kita (Besuch	er)			Fitness (Be	schäftigte)			Fitness (Besu	cher)		
Stunde	Quellve	,	Zielve	rkehr	Quellve	,	Zielvei	kehr	Quellve	0 ,	Zielver		Quellve		Zielver	kehr		verkehr	Zielver		Quellve		Zielve	rkehr
	8		8		0		0		8		8		11	2	112	2		7	7		24		24	4
	Anteil	Kfz/h	Anteil	Kfz/h	Anteil	Kfz/h	Anteil	Kfz/h	Anteil [%]	Kfz/h	Anteil [%]	Kfz/h	Anteil	Kfz/h	Anteil	Kfz/h	Anteil	Kfz/h	Anteil	Kfz/h	Anteil	Kfz/h	Anteil	Kfz/h
00-01																								
01-02																								
02-03																								
03-04																								
04-05																								
05-06			1,0	0,1							5,0	0,4												
06-07			3,6	0,3							45,0	3,6							25,0	1,8				
07-08			10,6	0,8			2,7				40,0	3,2	14,0	15,7	15,0	16,8							0,6	0,1
08-09	0,2	0,0	35,4	2,8	3,5		5,1				10,0	0,8	17,0	19,0	18,0	20,2			50,0	3,5	0,6	0,1	2,7	0,7
09-10	2,5	0,2	6,7	0,5	5,4		8,7						7,0	7,8	5,0	5,6					2,7	0,7	3,4	0,8
10-11	2,4	0,2	1,9	0,2	7,6		8,8														3,4	0,8	10,4	2,5
11-12	2,3	0,2	1,0	0,1	8,6		7,4						14,0	15,7	15,0	16,8					10,4	2,5	9,5	2,3
12-13	8,7	0,7	4,6	0,4	8,7		6,8		20,0	1,6			24,0	26,9	25,0	28,0					9,5	2,3	7,0	1,7
13-14	15,7	1,3	12,7	1,0	5,9		5,0						3,0	3,4	1,0	1,1					7,0	1,7	8,8	2,1
14-15	6,2	0,5	16,1	1,3	6,0		6,1						1,0	1,1	1,0	1,1			25,0	1,8	8,8	2,1	5,8	1,4
15-16	8,7	0,7	2,0	0,2	5,9		7,0		5,0	0,4			2,0	2,2	3,0	3,4	25,0	1,8			5,8	1,4	3,1	0,7
16-17	15,8	1,3	1,7	0,1	8,4		9,7		70,0	5,6			8,0	9,0	7,0	7,8					3,1	0,7	12,5	3,0
17-18	16,0	1,3	1,3	0,1	10,6		12,0		5,0	0,4			9,0	10,1	10,0	11,2	50,0	3,5			12,5	3,0		2,8
18-19	7,0	0,6		0,1	13,6		14,1						1,0	1,1							11,6	2,8		2,3
19-20	8,5	0,7	0,3	0,0	12,6		7,1														9,8	2,3		1,8
20-21	5,1	0,4			3,2																7,3	1,8		1,8
21-22	0,5	0,0																			7,6	1,8		
22-23	0,2	0,0															25,0	1,8						
23-24	0,2	0,0																						
Σ	100,0	8,0		8,0	100,0	0,0		0,0		8,0		8,0	100,0	112,0	100,0	112,0		,		7,0	100,0	24,0		24,0
TAG		7,97		7,92		0,00		0,00		8,00		7,60		112,00		112,00		5,25		7,00		24,00		24,00
NACHT	1	0,03		0,08		0,00	I	0,00)	0,00	1	0,40		0,00	l	0,00	I	1,75		0,00	l	0,00	l	0,00

	Gastronomie	(Beschäftig	gte)		Gastronomie	(Besucher)			Lager/Büro (I	Beschäftigte	e)		Lager/Büro (I	Besucher)			Lieferverkehr	(Wohnen)			Lieferverkehr	(Hotel)		
Stunde	Quellve	rkehr	Zielve	rkehr	Quellve	erkehr	Zielve	rkehr	Quellve	rkehr	Zielver	kehr	Quellve	rkehr	Zielver	kehr	Quellve	rkehr	Zielver	kehr	Quellver	kehr	Zielver	kehr
	5		5		42		42		8		8		2		2		46	i	46		17		17	,
	Anteil [%]	Kfz/h	Anteil [%]	Kfz/h	Anteil	Kfz/h	Anteil	Kfz/h	Anteil	Kfz/h	Anteil	Kfz/h	Anteil	Kfz/h	Anteil	Kfz/h	Anteil	Kfz/h	Anteil	Kfz/h	Anteil	Kfz/h	Anteil	Kfz/h
00-01																								
01-02																								l.
02-03																								l
03-04																								
04-05											1,0	0,1							0,3	0,1			0,3	0,1
05-06									1,0	0,1	6,8	0,5					1,0	0,5	1,5	0,7	1,0	0,2	1,5	0,3
06-07									2,0	0,2	22,2	1,8					1,8	8,0	3,0	1,4	1,8	0,3	3,0	0,5
07-08									4,5	0,4	28,7	2,3			2,5	0,0	4,8	2,2	8,0	3,7	4,8	0,8	8,0	1,4
08-09									5,3	0,4	8,8	0,7	0,8	0,0	6,6	0,1	6,5	3,0	10,4	4,8	6,5	1,1	10,4	1,8
09-10			20,0	1,0					3,5	0,3	1,8	0,1	7,4	0,1	12,3	0,2	8,3	3,8	8,8	4,0	8,3	1,4	8,8	1,5
10-11			30,0	1,5			5,0	2,1	3,3	0,3	1,0	0,1	18,9	0,4	18,9	0,4	9,0	4,1	10,3	4,7	9,0	1,5	10,3	1,8
11-12					5,0	2,1	10,0	4,2	2,5	0,2	0,5	0,0	21,3	0,4	21,3	0,4	10,3	4,7	9,9	4,6	10,3	1,8	9,9	1,7
12-13					10,0	4,2	15,0	6,3	13,0	1,0	5,2	0,4	18,9	0,4	10,7	0,2	8,8	4,0	7,0	3,2	8,8	1,5	7,0	1,2
13-14					15,0	6,3	10,0	4,2	11,8	0,9	13,4	1,1		0,1	4,1	0,1	7,8	3,6	6,5	3,0	7,8	1,3	6,5	1,1
14-15	15,0	0,8			10,0	4,2	5,0	2,1	6,0	0,5	5,4	0,4		0,0	9,8	0,2	5,6	2,6	6,0	2,8	5,6	1,0	6,0	1,0
15-16	35,0	1,8	20,0	1,0	5,0	2,1			7,0	0,6	1,8	0,1		0,3	5,7	0,1	7,0	3,2	7,8	3,6	7,0	1,2	7,8	1,3
16-17									11,8	0,9	1,3	0,1	10,7	0,2	7,4	0,1	8,8	4,0	6,8	3,1	8,8	1,5	6,8	1,2
17-18			30,0	1,5			10,0	4,2		1,1	1,0	0,1	1,6	0,0	0,8	0,0	7,0	3,2	5,0	2,3	7,0	1,2	5,0	0,9
18-19					5,0	2,1	20,0	8,4		0,6	0,3	0,0					5,3	2,4		1,7	5,3	0,9	3,8	0,6
19-20					10,0	4,2	20,0	8,4	2,5	0,2	0,4	0,0					3,8	1,7	3,3	1,5	3,8	0,6		0,6
20-21					15,0	6,3	5,0	2,1	2,0	0,2							1,8	8,0	1,5	0,7	1,8	0,3	1,5	0,3
21-22	10,0	0,5			25,0	10,5			1,3	0,1	0,7	0,1					1,0	0,5	0,3	0,1	1,0	0,2	0,3	0,1
22-23	30,0	1,5							1,2	0,1							1,3	0,6	0,3	0,1	1,3	0,2	0,3	0,1
23-24	10,0	0,5							0,5	0,0							0,7	0,3			0,7	0,1		
Σ	100,0	5,0		5,0	100,0	42,0	100,0	42,0	<u> </u>	8,0	100,0	8,0		2,0	100,0	2,0	100,6	46,3	100,5	46,2	100,6	17,1	100,5	17,1
TAG		3,00		5,00		42,00		42,00		7,78		7,38		2,00		2,00		44,90		45,26		16,59		16,73
NACHT		2,00	l	0,00		0,00		0,00		0,22	ĺ	0,62	ĺ	0,00	1	0,00	1	1,38		0,97		0,51		0,36

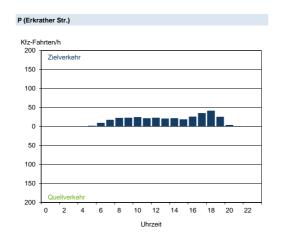


	Lieferverkehr	(Einzelhan	del)		Lieferverkehr	(Einzelhan	del Nahvers.)		Lieferverkehr	(Kita)			Lieferverkehr	(Fitness)			Lieferverkehr	(Gastro)			Lieferverkehr	(Lager/Bür	o)	
Stunde	Quellve	rkehr	Zielver	kehr	Quellve	erkehr	Zielver	kehr	Quellve	rkehr	Zielver	kehr	Quellve	rkehr	Zielverke	hr	Quellver	kehr	Zielverl	kehr	Quellve	rkehr	Zielver	kehr
	12		12		4		4		0		0		0		0		3		3		2		2	
	Anteil	Kfz/h	Anteil	Kfz/h	Anteil	Kfz/h	Anteil	Kfz/h	Anteil [%]	Kfz/h	Anteil [%]	Kfz/h	Anteil [%]	Kfz/h	Anteil [%]	Kfz/h	Anteil	Kfz/h	Anteil	Kfz/h	Anteil	Kfz/h	Anteil	Kfz/h
00-01																								
01-02																								
02-03																								
03-04																								
04-05			0,3	0,0			0,3	0,0			0,3				0,3				0,3	0,0			0,3	0,0
05-06	1,0	0,1	1,5	0,2	1,0	0,0	1,5	0,1	1,0		1,5		1,0		1,5		1,0	0,0	1,5	0,0	1,0	0,0	1,5	0,0
06-07	1,8	0,2	3,0	0,4	1,8	0,1	3,0	0,1	1,8		3,0		1,8		3,0		1,8	0,1	3,0	0,1	1,8	0,0	3,0	0,1
07-08	4,8	0,6	8,0	1,0	4,8	0,2	8,0	0,3	4,8		8,0		4,8		8,0		4,8	0,1	8,0	0,2	4,8	0,1	8,0	0,2
08-09	6,5	0,8	10,4	1,2	6,5	0,3	10,4	0,4	6,5		10,4		6,5		10,4		6,5	0,2	10,4	0,3	6,5	0,1	10,4	0,2
09-10	8,3	1,0	8,8	1,1	8,3	0,3	8,8	0,4	8,3		8,8		8,3		8,8		8,3	0,2	8,8	0,3	8,3	0,2	8,8	0,2
10-11	9,0	1,1	10,3	1,2	9,0	0,4	10,3	0,4	9,0		10,3		9,0		10,3		9,0	0,3	10,3	0,3	9,0	0,2	10,3	0,2
11-12	10,3	1,2	9,9	1,2	10,3	0,4	9,9	0,4	10,3		9,9		10,3		9,9		10,3	0,3	9,9	0,3	10,3	0,2	9,9	0,2
12-13	8,8	1,1	7,0	0,8	8,8	0,4	7,0	0,3	8,8		7,0		8,8		7,0		8,8	0,3	7,0	0,2	8,8	0,2	7,0	0,1
13-14	7,8	0,9	6,5	0,8	7,8	0,3	6,5	0,3	7,8		6,5		7,8		6,5		7,8	0,2	6,5	0,2	7,8	0,2	6,5	0,1
14-15	5,6	0,7	6,0	0,7	5,6	0,2	6,0	0,2	5,6		6,0		5,6		6,0		5,6	0,2	6,0	0,2	5,6	0,1	6,0	0,1
15-16	7,0	0,8	7,8	0,9	7,0	0,3	7,8	0,3	7,0		7,8		7,0		7,8		7,0	0,2	7,8	0,2	7,0	0,1	7,8	0,2
16-17	8,8	1,1	6,8	0,8	8,8	0,4	6,8	0,3	8,8		6,8		8,8		6,8		8,8	0,3	6,8	0,2	8,8	0,2	6,8	0,1
17-18	7,0	0,8	5,0	0,6	7,0	0,3	5,0	0,2	7,0		5,0		7,0		5,0		7,0	0,2	5,0	0,2	7,0	0,1	5,0	0,1
18-19	5,3	0,6	3,8	0,5	5,3	0,2	3,8	0,2	5,3		3,8		5,3		3,8		5,3	0,2	3,8	0,1	5,3	0,1	3,8	0,1
19-20	3,8	0,5	3,3	0,4	3,8	0,2	3,3	0,1	3,8		3,3		3,8		3,3		3,8	0,1	3,3	0,1	3,8	0,1	3,3	0,1
20-21	1,8	0,2	1,5	0,2	1,8	0,1	1,5	0,1	1,8		1,5		1,8		1,5		1,8	0,1	1,5	0,0	1,8	0,0	1,5	0,0
21-22	1,0	0,1	0,3	0,0	1,0	0,0	0,3	0,0	1,0		0,3		1,0		0,3		1,0	0,0	0,3	0,0	1,0	0,0	0,3	0,0
22-23	1,3	0,2	0,3	0,0	1,3	0,1	0,3	0,0	1,3		0,3		1,3		0,3		1,3	0,0	0,3	0,0	1,3	0,0	0,3	0,0
23-24	0,7	0,1			0,7	0,0			0,7				0,7				0,7	0,0			0,7	0,0		
Σ	100,6	12,1	100,5	12,1	100,6	4,0	100,5	4,0		0,0	100,5	0,0	100,6	0,0	100,5	0,0	100,6	3,0	100,5	3,0	100,6	2,0	100,5	2,0
TAG		11,71		11,81		3,90		3,94		0,00		0,00		0,00		0,00		2,93		2,95		1,95		1,97
NACHT		0,36		0,25		0,12		0,08		0,00		0,00	1	0,00		0,00		0,09		0,06	1	0,06		0,04

Verkehrserzeugungsrechnung (Plangebiet) - Tagesganglinie

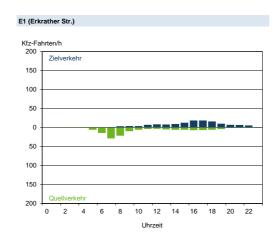

Stunde	Quell- verkehr	Ziel- verkehr	Gesamt- verkehr
	[Kfz/h]	[Kfz/h]	[Kfz/h]
0	0	2	2
1	1	0	1
2	1	0	1
3	1	0	1
4	7	1	8
5	29	6	35
6	71	23	94
7	164	63	227
8	161	89	250
9	98	77	175
10	77	76	153
11	92	104	196
12	112	122	234
13	82	88	170
14	78	96	173
15	82	112	194
16	111	157	268
17	125	181	305
18	120	172	292
19	106	109	215
20	40	50	90
21	24	36	60
22	10	26	36
23	4	7	11
Σ	1.596	1.596	3.192
4-h-Belastung	•		
06-10	495	252	746
15-19	438	621	1.059
vormitta	ägliche Spitzenstu	inde (06-10 Uhr)	250
nachmitta	ägliche Spitzenstu	inde (15-19 Uhr)	305
Tag	1.544	1.554	3.097
Nacht	52	42	94

Verkehrserzeugungsrechnung (L1 (Erkrather Str.)) - Tagesganglinie

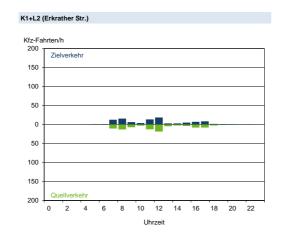

Stunde	Quell- verkehr	Ziel- verkehr	Gesamt- verkehr
	[Kfz/h]	[Kfz/h]	[Kfz/h]
0	0	0	0
1	0	0	0
2	0	0	0
3	0	0	0
4	0	0	0
5	0	0	0
6	1	0	1
7	1	0	1
8	2	0	2
9	3	0	3
10	3	0	3
11	3	0	3
12	3	0	3
13	2	0	2
14	2	0	2
15	2	0	2
16	3	0	3
17	2	0	2
18	2	0	2
19	1	0	1
20	1	0	1
21	0	0	0
22	0	0	0
23	0	0	0
Σ	31	0	31
4-h-Belastung			
06-10	7	0	7
15-19	9	0	9
vormitta	ägliche Spitzenstu	ınde (06-10 Uhr)	3
nachmittä	ägliche Spitzenstu	ınde (15-19 Uhr)	3
Tag	30	0	30
Nacht	1	0	1

LINDSCHULTE + KLOPPE Ingenieurgesellschaft

Verkehrserzeugungsrechnung (P (Erkrather Str.)) - Tagesganglinie


Stunde	Quell- verkehr	Ziel- verkehr	Gesamt- verkehr
	[Kfz/h]	[Kfz/h]	[Kfz/h]
0	0	0	0
1	0	0	0
2	0	0	0
3	0	0	0
4	0	0	0
5	0	2	2
6	0	9	9
7	0	17	17
8	0	22	22
9	0	23	23
10	0	25	25
11	0	22	22
12	0	23	23
13	0	21	21
14	0	22	22
15	0	19	19
16	0	26	26
17	0	35	35
18	0	42	42
19	0	26	26
20	0	4	4
21	0	1	1
22	0	0	0
23	0	0	0
Σ 4 b Polastuna	0	339	339
4-h-Belastung	0	72	72
06-10	0	122	122
15-19	igliche Spitzenstu		23
	igliche Spitzenstu		42
Tag	0	336	336
Nacht	0	3	3
	· ·	- U	

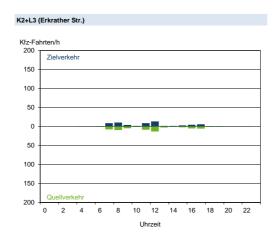
Verkehrserzeugungsrechnung (E1 (Erkrather Str.)) - Tagesganglinie


Stunde	Quell- verkehr	Ziel- verkehr	Gesamt- verkehr
	[Kfz/h]	[Kfz/h]	[Kfz/h]
0	0	0	0
1	0	0	0
2	0	0	0
3	0	0	0
4	2	0	2
5	6	0	6
6	14	0	15
7	29	1	30
8	21	3	24
9	10	4	14
10	6	4	10
11	4	7	11
12	3	8	12
13	5	8	13
14	6	9	15
15	6	13	19
16	7	19	26
17	7	18	25
18	6	16	22
19	4	10	14
20	1	7	8
21	1	6	7
22	0	5	5
23	0	1	1
Σ	139	139	278
4-h-Belastung			
06-10	75	8	83
15-19	26	65	91
vormittä	ägliche Spitzenstu	ınde (06-10 Uhr)	30
nachmittä	ägliche Spitzenstu	ınde (15-19 Uhr)	26
Tag	131	133	264
Nacht	8	7	15

Verkehrserzeugungsrechnung (K1+L2 (Erkrather Str.)) - Tagesganglinie

Stunde	Quell- verkehr	Ziel- verkehr	Gesamt- verkehr	
	[Kfz/h]	[Kfz/h]	[Kfz/h]	
0	0	0	0	
1	0	0	0	
2	0	0	0	
3	0	0	0	
4	0	0	0	
5	0	1	1	
6	1	1	2	
7	11	12	23	
8	13	15	29	
9	7	6	14	
10	3	4	7	
11	13	13	26	
12	19	19	37	
13	5	3	8	
14	3	3	5	
15	4	5	9	
16	8	7	15	
17	8	8	16	
18	3	1	4	
19	1	1	3	
20	1	1	1	
21	0	0	0	
22	0	0	1	
23	0	0	0	
Σ	100	100	201	
4-h-Belastung				
06-10	32	35	67	
15-19	23	21	44	
vormittägliche Spitzenstunde (06-10 Uhr) 29				
nachmittägliche Spitzenstunde (15-19 Uhr) 16				
Tag	99	100	199	
Nacht	1	1	2	

Verkehrserzeugungsrechnung (E2 (Erkrather Str.)) - Tagesganglinie


Stunde	Quell- verkehr	Ziel- verkehr	Gesamt- verkehr	
	[Kfz/h]	[Kfz/h]	[Kfz/h]	
0	0	0	0	
1	0	0	0	
2	0	0	0	
3	0	0	0	
4	3	0	3	
5	10	0	11	
6	25	0	25	
7	50	2	52	
8	37	5	43	
9	17	6	24	
10	10	6	17	
11	7	13	20	
12	6	14	20	
13	9	14	22	
14	10	16	26	
15	11	22	33	
16	12	32	45	
17	12	32	43	
18	10	28	38	
19	8	17	25	
20	2	12	15	
21	1	11	13	
22	0	9	9	
23	0	2	2	
Σ	242	242	484	
4-h-Belastung				
06-10	130	14	144	
15-19	45	114	158	
vormittägliche Spitzenstunde (06-10 Uhr)			52	
nachmittä	45			
Tag	228	231	459	
Nacht	14	11	25	

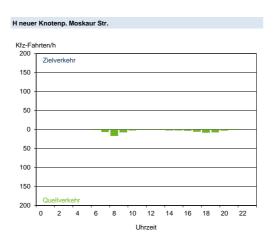
Verkehrserzeugungsrechnung (K2+L3 (Erkrather Str.)) - Tagesganglinie

Stunde	Quell- verkehr	Ziel- verkehr	Gesamt- verkehr
	[Kfz/h]	[Kfz/h]	[Kfz/h]
0	0	0	0
1	0	0	0
2	0	0	0
3	0	0	0
4	0	0	0
5	0	0	0
6	0	1	1
7	8	9	16
8	9	10	20
9	5	4	9
10	2	2	3
11	8	9	17
12	13	13	26
13	3	2	4
14	1	1	3
15	2	3	5
16	5	5	10
17	6	6	11
18	1	1	2
19	1	1	1
20	0	0	1
21	0	0	0
22	0	0	0
23	0	0	0
Σ	65	65	130
4-h-Belastung			
06-10	22	23	45
15-19	14	28	
vormitta	ägliche Spitzenstu	ınde (06-10 Uhr)	20
nachmitta	ägliche Spitzenstu	ınde (15-19 Uhr)	11
Tag	64	65	129
Nacht	1	0	1

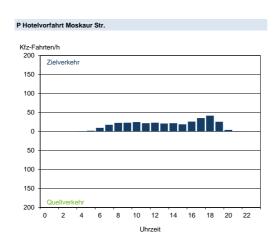
Verkehrserzeugungsrechnung (P neuer Knotenp. Moskaur Str.) - Tagesganglinie

Stunde	Quell- verkehr	Ziel- verkehr	Gesamt- verkehr
	[Kfz/h]	[Kfz/h]	[Kfz/h]
0	0	0	0
1	0	0	0
2	0	0	0
3	0	0	0
4	0	0	0
5	0	0	0
6	2	0	2
7	4	0	4
8	21	0	21
9	29	0	29
10	39	0	39
11	48	0	48
12	60	0	60
13	48	0	48
14	42	0	42
15	43	0	43
16	59	0	59
17	72	0	72
18	79	0	79
19	75	0	75
20	30	0	30
21	17	0	17
22	8	0	8
23	3	0	3
Σ	679	0	679
4-h-Belastung			
06-10	55	0	55
15-19	252	0	252
vormitta	ägliche Spitzenstu	ınde (06-10 Uhr)	29
nachmitta	ägliche Spitzenstu	ınde (15-19 Uhr)	79
Tag	667	0	667
Nacht	12	0	12

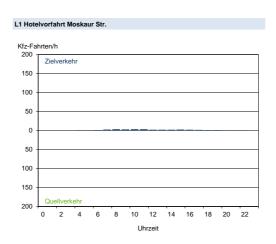
Verkehrserzeugungsrechnung (M neuer Knotenp. Moskaur Str.) - Tagesganglinie


Stunde	Quell- verkehr	Ziel- verkehr	Gesamt- verkehr
	[Kfz/h]	[Kfz/h]	[Kfz/h]
0	0	0	0
1	0	0	0
2	0	0	0
3	0	0	0
4	3	0	3
5	11	0	12
6	27	1	28
7	55	2	57
8	41	6	46
9	19	7	26
10	11	7	18
11	8	14	21
12	7	16	22
13	10	15	24
14	11	17	29
15	12	24	36
16	13	35	49
17	13	35	47
18	11	30	41
19	8	19	27
20	2	13	16
21	2	12	14
22	0	10	10
23	0	2	2
Σ	264	264	528
4-h-Belastung			
06-10	142	15	157
15-19	49	124	173
vormittä	igliche Spitzenstu	ınde (06-10 Uhr)	57
nachmittä	igliche Spitzenstu	ınde (15-19 Uhr)	49
Tag	249	252	501
Nacht	15	12	28

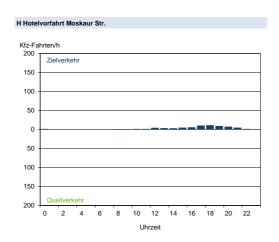
Verkehrserzeugungsrechnung (H neuer Knotenp. Moskaur Str.) - Tagesganglinie


Stunde	Quell- verkehr	Ziel- verkehr	Gesamt- verkehr
	[Kfz/h]	[Kfz/h]	[Kfz/h]
0	0	0	0
1	0	0	0
2	0	0	0
3	0	0	0
4	0	0	0
5	0	0	0
6	1	0	1
7	7	0	7
8	17	0	17
9	8	0	8
10	2	0	2
11	1	0	1
12	2	0	2
13	2	0	2
14	3	0	3
15	2	0	2
16	4	0	4
17	6	0	6
18	9	0	9
19	8	0	8
20	3	0	3
21	2	0	2
22	0	0	0
23	0	0	0
Σ	76	0	76
4-h-Belastung			
06-10	33	0	33
15-19	21	21	
vormitta	ägliche Spitzenstu	ınde (06-10 Uhr)	17
nachmittä	ägliche Spitzenstu	ınde (15-19 Uhr)	9
Tag	75	0	75
Nacht	0	0	0

Verkehrserzeugungsrechnung (P Hotelvorfahrt Moskaur Str.) - Tagesganglinie

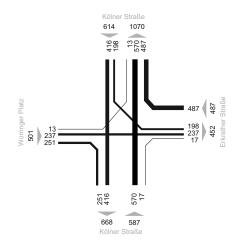

Stunde	Quell- verkehr	Ziel- verkehr	Gesamt- verkehr
	[Kfz/h]	[Kfz/h]	[Kfz/h]
0	0	0	0
1	0	0	0
2	0	0	0
3	0	0	0
4	0	0	0
5	0	2	2
6	0	9	9
7	0	17	17
8	0	22	22
9	0	23	23
10	0	25	25
11	0	22	22
12	0	23	23
13	0	21	21
14	0	22	22
15	0	19	19
16	0	26	26
17	0	35	35
18	0	42	42
19	0	26	26
20	0	4	4
21	0	1	1
22	0	0	0
23	0	0	0
Σ	0	339	339
4-h-Belastung			
06-10	0	72	72
15-19	0	122	122
vormittä	ägliche Spitzenstu	ınde (06-10 Uhr)	23
	ägliche Spitzenstu	ınde (15-19 Uhr)	42
Tag	0	336	336
Nacht	0	3	3

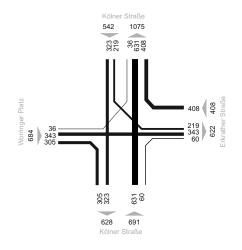
Verkehrserzeugungsrechnung (L1 Hotelvorfahrt Moskaur Str.) - Tagesganglinie

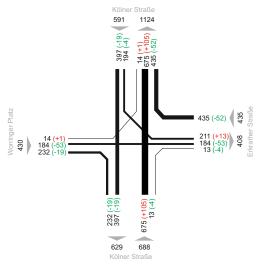

Stunde	Quell- verkehr	Ziel- verkehr	Gesamt- verkehr
	[Kfz/h]	[Kfz/h]	[Kfz/h]
0	0	0	0
1	0	0	0
2	0	0	0
3	0	0	0
4	0	0	0
5	0	0	0
6	0	1	1
7	0	2	2
8	0	3	3
9	0	3	3
10	0	3	3
11	0	3	3
12	0	2	2
13	0	2	2
14	0	2	2
15	0	2	2
16	0	2	2
17	0	2	2
18	0	1	1
19	0	1	1
20	0	0	0
21	0	0	0
22	0	0	0
23	0	0	0
Σ	0	31	31
4-h-Belastung			
06-10	0	9	9
15-19	0	7	7
vormitta	ägliche Spitzenstu	ınde (06-10 Uhr)	3
	ägliche Spitzenstu	ınde (15-19 Uhr)	2
Tag	0	31	31
Nacht	0	1	1

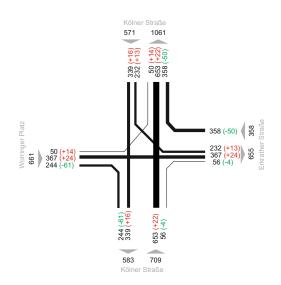
Verkehrserzeugungsrechnung (H Hotelvorfahrt Moskaur Str.) - Tagesganglinie

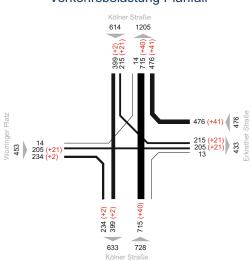
Stunde	Quell- verkehr	Ziel- verkehr	Gesamt- verkehr
	[Kfz/h]	[Kfz/h]	[Kfz/h]
0	0	2	2
1	0	0	0
2	0	0	0
3	0	0	0
4	0	0	0
5	0	0	0
6	0	0	0
7	0	0	0
8	0	1	1
9	0	1	1
10	0	2	2
11	0	2	2
12	0	4	4
13	0	4	4
14	0	3	3
15	0	5	5
16	0	6	6
17	0	10	10
18	0	11	11
19	0	9	9
20	0	8	8
21	0	5	5
22	0	2	2
23	0	1	1
Σ	0	76	76
4-h-Belastung			
06-10	0	2	2
15-19	0	32	32
vormitta	ägliche Spitzenstu	ınde (06-10 Uhr)	1
	ägliche Spitzenstu	ınde (15-19 Uhr)	11
Tag	0	71	71
Nacht	0	5	5

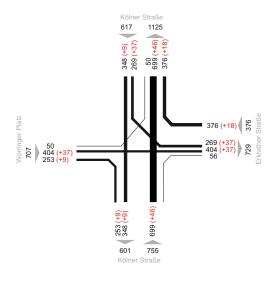

Anlage 3: Knotenstrompläne



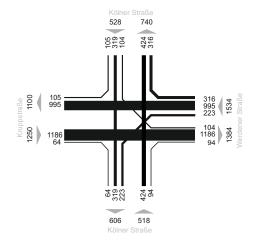

Nachmittägliche Spitzenstunde [Kfz/h]

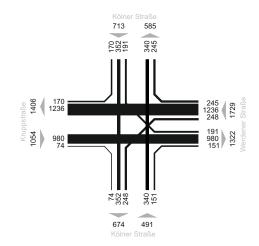

Derzeitige Verkehrsbelastung

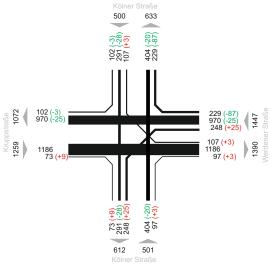



Verkehrsbelastung Nullfall

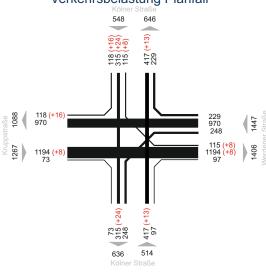
Verkehrsbelastung Planfall

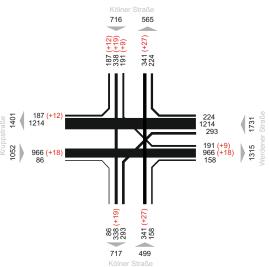



(+x,-x: Veränderung ggü. derzeitiger Verkehrsbelastung)

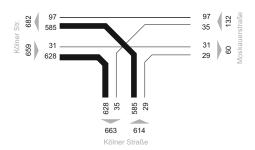

Nachmittägliche Spitzenstunde [Kfz/h]

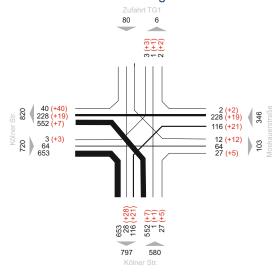

Derzeitige Verkehrsbelastung

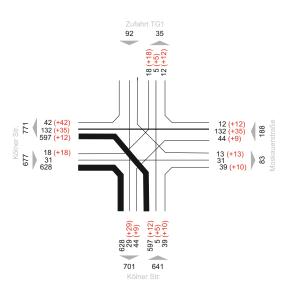



Verkehrsbelastung Nullfall

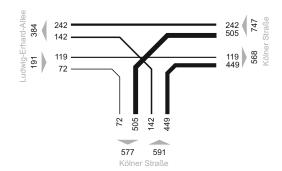
Verkehrsbelastung Planfall

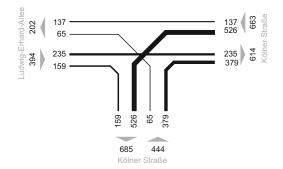

(+x,-x : Veränderung ggü. derzeitiger Verkehrsbelastung)

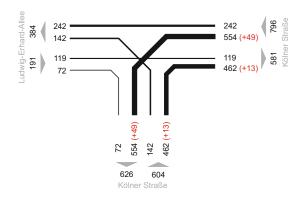

Nachmittägliche Spitzenstunde [Kfz/h]

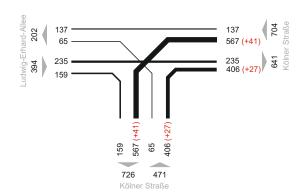

Verkehrsbelastung Nullfall

Verkehrsbelastung Planfall

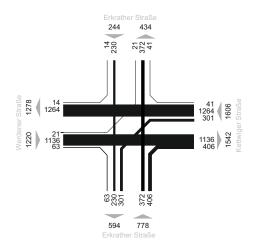


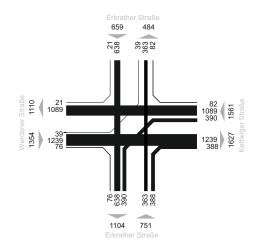

(+x,-x : Veränderung ggü. Nullfall)

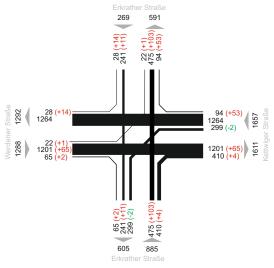

Nachmittägliche Spitzenstunde [Kfz/h]

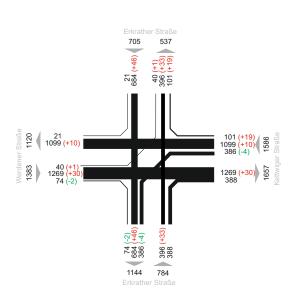

Verkehrsbelastung Nullfall

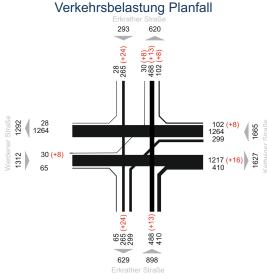
Verkehrsbelastung Planfall

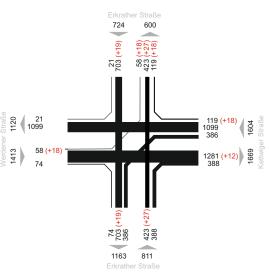



(+x,-x : Veränderung ggü. Nullfall)

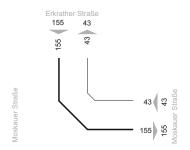

Nachmittägliche Spitzenstunde [Kfz/h]

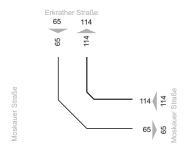

Derzeitige Verkehrsbelastung

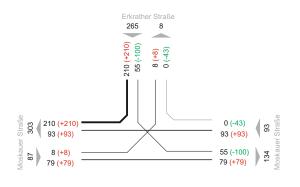


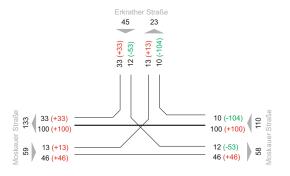


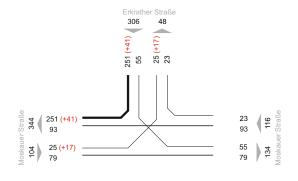
Verkehrsbelastung Nullfall

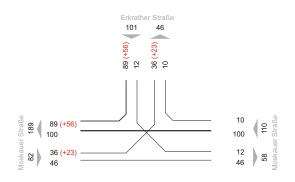



(+x,-x: Veränderung ggü. derzeitiger Verkehrsbelastung)

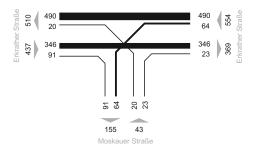

Nachmittägliche Spitzenstunde [Kfz/h]

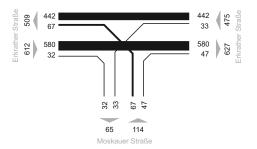

Derzeitige Verkehrsbelastung

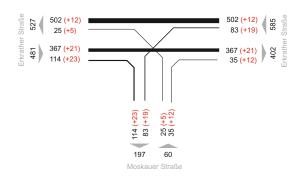


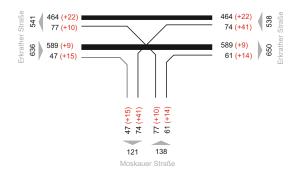

Verkehrsbelastung Nullfall

Verkehrsbelastung Planfall






Nachmittägliche Spitzenstunde [Kfz/h]


Verkehrsbelastung Nullfall

Verkehrsbelastung Planfall

(+x,-x : Veränderung ggü. Nullfall)

Anlage 4: Leistungsfähigkeitsnachweise

									Knoten	punkt mit	Lichtsig	nalanlage)						
F0	ormblatt 3						а) Nachwe	eis der Ve	rkehrsqu	alität im	Kraftfahra	zeugverke	ehr					
	Projekt:	Verkeh	nrsuntersu	chung	Grand Ce	ntral													
		Düssel																	
	Knotenpunkt:	14-91 I	Kölner Str	aße / W	/orringer	Platz / Erk	rather Str	aße											
	Zeitabschnitt:	Morgei	nspitze / B	Bestand	(Basis)														
	Bearbeiter:	ННа																	
	t _U =	70																	
Nr.	Bez.	t_{F}	1 10 0 1 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0																
		[s]	[-]	[s]	[Fz/h]	[Fz]	[Fz/h]	[s/Fz]	[Fz]	[Fz/h]	[-]	[Fz]	[Fz]	[%]	[%]	[Fz]	[m]	[s]	[-]
1	A g1	32	0,4571	38	208	4,0	1971	1,83	17,5	901	0,2308	0,00	2,5	60,7	90	4,3	30	11,5	Α
2	A g2	32	0,4571	38	208	4,0	1971	1,83	17,5	901	0,2308	0,00	2,5	60,7	90	4,3	30	11,5	Α
3	A I (Durchs.)				198	3,9	1975	1,82							90				
4	B g1	21	0,3000	49	190	3,7	1972	1,83	11,5	592	0,3211	0,00	2,9	77,5	90	4,9	30	19,0	Α
5	B g2	21	0,3000	49	190	3,7	1972	1,83	11,5	592	0,3211	0,00	2,9	77,5	90	4,9	30	19,0	Α
6	B g3	21	0,3000	49	190	3,7	1972	1,83	11,5	592	0,3211	0,00	2,9	77,5	90	4,9	30	19,0	Α
7	C I (Durchs.)				13	0,3	1580	2,28							90				
8	Cg	27	0,3857	43	237	4,6	1969	1,83	14,8	760	0,3120	0,00	3,2	69,8	90	5,2	35	15,0	Α
9	Cr	27	0,3857	43	251	4,9	1973	1,83	14,8	761	0,3299	0,00	3,4	70,4	90	5,4	35	15,1	Α
10	DR 1	8	0,1143	62	244	4,7	1967	1,83	4,4	225	1,0832	13,49	4,7	100,0	90	13,0	80	247,4	F
11	DR 2	8	0,1143	62	244	4,7	1967	1,83	4,4	225	1,0832	13,49	4,7	100,0	90	13,0	80	247,4	F
12																			
13																			
14																			
15																			
16																			
17 18	QSV Durchs												i						
19	A I	B											+					+	
20	CI																		
	nsummen:	$q_{K} = 2172 [Fz/h]$ $C_{K} = 5547 [Fz/h]$																	
	chtete Mittelwe	rto.			q =	0,4435		w =	66,1		QSV =	D							
GEWIC	THE WILLEIME	ii lo.			y -	0,4433	[-]	vv —	00, 1	ા	Q0 v -	U							

E	ormblatt 3									punkt mit									
г	orinbiati 3						a) Nachwe	eis der Ve	rkehrsqu	alität im l	Kraftfahrz	zeugverke	ehr					
	Projekt:	Verkeh	nrsuntersu	chung	Grand Ce	ntral													
		Düssel																	
	Knotenpunkt:	14-91 I	Kölner Str	aße / W	/orringer	Platz / Erk	rather Stra	aße											
	Zeitabschnitt:		nspitze / E	3estand	(geände	tes Signa	lprogramn	n)											
	Bearbeiter:	ННа																	
	t _U =	70																	
Nr.	Bez.	t_{F}	t_F/t_U	ts	q	m	q_S	t_B	n_{C}	С	g	N_{GE}	n_{H}	Н	S	N_{RE}	I_{Stau}	W	QSV
		[s]	[-]	[s]	[Fz/h]	[Fz]	[Fz/h]	[s/Fz]	[Fz]	[Fz/h]	[-]	[Fz]	[Fz]	[%]	[%]	[Fz]	[m]	[s]	[-]
1	A g1	30	0,4286	40	208	4,0	1971	1,83	16,4	845	0,2462	0,00	2,6	63,9		4,5	30	12,8	Α
2	A g2	30	0,4286	40	208	4,0	1971	1,83	16,4	845	0,2462	0,00	2,6	63,9	90	4,5	30	12,8	Α
3	A I (Durchs.)				198	3,9	1975	1,82							90				
4	B g1	19		51	190	3,7	1972	1,83	10,4	535	0,3549	0,00	3,0	80,6	90	5,0	35	20,6	В
5	B g2	19		51	190	3,7	1972	1,83	10,4	535	0,3549	0,00	3,0	80,6	90	5,0	35	20,6	В
6	B g3	19	0,2714	51	190	3,7	1972	1,83	10,4	535	0,3549	0,00	3,0	80,6	90	5,0	35	20,6	В
7	C I (Durchs.)				13	0,3	1580	2,28							90				
8	Cg	27	0,3857	43	237	4,6	1969	1,83	14,8	760	0,3120	0,00	3,2	69,8	90	5,2	35	15,0	Α
9	Cr	27	0,3857	43	251	4,9	1973	1,83	14,8	761	0,3299	0,00	3,4	70,4	90	5,4	35	15,1	Α
10	DR 1	10	0,1429	60	244	4,7	1967	1,83		281	0,8666	2,97	4,7	100,0	90	10,8	70	67,4	D
11	DR 2	10	0,1429	60	244	4,7	1967	1,83	5,5	281	0,8666	2,97	4,7	100,0	90	10,8	70	67,4	D
12																			
13																			
14																			
15																			
16																			
17	00// Domilion									-			-						
18	QSV Durchs	_																	
19	A I	B A																	
	nsummen:	А			g., =	2172	[Ez/b]	C _K =	5270	[Fz/h]			<u> </u>					<u> </u>	
		wto.			q _K =		<u> </u>				00// =								
Gewic	htete Mittelwe	епе:			g =	0,4068	[-]	w =	26,3	[S]	QSV =	В							

	www.blatt 2								Knoten	punkt mit	Lichtsig	nalanlage)						
F	ormblatt 3						а) Nachwe		rkehrsqu				ehr					
	Projekt:	Verkeh	ırsuntersu	chung (Grand Ce	ntral													
		Düssel																	
	Knotenpunkt:	14-91 k	Kölner Str	aße / W	orringer	Platz / Erk	rather Stra	aße											
	Zeitabschnitt:		ittagsspitz	ze / Bes	stand														
	Bearbeiter:	ННа																	
	t _U =	70																	
Nr.	Bez.	t _F	t _F /t∪	t _S	q	m	q_{S}	t_B	n_{C}	С	g	N_{GE}	n _H	Н	S	N_{RE}	I _{Stau}	W	QSV
		[s]	[-]	[s]	[Fz/h]	[Fz]	[Fz/h]	[s/Fz]	[Fz]	[Fz/h]	[-]	[Fz]	[Fz]	[%]	[%]	[Fz]	[m]	[s]	[-]
1	A g1	27	0,3857	43	162	3,1	2000	1,80	15,0	771	0,2094	0,00	2,1	66,8	90	3,9	25	14,4	A
2	A g2	27	0,3857	43	162	3,1	2000	1,80	15,0	771	0,2094	0,00	2,1	66,8	90	3,9	25	14,4	Α
3	A I (Durchs.)				219	4,3	2000	1,80							90				
4	B g1	18	0,2571	52	210	4,1	2000	1,80	10,0	514	0,4090	0,00	3,4	83,0	90	5,5	35	21,6	В
5	B g2	18	0,2571	52	210	4,1	2000	1,80	10,0	514	0,4090	0,00	3,4	83,0	90	5,5	35	21,6	В
6	B g3	18	0,2571	52	210	4,1	2000	1,80	10,0	514	0,4090	0,00	3,4	83,0	90	5,5	35	21,6	В
7	C I (Durchs.)				36	0,7	2000	1,80							90				
8	C g	30	0,4286	40	343	6,7	2000	1,80	16,7	857	0,4002	0,00	4,6	69,0	90	6,6	40	13,8	Α
9	Cr	30	0,4286	40	305	5,9	1971	1,83	16,4	845	0,3610	0,00	4,0	67,6	90	6,0	40	13,5	Α
10	DR 1	11	0,1571	59	204	4,0	2000	1,80	6,1	314	0,6491	0,00	3,7	93,9	90	5,9	40	27,7	В
11	DR 2	11	0,1571	59	204	4,0	2000	1,80	6,1	314	0,6491	0,00	3,7	93,9	90	5,9	40	27,7	В
12																			
13																			
14																			
15																			
16																			
17	00// Duration		-									-				-		-	
18	QSV Durchs			-															
19 20	A I																		
		А	A																
	nsummen:				q _K =	2265		C _K =		[Fz/h]	0.017								
Gewic	htete Mittelwe	erte:			g =	0,3699	[-]	w =	17,0	[s]	QSV =	Α							

	www.blatt 2								Knoten	punkt mit	Lichtsig	nalanlage							
FC	ormblatt 3						а) Nachwe		rkehrsqu				ehr					
	Projekt:	Verkeh	ırsuntersu	chung (Grand Ce	ntral													
		Düssel																	
	Knotenpunkt:	14-91 l	Kölner Str	aße / W	orringer	Platz / Erk	rather Stra	aße											
	Zeitabschnitt:		nspitze / N	Iullfall -	Basis														
	Bearbeiter:	ННа																	
	t _U =	70	1.1																
Nr.	Bez.	t _F	t_F/t_U	t_S	q	m	q_{S}	t_B	n_{C}	С	g	N_{GE}	n_H	Н	S	N_{RE}	I _{Stau}	W	QSV
		[s]	[-]	[s]	[Fz/h]	[Fz]	[Fz/h]	[s/Fz]	[Fz]	[Fz/h]	[-]	[Fz]	[Fz]	[%]	[%]	[Fz]	[m]	[s]	[-]
1	A g1	32	0,4571	38	199	3,9	1972	1,83	17,5	901	0,2202	0,00	2,3	60,4	90	4,1	30	11,5	Α
2	A g2	32	0,4571	38	199	3,9	1972	1,83	17,5	901	0,2202	0,00	2,3	60,4	90	4,1	30	11,5	Α
3	A I (Durchs.)				194	3,8	1974	1,82							90				
4	B g1	21	0,3000	49	225	4,4	1972	1,83	11,5	592	0,3804	0,00	3,5	79,0	90	5,5	35	19,4	Α
5	B g2	21	0,3000	49	225	4,4	1972	1,83	11,5	592	0,3804	0,00	3,5	79,0	90	5,5	35	19,4	Α
6	B g3	21	0,3000	49	225	4,4	1972	1,83	11,5	592	0,3804	0,00	3,5	79,0	90	5,5	35	19,4	Α
7	C I (Durchs.)				14	0,3	1667	2,16							90				
8	C g	27	0,3857	43	184	3,6	1971	1,83	14,8	760	0,2421	0,00	2,4	67,8	90	4,3	30	14,6	Α
9	Cr	27	0,3857	43	232	4,5	1971	1,83	14,8	760	0,3051	0,00	3,1	69,6	90	5,1	35	15,0	Α
10	DR 1	8	0,1143	62	218	4,2	1967	1,83	4,4	225	0,9673	5,67	4,2	100,0	90	13,0	80	121,6	F
11	DR 2	8	0,1143	62	218	4,2	1967	1,83	4,4	225	0,9673	5,67	4,2	100,0	90	13,0	80	121,6	F
12																			
13																			
14																			
15																			
16																			
17	00)/5																		
18	QSV Durchs																		
19			B																
20	CI	A DOMESTIC OF THE PROPERTY OF																	
	nsummen:				q _K =	2131		C _K =		[Fz/h]									
Gewic	htete Mittelwe	erte:			g =	0,4131	[-]	w =	36,0	[s]	QSV =	С							

	ormblatt 3								Knoten	punkt mit	Lichtsig	nalanlage)						
FC	ormbiatt 3						a) Nachwe	eis der Ve	rkehrsqu	alität im	Kraftfahrz	zeugverke	ehr					
	Projekt:	Verkeh	rsuntersu	chung	Grand Ce	ntral													
		Düssel																	
	Knotenpunkt:	14-91 H	Kölner Str	aße / W	/orringer	Platz / Erk	rather Stra	aße											
	Zeitabschnitt:		nspitze / N	lullfall -	geändert	es Signalp	orogramm												
	Bearbeiter:	ННа																	
	t _U =	70																	
Nr.	Bez.	t _F																	
		[s]	[-]	[s]	[Fz/h]	[Fz]	[Fz/h]	[s/Fz]	[Fz]	[Fz/h]	[-]	[Fz]	[Fz]	[%]	[%]	[Fz]	[m]	[s]	[-]
1	A g1	30	0,4286	40	199	3,9	1972	1,83	16,4	845	0,2349	0,00	2,5	63,5	90	4,3	30	12,7	A
2	A g2	30	0,4286	40	199	3,9	1972	1,83	16,4	845	0,2349	0,00	2,5	63,5	90	4,3	30	12,7	Α
3	A I (Durchs.)				194	3,8	1974	1,82							90				
4	B g1	19	0,2714	51	225	4,4	1972	1,83	10,4	535	0,4204	0,00	3,6	82,2	90	5,7	35	21,0	В
5	B g2	19	0,2714	51	225	4,4	1972	1,83	10,4	535	0,4204	0,00	3,6	82,2	90	5,7	35	21,0	В
6	B g3	19	0,2714	51	225	4,4	1972	1,83	10,4	535	0,4204	0,00	3,6	82,2	90	5,7	35	21,0	В
7	C I (Durchs.)				14	0,3	1667	2,16							90				
8	Сg	27	0,3857	43	184	3,6	1971	1,83	14,8	760	0,2421	0,00	2,4	67,8	90	4,3	30	14,6	Α
9	Cr	27	0,3857	43	232	4,5	1971	1,83		760	0,3051	0,00	3,1	69,6	90	5,1	35	15,0	Α
10	DR 1	10	0,1429	60	218	4,2	1967	1,83	5,5	281	0,7739	1,72	4,2	100,0	90	8,6	55	50,9	D
11	DR 2	10	0,1429	60	218	4,2	1967	1,83	5,5	281	0,7739	1,72	4,2	100,0	90	8,6	55	50,9	D
12																			
13																			
14																			
15																			
16																			
17																			
18	QSV Durchs																		
19	AI	В																	
20	CI	A COLUMN																	
	nsummen:				q _K =	2131		C _K =	5378										
Gewic	htete Mittelwe	erte:			g =	0,3890	[-]	w =	22,3	[s]	QSV =	В							

	www.blatt 2								Knoten	punkt mit	Lichtsig	nalanlage							
F	ormblatt 3						а) Nachwe		rkehrsqu				ehr					
	Projekt:	Verkeh	ırsuntersu	chung (Grand Ce	ntral													
		Düssel																	
	Knotenpunkt:	14-91 k	Kölner Str	aße / W	orringer	Platz / Erk	rather Stra	aße											
	Zeitabschnitt:		ittagsspitz	ze / Nul	lfall														
	Bearbeiter:	ННа																	
	t _U =	70	[s]	T =	60	[min]													
Nr.	Bez.	t _F	t _F /t∪	t _S	q	m	q_{S}	t_B	n_{C}	С	g	N_{GE}	n_H	Н	S	N_{RE}	I _{Stau}	W	QSV
		[s]	[-]	[s]	[Fz/h]	[Fz]	[Fz/h]	[s/Fz]	[Fz]	[Fz/h]	[-]	[Fz]	[Fz]	[%]	[%]	[Fz]	[m]	[s]	[-]
1	A g1	27	0,3857	43	170	3,3	2000	1,80	15,0	771	0,2197	0,00	2,2	67,1	90	4,0	25	14,4	A
2	A g2																Α		
3	A I (Durchs.)	chs.) 232 4,5 2000 1,80 90 90 180 90 180 90 180 90 180 90 90 90 90 90 90 90 90 90 90 90 90 90																	
4	B g1) 232 4,5 2000 1,80 90															В		
5	B g2	18 0,2571 52 218 4,2 2000 1,80 10,0 514 0,4232 0,00 3,5 83,4 90 5,6 35 21,7 B 18 0,2571 52 218 4,2 2000 1,80 10,0 514 0,4232 0,00 3,5 83,4 90 5,6 35 21,7 B															В		
6	B g3	18	0,2571	52	218	4,2	2000	1,80	10,0	514	0,4232	0,00	3,5	83,4	90	5,6	35	21,7	В
7	C I (Durchs.)				50	1,0	2000	1,80							90				
8	C g	30	0,4286	40	367	7,1	2000	1,80	16,7	857	0,4282	0,00	5,0	70,0	90	6,9	45	14,0	Α
9	Cr	30	0,4286	40	244	4,7	1972	1,83	16,4	845	0,2887	0,00	3,1	65,2	90	5,0	35	13,0	Α
10	DR 1	11	0,1571	59	179	3,5	2000	1,80	6,1	314	0,5695	0,00	3,2	92,6	90	5,4	35	27,3	В
11	DR 2	11	0,1571	59	179	3,5	2000	1,80	6,1	314	0,5695	0,00	3,2	92,6	90	5,4	35	27,3	В
12																			
13																			
14																			
15																			
16				-															
17	00// Duration																		
18	QSV Durchs	D		-															
19 20	A I	А		-															
		А			~ -	00.40	FE- //- 1			FF-/-1									
	nsummen:				q _K =	2243		C _K =		[Fz/h]	0.017								
Gewic	htete Mittelwe	erte:			g =	0,3488	[-]	w =	16,6	[s]	QSV =	Α							

	www.blatt 2								Knoten	punkt mit	Lichtsig	nalanlage							
FC	ormblatt 3						а) Nachwe	eis der Ve	rkehrsqu	alität im	Kraftfahrz	zeugverke	ehr					
	Projekt:	Verkeh	ırsuntersu	chung (Grand Ce	ntral													
		Düssel																	
	Knotenpunkt:	14-91 l	Kölner Str	aße / W	orringer	Platz / Erk	rather Stra	aße											
	Zeitabschnitt:		nspitze / P	lanfall ((Basis)														
	Bearbeiter:	ННа																	
	t _U =	70	[s]	T =	60	[min]													
Nr.	Bez.	t _F	t _F /t∪	t _S	q	m	q_{S}	t _B	n_{C}	С	g	N_{GE}	n _H	Н	S	N_{RE}	I _{Stau}	W	QSV
		[s]	[-]	[s]	[Fz/h]	[Fz]	[Fz/h]	[s/Fz]	[Fz]	[Fz/h]	[-]	[Fz]	[Fz]	[%]	[%]	[Fz]	[m]	[s]	[-]
1	A g1	32	0,4571	38	200	3,9	1972	1,83	17,5	901	0,2213	0,00	2,3	60,4	90	4,2	30	11,5	Α
2	A g2	32 0,4571 38 200 3,9 1972 1,83 17,5 901 0,2213 0,00 2,3 60,4 90 4,2 30 11,5 A (hs.) 215 4,2 1973 1,82 91 0,2213 0,00 2,3 60,4 90 4,2 30 11,5 A																	
3	A I (Durchs.)	hs.) 215 4,2 1973 1,82 90 90 90 90 90 90 90 90 90 90 90 90 90																	
4	B g1	.) 215 4,2 1973 1,82 90															Α		
5	B g2	21 0,3000 49 238 4,6 1973 1,82 11,5 592 0,4027 0,00 3,7 79,6 90 5,8 40 19,5 A 21 0,3000 49 238 4,6 1973 1,82 11,5 592 0,4027 0,00 3,7 79,6 90 5,8 40 19,5 A															Α		
6	B g3	21 0,3000 49 238 4,6 1973 1,82 11,5 592 0,4027 0,00 3,7 79,6 90 5,8 40 19,5 A 21 0,3000 49 238 4,6 1973 1,82 11,5 592 0,4027 0,00 3,7 79,6 90 5,8 40 19,5 A 21 0,3000 49 238 4,6 1973 1,82 11,5 592 0,4027 0,00 3,7 79,6 90 5,8 40 19,5 A 21 0,3000 49 238 4,6 1973 1,82 11,5 592 0,4027 0,00 3,7 79,6 90 5,8 40 19,5 A															Α		
7	C I (Durchs.)				14	0,3	1667	2,16							90				
8	C g	27	0,3857	43	205	4,0	1969	1,83	14,8	760	0,2699	0,00	2,7	68,6	90	4,7	30	14,7	Α
9	Cr	27	0,3857	43	234	4,6	1972	1,83	14,8	760	0,3077	0,00	3,2	69,7	90	5,2	35	15,0	Α
10	DR 1	8	0,1143	62	238	4,6	1968	1,83	4,4	225	1,0583	11,47	4,6	100,0	90	13,0	80	214,9	F
11	DR 2	8	0,1143	62	238	4,6	1968	1,83	4,4	225	1,0583	11,47	4,6	100,0	90	13,0	80	214,9	F
12																			
13																			
14																			
15																			
16																			
17	00)/5																		
18	QSV Durchs																		
19		В																	
20	CI	Α																	
	nsummen:				q _K =	2258		C _K =		[Fz/h]									
Gewic	htete Mittelwe	erte:			g =	0,4461	[-]	w =	56,4	[s]	QSV =	D							

	ormblatt 3								Knoten	punkt mit	Lichtsig	nalanlage							
FC	rmbiatt 3						а) Nachwe	eis der Ve	rkehrsqu	alität im	Kraftfahrz	zeugverke	ehr					
	Projekt:	Verkeh	rsuntersu	chung	Grand Ce	ntral													
		Düssel																	
	Knotenpunkt:	14-91 H	Kölner Str	aße / W	Vorringer	Platz / Erk	rather Str	aße											
	Zeitabschnitt:		nspitze / P	Planfall	(geändert	es Signal	orogramm)											
	Bearbeiter:																		
	t _U =	70	[s]	T =	60	[min]													
Nr.	Bez.	t _F	t_F/t_U	ts	q	m	q_{S}	t_B	n_{C}	С	g	N_GE	n_H	Н	S	N_{RE}	I_{Stau}	W	QSV
		[s]	[-]	[s]	[Fz/h]	[Fz]	[Fz/h]	[s/Fz]	[Fz]	[Fz/h]	[-]	[Fz]	[Fz]	[%]	[%]	[Fz]	[m]	[s]	[-]
1	A g1	30	0,4286	40	200	3,9	1972	1,83	16,4	845	0,2361	0,00	2,5	63,6	90	4,3	30	12,7	Α
2	A g2	30 0,4286 40 200 3,9 1972 1,83 16,4 845 0,2361 0,00 2,5 63,6 90 4,3 30 12,7 A s.) 215 4,2 1973 1,82 90 90															Α		
3	A I (Durchs.)) 215 4,2 1973 1,82 90 90 19 0,2714 51 238 4,6 1973 1,82 10,4 535 0,4451 0,00 3,8 82,9 90 6,0 40 21,1 B																	
4	B g1	215 4,2 1973 1,82 90 90 90 90 90 90 90 90 90 90 90 90 90															В		
5	B g2	19 0,2714 51 238 4,6 1973 1,82 10,4 535 0,4451 0,00 3,8 82,9 90 6,0 40 21,1 B 19 0,2714 51 238 4,6 1973 1,82 10,4 535 0,4451 0,00 3,8 82,9 90 6,0 40 21,1 B															В		
6	B g3	19	19 0,2714 51 238 4,6 1973 1,82 10,4 535 0,4451 0,00 3,8 82,9 90 6,0 40 21,1 B 19 0,2714 51 238 4,6 1973 1,82 10,4 535 0,4451 0,00 3,8 82,9 90 6,0 40 21,1 B 19 0,2714 51 238 4,6 1973 1,82 10,4 535 0,4451 0,00 3,8 82,9 90 6,0 40 21,1 B															В	
7	C I (Durchs.)				14	0,3	1667	2,16							90				
8	C g	27	0,3857	43	205	4,0	1969	1,83		760	0,2699	0,00	2,7	68,6	90	4,7	30	14,7	Α
9	Cr	27	0,3857	43	234	4,6	1972	1,83		760	0,3077	0,00	3,2	69,7	90	5,2	35	15,0	Α
10	DR 1	10	0,1429	60	238	4,6	1968	1,83		281	0,8466	2,70	4,6	100,0	90	10,3	65	63,9	D
11	DR 2	10	0,1429	60	238	4,6	1968	1,83	5,5	281	0,8466	2,70	4,6	100,0	90	10,3	65	63,9	D
12																			
13																			
14																			
15																			
16																-		-	
17	OCV/ Duraha																		
18 19	QSV Durchs A I	В																	
20	CI	А																	
-		А			~ -	2052	[F_/k]	C -	F070	[F=/k-1									
	nsummen:				q _K =	2258		C _K =		[Fz/h]	0.017								
Gewic	htete Mittelwe	erte:			g =	0,4175	[-]	w =	25,3	[8]	QSV =	В							

	ormblatt 3								Knoten	punkt mit	Lichtsig	nalanlage							
FC	ormbiatt 3						a) Nachwe	eis der Ve	rkehrsqu	alität im l	Kraftfahrz	zeugverke	ehr					
	Projekt:	Verkeh	rsuntersu	chung (Grand Ce	ntral													
		Düssel																	
	Knotenpunkt:	14-91 l	Kölner Str	aße / W	orringer	Platz / Erk	rather Str	aße											
	Zeitabschnitt:		ittagsspitz	ze / Pla	nfall (Bas	is)													
	Bearbeiter:																		
	t _U =	70	[s]	T =	60	[min]													
Nr.	Bez.	t _F	t_F/t_U	t _S	q	m	q_{S}	t_B	n_{C}	С	g	N_{GE}	n_H	Н	S	N_{RE}	I_{Stau}	W	QSV
		[s]	[-]	[s]	[Fz/h]	[Fz]	[Fz/h]	[s/Fz]	[Fz]	[Fz/h]	[-]	[Fz]	[Fz]	[%]	[%]	[Fz]	[m]	[s]	[-]
1	A g1	27	0,3857	43	174	3,4	2000	1,80	15,0	771	0,2256	0,00	2,3	67,3	90	4,1	30	14,5	Α
2	A g2																		
3	A I (Durchs.)	urchs.) 269 5,2 2000 1,80 90																	
4	B g1	3.) 269 5,2 2000 1,80 90 90 90 90 90 90 90 90 90 90 90 90 90																	
5	B g2	18 0,2571 52 233 4,5 2000 1,80 10,0 514 0,4531 0,00 3,8 84,1 90 6,0 40 21,9 B 18 0,2571 52 233 4,5 2000 1,80 10,0 514 0,4531 0,00 3,8 84,1 90 6,0 40 21,9 B																	
6	B g3	18 0,2571 52 233 4,5 2000 1,80 10,0 514 0,4531 0,00 3,8 84,1 90 6,0 40 21,9 B 18 0,2571 52 233 4,5 2000 1,80 10,0 514 0,4531 0,00 3,8 84,1 90 6,0 40 21,9 B 18 0,2571 52 233 4,5 2000 1,80 10,0 514 0,4531 0,00 3,8 84,1 90 6,0 40 21,9 B 18 0,2571 52 233 4,5 2000 1,80 10,0 514 0,4531 0,00 3,8 84,1 90 6,0 40 21,9 B															В		
7	C I (Durchs.)				50	1,0	2000	1,80							90				
8	C g	30	0,4286	40	404	7,9	2000	1,80	16,7	857	0,4713	0,00	5,6	71,6	90	7,5	50	14,3	Α
9	Cr	30	0,4286	40	253	4,9	1973	1,82	16,4	845	0,2993	0,00	3,2	65,5	90	5,2	35	13,1	Α
10	DR 1	11	0,1571	59	188	3,7	2000	1,80	6,1	314	0,5982	0,00	3,4	93,0	90	5,6	35	27,4	В
11	DR 2	11	0,1571	59	188	3,7	2000	1,80	6,1	314	0,5982	0,00	3,4	93,0	90	5,6	35	27,4	В
12																			
13																			
14																			
15													-						
16 17																			
18	QSV Durchs			-														-	
19	A I	IF										-	+						
20	CI	А																	
		Α			a -	2200	[E=/b]	C _K =	5/17	[E-z/b]									
	nsummen:			-	q _K =	2399	<u> </u>			[Fz/h]	001/	Α							
Gewic	htete Mittelwe	erτe:			g =	0,3694	[-]	w =	16,6	[S]	QSV =	Α							

E	ormblatt 3								Knoten	punkt mit	Lichtsig	nalanlage)						
г	ombiatt 3						а) Nachwe	eis der Ve	erkehrsqu	alität im	Kraftfahr	zeugverk	ehr					
			nrsuntersu	chung	Grand Ce	ntral													
		Düssel																	
	Knotenpunkt:																		
	Zeitabschnitt:		nittagsspitz	ze / Pla	nfall (geä	ndertes Si	ignalprogr	amm)											
	Bearbeiter:																		
	t _U =	70	[s]	T =	60	[min]													
Nr.	Bez.	t _F	t_F/t_U	ts	q	m	q_{S}	t_B	n_{C}	С	g	N_{GE}	n_H	Н	S	N_{RE}	I _{Stau}	W	QSV
		[s]	[-]	[s]	[Fz/h]	[Fz]	[Fz/h]	[s/Fz]	[Fz]	[Fz/h]	[-]	[Fz]	[Fz]	[%]	[%]	[Fz]	[m]	[s]	[-]
1	A g1	27	0,3857	43	174	3,4	2000	1,80	15,0	771	0,2256	0,00	2,3	67,3	90	4,1	30	14,5	Α
2	A g2	27	27 0,3857 43 174 3,4 2000 1,80 15,0 771 0,2256 0,00 2,3 67,3 90 4,1 30 14,5 A 269 5,2 2000 1,80 771 0,2256 0,00 2,3 67,3 90 4,1 30 14,5 A															Α	
3	A I (Durchs.)		16 0,2286 54 233 4,5 2000 1,80 8,9 457 0,5097 0,00 4,0 87,3 90 6,1 40 23,6 B																
4	B g1		16 0,2286 54 233 4,5 2000 1,80 8,9 457 0,5097 0,00 4,0 87,3 90 6,1 40 23,6 B																
5	B g2		16 0,2286 54 233 4,5 2000 1,80 8,9 457 0,5097 0,00 4,0 87,3 90 6,1 40 23,6 B 16 0,2286 54 233 4,5 2000 1,80 8,9 457 0,5097 0,00 4,0 87,3 90 6,1 40 23,6 B																
6	B g3	16	0,2286	54	233	4,5	2000	1,80	8,9	457	0,5097	0,00	4,0	87,3	90	6,1	40	23,6	В
7	C I (Durchs.)				50	1,0	2000	1,80							90				
8	C g	30	-,	40	404	7,9	2000	1,80	16,7	857	0,4713	0,00	5,6	71,6	90	7,5	50	14,3	Α
9	Cr	30	,	40	253	4,9	1973	1,82	16,4	845	0,2993	0,00	3,2	65,5	90	5,2	35	13,1	Α
10	DR 1	11	0,1571	59	188	3,7	2000	1,80	6,1	314	0,5982	0,00	3,4	93,0	90	5,6	35	27,4	В
11	DR 2	11	0,1571	59	188	3,7	2000	1,80	6,1	314	0,5982	0,00	3,4	93,0	90	5,6	35	27,4	В
12																			
13																			
14																			
15																			
16																			
17	00)/ D												-						
18	QSV Durchs.	<u> </u>																	
19 20		D A																	
	nsummen:	А			q _K =	2399	[Fz/h]	C _K =	5245	[Fz/h]									
	chtete Mittelwe	rte:			q _K =	0,3859		w =	17,1		QSV =	Α							

Eo	rmblatt 3									punkt mit									
10							а) Nachwe	eis der Ve	erkehrsqu	alität im l	Kraftfahrz	zeugverke	ehr					
	Projekt:	Verkeh	ırsuntersu	chung	Grand Ce	ntral													
		Düssel																	
	Knotenpunkt:					se / Werde	ener Straß	е											
	Zeitabschnitt:		nspitze / B	Bestand	l - Basis														
	Bearbeiter:	Hha																	
	t _U =	70	[s]	T =	60	[min]													
Nr.	Bez.	t_{F}	t_F/t_U	t_{S}	q	m	q_S	t_B	n _C	С	g	N_{GE}	n_{H}	Н	S	N_{RE}	I _{Stau}	W	QSV
		[s]	[-]	[s]	[Fz/h]	[Fz]	[Fz/h]	[s/Fz]	[Fz]	[Fz/h]	[-]	[Fz]	[Fz]	[%]	[%]	[Fz]	[m]	[s]	[-]
1	Ag	12	0,1714	58	319	6,2	2000	1,80	6,7	343	0,9304	4,84	6,2	100,0	90	14,4	90	79,4	Е
2	Ar	12	0,1714	58	105	2,0	1599	2,25	5,3	274	0,3831	0,00	1,8	88,7	90	3,5	25	25,7	В
3	ΑI	12	12 0,1714 58 104 2,0 1898 1,90 6,3 325 0,3197 0,00 1,8 87,7 90 3,5 25 25,4 B 12 0,1714 58 253 4,9 1913 1,88 6,4 328 0,7716 1,66 4,9 100,0 90 9,1 60 45,9 C															В	
4	B gr		12 0,1714 58 104 2,0 1898 1,90 6,3 325 0,3197 0,00 1,8 87,7 90 3,5 25 25,4 B 12 0,1714 58 253 4,9 1913 1,88 6,4 328 0,7716 1,66 4,9 100,0 90 9,1 60 45,9 C																
5	Bg		12 0,1714 58 253 4,9 1913 1,88 6,4 328 0,7716 1,66 4,9 100,0 90 9,1 60 45,9 C 12 0,1714 58 265 5,2 2000 1,80 6,7 343 0,7729 1,67 5,2 100,0 90 9,4 60 45,2 C																
6	C 1g	26	12 0,1714 58 265 5,2 2000 1,80 6,7 343 0,7729 1,67 5,2 100,0 90 9,4 60 45,2 C 26 0,3714 44 593 11,5 1952 1,84 14,1 725 0,8179 1,99 11,3 97,8 90 13,5 85 29,8 B															В	
7	C 2g	26	0,3714	44	593	11,5	1952	1,84	14,1	725	0,8179	1,99	11,3	97,8	90	13,5	85	29,8	В
8	Cr	26	0,3714	44	64	1,2	1800	2,00	13,0	669	0,0957	0,00	0,8	65,2	90	2,0	15	14,3	Α
9	D gr	37	0,5286	33	643	12,5	1869	1,93	19,2	988	0,6510	0,01	9,0	71,9	90	9,3	60	11,9	Α
10	Dg	37	0,5286	33	668	13,0	1937	1,86	19,9	1024	0,6524	0,03	9,4	72,1	90	9,6	60	12,0	Α
11	DL (Durchs.)				223	4,3													
12																			
13																			
14																			
15																			
16																			
17	Ergebnisse D																		
18	-,	С																	
19	w=	39,9		30,1															
20	l stau=	50	0,7143	20															
	nsummen:				q _K =	3830		C _K =	5743										
Gewic	htete Mittelwe	rte:			g =	0,6791	[-]	w =	27,7	[s]	QSV =	В							

Ec	rmblatt 3								Knoten	ounkt mit	Lichtsig	nalanlage)						
	officiall 3						а) Nachwe	eis der Ve	rkehrsqu	alität im l	Kraftfahrz	zeugverk	ehr					
			ırsuntersu	chung	Grand Ce	entral													
		Düssel																	
	Knotenpunkt:																		
	Zeitabschnitt:		nspitze / E	Bestand	- geände	ertes Signa	alprogrami	m											
	Bearbeiter:	Hha																	
	t _U =	70	[s]	T =	60	[min]													
Nr.	Bez.	t_F	t_F/t_U	ts	q	m	q_S	t_B	n_{C}	С	g	N_{GE}	n_H	Н	S	N_{RE}	I_{Stau}	W	QSV
		[s]	[-]	[s]	[Fz/h]	[Fz]	[Fz/h]	[s/Fz]	[Fz]	[Fz/h]	[-]	[Fz]	[Fz]	[%]	[%]	[Fz]	[m]	[s]	[-]
1	Ag	13	0,1857	57	319	6,2	2000	1,80	7,2	371	0,8588	2,77	6,2	100,0	90	11,8	75	54,5	D
2	Ar	13	13 0,1857 57 105 2,0 1599 2,25 5,8 297 0,3536 0,00 1,8 87,2 90 3,5 25 24,8 B 13 0,1857 57 104 2,0 1898 1,90 6,9 352 0,2951 0,00 1,7 86,1 90 3,5 25 24,6 B																
3	ΑI		13 0,1857 57 104 2,0 1898 1,90 6,9 352 0,2951 0,00 1,7 86,1 90 3,5 25 24,6 B 13 0,1857 57 253 4,9 1913 1,88 6,9 355 0,7122 0,85 4,7 96,5 90 8,0 50 35,4 C																
4	B gr		13 0,1857 57 104 2,0 1898 1,90 6,9 352 0,2951 0,00 1,7 86,1 90 3,5 25 24,6 B 13 0,1857 57 253 4,9 1913 1,88 6,9 355 0,7122 0,85 4,7 96,5 90 8,0 50 35,4 C																
5	Вg		13 0,1857 57 253 4,9 1913 1,88 6,9 355 0,7122 0,85 4,7 96,5 90 8,0 50 35,4 C 13 0,1857 57 265 5,2 2000 1,80 7,2 371 0,7135 0,86 5,0 96,4 90 8,2 50 35,1 C																
6	C 1g	25	0,3571	45	593	11,5	1952	1,84	13,6	697	0,8506	2,38	11,5	100,0	90	14,2	90	33,1	В
7	C 2g	25	0,3571	45	593	11,5	1952	1,84	13,6	697	0,8506	2,38	11,5	100,0	90	14,2	90	33,1	В
8	Cr	25	0,3571	45	64	1,2	1800	2,00	12,5	643	0,0996	0,00	0,8	66,7	90	2,1	15	15,0	Α
9	D gr	36	0,5143	34	643	12,5	1869	1,93	18,7	961	0,6691	0,22	9,4	75,0	90	9,8	60	13,4	Α
10	Dg	36	0,5143	34	668	13,0	1937	1,86	19,4	996	0,6705	0,24	9,8	75,1	90	10,2	65	13,5	Α
11	DL (Durchs.)				223	4,3													
12																			
13																			
14																			
15																			
16																			
17	Ergebnisse D																		
18		C	0.5700	00.4															
19	w=	39,9		30,1															
20	I stau=	50	0,7143	20	_	0000	FF # 1		57.40	r= "1									
	nsummen:				q _K =	3830		C _K =	5742		0.017								
Gewic	htete Mittelwe	rte:			g =	0,6800	[-]	w =	25,7	[S]	QSV =	В							

Ec	rmblatt 3								Knoten	punkt mit	Lichtsig	nalanlage)						
FC	ormbiatt 3						а) Nachwe	eis der Ve	rkehrsqu	alität im l	Kraftfahrz	zeugverke	ehr					
			nrsuntersu	chung	Grand Ce	entral													
		Düssel																	
	Knotenpunkt:					se / Werde	ener Straß	е											
	Zeitabschnitt:		nittagsspitz	ze / Bes	stand														
	Bearbeiter:																		
	$t_{U} =$	70	[s]	T =	60	[min]													
Nr.	Bez.	t _F	t_F/t_U	ts	q	m	q_{S}	t_B	n_{C}	С	g	N_{GE}	n_H	Н	S	N_{RE}	I_{Stau}	W	QSV
		[s]	[-]	[s]	[Fz/h]	[Fz]	[Fz/h]	[s/Fz]	[Fz]	[Fz/h]	[-]	[Fz]	[Fz]	[%]	[%]	[Fz]	[m]	[s]	[-]
1	A g	15	0,2143	55	352	6,8	2000	1,80	8,3	429	0,8213	2,24	6,8	100,0	90	11,5	70	45,1	С
2	Ar	15	15 0,2143 55 191 3,7 1974 1,82 8,2 423 0,4515 0,00 3,2 87,0 90 5,3 35 23,9 B															В	
3	ΑI	15	15 0,2143 55 191 3,7 1974 1,82 8,2 423 0,4515 0,00 3,2 87,0 90 5,3 35 23,9 B 11 0,1571 59 237 4,6 1872 1,92 5,7 294 0,8055 2,14 4,6 100,0 90 9,5 60 54,6 D															В	
4	B gr	11	15 0,2143 55 191 3,7 1974 1,82 8,2 423 0,4515 0,00 3,2 87,0 90 5,3 35 23,9 B 11 0,1571 59 237 4,6 1872 1,92 5,7 294 0,8055 2,14 4,6 100,0 90 9,5 60 54,6 D															D	
5	Вg		11 0,1571 59 237 4,6 1872 1,92 5,7 294 0,8055 2,14 4,6 100,0 90 9,5 60 54,6 D 11 0,1571 59 254 4,9 2000 1,80 6,1 314 0,8082 2,16 4,9 100,0 90 9,9 60 53,2 D																
6	C 1g	22	11 0,1571 59 237 4,6 1872 1,92 5,7 294 0,8055 2,14 4,6 100,0 90 9,5 60 54,6 D 11 0,1571 59 254 4,9 2000 1,80 6,1 314 0,8082 2,16 4,9 100,0 90 9,9 60 53,2 D 22 0,3143 48 490 9,5 2000 1,80 12,2 629 0,7795 1,60 9,2 96,3 90 12,2 75 31,0 B															В	
7	C 2g	22	0,3143	48	490	9,5	2000	1,80	12,2	629	0,7795	1,60	9,2	96,3	90	12,2	75	31,0	В
8	Cr	22	0,3143	48	74	1,4	1545	2,33	9,4	486	0,1524	0,00	1,0	72,0	90	2,4	15	17,3	Α
9	D gr	37	0,5286	33	725	14,1	1920	1,87	19,7	1015	0,7143	0,73	11,1	78,9	90	11,2	70	15,1	Α
10	Dg	37	0,5286	33	756	14,7	2000	1,80	20,6	1057	0,7151	0,73	11,6	78,8	90	11,6	70	15,0	Α
11	DL (Durchs.)				248	4,8													
12																			
13																			
14																			
15																			
16	Encoloris - F																		
17	Ergebnisse D										-	-		-		-		-	
18		D 52.1	0.7505	16.0															
19 20	w= I stau=	53,1 60	0,7585 0.8571	16,9 10															
		60	0,0071	10	a -	2007	FF-/-1	C -	F004	[F=/l=1									
	nsummen:				q _K =		[Fz/h]	C _K =		[Fz/h]	0.017								
Gewic	htete Mittelwe	rte:			g =	0,6722	[-]	w =	26,3	[S]	QSV =	В							

Ec	rmblatt 3								Knoten	punkt mit	Lichtsig	nalanlage)						
FC	orinbiatt 3						а) Nachwe	eis der Ve	rkehrsqu	alität im l	Kraftfahrz	zeugverk	ehr					
			nrsuntersu	chung	Grand Ce	ntral													
		Düssel																	
	Knotenpunkt:				Iner Straß	se / Werde	ener Straß	е											
	Zeitabschnitt:		nspitze / N	lullfall															
	Bearbeiter:																		
	t _U =	70	[s]	T =	60	[min]													
Nr.	Bez.	t_F	t_F/t_U	ts	q	m	q_{S}	t_B	n_{C}	С	g	N_{GE}	n_H	Н	S	N_{RE}	I _{Stau}	w	QSV
		[s]	[-]	[s]	[Fz/h]	[Fz]	[Fz/h]	[s/Fz]	[Fz]	[Fz/h]	[-]	[Fz]	[Fz]	[%]	[%]	[Fz]	[m]	[s]	[-]
1	A g	12	0,1714	58	291	5,7	2000	1,80	6,7	343	0,8488	2,67	5,7	100,0	90	11,2	70	56,2	D
2	Ar	12	12 0,1714 58 107 2,1 1903 1,89 6,3 326 0,3280 0,00 1,8 87,8 90 3,6 25 25,5 B																
3	ΑI		12 0,1714 58 107 2,1 1903 1,89 6,3 326 0,3280 0,00 1,8 87,8 90 3,6 25 25,5 B 12 0,1714 58 244 4,7 1907 1,89 6,4 327 0,7462 1,32 4,7 99,1 90 8,5 55 42,1 C																
4	B gr		12 0,1714 58 107 2,1 1903 1,89 6,3 326 0,3280 0,00 1,8 87,8 90 3,6 25 25,5 B																
5	Вg		12 0,1714 58 244 4,7 1907 1,89 6,4 327 0,7462 1,32 4,7 99,1 90 8,5 55 42,1 C 12 0,1714 58 257 5,0 2000 1,80 6,7 343 0,7496 1,36 5,0 99,1 90 8,8 55 41,8 C																
6	C 1g	26	0,3714	44	593	11,5	1952	1,84	14,1	725	0,8179	1,99	11,3	97,8	90	13,5	85	29,8	В
7	C 2g	26	0,3714	44	593	11,5	1952	1,84	14,1	725	0,8179	1,99	11,3	97,8	90	13,5	85	29,8	В
8	Cr	26		44	73	1,4	1800	2,00	13,0	669	0,1092	0,00	0,9	65,5	90	2,2	15	14,4	Α
9	D gr	37	0,5286	33	591	11,5	1883	1,91	19,4	995	0,5939	0,00	7,9	68,7	90	8,7	55	11,3	Α
10	Dg	37	0,5286	33	608	11,8	1938	1,86	19,9	1024	0,5936	0,00	8,1	68,7	90	8,9	55	11,3	Α
11	DL (Durchs.)				248	4,8													
12																			
13																			
14																			
15																			
16	Encolories E										-								
17	Ergebnisse D											-	-	-		-	-	-	
18		D 52.1	0.7500	16.0															
19 20	W=	53,1 60	0,7590 0.8571	16,9 10															
	I stau=	00	0,0071	10	~ -	0707	FF-/l-1	C -	F740	[[/ ₋]									
	nsummen:				q _K =		[Fz/h]	C _K =		[Fz/h]	0.017								
Gewic	htete Mittelwe	rte:			g =	0,6434	[-]	w =	25,0	[S]	QSV =	В							

Ea	rmblatt 3								Knoten	punkt mit	Lichtsig	nalanlage	•						
го	rmbiatt 3						a) Nachwe	is der Ve	rkehrsqu	alität im l	Kraftfahrz	zeugverke	hr					
	Projekt:	Verkeh	ırsuntersu	chung	Grand Ce	ntral													
		Düssel																	
	Knotenpunkt:					e / Werde	ner Straß	е											
	Zeitabschnitt:		ittagsspitz	ze / Nul	lfall														
	Bearbeiter:	_																	
	t _U =	70	[s]	T =	60	[min]													
Nr.	Bez.	t_{F}	t_F/t_U	t_{S}	р	m	q_{S}	t_{B}	n_{C}	С	g	N_{GE}	n_H	Н	S	N_{RE}	I_{Stau}	W	QSV
		[s]	[-]	[s]	[Fz/h]	[Fz]	[Fz/h]	[s/Fz]	[Fz]	[Fz/h]	[-]	[Fz]	[Fz]	[%]	[%]	[Fz]	[m]	[s]	[-]
1	A g	15	0,2143	55	319	6,2	2000	1,80	8,3	429	0,7443	1,25	6,0	97,3	90	9,6	60	36,2	С
2	A r	15																	
3	ΑI		15 0,2143 55 182 3,5 1974 1,82 8,2 423 0,4303 0,00 3,1 86,6 90 5,1 35 23,8 B 11 0,1571 59 227 4,4 1862 1,93 5,7 293 0,7760 1,74 4,4 100,0 90 8,8 55 49,7 C																
4	B gr		15 0,2143 55 182 3,5 1974 1,82 8,2 423 0,4303 0,00 3,1 86,6 90 5,1 35 23,8 B 11 0,1571 59 227 4,4 1862 1,93 5,7 293 0,7760 1,74 4,4 100,0 90 8,8 55 49,7 C 11 0,1571 59 245 4,8 2000 1,80 6,1 314 0,7795 1,78 4,8 100,0 90 9,2 60 48,7 C																
	Вg		11 0,1571 59 227 4,4 1862 1,93 5,7 293 0,7760 1,74 4,4 100,0 90 8,8 55 49,7 C 11 0,1571 59 245 4,8 2000 1,80 6,1 314 0,7795 1,78 4,8 100,0 90 9,2 60 48,7 C																
6	C 1g		11 0,1571 59 227 4,4 1862 1,93 5,7 293 0,7760 1,74 4,4 100,0 90 8,8 55 49,7 C 11 0,1571 59 245 4,8 2000 1,80 6,1 314 0,7795 1,78 4,8 100,0 90 9,2 60 48,7 C 22 0,3143 48 474 9,2 2000 1,80 12,2 629 0,7541 1,30 8,7 94,2 90 11,5 70 29,0 B																
7	C 2g	22	0,3143	48	474	9,2	2000	1,80	12,2	629	0,7541	1,30	8,7	94,2	90	11,5	70	29,0	В
8	C r	22	0,3143	48	86	1,7	1520	2,37	9,3	478	0,1800	0,00	1,2	72,7	90	2,7	20	17,4	Α
9	D gr	37	0,5286	33	705	13,7	1924	1,87	19,8	1017	0,6931	0,49	10,5	76,5	90	10,7	65	14,0	Α
10	D g	37	0,5286	33	733	14,3	2000	1,80	20,6	1057	0,6934	0,49	10,9	76,4	90	11,0	70	13,9	Α
11	DL (Durchs.)				293	5,7													
12																			
13 14																			
15											-	+		+				+	
16																			
17	Ergebnisse D	Jurche																	
18		E									İ			<u> </u>					
19	w=	94,5	1,3506	-24,5															
20	l stau=	95	1.3571	-25															
_	nsummen:		.,		q _K =	3913	[Fz/h]	C _K =	5653	[Fz/h]			I.						
Gewic	htete Mittelwe	rte:			g =	0,6362	<u> </u>	w =	23,6		QSV =	В							

Eo	rmblatt 3											nalanlage							
10							а) Nachwe	eis der Ve	rkehrsqu	alität im l	Kraftfahrz	zeugverke	ehr					
	Projekt:	Verkeh	ırsuntersu	chung	Grand Ce	ntral													
		Düssel																	
	Knotenpunkt:					e / Werde	ner Straß	е											
	Zeitabschnitt:		nspitze / F	Planfall	(Basis)														
	Bearbeiter:	Hha																	
	t _U =	70	[s]	T =	60	[min]													
Nr.	Bez.	t_{F}	t_F/t_U	t_{S}	q	m	q_{S}	t_{B}	n _C	С	g	N_{GE}	n_H	Н	S	N_{RE}	I _{Stau}	W	QSV
		[s]	[-]	[s]	[Fz/h]	[Fz]	[Fz/h]	[s/Fz]	[Fz]	[Fz/h]	[-]	[Fz]	[Fz]	[%]	[%]	[Fz]	[m]	[s]	[-]
1	A g	12	0,1714	58	315	6,1	2000	1,80	6,7	343	0,9188	4,26	6,1	100,0	90	13,6	85	73,2	Е
2	Ar	12	12 0,1714 58 115 2,2 1914 1,88 6,4 328 0,3505 0,00 2,0 88,2 90 3,8 25 25,6 B															В	
3	ΑI	12	12 0,1714 58 115 2,2 1914 1,88 6,4 328 0,3505 0,00 2,0 88,2 90 3,8 25 25,6 B 12 0,1714 58 251 4,9 1910 1,89 6,4 327 0,7668 1,60 4,9 100,0 90 9,0 55 45,2 C															В	
4	B gr		12 0,1714 58 115 2,2 1914 1,88 6,4 328 0,3505 0,00 2,0 88,2 90 3,8 25 25,6 B																
5	Bg		12 0,1714 58 251 4,9 1910 1,89 6,4 327 0,7668 1,60 4,9 100,0 90 9,0 55 45,2 C 12 0,1714 58 263 5,1 2000 1,80 6,7 343 0,7671 1,59 5,1 100,0 90 9,2 60 44,4 C																
6	C 1g	26	12 0,1714 58 263 5,1 2000 1,80 6,7 343 0,7671 1,59 5,1 100,0 90 9,2 60 44,4 C 26 0,3714 44 597 11,6 1957 1,84 14,1 727 0,8213 2,03 11,4 98,1 90 13,6 85 30,0 B															В	
7	C 2g	26	0,3714	44	597	11,6	1957	1,84	14,1	727	0,8213	2,03	11,4	98,1	90	13,6	85	30,0	В
8	Cr	26	0,3714	44	73	1,4	1651	2,18	11,9	613	0,1191	0,00	0,9	65,8	90	2,2	15	14,5	Α
9	D gr	37	0,5286	33	591	11,5	1883	1,91	19,4	995	0,5939	0,00	7,9	68,7	90	8,7	55	11,3	Α
10	Dg	37	0,5286	33	608	11,8	1938	1,86	19,9	1024	0,5936	0,00	8,1	68,7	90	8,9	55	11,3	Α
11	DL (Durchs.)				248	4,8													
12																			
13																			
14																			
15																			
16																			
17	Ergebnisse D	_																	
18	QU.	D																	
19	w=	53,1	0,7590	16,9															
20	l stau=	60	0,8571	10															
	nsummen:				q _K =	3776		C _K =	5710										
Gewic	htete Mittelwe	rte:			g =	0,6553	[-]	w =	27,1	[s]	QSV =	В							

Eo	rmblatt 3											nalanlage							
-	illibiatt 3						а) Nachwe	eis der Ve	rkehrsqu	alität im l	Kraftfahrz	zeugverke	ehr					
	Projekt:	Verkeh	ırsuntersu	chung	Grand Ce	ntral													
		Düssel																	
	Knotenpunkt:																		
	Zeitabschnitt:		nspitze / F	Planfall	(geändert	es Signal _l	orogramm)											
	Bearbeiter:	Hha																	
	t _U =	70	[s]	T =	60	[min]													
Nr.	Bez.	t_{F}	t_F/t_U	t_{S}	q	m	q_{S}	t_{B}	n _C	С	g	N_{GE}	n_{H}	Н	S	N_{RE}	I _{Stau}	W	QSV
		[s]	[-]	[s]	[Fz/h]	[Fz]	[Fz/h]	[s/Fz]	[Fz]	[Fz/h]	[-]	[Fz]	[Fz]	[%]	[%]	[Fz]	[m]	[s]	[-]
1	A g	13	-,	57	315	6,1	2000	1,80	7,2	371	0,8481	2,63	6,1	100,0	90	11,5	70	53,1	D
2	Ar	13	0,1857	57	118	2,3	1649	2,18	6,0	306	0,3853	0,00	2,0	87,7	90	3,8	25	25,0	В
3	ΑI	13	13 0,1857 57 115 2,2 1914 1,88 6,9 355 0,3235 0,00 1,9 86,6 90 3,7 25 24,7 B 13 0,1857 57 251 4,9 1910 1,89 6,9 355 0,7078 0,79 4,7 96,2 90 7,8 50 34,7 B															В	
4	B gr	13	13 0,1857 57 115 2,2 1914 1,88 6,9 355 0,3235 0,00 1,9 86,6 90 3,7 25 24,7 B 13 0,1857 57 251 4,9 1910 1,89 6,9 355 0,7078 0,79 4,7 96,2 90 7,8 50 34,7 B															В	
5	Вg	13	13 0,1857 57 251 4,9 1910 1,89 6,9 355 0,7078 0,79 4,7 96,2 90 7,8 50 34,7 B 13 0,1857 57 263 5,1 2000 1,80 7,2 371 0,7081 0,79 4,9 96,1 90 8,1 50 34,4 B															В	
6	C 1g	25	13 0,1857 57 251 4,9 1910 1,89 6,9 355 0,7078 0,79 4,7 96,2 90 7,8 50 34,7 B 13 0,1857 57 263 5,1 2000 1,80 7,2 371 0,7081 0,79 4,9 96,1 90 8,1 50 34,4 B 25 0,3571 45 597 11,6 1957 1,84 13,6 699 0,8541 2,42 11,6 100,0 90 14,3 90 33,3 B															В	
7	C 2g	25	0,3571	45	597	11,6	1957	1,84	13,6	699	0,8541	2,42	11,6	100,0	90	14,3	90	33,3	В
8	Cr	25	0,3571	45	73	1,4	1651	2,18	11,5	590	0,1238	0,00	1,0	67,3	90	2,3	15	15,1	Α
9	D gr	36	0,5143	34	591	11,5	1883	1,91	18,8	968	0,6104	0,00	8,1	70,8	90	8,9	55	12,0	Α
10	D g	36	0,5143	34	608	11,8	1938	1,86	19,4	997	0,6101	0,00	8,4	70,8	90	9,1	60	12,0	Α
11	DL (Durchs.)				248	4,8													
12																			
13																			
14																			
15																			
16																			
17	Ergebnisse D	ourchs.																	
18	αυ,	D																	
19	w=	53,1	0,7590	16,9															
20	I stau=	60	0,8571	10															
	nsummen:				q _K =	3776		C _K =	5712										
Gewic	htete Mittelwe	rte:			g =	0,6552	[-]	w =	25,3	[s]	QSV =	В							

Formblatt 3									Knoten	punkt mit	Lichtsig	nalanlage)						
го	ormbiatt 3						a) Nachwe	eis der Ve	rkehrsqu	alität im	Kraftfahrz	zeugverke	ehr					
	Projekt:	Verkeh	nrsuntersu	chung	Grand Ce	ntral													
		Düssel																	
	Knotenpunkt:					e / Werde	ener Straß	е											
	Zeitabschnitt:		nittagsspitz	ze / Pla	nfall														
	Bearbeiter:	Hha																	
	t _U =	70	[s]	T =	60	[min]													
Nr.	Bez.	t _F	t_F/t_U	ts	q	m	q_S	t_{B}	n_{C}	С	g	N_{GE}	n _H	Н	S	N_{RE}	I _{Stau}	w	QSV
		[s]	[-]	[s]	[Fz/h]	[Fz]	[Fz/h]	[s/Fz]	[Fz]	[Fz/h]	[-]	[Fz]	[Fz]	[%]	[%]	[Fz]	[m]	[s]	[-]
1	A g	15	0,2143	55	338	6,6	2000	1,80	8,3	429	0,7887	1,83	6,6	100,0	90	10,7	65	41,3	С
2	Ar	15	0,2143	55	187	3,6	1800	2,00	7,5	386	0,4848	0,00	3,2	87,7	90	5,2	35	24,1	В
3	ΑI	15	0,2143	55	191	3,7	1974	1,82	8,2	423	0,4515	0,00	3,2	87,0	90	5,3	35	23,9	В
4	B gr	11	0,1571	59	241	4,7	1869	1,93	5,7	294	0,8207	2,34	4,7	100,0	90	9,8	60	57,3	D
	Вg	11	0,1571	59	258	5,0	2000	1,80	6,1	314	0,8209	2,33	5,0	100,0	90	10,2	65	55,2	D
6	C 1g	22	0,3143	48	483	9,4	2000	1,80	12,2	629	0,7684	1,47	9,0	95,4	90	11,9	75	30,1	В
7	C 2g	22	0,3143	48	483	9,4	2000	1,80	12,2	629	0,7684	1,47	9,0	95,4	90	11,9	75	30,1	В
8	C r	22	0,3143	48	86	1,7	1520	2,37	9,3	478	0,1800	0,00	1,2	72,7	90	2,7	20	17,4	Α
9	D gr	37	0,5286	33	705	13,7	1924	1,87	19,8	1017	0,6931	0,49	10,5	76,5	90	10,7	65	14,0	Α
10	Dg	37	0,5286	33	733	14,3	2000	1,80	20,6	1057	0,6934	0,49	10,9	76,4	90	11,0	70	13,9	Α
11	DL (Durchs.)				293	5,7													
12																			
13																			
14																			
15 16																			
17	Ergebnisse D	Jurche										-		-					
18		E																	
19	w=	94,6	1,3509	-24,6							-	-		+				+	
20	l stau=	95	1,3571	-25															
_	nsummen:	- 0	.,		q _K =	3998	[Fz/h]	C _K =	5655	[Fz/h]			I.				I.		
Gewic	htete Mittelwe	rte:			g =	0,6522		w =	25,5		QSV =	В							

Formblatt 3										punkt mit									
г	minibiatt 3						а) Nachwe	eis der Ve	erkehrsqu	alität im	Kraftfahr	zeugverke	ehr					
	Projekt:	Verkeh	rsuntersu	chung (Grand Ce	ntral													
		Düssel																	
	Knotenpunkt:	51-18 I	Kölner Str	aße / M	loskauer	Straße - T	eilknoten	1											
	Zeitabschnitt:		nspitze / N	lullfall (l	Basis)														
	Bearbeiter:	Hha																	
	t _U =	70	[s]	T =	60	[min]													
Nr.	Bez.	t_{F}	t_F/t_U	ts	q	m	q_{S}	t_B	n_{C}	С	g	N_{GE}	n_H	Н	S	N_{RE}	I _{Stau}	W	QSV
		[s]	[-]	[s]	[Fz/h]	[Fz]	[Fz/h]	[s/Fz]	[Fz]	[Fz/h]	[-]	[Fz]	[Fz]	[%]	[%]	[Fz]	[m]	[s]	[-]
1	Algr (LA Dure		- , -	65	0	0,0									90				
2	B gr	18	0,2571	52	22	0,4	1761	2,04	8,8	453	0,0486	0,00	0,3	75,2	90	1,1	10	19,6	Α
3	BL	10	0,1429	60	273	5,3	1974	1,82	5,5	282	0,9683	6,22	5,3	100,0	90	14,4	90	109,3	F
4	BL	10	0,1429	60	273	5,3	1974	1,82	5,5	282	0,9683	6,22	5,3	100,0	90	14,4	90	109,3	F
5	Cr	30	0,4286	40	653	12,7	1973	1,82	16,4	846	0,7722	1,42	11,5	90,9	90	12,8	80	23,1	В
6	C 1	19	0,2714	51	32	0,6	1968	1,83	10,4	534	0,0599	0,00	0,5	74,1	90	1,4	10	18,9	Α
7	C 2	19	0,2714	51	32	0,6	1968	1,83	10,4	534	0,0599	0,00	0,5	74,1	90	1,4	10	18,9	Α
8	CL	14	0,2000	56	0	0,0									90				
9	D gr	14	0,2000	56	105	2,0	1966	1,83	7,6	393	0,2670	0,00	1,7	84,5	90	3,4	25	23,7	В
10	Dg	14	0,2000	56	105	2,0	1966	1,83	7,6	393	0,2670	0,00	1,7	84,5	90	3,4	25	23,7	В
11	DL	5	0,0714	65	95	1,8	1968	1,83	2,7	141	0,6759	0,38	1,8	98,6	90	4,1	30	41,4	С
12																			
13																			
14																			
15																			
16																			
17																			
18																			
19																			
20					a =	1500	[F=/b]	C =	2050	[[-/b]									
	nsummen:				q _K =		[Fz/h]	C _K =		[Fz/h]	00)/								
Gewichtete Mittelwerte:					g =	0,7284	[-]	w =	53,7	[S]	QSV =	D							

Formblatt 3									Knoten	punkt mit	Lichtsig	nalanlage							
FC	orinbiatt 3	a) Nachweis der Verkehrsqualität im Kraftfahrzeugverkehr Verkehrsuntersuchung Grand Central																	
				chung	Grand Ce	entral													
		Düssel																	
	Knotenpunkt:																		
	Zeitabschnitt:		nspitze / N	lullfall (geänderte	es Signalp	rogramm)												
	Bearbeiter:																		
	t _U =	70	[s]	T =	60	[min]													
Nr.	Bez.	t_{F}	t_F/t_U	t_{S}	q	m	q_S	t_B	n_{C}	С	g	N_{GE}	n_H	Н	S	N_{RE}	I_{Stau}	W	QSV
		[s]	[-]	[s]	[Fz/h]	[Fz]	[Fz/h]	[s/Fz]	[Fz]	[Fz/h]	[-]	[Fz]	[Fz]	[%]	[%]	[Fz]	[m]	[s]	[-]
1	Algr (LA Dure	hs.) 5	- , -	65	0	0,0									90				
2	B gr	27	0,3857	43	22	0,4	1761	2,04	13,2	679	0,0324	0,00	0,3	62,2	90	1,0	10	13,4	Α
3	BL	15	-,	55	273	5,3	1974	1,82	8,2	423	0,6455	0,00	4,8	91,2	90	7,1	45	25,1	В
4	BL	15	0,2143	55	273	5,3	1974	1,82	8,2	423	0,6455	0,00	4,8	91,2	90	7,1	45	25,1	В
5	Cr	26	0,3714	44	653	12,7	1973	1,82	14,3	733	0,8910		12,7	100,0	90	15,4	95	34,4	В
6	C 1	15		55	32	0,6	1968	1,83	8,2	422	0,0759		0,5	79,9	90	1,5	10	22,0	В
7	C 2	15	0,2143	55	32	0,6	1968	1,83	8,2	422	0,0759	0,00	0,5	79,9	90	1,5	10	22,0	В
8	CL	14	0,2000	56	0	0,0									90				
9	D gr	9	0,1286	61	105	2,0	1966	1,83	4,9	253	0,4153	0,00	1,9	92,1	90	3,7	25	28,1	В
10	Dg	9	0,1286	61	105	2,0	1966	1,83	4,9	253	0,4153	0,00	1,9	92,1	90	3,7	25	28,1	В
11	DL	5	0,0714	65	95	1,8	1968	1,83	2,7	141	0,6759	0,38	1,8	98,6	90	4,1	30	41,4	С
12																			
13																			
14																			
15 16																			
17													-	+			+	+	
18																	+	+	
19																			
20														+			+	+	
	nsummen:				q _K =	1590	[Fz/h]	C _K =	3748	[Fz/h]							I		
	htete Mittelwe	rte:			g =	0,6863		w =	30,0		QSV =	В							

E	ormblatt 3								Knoten	punkt mit	Lichtsig	nalanlage)						
г	minibiatt 3						а) Nachwe	eis der Ve	erkehrsqu	alität im	Kraftfahr	zeugverke	ehr					
			rsuntersu	chung	Grand Ce	entral													
		Düssel																	
	Knotenpunkt:						eilknoten	1											
	Zeitabschnitt:		ittagsspitz	ze / Nul	lfall (Basi	s)													
	Bearbeiter:																		
	t _U =	70	[s]	T =	60	[min]													
Nr.	Bez.	t_{F}	t_F/t_U	ts	q	m	q_{S}	t_B	n_{C}	С	g	N_{GE}	n_H	Н	S	N_{RE}	I _{Stau}	W	QSV
		[s]	[-]	[s]	[Fz/h]	[Fz]	[Fz/h]	[s/Fz]	[Fz]	[Fz/h]	[-]	[Fz]	[Fz]	[%]	[%]	[Fz]	[m]	[s]	[-]
1	Algr (LA Duro	hs.) 5	0,0714	65	0	0,0									90				
2	B gr	19	19 0,2714 51 29 0,6 1800 2,00 9,5 489 0,0594 0,00 0,4 74,1 90 1,3 10 18,9 A 12 0,1714 58 293 5,7 2000 1,80 6,7 343 0,8546 2,75 5,7 100,0 90 11,3 70 57,0 D															Α	
3	BL		19 0,2714 51 29 0,6 1800 2,00 9,5 489 0,0594 0,00 0,4 74,1 90 1,3 10 18,9 A 12 0,1714 58 293 5,7 2000 1,80 6,7 343 0,8546 2,75 5,7 100,0 90 11,3 70 57,0 D 12 0,1714 58 293 5,7 2000 1,80 6,7 343 0,8546 2,75 5,7 100,0 90 11,3 70 57,0 D															D	
4	BL		12 0,1714 58 293 5,7 2000 1,80 6,7 343 0,8546 2,75 5,7 100,0 90 11,3 70 57,0 D 12 0,1714 58 293 5,7 2000 1,80 6,7 343 0,8546 2,75 5,7 100,0 90 11,3 70 57,0 D																
5	Cr		12 0,1714 58 293 5,7 2000 1,80 6,7 343 0,8546 2,75 5,7 100,0 90 11,3 70 57,0 D 12 0,1714 58 293 5,7 2000 1,80 6,7 343 0,8546 2,75 5,7 100,0 90 11,3 70 57,0 D 31 0,4429 39 628 12,2 2000 1,80 17,2 886 0,7090 0,69 10,2 83,8 90 11,4 70 18,6 A															Α	
6	C 1	18	0,2571	52	16	- , -	2000	1,80	10,0	514	0,0311	0,00	0,2	74,9	90	0,9	10	19,5	Α
7	C 2	18	0,2571	52	16	,	2000	1,80	10,0	514	0,0311	0,00	0,2	74,9	90	0,9	10	19,5	Α
8	CL	10	-,	60	0	0,0									90				
9	D gr	16	0,2286	54	49	1,0	2000	1,80	8,9	457	0,1072	0,00	0,8	79,1	90	1,9	15	21,4	В
10	Dg	16	0,2286	54	49	1,0	2000	1,80	8,9	457	0,1072	0,00	0,8	79,1	90	1,9	15	21,4	В
11	DL	5	0,0714	65	35	0,7	2000	1,80	2,8	143	0,2450	0,00	0,6	94,5	90	1,8	15	30,7	В
12																			
13																			
14																			
15																			
16																			
17																			
18																	+		
19																	+		
20					a =	1400	[[-/b]	C -	4140	[F=/b]									
	nsummen:				q _K =		[Fz/h]	C _K =			001/								
Gewic	htete Mittelwe	rte:			g =	0,6874	[-]	w =	35,1	[S]	QSV =	С							

E	ormblatt 3											nalanlage							
-	officiall 3						а) Nachwe	eis der Ve	rkehrsqu	alität im	Kraftfahra	zeugverke	ehr					
	Projekt:	Verkeh	ırsuntersu	chung	Grand Ce	ntral													
		Düssel																	
	Knotenpunkt:																		
	Zeitabschnitt:		ittagsspitz	ze / Nul	lfall (geär	idertes Siç	gnalprogra	amm)											
	Bearbeiter:	Hha																	
	t _U =	70	[s]	T =	60	[min]													
Nr.	Bez.	t_{F}	t_F/t_U	t_{S}	q	m	q_S	t_B	n _C	С	g	N_{GE}	n_H	Н	S	N_{RE}	I _{Stau}	W	QSV
		[s]	[-]	[s]	[Fz/h]	[Fz]	[Fz/h]	[s/Fz]	[Fz]	[Fz/h]	[-]	[Fz]	[Fz]	[%]	[%]	[Fz]	[m]	[s]	[-]
1	Algr (LA Duro	hs.) 5	- , -	65	0	0,0									90				
2	B gr	27	27 0,3857 43 29 0,6 1800 2,00 13,5 694 0,0418 0,00 0,4 62,4 90 1,2 10 13,4 A 16 0,2286 54 293 5,7 2000 1,80 8,9 457 0,6409 0,00 5,1 90,4 90 7,4 45 24,4 B																
3	BL	_	16 0,2286 54 293 5,7 2000 1,80 8,9 457 0,6409 0,00 5,1 90,4 90 7,4 45 24,4 B 16 0,2286 54 293 5,7 2000 1,80 8,9 457 0,6409 0,00 5,1 90,4 90 7,4 45 24,4 B																
4	BL		16 0,2286 54 293 5,7 2000 1,80 8,9 457 0,6409 0,00 5,1 90,4 90 7,4 45 24,4 B 16 0,2286 54 293 5,7 2000 1,80 8,9 457 0,6409 0,00 5,1 90,4 90 7,4 45 24,4 B																
5	Cr	27	16 0,2286 54 293 5,7 2000 1,80 8,9 457 0,6409 0,00 5,1 90,4 90 7,4 45 24,4 B 27 0,3857 43 628 12,2 2000 1,80 15,0 771 0,8141 1,92 11,8 96,8 90 13,8 85 28,2 B																
6	C 1	14	0,2000	56	16	0,3	2000	1,80	7,8	400	0,0400	0,00	0,3	80,6	90	1,0	10	22,6	В
7	C 2	14	0,2000	56	16	0,3	2000	1,80	7,8	400	0,0400	0,00	0,3	80,6	90	1,0	10	22,6	В
8	CL	10	0,1429	60	0	0,0									90				
9	D gr	12	0,1714	58	49	1,0	2000	1,80	6,7	343	0,1429	0,00	0,8	84,9	90	2,0	15	24,6	В
10	Dg	12	0,1714	58	49	1,0	2000	1,80	6,7	343	0,1429	0,00	0,8	84,9	90	2,0	15	24,6	В
11	DL	5	0,0714	65	35	0,7	2000	1,80	2,8	143	0,2450	0,00	0,6	94,5	90	1,8	15	30,7	В
12																			
13																			
14																			
15																			
16																			
17																			
18																			
19																			
20																			
	nsummen:				q _K =	1408		C _K =	4009										
Gewic	htete Mittelwe	rte:			g =	0,6477	[-]	w =	26,0	[s]	QSV =	В							

E	rmblatt 3									punkt mit									
	officiall 3						а) Nachwe	eis der Ve	rkehrsqu	alität im l	Kraftfahrz	zeugverke	ehr					
	Projekt:	Verkeh	ırsuntersu	chung	Grand Ce	ntral													
	Stadt:	Düssel	dorf																
	Knotenpunkt:					Straße - T	eilknoten	1											
	Zeitabschnitt:		nspitze / F	Planfall	(Basis)														
	Bearbeiter:	Hha																	
	t _U =	70	[s]	T =	60	[min]													
Nr.	Bez.	t_{F}	t_F/t_U	t_{S}	q	m	q_S	t_{B}	n _C	С	g	N_{GE}	n_{H}	Н	S	N_{RE}	I _{Stau}	W	QSV
		[s]	[-]	[s]	[Fz/h]	[Fz]	[Fz/h]	[s/Fz]	[Fz]	[Fz/h]	[-]	[Fz]	[Fz]	[%]	[%]	[Fz]	[m]	[s]	[-]
1	Algr (LA Dure	hs.) 5	- , -	65	80	1,6	1865	1,93	2,6	133	0,6004	0,00	1,5	97,0	90	3,1	20	31,5	В
2	B gr	18	18 0,2571 52 28 0,5 1775 2,03 8,9 456 0,0614 0,00 0,4 75,5 90 1,3 10 19,6 A 10 0,1429 60 276 5,4 1974 1,82 5,5 282 0,9788 6,66 5,4 100,0 90 14,4 90 114,9 F															Α	
3	BL	10 0,1429 60 276 5,4 1974 1,82 5,5 282 0,9788 6,66 5,4 100,0 90 14,4 90 114,9 F 10 0,1429 60 276 5,4 1974 1,82 5,5 282 0,9788 6,66 5,4 100,0 90 14,4 90 114,9 F																	
4	BL		10 0,1429 60 276 5,4 1974 1,82 5,5 282 0,9788 6,66 5,4 100,0 90 14,4 90 114,9 F 10 0,1429 60 276 5,4 1974 1,82 5,5 282 0,9788 6,66 5,4 100,0 90 14,4 90 114,9 F															F	
5	Cr		10 0,1429 60 276 5,4 1974 1,82 5,5 282 0,9788 6,66 5,4 100,0 90 14,4 90 114,9 F 30 0,4286 40 653 12,7 1973 1,82 16,4 846 0,7722 1,42 11,5 90,9 90 12,8 80 23,1 B															В	
6	C 1	19	10 0,1429 60 276 5,4 1974 1,82 5,5 282 0,9788 6,66 5,4 100,0 90 14,4 90 114,9 F 30 0,4286 40 653 12,7 1973 1,82 16,4 846 0,7722 1,42 11,5 90,9 90 12,8 80 23,1 B 19 0,2714 51 32 0,6 1968 1,83 10,4 534 0,0599 0,00 0,5 74,1 90 1,4 10 18,9 A															Α	
7	C 2	19	0,2714	51	32	0,6	1968	1,83		534	0,0599	0,00	0,5	74,1	90	1,4	10	18,9	Α
8	CL	14	0,2000	56	3	0,1	1800	2,00	7,0	360	0,0083	0,00	0,0	80,1	90	0,4	5	22,4	В
9	D gr	14	0,2000	56	115	2,2	1955	1,84	7,6	391	0,2941	0,00	1,9	85,0	90	3,7	25	23,8	В
10	Dg	14	0,2000	56	115	2,2	1958	1,84	7,6	392	0,2936	0,00	1,9	85,0	90	3,7	25	23,8	В
11	DL	5	0,0714	65	116	2,3	1966	1,83	2,7	140	0,8261	2,56	2,3	100,0	90	7,7	50	97,8	E
12																			
13																			
14																			
15																			
16																			
17																			
18																			
19																			
20																			
	nsummen:				q _K =	1726		C _K =	4351										
Gewic	htete Mittelwe	rte:			g =	0,7309	[-]	w =	57,8	[s]	QSV =	D							

Ea	rmblatt 3									punkt mit									
го	orinbiatt 3						а) Nachwe	eis der Ve	rkehrsqu	alität im l	Kraftfahr	zeugverke	ehr					
	Projekt:	Verkeh	rsuntersu	chung (Grand Ce	ntral													
	Stadt:	Düssel	dorf																
	Knotenpunkt:																		
	Zeitabschnitt:		nspitze / P	lanfall ((geändert	es Signalı	programm)											
	Bearbeiter:	Hha																	
	t _∪ =	70	[s]	T =	60	[min]													
Nr.	Bez.	t _F	t _F /t∪	t _S	q	m	q_{S}	t _B	n_{C}	С	g	N_{GE}	n_H	Н	S	N_{RE}	I _{Stau}	w	QSV
		[s]	[-]	[s]	[Fz/h]	[Fz]	[Fz/h]	[s/Fz]	[Fz]	[Fz/h]	[-]	[Fz]	[Fz]	[%]	[%]	[Fz]	[m]	[s]	[-]
1	Algr (LA Dure	chs.) 5	0,0714	65	80	1,6	1865	1,93	2,6	133	0,6004	0,00	1,5	97,0	90	3,1	20	31,5	В
2	B gr	24 0,3429 46 28 0,5 1775 2,03 11,8 609 0,0460 0,00 0,4 66,8 90 1,2 10 15,4 A 16 0,2286 54 276 5,4 1974 1,82 8,8 451 0,6118 0,00 4,8 89,7 90 7,0 45 24,2 B															Α		
3	BL	16 0,2286 54 276 5,4 1974 1,82 8,8 451 0,6118 0,00 4,8 89,7 90 7,0 45 24,2 B 16 0,2286 54 276 5,4 1974 1,82 8,8 451 0,6118 0,00 4,8 89,7 90 7,0 45 24,2 B															В		
4	BL	16 0,2286 54 276 5,4 1974 1,82 8,8 451 0,6118 0,00 4,8 89,7 90 7,0 45 24,2 B 16 0,2286 54 276 5,4 1974 1,82 8,8 451 0,6118 0,00 4,8 89,7 90 7,0 45 24,2 B															В		
5	Cr	16 0,2286 54 276 5,4 1974 1,82 8,8 451 0,6118 0,00 4,8 89,7 90 7,0 45 24,2 B 28 0,4000 42 653 12,7 1973 1,82 15,3 789 0,8274 2,06 12,4 97,7 90 14,1 85 28,2 B															В		
6	C 1	19	0,2714	51	32	0,6	1968	1,83	10,4	534	0,0599	0,00	0,5	74,1	90	1,4	10	18,9	Α
7	C 2	19	0,2714	51	32	0,6	1968	1,83	10,4	534	0,0599	0,00	0,5	74,1	90	1,4	10	18,9	Α
8	CL	14	0,2000	56	3	0,1	1800	2,00	7,0	360	0,0083	0,00	0,0	80,1	90	0,4	5	22,4	В
9	D gr	14	0,2000	56	115	2,2	1955	1,84	7,6	391	0,2941	0,00	1,9	85,0	90	3,7	25	23,8	В
10	Dg	14	0,2000	56	115	2,2	1958	1,84	7,6	392	0,2936	0,00	1,9	85,0	90	3,7	25	23,8	В
11	DL	7	0,1000	63	116	2,3	1966	1,83	3,8	197	0,5901	0,00	2,2	95,6	90	4,0	25	30,1	В
12																			
13																			
14																			
15																			
16																			
17																			
18																			
19																			
20																			
Knote	nsummen:				q _K =		[Fz/h]	C _K =	4841										
Gewic	htete Mittelwe	rte:			g =	0,6183	[-]	w =	26,1	[s]	QSV =	В							

E	ormblatt 3											nalanlage							
-	officiall 3						а) Nachwe	eis der Ve	rkehrsqu	alität im l	Kraftfahrz	zeugverke	ehr					
	Projekt:	Verkeh	rsuntersu	chung	Grand Ce	ntral													
		Düssel																	
	Knotenpunkt:						eilknoten	1											
	Zeitabschnitt:		ittagsspitz	ze / Pla	nfall (Bas	is)													
	Bearbeiter:	Hha																	
	t _U =	70	[s]	T =	60	[min]													
Nr.	Bez.	t_{F}	t_F/t_U	t_{S}	q	m	q_S	t_{B}	n _C	С	g	N_{GE}	n_{H}	Н	S	N_{RE}	I _{Stau}	W	QSV
		[s]	[-]	[s]	[Fz/h]	[Fz]	[Fz/h]	[s/Fz]	[Fz]	[Fz/h]	[-]	[Fz]	[Fz]	[%]	[%]	[Fz]	[m]	[s]	[-]
1	Algr (LA Duro	hs.) 5	- , -	65	92	1,8		1,93	2,6	133	0,6907	0,60	1,8	99,4	90	4,4	30	47,9	С
2	B gr	19	19 0,2714 51 44 0,9 1821 1,98 9,6 494 0,0890 0,00 0,6 74,7 90 1,7 15 19,0 A 12 0,1714 58 299 5,8 2000 1,80 6,7 343 0,8721 2,97 5,8 100,0 90 11,7 75 59,5 D															Α	
3	BL	12	12 0,1714 58 299 5,8 2000 1,80 6,7 343 0,8721 2,97 5,8 100,0 90 11,7 75 59,5 D 12 0,1714 58 299 5,8 2000 1,80 6,7 343 0,8721 2,97 5,8 100,0 90 11,7 75 59,5 D															D	
4	BL		12 0,1714 58 299 5,8 2000 1,80 6,7 343 0,8721 2,97 5,8 100,0 90 11,7 75 59,5 D 12 0,1714 58 299 5,8 2000 1,80 6,7 343 0,8721 2,97 5,8 100,0 90 11,7 75 59,5 D															D	
5	Cr	31	2 0,1714 58 299 5,8 2000 1,80 6,7 343 0,8721 2,97 5,8 100,0 90 11,7 75 59,5 D 1 0,4429 39 628 12,2 2000 1,80 17,2 886 0,7090 0,69 10,2 83,8 90 11,4 70 18,6 A															Α	
6	C 1	18	12 0,1714 58 299 5,8 2000 1,80 6,7 343 0,8721 2,97 5,8 100,0 90 11,7 75 59,5 D 31 0,4429 39 628 12,2 2000 1,80 17,2 886 0,7090 0,69 10,2 83,8 90 11,4 70 18,6 A															Α	
7	C 2	18	0,2571	52	16	0,3	2000	1,80	10,0	514	0,0311	0,00	0,2	74,9	90	0,9	10	19,5	Α
8	CL	10	0,1429	60	18	0,4	1800	2,00	5,0	257	0,0700	0,00	0,3	86,6	90	1,1	10	26,0	В
9	D gr	16	0,2286	54	71	1,4	1942	1,85	8,6	444	0,1599	0,00	1,1	80,1	90	2,5	20	21,6	В
10	Dg	16	0,2286	54	73	1,4	1973	1,82	8,8	451	0,1619	0,00	1,1	80,1	90	2,6	20	21,6	В
11	DL	5	0,0714	65	44	0,9	1973	1,82	2,7	141	0,3122	0,00	0,8	95,0	90	2,1	15	30,9	В
12																			
13																			
14																			
15																			
16																			
17																			
18																			
19																			
20																			
	nsummen:				q _K =	1600		C _K =	4520										
Gewic	htete Mittelwe	rte:			g =	0,6709	[-]	w =	36,3	[s]	QSV =	С							

E	ormblatt 3									punkt mit									
FC	orinbiatt 3						а) Nachwe	eis der Ve	rkehrsqu	alität im	Kraftfahrz	zeugverke	ehr					
	Projekt:	Verkeh	rsuntersu	chung	Grand Ce	ntral													
	Stadt:	Düssel	dorf																
	Knotenpunkt:																		
	Zeitabschnitt:	Nachm	ittagsspitz	ze / Pla	nfall (geä	ndertes Si	ignalprogr	amm)											
	Bearbeiter:	Hha																	
	t _U =	70	[s]	T =	60	[min]													
Nr.	Bez.	t _F	t _F /t∪	ts	q	m	q_S	t_B	n_C	С	g	N_{GE}	n_H	Н	S	N_{RE}	I _{Stau}	W	QSV
		[s]	[-]	[s]	[Fz/h]	[Fz]	[Fz/h]	[s/Fz]	[Fz]	[Fz/h]	[-]	[Fz]	[Fz]	[%]	[%]	[Fz]	[m]	[s]	[-]
1	Algr (LA Duro	hs.) 5	0,0714	65	92	1,8	1865	1,93	2,6	133	0,6907	0,60	1,8	99,4	90	4,4	30	47,9	С
2	B gr	27 0,3857 43 44 0,9 1821 1,98 13,7 702 0,0627 0,00 0,5 62,9 90 1,5 10 13,5 A 17 0,2429 53 299 5,8 2000 1,80 9,4 486 0,6156 0,00 5,2 89,0 90 7,4 45 23,6 B															Α		
3	BL	17 0,2429 53 299 5,8 2000 1,80 9,4 486 0,6156 0,00 5,2 89,0 90 7,4 45 23,6 B 17 0,2429 53 299 5,8 2000 1,80 9,4 486 0,6156 0,00 5,2 89,0 90 7,4 45 23,6 B															В		
4	BL	17 0,2429 53 299 5,8 2000 1,80 9,4 486 0,6156 0,00 5,2 89,0 90 7,4 45 23,6 B 17 0,2429 53 299 5,8 2000 1,80 9,4 486 0,6156 0,00 5,2 89,0 90 7,4 45 23,6 B															_		
5	Cr	17 0,2429 53 299 5,8 2000 1,80 9,4 486 0,6156 0,00 5,2 89,0 90 7,4 45 23,6 B 27 0,3857 43 628 12,2 2000 1,80 15,0 771 0,8141 1,92 11,8 96,8 90 13,8 85 28,2 B															В		
6	C 1	14	0,2000	56	16	0,3	2000	1,80	7,8	400	0,0400	0,00	0,3	80,6	90	1,0	10	22,6	В
7	C 2	14	0,2000	56	16	0,3	2000	1,80	7,8	400	0,0400	0,00	0,3	80,6	90	1,0	10	22,6	В
8	CL	9	0,1286	61	18	0,4	1800	2,00	4,5	231	0,0778	0,00	0,3	88,0	90	1,1	10	26,8	В
9	D gr	11	0,1571	59	71	1,4	1942	1,85	5,9	305	0,2326	0,00	1,2	87,5	90	2,7	20	25,8	В
10	Dg	11	0,1571	59	73	1,4	1973	1,82	6,0	310	0,2354	0,00	1,2	87,5	90	2,7	20	25,8	В
11	DL	5	0,0714	65	44	0,9	1973	1,82	2,7	141	0,3122	0,00	0,8	95,0	90	2,1	15	30,9	В
12																			
13																			
14																			
15																			
16																			
17																			
18																			
19																			
20																			
	nsummen:				q _K =		[Fz/h]	C _K =	4366										
Gewic	htete Mittelwe	rte:			g =	0,6224	[-]	w =	26,9	[s]	QSV =	В							ļ

Ec	rmblatt 3									punkt mit									
	officiall 3						а) Nachwe	eis der Ve	rkehrsqu	alität im l	Kraftfahrz	zeugverke	ehr					
	Projekt:	Verkeh	ırsuntersu	chung	Grand Ce	ntral													
		Düssel																	
	Knotenpunkt:	51-18 H	Kölner Str	aße / L	udwig-Erh	nard-Allee	- Teilknot	en 2											
	Zeitabschnitt:		nspitze / N	lullfall (Ausbau Z	ufahrt Köl	ner Straße	e Süd)											
	Bearbeiter:	Hha																	
	t _U =	70	[s]	T =	60	[min]													
Nr.	Bez.	t_{F}	t_F/t_U	t_{S}	q	m	q_S	t_{B}	n _C	С	g	N_{GE}	n_H	Н	S	N_{RE}	I _{Stau}	W	QSV
		[s]	[-]	[s]	[Fz/h]	[Fz]	[Fz/h]	[s/Fz]	[Fz]	[Fz/h]	[-]	[Fz]	[Fz]	[%]	[%]	[Fz]	[m]	[s]	[-]
1	A1 g	35		35	242	4,7	1784	2,02	17,3	892	0,2713	0,00	2,7	57,8	90	4,5	30	10,1	Α
2	A1 I	35	12 0,1714 58 99 1,9 1800 2,00 6,0 309 0,3208 0,00 1,7 87,7 90 3,4 25 25,4 B															Α	
3	BV g		12 0,1714 58 99 1,9 1800 2,00 6,0 309 0,3208 0,00 1,7 87,7 90 3,4 25 25,4 B 12 0,1714 58 92 1,8 1661 2,17 5,5 285 0,3231 0,00 1,6 87,7 90 3,2 20 25,4 B																
4	BV gr		12 0,1714 58 99 1,9 1800 2,00 6,0 309 0,3208 0,00 1,7 87,7 90 3,4 25 25,4 B 12 0,1714 58 92 1,8 1661 2,17 5,5 285 0,3231 0,00 1,6 87,7 90 3,2 20 25,4 B															В	
5	D1L		12 0,1714 58 92 1,8 1661 2,17 5,5 285 0,3231 0,00 1,6 87,7 90 3,2 20 25,4 B 11 0,1571 59 142 2,8 1785 2,02 5,5 281 0,5062 0,00 2,5 91,6 90 4,5 30 27,0 B																
6	D1R	15	0,2143	55	225	4,4	1775	2,03	7,4	380	0,5915	0,00	3,9	90,0	90	6,1	40	24,7	В
7	D1R	15	0,2143	55	225	4,4	1775	2,03	7,4	380	0,5915	0,00	3,9	90,0	90	6,1	40	24,7	В
8																			
9																			
10																			
11																			
12																			
13																			
14																			
15																			
16																			
17																			
18																			
19																			
20																			
	nsummen:				q _K =	1530		C _K =	3412										
Gewic	htete Mittelwe	rte:			g =	0,4922	[-]	w =	18,6	[s]	QSV =	Α							

Ec	ormblatt 3											nalanlage							
FC	officiall 3						а) Nachwe	eis der Ve	rkehrsqu	alität im	Kraftfahr	zeugverke	ehr					
			rsuntersu	chung (Grand Ce	ntral													
		Düssel																	
	Knotenpunkt:	51-18 H	Kölner Str	aße / Li	udwig-Erh	nard-Allee	- Teilknot	en 2											
	Zeitabschnitt:		ittagsspitz	ze / Nul	lfall (Aust	oau Zufahi	rt Kölner S	Straße Sü	d)										
	Bearbeiter:	Hha																	
	t _∪ =	70	[s]	T =	60	[min]													
Nr.	Bez.	t _F	t _F /t∪	t _S	q	m	q_{S}	t_B	n_{C}	С	g	N_{GE}	n_H	Н	S	N_{RE}	I _{Stau}	W	QSV
		[s]	[-]	[s]	[Fz/h]	[Fz]	[Fz/h]	[s/Fz]	[Fz]	[Fz/h]	[-]	[Fz]	[Fz]	[%]	[%]	[Fz]	[m]	[s]	[-]
1	A1 g	34	0,4857	36	137	2,7	1800	2,00	17,0	874	0,1567	0,00	1,5	55,7	90	3,0	20	10,0	A
2	A1 I	34 0,4857 36 526 10,2 1779 2,02 16,8 864 0,6086 0,00 7,5 73,0 90 8,5 55 13,1 A 12 0,1714 58 206 4,0 1800 2,00 6,0 309 0,6676 0,25 3,8 94,4 90 6,2 40 30,0 B															Α		
3	BV g	12 0,1714 58 206 4,0 1800 2,00 6,0 309 0,6676 0,25 3,8 94,4 90 6,2 40 30,0 B 12 0,1714 58 188 3,7 1652 2,18 5,5 283 0,6639 0,20 3,4 94,2 90 5,8 40 29,6 B															В		
4	BV gr	12	12 0,1714 58 206 4,0 1800 2,00 6,0 309 0,6676 0,25 3,8 94,4 90 6,2 40 30,0 B 12 0,1714 58 188 3,7 1652 2,18 5,5 283 0,6639 0,20 3,4 94,2 90 5,8 40 29,6 B															В	
5	D1L	10	12 0,1714 58 188 3,7 1652 2,18 5,5 283 0,6639 0,20 3,4 94,2 90 5,8 40 29,6 B 10 0,1429 60 65 1,3 1779 2,02 4,9 254 0,2557 0,00 1,1 89,0 90 2,6 20 26,7 B															В	
6	D1R	16	0,2286	54	190	3,7	1777	2,03	7,9	406	0,4679		3,2	86,4	90	5,2	35	23,3	В
7	D1R	16	0,2286	54	190	3,7	1777	2,03	7,9	406	0,4679	0,00	3,2	86,4	90	5,2	35	23,3	В
8																			
9																			
10																			
11																			
12																			
13																			
14																			
15																			
16																			
17																			
18																			
19																			
20																			
	nsummen:				q _K =	1502		C _K =											
Gewic	htete Mittelwe	rte:			g =	0,5315	[-]	w =	20,4	[s]	QSV =	В							

Ec	rmblatt 3									punkt mit									
-	officiall 3						а) Nachwe	eis der Ve	rkehrsqu	alität im l	Kraftfahrz	zeugverke	ehr					
	Projekt:	Verkeh	rsuntersu	chung	Grand Ce	ntral													
		Düssel																	
	Knotenpunkt:	51-18 H	Kölner Str	aße / L	udwig-Erh	nard-Allee	- Teilknot	en 2											
	Zeitabschnitt:		nspitze / P	Planfall	(Ausbau 2	Zufahrt Kö	Iner Straß	se Süd)											
	Bearbeiter:	Hha																	
	t _U =	70	[s]	T =	60	[min]													
Nr.	Bez.	t_{F}	t_F/t_U	t_{S}	q	m	q_S	t_{B}	n _C	С	g	N_{GE}	n_H	Н	S	N_{RE}	I _{Stau}	W	QSV
		[s]	[-]	[s]	[Fz/h]	[Fz]	[Fz/h]	[s/Fz]	[Fz]	[Fz/h]	[-]	[Fz]	[Fz]	[%]	[%]	[Fz]	[m]	[s]	[-]
1	A1 g	35	0,5000	35	242	4,7	1784	2,02	17,3	892	0,2713	0,00	2,7	57,8	90	4,5	30	10,1	Α
2	A1 I	35	12 0,1714 58 99 1,9 1800 2,00 6,0 309 0,3208 0,00 1,7 87,7 90 3,4 25 25,4 B															Α	
3	BV g		12 0,1714 58 99 1,9 1800 2,00 6,0 309 0,3208 0,00 1,7 87,7 90 3,4 25 25,4 B 12 0,1714 58 92 1,8 1661 2,17 5,5 285 0,3231 0,00 1,6 87,7 90 3,2 20 25,4 B																
4	BV gr		12 0,1714 58 99 1,9 1800 2,00 6,0 309 0,3208 0,00 1,7 87,7 90 3,4 25 25,4 B 12 0,1714 58 92 1,8 1661 2,17 5,5 285 0,3231 0,00 1,6 87,7 90 3,2 20 25,4 B															В	
5	D1L		12 0,1714 58 92 1,8 1661 2,17 5,5 285 0,3231 0,00 1,6 87,7 90 3,2 20 25,4 B 11 0,1571 59 142 2,8 1785 2,02 5,5 281 0,5062 0,00 2,5 91,6 90 4,5 30 27,0 B																
6	D1R	15	0,2143	55	231	4,5	1775	2,03	7,4	380	0,6072	0,00	4,1	90,3	90	6,2	40	24,8	В
7	D1R	15	0,2143	55	231	4,5	1775	2,03	7,4	380	0,6072	0,00	4,1	90,3	90	6,2	40	24,8	В
8																			
9																			
10																			
11																			
12																			
13																			
14																			
15																			
16																			
17																			
18																			
19																			
20																			
	nsummen:				q _K =	1591		C _K =	3413										
Gewic	htete Mittelwe	rte:			g =	0,5191	[-]	w =	18,6	[s]	QSV =	Α							

	ormblatt 3											nalanlage							
г	Jilibiatt 3						а) Nachwe	eis der Ve	rkehrsqu	alität im	Kraftfahr	zeugverke	ehr					
			rsuntersu	chung (Grand Ce	ntral													
		Düssel																	
	Knotenpunkt:	51-18 I	Kölner Str	aße / Lı	udwig-Erh	nard-Allee	- Teilknot	en 2											
	Zeitabschnitt:		ittagsspitz	ze / Plaı	nfall (Aus	bau Zufah	rt Kölner	Straße Sü	id)										
	Bearbeiter:	Hha																	
	t _U =	70	[s]	T =	60	[min]													
Nr.	Bez.	t _F	t _F /t∪	t _S	q	m	q_S	t_B	n_C	С	g	N_{GE}	n_H	Н	S	N_{RE}	I _{Stau}	W	QSV
		[s]	[-]	[s]	[Fz/h]	[Fz]	[Fz/h]	[s/Fz]	[Fz]	[Fz/h]	[-]	[Fz]	[Fz]	[%]	[%]	[Fz]	[m]	[s]	[-]
1	A1 g	34	0,4857	36	137	2,7	1785	2,02	16,9	867	0,1580	0,00	1,5	55,7	90	3,0	20	10,0	Α
2	A1 I	34 0,4857 36 567 11,0 1779 2,02 16,8 864 0,6561 0,07 8,4 75,8 90 9,1 60 13,9 A 12 0,1714 58 206 4,0 1800 2,00 6,0 309 0,6676 0,25 3,8 94,4 90 6,2 40 30,0 B 12 0,4744 50 400 3,7 4050 2,40 5,5 303 0,6676 0,25 3,8 94,4 90 6,2 40 30,0 B																	
3	BV g		12 0,1714 58 206 4,0 1800 2,00 6,0 309 0,6676 0,25 3,8 94,4 90 6,2 40 30,0 B 12 0,1714 58 188 3,7 1652 2,18 5,5 283 0,6639 0,20 3,4 94,2 90 5,8 40 29,6 B															В	
4	BV gr		12 0,1714 58 206 4,0 1800 2,00 6,0 309 0,6676 0,25 3,8 94,4 90 6,2 40 30,0 B 12 0,1714 58 188 3,7 1652 2,18 5,5 283 0,6639 0,20 3,4 94,2 90 5,8 40 29,6 B																
5	D1L	10	12 0,1714 58 188 3,7 1652 2,18 5,5 283 0,6639 0,20 3,4 94,2 90 5,8 40 29,6 B 10 0,1429 60 65 1,3 1779 2,02 4,9 254 0,2557 0,00 1,1 89,0 90 2,6 20 26,7 B															В	
6	D1R	16	0,2286	54	203	3,9	1777	2,03	7,9	406	0,4997	0,00	3,4	87,1	90	5,5	35	23,5	В
7	D1R	16	0,2286	54	203	3,9	1777	2,03	7,9	406	0,4997	0,00	3,4	87,1	90	5,5	35	23,5	В
8																			
9																			
10																			
11																			
12																			
13																			
14																			
15																			
16																			
17																			
18 19																		1	
20																			
					~ -	4500	[F/l_1	C -	2202	[F=/k]									
	nsummen:				q _K =		[Fz/h]	C _K =			0.017								
Gewic	chtete Mittelwe	erte:			g =	0,5580	[-]	w =	20,6	[S]	QSV =	В							

E	ormblatt 3									punkt mit									
FC	orinbiatt 3						а) Nachwe	eis der Ve	rkehrsqu	alität im	Kraftfahr	zeugverke	ehr					
	Projekt:	Verkeh	rsuntersu	chung (Grand Ce	ntral													
	Stadt:	Düssel	dorf																
	Knotenpunkt:	52-02 \	Verdener	Straße	/ Kettwig	er Straße	/ Erkrathe	r Straße											
	Zeitabschnitt:	Morger	nspitze / B	Bestand															
	Bearbeiter:	Hha																	
	t _∪ =	70	[s]	T =	60	[min]													
Nr.	Bez.	t_{F}	t_F/t_U	ts	q	m	q_{S}	t_B	n_{C}	С	g	N_{GE}	n_H	Н	S	N_{RE}	I_{Stau}	w	QSV
		[s]	[-]	[s]	[Fz/h]	[Fz]	[Fz/h]	[s/Fz]	[Fz]	[Fz/h]	[-]	[Fz]	[Fz]	[%]	[%]	[Fz]	[m]	[s]	[-]
1	A gr	32	0,4571	38	641	12,5	1904	1,89	16,9	871	0,7358	1,00	10,7	85,9	90	11,7	75	19,7	Α
2	A g	32 0,4571 38 664 12,9 1968 1,83 17,5 900 0,7384 1,02 11,1 86,0 90 12,0 75 19,7 A 12 0,1714 58 301 5,9 1973 1,82 6,6 338 0,8900 3,21 5,9 100,0 90 12,1 75 62,5 D															Α		
3	AL	12 0,1714 58 301 5,9 1973 1,82 6,6 338 0,8900 3,21 5,9 100,0 90 12,1 75 62,5 D 24 0,3429 46 587 11,4 1880 1,92 12,5 644 0,9112 3,92 11,4 100,0 90 16,2 100 43,9 C															D		
4	B gr	12 0,1714 58 301 5,9 1973 1,82 6,6 338 0,8900 3,21 5,9 100,0 90 12,1 75 62,5 D 24 0,3429 46 587 11,4 1880 1,92 12,5 644 0,9112 3,92 11,4 100,0 90 16,2 100 43,9 C															С		
5	Bg	24 0,3429 46 587 11,4 1880 1,92 12,5 644 0,9112 3,92 11,4 100,0 90 16,2 100 43,9 C 24 0,3429 46 612 11,9 1952 1,84 13,0 669 0,9139 4,15 11,9 100,0 90 16,9 105 44,3 C															С		
6	BL	6	0,0857	64	21	0,4	1955	1,84	3,3	168	0,1253	0,00	0,4	92,4	90	1,2	10	29,6	В
7	C gr	15	-,	55	121	2,4	1909	1,89	8,0	409	0,2962	0,00	2,0	83,9	90	3,8	25	23,1	В
8	C g	15	0,2143	55	123	2,4	1935	1,86	8,1	415	0,2963	0,00	2,0	83,9	90	3,8	25	23,1	В
9	DR	19	0,2714	51	406	7,9	1964	1,83	10,4	533	0,7616	1,43	7,6	96,6	90	11,0	70	33,1	В
10	D	13	0,1857	57	372	7,2	1967	1,83	7,1	365	1,0182	11,17	7,2	100,0	90	16,2	100	138,7	F
11																			
12																			
13																			
14																			
15																			
16																			
17																			
18																			
19																			
20																			
	nsummen:				q _K =	3848		C _K =	5312										
Gewic	htete Mittelwe	rte:			g =	0,8022	[-]	w =	43,8	[s]	QSV =	С							

	11.46								Knoten	punkt mit	Lichtsia	nalanlage	<u> </u>						
Fo	ormblatt 3						a) Nachwe				Kraftfahrz		ehr					
	Projekt:	Verkeh	rsuntersu	chung (Grand Ce	ntral		,											
		Düssel																	-
	Knotenpunkt:	52-02 \	Verdener	Straße	/ Kettwig	er Straße	/ Erkrathe	r Straße											
	Zeitabschnitt:	Nachm	ittagsspitz	ze / Bes	stand														
	Bearbeiter:	Hha																	
	t _U =	70	[s]	T =	60	[min]													
Nr.	Bez.	t _F	t _F /t∪	ts	q	m	q_{S}	t_{B}	n_{C}	С	g	N_{GE}	n_H	Н	S	N_{RE}	I _{Stau}	w	QSV
		[s]	[-]	[s]	[Fz/h]	[Fz]	[Fz/h]	[s/Fz]	[Fz]	[Fz/h]	[-]	[Fz]	[Fz]	[%]	[%]	[Fz]	[m]	[s]	[-]
1	A gr	32	0,4571	38	579	11,3	1960	1,84	17,4	896	0,6466	0,00	8,7	77,1	90	9,6	60	14,6	A
2	A g	32	32 0,4571 38 592 11,5 2000 1,80 17,8 914 0,6471 0,00 8,9 77,1 90 9,8 60 14,6 A 12 0,1714 58 390 7,6 1974 1,82 6,6 338 1,1522 28,11 7,6 100,0 90 15,6 95 329,0 F															Α	
3	AL		12 0,1714 58 390 7,6 1974 1,82 6,6 338 1,1522 28,11 7,6 100,0 90 15,6 95 329,0 F 24 0,3429 46 652 12,7 1970 1,83 13,1 675 0,9659 8,68 12,7 100,0 90 21,0 130 68,9 D															F	
4	B gr	24	12 0,1714 58 390 7,6 1974 1,82 6,6 338 1,1522 28,11 7,6 100,0 90 15,6 95 329,0 F 24 0,3429 46 652 12,7 1970 1,83 13,1 675 0,9659 8,68 12,7 100,0 90 21,0 130 68,9 D															D	
5	Bg	24	12 0,1714 58 390 7,6 1974 1,82 6,6 338 1,1522 28,11 7,6 100,0 90 15,6 95 329,0 F 24 0,3429 46 652 12,7 1970 1,83 13,1 675 0,9659 8,68 12,7 100,0 90 21,0 130 68,9 D 24 0,3429 46 663 12,9 2000 1,80 13,3 686 0,9664 8,78 12,9 100,0 90 21,2 130 68,7 D															D	
6	BL	6	0,0857	64	39	0,8	2000	1,80	3,3	171	0,2275	0,00	0,7	93,2	90	1,9	15	29,8	В
7	C gr	15	-,	55	328	6,4	1962	1,84	8,2	420	0,7814	1,74	6,4	99,8	90	10,4	65	40,8	С
8	C g	15	,	55	331	6,4	1974	1,82	8,2	423	0,7815	1,74	6,4	99,8	90	10,5	65	40,7	С
9	DR	19	0,2714	51	388	7,5	2000	1,80	10,6	543	0,7147	0,83	7,0	93,1	90	9,9	60	28,6	В
10	D	13	0,1857	57	363	7,1	2000	1,80	7,2	371	0,9773	7,43	7,1	100,0	90	16,3	100	100,4	F
11																			
12																			
13																			
14																			
15				-															
16																			
17				-															
18 19																			
20				+									-			+			
	nsummen:				q _K =	4325	[Fz/h]	C _K =	5439	[Fz/h]									
	chtete Mittelwe	rto:				0,8401				<u> </u>	QSV =	E							
Gewic	mete millelwe	ne.			g =	0,0401	[-]	w =	72,0	[8]	U SV =								

Ec	ormblatt 3								Knoten	ounkt mit	Lichtsig	nalanlage)						
FC	orinbiatt 3						а) Nachwe	eis der Ve	rkehrsqu	alität im	Kraftfahrz	zeugverke	ehr					
			ırsuntersu	chung (Grand Ce	ntral													
		Düssel																	
	Knotenpunkt:				/ Kettwig	er Straße	/ Erkrathe	r Straße											
	Zeitabschnitt:		nspitze / N	lullfall															
	Bearbeiter:																		
	t _U =	70	[s]	T =	60	[min]													
Nr.	Bez.	t_F	t_F/t_U	ts	q	m	q_S	t_B	n_{C}	С	g	N_{GE}	n_H	Н	S	N_{RE}	I _{Stau}	W	QSV
		[s]	[-]	[s]	[Fz/h]	[Fz]	[Fz/h]	[s/Fz]	[Fz]	[Fz/h]	[-]	[Fz]	[Fz]	[%]	[%]	[Fz]	[m]	[s]	[-]
1	A gr	32	0,4571	38	653	12,7	1834	1,96	16,3	838	0,7784	1,49	11,5	90,8	90	12,5	80	22,4	В
2	A g	32	0,4571	38	705	13,7	1968	1,83	17,5	900	0,7840	1,53	12,5	90,8	90	13,2	80	22,2	В
3	AL	12	0,1714	58	299	5,8	1973	1,82	6,6	338	0,8841	3,13	5,8	100,0	90	11,9	75	61,7	D
4	B gr	24	0,3429	46	621	12,1	1883	1,91	12,6	646	0,9614	8,14	12,1	100,0	90	20,5	125	67,9	D
5	Bg	24	0,3429	46	645	12,5	1953	1,84	13,0	669	0,9640	8,48	12,5	100,0	90	20,9	130	68,2	D
6	BL	6	0,0857	64	22	0,4	1957	1,84	3,3	168	0,1312	0,00	0,4	92,5	90	1,3	10	29,6	В
7	C gr	15	0,2143	55	133	2,6	1888	1,91	7,9	405	0,3284	0,00	2,2	84,5	90	4,0	25	23,2	В
8	C g	15	,	55	136	2,6	1933	1,86	8,1	414	0,3287	0,00	2,2	84,5	90	4,1	30	23,2	В
9	DR	19	0,2714	51	410	8,0	1964	1,83	10,4	533	0,7690	1,52	7,7	97,1	90	11,1	70	33,7	В
10	D	13	0,1857	57	475	9,2	1968	1,83	7,1	365	1,2998	54,78	9,2	100,0	90	16,2	100	570,2	F
11																			
12																			
13																			
14																			
15 16				-															
17				+						-		-		-		-			
18				-															
19																			
20																			
	nsummen:				q _K =	4099	[Fz/h]	C _K =	5276	[Fz/h]			<u>l</u>	<u> </u>		L			
Gewic	htete Mittelwe	rte:			g =	0,8705		w =	104,0		QSV =	F							

Ea	rmblatt 3											nalanlage							
FC	orinbiatt 3						а) Nachwe	eis der Ve	rkehrsqu	alität im	Kraftfahr	zeugverke	ehr					
	Projekt:	Verkeh	rsuntersu	chung	Grand Ce	ntral													
	Stadt:	Düssel	dorf																
	Knotenpunkt:					er Straße	/ Erkrathe	r Straße											
	Zeitabschnitt:	Nachm	ittagsspitz	ze / Nul	lfall														
	Bearbeiter:	Hha																	
	t _∪ =	70	[s]	T =	60	[min]													
Nr.	Bez.	t _F	t_F/t_U	ts	q	m	q_S	t_B	n_{C}	С	g	N_{GE}	n_H	Н	S	N_{RE}	I _{Stau}	W	QSV
		[s]	[-]	[s]	[Fz/h]	[Fz]	[Fz/h]	[s/Fz]	[Fz]	[Fz/h]	[-]	[Fz]	[Fz]	[%]	[%]	[Fz]	[m]	[s]	[-]
1	A gr	32	0,4571	38	593	11,5	1953	1,84	17,4	893	0,6639	0,16	9,1	78,6	90	10,0	65	15,5	Α
2	Ag	32	0,4571	38	607	11,8	2000	1,80	17,8	914	0,6644	0,17	9,3	78,6	90	10,2	65	15,5	Α
3	AL	12	0,1714	58	386	7,5	1974	1,82	6,6	338	1,1405	26,58	7,5	100,0	90	15,6	95	312,6	F
4	B gr	24	0,3429	46	666	13,0	1971	1,83	13,1	676	0,9862	10,46	13,0	100,0	90	21,1	130	78,5	Е
5	Bg	24	0,3429	46	677	13,2	2000	1,80	13,3	686	0,9866	10,57	13,2	100,0	90	21,2	130	78,3	Е
6	BL	6	0,0857	64	40	0,8	2000	1,80	3,3	171	0,2333	0,00	0,7	93,3	90	1,9	15	29,9	В
7	C gr	15	-,	55	351	6,8	1962	1,83	8,2	421	0,8358	2,43	6,8	100,0	90	11,7	75	47,1	С
8	Сg	15	0,2143	55	354	6,9	1974	1,82	8,2	423	0,8359	2,43	6,9	100,0	90	11,8	75	47,0	С
9	DR	19	0,2714	51	388	7,5	2000	1,80	10,6	543	0,7147	0,83	7,0	93,1	90	9,9	60	28,6	В
10	D	13	0,1857	57	396	7,7	2000	1,80	7,2	371	1,0662	18,24	7,7	100,0	90	16,3	100	205,8	F
11																			
12																			
13																			
14																			
15																			
16																			
17																			
18																			
19																			
20																			
	nsummen:				q _K =	4458		C _K =		[Fz/h]									
Gewic	htete Mittelwe	rte:			g =	0,8659	[-]	w =	83,3	[s]	QSV =	Е							

Ec	ormblatt 3											nalanlage							
	officiall 3						а) Nachwe	eis der Ve	rkehrsqu	alität im	Kraftfahrz	zeugverke	ehr					
	Projekt:	Verkeh	ırsuntersu	chung (Grand Ce	ntral													
		Düssel																	
	Knotenpunkt:				/ Kettwig	er Straße	/ Erkrathe	r Straße											
	Zeitabschnitt:		nspitze / F	Planfall															
	Bearbeiter:	Hha																	
	t _U =	70	[s]	T =	60	[min]													
Nr.	Bez.	t _F	t_F/t_U	t_{S}	q	m	q_{S}	t_B	n_{C}	С	g	N_{GE}	n_H	Н	S	N_{RE}	I_{Stau}	w	QSV
		[s]	[-]	[s]	[Fz/h]	[Fz]	[Fz/h]	[s/Fz]	[Fz]	[Fz/h]	[-]	[Fz]	[Fz]	[%]	[%]	[Fz]	[m]	[s]	[-]
1	A gr	32	0,4571	38	656	12,8	1833	1,96	16,3	838	0,7834	1,55	11,7	91,3	90	12,6	80	22,7	В
2	Ag	32	0,4571	38	710	13,8	1968	1,83	17,5	900	0,7887	1,58	12,6	91,3	90	13,3	85	22,4	В
3	AL	12	0,1714	58	299	5,8	1973	1,82	6,6	338	0,8841	3,13	5,8	100,0	90	11,9	75	61,7	D
4	B gr	24	0,3429	46	629	12,2	1884	1,91	12,6	646	0,9730	9,12	12,2	100,0	90	20,5	125	73,5	Е
5	Bg	24	0,3429	46	653	12,7	1953	1,84	13,0	670	0,9756	9,50	12,7	100,0	90	20,9	130	73,8	Е
6	BL	6	0,0857	64	30	0,6	1967	1,83	3,3	169	0,1780	0,00	0,5	92,8	90	1,6	10	29,7	В
7	C gr	15	0,2143	55	145	2,8	1898	1,90	7,9	407	0,3561	0,00	2,4	85,1	90	4,3	30	23,4	В
8	Cg	15	0,2143	55	148	2,9	1941	1,85	8,1	416	0,3563	0,00	2,5	85,1	90	4,4	30	23,4	В
9	DR	19	0,2714	51	410	8,0	1964	1,83	10,4	533	0,7690	1,52	7,7	97,1	90	11,1	70	33,7	В
10	D	13	0,1857	57	488	9,5	1968	1,83	7,1	366	1,3350	61,23	9,5	100,0	90	16,2	100	633,8	F
11																			
12																			
13																			
14																			
15																			
16																			
17																			
18																			
19																			
20																			
	nsummen:				q _K =	4168		C _K =	5281										
Gewic	htete Mittelwe	rte:			g =	0,8790	[-]	w =	113,9	[s]	QSV =	F							

_	11.44.0								Knoten	punkt mit	Lichtsig	nalanlage)						
Fo	ormblatt 3						а) Nachwe				Kraftfahra		ehr					
	Projekt:	Verkeh	rsuntersu	chung (Grand Ce	ntral													-
	Stadt:	Düssel	dorf																
	Knotenpunkt:	52-02 \	Verdener	Straße	/ Kettwig	er Straße	/ Erkrathe	r Straße											
	Zeitabschnitt:	Nachm	ittagsspitz	ze / Plai	nfall														
	Bearbeiter:	Hha																	
	t _U =	70	[s]	T =	60	[min]													
Nr.	Bez.	t _F	t_{F}/t_{U}	ts	q	m	q_S	t_B	n_{C}	С	g	N_{GE}	n_H	Н	S	N_{RE}	I _{Stau}	w	QSV
		[s]	[-]	[s]	[Fz/h]	[Fz]	[Fz/h]	[s/Fz]	[Fz]	[Fz/h]	[-]	[Fz]	[Fz]	[%]	[%]	[Fz]	[m]	[s]	[-]
1	A gr	32	0,4571	38	601	11,7	1947	1,85	17,3	890	0,6747	0,29	9,3	79,6	90	10,3	65	16,1	A
2	Ag	32	0,4571	38	617	12,0	2000	1,80	17,8	914	0,6753	0,30	9,6	79,6	90	10,5	65	16,1	Α
3	AL	12	0,1714	58	386	7,5	1974	1,82	6,6	338	1,1405	26,58	7,5	100,0	90	15,6	95	312,6	F
4	B gr	24	0,3429	46	672	13,1	1971	1,83	13,1	676	0,9949	11,23	13,1	100,0	90	21,1	130	82,7	Е
5	Bg	24	0,3429	46	683	13,3	2000	1,80	13,3	686	0,9954	11,35	13,3	100,0	90	21,2	130	82,5	Е
6	BL	6	0,0857	64	58	1,1	2000	1,80	3,3	171	0,3383	0,00	1,1	94,2	90	2,5	20	30,1	В
7	C gr	15	0,2143	55	361	7,0	1963	1,83	8,2	421	0,8581	2,71	7,0	100,0	90	12,3	75	49,7	С
8	Cg	15	0,2143	55	363	7,1	1974	1,82	8,2	423	0,8582	2,71	7,1	100,0	90	12,3	75	49,6	С
9	DR	19	0,2714	51	388	7,5	2000	1,80	10,6	543	0,7147	0,83	7,0	93,1	90	9,9	60	28,6	В
10	D	13	0,1857	57	423	8,2	2000	1,80	7,2	371	1,1388	28,78	8,2	100,0	90	16,3	100	308,4	F
11																			
12																			
13																			
14																			
15																			
16																			
17																			
18																			
19																			
20																ļ			
	nsummen:				q _K =	4552		C _K =	5434										
Gewic	htete Mittelwe	rte:			g =	0,8811	[-]	w =	94,8	[s]	QSV =	E							

Ea	rmblatt 3											nalanlage							-
го	illibiati 3						а) Nachwe	eis der Ve	rkehrsqu	alität im	Kraftfahrz	zeugverke	ehr					
			ırsuntersu	chung	Grand Ce	ntral													
		Düssel																	
	Knotenpunkt:					er Straße													
i	Zeitabschnitt:		nspitze / N	lullfall (Basis)														
	Bearbeiter:	Hha																	
	t _∪ =	70	[s]	T =	60	[min]													
Nr.	Bez.	$t_{\scriptscriptstyle{F}}$	t_F/t_U	t_{S}	q	m	q_{S}	t_B	n_{C}	С	g	N_{GE}	n_H	Н	S	N_{RE}	I_{Stau}	W	QSV
		[s]	[-]	[s]	[Fz/h]	[Fz]	[Fz/h]	[s/Fz]	[Fz]	[Fz/h]	[-]	[Fz]	[Fz]	[%]	[%]	[Fz]	[m]	[s]	[-]
1	ΑI	14	0,2000	56	55	1,1	1983	1,82	7,7	397	0,1387	0,00	0,9	82,3	90	2,2	15	23,0	В
2	Ar	14	0,2000	56	210	4,1	1800	2,00	7,0	360	0,5833	0,00	3,7	90,6	90	5,8	40	25,4	В
3	CI	18	0,2571	52	8	0,2	2000	1,80	10,0	514	0,0156	0,00	0,1	74,6	90	0,6	5	19,4	Α
4	C g1	18	0,2571	52	40	0,8	1963	1,83	9,8	505	0,0792	0,00	0,6	75,8	90	1,7	15	19,7	Α
5	C g2	18		52	39	0,8		1,83	9,8	505	0,0773	0,00	0,6	75,8	90	1,6	15	19,7	Α
6	D gr	20	0,2857	50	57	1,1	1881	1,91	10,4	537	0,1061	0,00	0,8	73,7	90	2,0	15	18,4	Α
7	Dg	20	0,2857	50	59	1,1	1967	1,83	10,9	562	0,1050	0,00	0,8	73,6	90	2,1	15	18,4	Α
8																			
9																			
10																			
11																			
12																			
13																			
14 15																			
16																		-	
17																			
18																			
19												-	+					+	
20																		1	
	nsummen:				q _K =	468	[Fz/h]	C _K =	3380	[Fz/h]			<u>l</u>	<u> </u>			<u>l</u>	<u>J</u>	
Gewic	htete Mittelwe	rte:			g =			w =	22,3		QSV =	В							

Ea	rmblatt 3											nalanlage							
	illibiatt 3						а) Nachwe	eis der Ve	rkehrsqu	alität im	Kraftfahra	zeugverke	ehr					
	Projekt:	Verkeh	nrsuntersu	chung	Grand Ce	ntral													
		Düssel																	
	Knotenpunkt:	52-33 I	Moskauer	Straße	/ Erkrath	er Straße													
	Zeitabschnitt:		nspitze / N	lullfall (geänderte	es Signalp	rogramm)												
	Bearbeiter:	Hha																	
	t _U =	70	[s]	T =	60	[min]													
Nr.	Bez.	t_{F}	t_F/t_U	ts	q	m	q_{S}	t_B	n_{C}	С	g	N_{GE}	n_H	Н	S	N_{RE}	I _{Stau}	W	QSV
		[s]	[-]	[s]	[Fz/h]	[Fz]	[Fz/h]	[s/Fz]	[Fz]	[Fz/h]	[-]	[Fz]	[Fz]	[%]	[%]	[Fz]	[m]	[s]	[-]
1	ΑI	15	-,	55	55	1,1	1983	1,82	8,3	425	0,1294	0,00	0,9	80,8	90	2,1	15	22,2	В
2	Ar	15	,	55	210	4,1	1800	2,00	7,5	386	0,5444	0,00	3,6	88,9	90	5,7	35	24,5	В
3	CI	17	0,2429	53	8	0,2	2000	1,80	9,4	486	0,0165	0,00	0,1	76,0	90	0,6	5	20,1	В
4	C g1	17	0,2429	53	40	0,8	1963	1,83	9,3	477	0,0839	0,00	0,6	77,3	90	1,7	15	20,5	В
5	C g2	17	0,2429	53	39	0,8	1963	1,83	9,3	477	0,0818		0,6	77,2	90	1,6	15	20,5	В
6	D gr	20	0,2857	50	57	1,1	1881	1,91	10,4	537	0,1061	0,00	0,8	73,7	90	2,0	15	18,4	Α
7	Dg	20	0,2857	50	59	1,1	1967	1,83	10,9	562	0,1050	0,00	0,8	73,6	90	2,1	15	18,4	Α
8																			
9																			
10																			
11																			
12																			
13																			
14																			
15																			
16																			
17																			
18																			
19																			
20																			
	nsummen:				q _K =		[Fz/h]	C _K =	3349		0.017								
Gewic	htete Mittelwe	rte:			g =	0,2999	<u>[-]</u>	w =	22,0	[8]	QSV =	В							

Eo	rmblatt 3								Knoten	punkt mit	Lichtsig	nalanlage)						
-							а) Nachwe	eis der Ve	erkehrsqu	alität im	Kraftfahr	zeugverke	ehr					
			rsuntersu	chung (Grand Ce	ntral													
	Stadt:	Düssel	dorf																
	Knotenpunkt:					er Straße													
	Zeitabschnitt:	Nachm	ittagsspitz	ze / Nul	lfall														
	Bearbeiter:	Hha																	
	t _U =	70	[s]	T =	60	[min]													
Nr.	Bez.	t_{F}	t_F/t_U	ts	q	m	q_S	t_{B}	n _C	С	g	N_{GE}	n_H	Н	S	N_{RE}	I _{Stau}	W	QSV
		[s]	[-]	[s]	[Fz/h]	[Fz]	[Fz/h]	[s/Fz]	[Fz]	[Fz/h]	[-]	[Fz]	[Fz]	[%]	[%]	[Fz]	[m]	[s]	[-]
1	ΑI	16	0,2286	54	12	0,2	2000	1,80	8,9	457	0,0263	0,00	0,2	77,6	90	0,8	10	21,0	В
2	Ar	16	0,2286	54	33	0,6		2,00	8,0	411	0,0802	0,00	0,5	78,6	90	1,5	10	21,2	В
3	CI	17	0,2429	53	13	0,3	2000	1,80	9,4	486	0,0268	0,00	0,2	76,2	90	0,8	10	20,2	В
4	C g1	17	0,2429	53	23	0,4	1974	1,82	9,3	479	0,0480	0,00	0,3	76,6	90	1,2	10	20,3	В
5	C g2	17	0,2429	53	23	0,4	1974	1,82	9,3	479	0,0480	0,00	0,3	76,6	90	1,2	10	20,3	В
6	D gr	19	0,2714	51	55	1,1	1960	1,84	10,3	532	0,1034	0,00	0,8	75,0	90	2,0	15	19,1	Α
7	Dg	19	0,2714	51	55	1,1	1980	1,82	10,4	537	0,1024	0,00	0,8	74,9	90	2,0	15	19,1	Α
8																			
9																			
10																			
11																			
12																			
13																			
14																			
15																			
16																			
17																			
18																			
19																			
20																			
	nsummen:				q _K =		[Fz/h]	C _K =		[Fz/h]									
Gewic	htete Mittelwe	rte:			g =	0,0787	[-]	w =	19,9	[s]	QSV =	Α							

Ea	rmblatt 3											nalanlage							
го	illibiati 3						а) Nachwe	eis der Ve	rkehrsqu	alität im l	Kraftfahrz	zeugverke	ehr					
			ırsuntersu	chung	Grand Ce	ntral													
		Düssel																	
	Knotenpunkt:					er Straße													
·	Zeitabschnitt:		nspitze / F	Planfall	(Basis)														
	Bearbeiter:	Hha																	
	t _U =	70	[s]	T =	60	[min]													
Nr.	Bez.	t _F	t_F/t_U	ts	q	m	q_{S}	t_B	n_{C}	С	g	N_GE	n_H	Н	S	N_{RE}	I_{Stau}	W	QSV
		[s]	[-]	[s]	[Fz/h]	[Fz]	[Fz/h]	[s/Fz]	[Fz]	[Fz/h]	[-]	[Fz]	[Fz]	[%]	[%]	[Fz]	[m]	[s]	[-]
1	ΑI	14	0,2000	56	55	1,1	1983	1,82	7,7	397	0,1387	0,00	0,9	82,3	90	2,2	15	23,0	В
2	A r	14	0,2000	56	251	4,9	1800	2,00	7,0	360	0,6972	0,65	4,6	95,1	90	7,6	50	32,5	В
3	CI	18	0,2571	52	25	0,5	2000	1,80	10,0	514	0,0486	0,00	0,4	75,2	90	1,2	10	19,6	Α
4	C g1	18	0,2571	52	40	0,8	1963	1,83	9,8	505	0,0792	0,00	0,6	75,8	90	1,7	15	19,7	Α
5	C g2	18	,	52	39	0,8		1,83	9,8	505	0,0773	0,00	0,6	75,8	90	1,6	15	19,7	Α
	D gr	20	0,2857	50	57	1,1	1881	1,91	10,4	537	0,1061	0,00	0,8	73,7	90	2,0	15	18,4	Α
7	D g	20	0,2857	50	59	1,1	1967	1,83	10,9	562	0,1050	0,00	0,8	73,6	90	2,1	15	18,4	Α
8																			
9																			
10																			
11																			
12																			
13																			
14 15																		-	
16																			
17																			
18													<u> </u>	<u> </u>				1	
19																		-	
20																			
	nsummen:				q _K =	526	[Fz/h]	C _K =	3380	[Fz/h]				·		ı			
Gewic	htete Mittelwe	rte:			g =			w =	25,9		QSV =	В							

Eo	rmblatt 3									punkt mit									
го	illibiati 3						а) Nachwe	eis der Ve	rkehrsqu	alität im	Kraftfahr	zeugverk	ehr					
			nrsuntersu	chung	Grand Ce	ntral													
		Düssel																	
	Knotenpunkt:																		
·	Zeitabschnitt:		nspitze / F	Planfall	(geändert	es Signal _l	programm)											
	Bearbeiter:																		
	t _U =	70	[s]	T =	60	[min]													
Nr.	Bez.	t _F	t_F/t_U	ts	q	m	q_{S}	t_B	n_{C}	С	g	N_GE	n_H	Н	S	N_{RE}	I _{Stau}	W	QSV
		[s]	[-]	[s]	[Fz/h]	[Fz]	[Fz/h]	[s/Fz]	[Fz]	[Fz/h]	[-]	[Fz]	[Fz]	[%]	[%]	[Fz]	[m]	[s]	[-]
1	ΑI	25	0,3571	45	55	1,1	1983	1,82	13,8	708	0,0776	0,00	0,7	66,1	90	1,9	15	14,9	A
2	Ar	25	0,3571	45	251	4,9	1800	2,00	12,5	643	0,3904	0,00	3,6	74,7	90	5,6	35	16,8	Α
3	CI	7	0,1000	63	25	0,5	2000	1,80	3,9	200	0,1250	0,00	0,4	91,1	90	1,4	10	28,7	В
4	C g1	7	0,1000	63	40	0,8	1963	1,83	3,8	196	0,2038	0,00	0,7	91,9	90	1,9	15	28,9	В
5	C g2	7	0,1000	63	39	0,8	1963	1,83	3,8	196	0,1987	0,00	0,7	91,8	90	1,8	15	28,9	В
	D gr	20	0,2857	50	57	1,1	1881	1,91	10,4	537	0,1061	0,00	0,8	73,7	90	2,0	15	18,4	Α
	Dg	20	0,2857	50	59	1,1	1967	1,83	10,9	562	0,1050	0,00	0,8	73,6	90	2,1	15	18,4	Α
8																			
9																			
10																			
11																			
12																			
13																			
14																			
15 16																		1	
17																		-	
18													-	-			+	-	
19																			
20																	İ	1	
	nsummen:				q _K =	526	[Fz/h]	C _K =	3043	[Fz/h]									
	htete Mittelwe	rte:			q =				19,3		QSV =	Α							

Ea	rmblatt 3											nalanlage							
го	illibiati 3						а) Nachwe	eis der Ve	rkehrsqu	alität im	Kraftfahrz	zeugverke	ehr					
			ırsuntersu	chung	Grand Ce	entral													
		Düssel																	
	Knotenpunkt:					er Straße													
·	Zeitabschnitt:		ittagsspitz	ze / Pla	nfall														
	Bearbeiter:	Hha																	
	t _U =	70	[s]	T =	60	[min]													
Nr.	Bez.	t_{F}	t_F/t_U	ts	q	m	q_{S}	t_B	n_{C}	С	g	N_{GE}	n_H	Н	S	N_{RE}	I_{Stau}	W	QSV
		[s]	[-]	[s]	[Fz/h]	[Fz]	[Fz/h]	[s/Fz]	[Fz]	[Fz/h]	[-]	[Fz]	[Fz]	[%]	[%]	[Fz]	[m]	[s]	[-]
1	ΑI	16	0,2286	54	12	0,2	1983	1,82	8,8	453	0,0265	0,00	0,2	77,6	90	0,8	10	21,0	В
2	A r	16	0,2286	54	89	1,7	1800	2,00	8,0	411	0,2163	0,00	1,4	81,2	90	3,0	20	21,9	В
3	CI	17	0,2429	53	36	0,7	2000	1,80	9,4	486	0,0741	0,00	0,5	77,1	90	1,6	10	20,4	В
4	C g1	17	0,2429	53	23	0,4	1974	1,82	9,3	479	0,0480	0,00	0,3	76,6	90	1,2	10	20,3	В
5	C g2	17	0,2429	53	23	0,4	1974	1,82	9,3	479	0,0480	0,00	0,3	76,6	90	1,2	10	20,3	В
	D gr	19	0,2714	51	55	1,1	1960	1,84	10,3	532	0,1034	0,00	0,8	75,0	90	2,0	15	19,1	Α
7	D g	19	0,2714	51	55	1,1	1980	1,82	10,4	537	0,1024	0,00	0,8	74,9	90	2,0	15	19,1	Α
8																			
9																			
10																			
11																			
12 13																			
14																			
15																			
16													<u> </u>						
17																			
18																			
19																			
20																			
	nsummen:				q _K =	293	[Fz/h]	C _K =	3379	[Fz/h]									
Gewic	htete Mittelwe	rte:			g =	0,1220	[-]	w =	20,4	[s]	QSV =	В							

Knotenpunkt: Erkrather Straße / Moskauer Straße

Verkehrsdaten: Datum: Nullfall

Uhrzeit: vormittägliche Spitzenstunde

Lage: innerorts

Verkehrsregelung: Zufahrt C: Z 205 - Vorfahrt beachten

Knotenverkehrsstärke: 1070 Fz/h

			Kapazit	äten der Einze	lströme			
Strom (Rang)	Verkehrsstärke	übergeordnete Verkehrsstärke	Grundkapazität	Kapazität	Sättigungs- grad	Wahrscheinlich- keit rückstau- freier Zustand	mittlere Wartezeit	Qualitäts- stufe
	q _{PE,i}	$\mathbf{q}_{p,i}$	Gi	Ci	g _i	p ₀ , p ₀ * oder p ₀ **	w	QSV
	[Pkw-E/h]	[Fz/h]	[Pkw-E/h]	[Pkw-E/h]	[-]	[-]	[s]	
2 (1)	378	0	1800	1800	0,21	1,000	0,0	Α
3 (1)	91	0	1800	1800	0,05	1,000	0,0	Α
4 (3)	20	980	264	243	0,08	-	16,1	В
6 (2)	24	412	571	571	0,04	-	6,6	Α
7 (2)	66	458	811	811	0,08	0,919	4,8	Α
8 (1)	510	0	3600	3600	0,14	1,000	0,0	Α

			Qualit	tät der Einzel-	und Mischströ	me			
Strom	Verkehrsstärke	Kapazität	Sättigungs- grad	Kapazitäts- reserve	mittlere Wartezeit	Qualitäts- stufe	Sta	auraumbemes	sung
	q _{PE}	С	g	R	w	QSV	s	Ns	I _{STAU}
	[Pkw-E/h]	[Pkw-E/h]	[-]	[Pkw-E/h]	[s]		[%]	[Pkw-E]	[m]
2 + 3	469	1800	0,26	1331	0,0	Α			
4	20	243	0,08	223	16,1	В	95	1	6
6	24	571	0,04	547	6,6	Α	95	1	6
7	66	811	0,08	745	4,8	Α	95	1	6
8	510	3600	0,14	3090	0,0	Α			

Knotenpunkt: Erkrather Straße / Moskauer Straße

Datum: Verkehrsdaten:

Nullfall nachmittägliche Spitzenstunde Uhrzeit:

innerorts Lage:

Verkehrsregelung: Zufahrt C: Z 205 - Vorfahrt beachten

1219 Fz/h Knotenverkehrsstärke:

	Kapazitäten der Einzelströme												
Strom (Rang)	Verkehrsstärke	übergeordnete Verkehrsstärke	Grundkapazität	Kapazität	Sättigungs- grad	Wahrscheinlich- keit rückstau- freier Zustand	mittlere Wartezeit	Qualitäts- stufe					
	q _{PE,i}	$\mathbf{q}_{p,i}$	Gi	C_{i}	g _i	p ₀ , p ₀ * oder p ₀ **	w	QSV					
	[Pkw-E/h]	[Fz/h]	[Pkw-E/h]	[Pkw-E/h]	[-]	[-]	[s]						
2 (1)	592	0	1800	1800	0,33	1,000	0,0	Α					
3 (1)	32	0	1800	1800	0,02	1,000	0,0	Α					
4 (3)	67	1088	229	218	0,31	-	23,8	С					
6 (2)	48	604	446	446	0,11	-	9,0	Α					
7 (2)	33	620	672	672	0,05	0,951	5,6	Α					
8 (1)	456	0	3600	3600	0,13	1,000	0,0	Α					

			Qualit	tät der Einzel-	und Mischströ	me			
Strom	Verkehrsstärke	Kapazität	Sättigungs- grad	Kapazitäts- reserve	mittlere Wartezeit	Qualitäts- stufe	Sta	auraumbemes	sung
	q_{PE}	С	g	R	w	QSV	s	Ns	I _{STAU}
	[Pkw-E/h]	[Pkw-E/h]	[-]	[Pkw-E/h]	[s]		[%]	[Pkw-E]	[m]
2 + 3	624	1800	0,35	1176	0,0	Α			
4	67	218	0,31	151	23,8	С	95	2	12
6	48	446	0,11	398	9,0	Α	95	1	6
7	33	672	0,05	639	5,6	Α	95	1	6
8	456	3600	0,13	3144	0,0	А			

Knotenpunkt: Erkrather Straße / Moskauer Straße

Datum: Verkehrsdaten:

Planfall vormittägliche Spitzenstunde Uhrzeit:

innerorts Lage:

Verkehrsregelung: Zufahrt C: Z 205 - Vorfahrt beachten

1166 Fz/h Knotenverkehrsstärke:

	Kapazitäten der Einzelströme												
Strom (Rang)	Verkehrsstärke	übergeordnete Verkehrsstärke	Grundkapazität	Kapazität	Sättigungs- grad	Wahrscheinlich- keit rückstau- freier Zustand	mittlere Wartezeit	Qualitäts- stufe					
	q _{PE,i}	$\mathbf{q}_{p,i}$	Gi	C_{i}	9	p ₀ , p ₀ * oder p ₀ **	w	QSV					
	[Pkw-E/h]	[Fz/h]	[Pkw-E/h]	[Pkw-E/h]	[-]	[-]	[s]						
2 (1)	400	0	1800	1800	0,22	1,000	0,0	Α					
3 (1)	117	0	1800	1800	0,06	1,000	0,0	Α					
4 (3)	25	1047	241	214	0,12	-	19,0	В					
6 (2)	36	447	546	546	0,07	-	7,1	Α					
7 (2)	86	505	768	768	0,11	0,888	5,3	Α					
8 (1)	522	0	3600	3600	0,14	1,000	0,0	Α					

	Qualität der Einzel- und Mischströme													
Strom	Verkehrsstärke	Kapazität	Sättigungs- grad	Kapazitäts- reserve	mittlere Wartezeit	Qualitäts- stufe	St	auraumbemes	sung					
	q _{PE}	С	g	R	w	QSV	s	Ns	I _{STAU}					
	[Pkw-E/h]	[Pkw-E/h]	[-]	[Pkw-E/h]	[s]		[%]	[Pkw-E]	[m]					
2 + 3	517	1800	0,29	1283	0,0	Α								
4	25	214	0,12	189	19,0	В	95	1	6					
6	36	546	0,07	510	7,1	Α	95	1	6					
7	86	768	0,11	682	5,3	Α	95	1	6					
8	522	3600	0,14	3078	0,0	Α								

Knotenpunkt: Erkrather Straße / Moskauer Straße

Datum: Verkehrsdaten:

Planfall nachmittägliche Spitzenstunde Uhrzeit:

innerorts Lage:

Verkehrsregelung: Zufahrt C: Z 205 - Vorfahrt beachten

1334 Fz/h Knotenverkehrsstärke:

	Kapazitäten der Einzelströme												
Strom (Rang)	Verkehrsstärke	übergeordnete Verkehrsstärke	Grundkapazität	Kapazität	Sättigungs- grad	Wahrscheinlich- keit rückstau- freier Zustand	mittlere Wartezeit	Qualitäts- stufe					
	q _{PE,i}	$\mathbf{q}_{p,i}$	\mathbf{G}_{i}	C_{i}	9i	p ₀ , p ₀ * oder p ₀ **	w	QSV					
	[Pkw-E/h]	[Fz/h]	[Pkw-E/h]	[Pkw-E/h]	[-]	[-]	[s]						
2 (1)	602	0	1800	1800	0,33	1,000	0,0	Α					
3 (1)	50	0	1800	1800	0,03	1,000	0,0	Α					
4 (3)	77	1170	206	182	0,42	-	34,1	D					
6 (2)	62	622	436	436	0,14	-	9,6	Α					
7 (2)	76	647	651	651	0,12	0,883	6,3	Α					
8 (1)	478	0	3600	3600	0,13	1,000	0,0	Α					

	Qualität der Einzel- und Mischströme													
Strom	Verkehrsstärke	Kapazität	Sättigungs- grad	Kapazitäts- reserve	mittlere Wartezeit	Qualitäts- stufe	Sta	auraumbemes	sung					
	q _{PE}	С	g	R	w	QSV	s	Ns	I _{STAU}					
	[Pkw-E/h]	[Pkw-E/h]	[-]	[Pkw-E/h]	[s]		[%]	[Pkw-E]	[m]					
2 + 3	652	1800	0,36	1148	0,0	Α								
4	77	182	0,42	105	34,1	D	95	3	18					
6	62	436	0,14	374	9,6	Α	95	1	6					
7	76	651	0,12	575	6,3	Α	95	1	6					
8	478	3600	0,13	3122	0,0	Α								

Knotenpunkt: Erkrather Straße / Zufahrt TG+P

Verkehrsdaten: Datum:

Prognose vormittägliche Spitzenstunde Uhrzeit:

innerorts Lage:

Verkehrsregelung: Zufahrt C: Z 205 - Vorfahrt beachten

964 Fz/h Knotenverkehrsstärke:

	Kapazitäten der Einzelströme												
Strom (Rang)	Verkehrsstärke	übergeordnete Verkehrsstärke	Grundkapazität	Kapazität	Sättigungs- grad	Wahrscheinlich- keit rückstau- freier Zustand	mittlere Wartezeit	Qualitäts- stufe					
	q _{PE,i}	$\mathbf{q}_{p,i}$	Gi	Ci	g _i	p ₀ , p ₀ * oder p ₀ **	w	QSV					
	[Pkw-E/h]	[Fz/h]	[Pkw-E/h]	[Pkw-E/h]	[-]	[-]	[s]						
2 (1)	428	0	1800	1800	0,24	1,000	0,0	Α					
3 (1)	26	0	1800	1800	0,01	1,000	0,0	Α					
4 (3)	29	893	295	293	0,10	-	13,6	В					
6 (2)	29	429	559	559	0,05	-	6,8	Α					
7 (2)	4	442	827	827	0,00	0,994	4,4	Α					
8 (1)	474	0	3600	3600	0,13	1,000	0,0	Α					

	Qualität der Einzel- und Mischströme													
Strom	Verkehrsstärke	Kapazität	Sättigungs- grad	Kapazitäts- reserve	mittlere Wartezeit	Qualitäts- stufe	St	auraumbemes	sung					
	q _{PE}	С	g	R	w	QSV	s	Ns	I _{STAU}					
	[Pkw-E/h]	[Pkw-E/h]	[-]	[Pkw-E/h]	[s]		[%]	[Pkw-E]	[m]					
2 + 3	454	1800	0,25	1346	0,0	Α								
4 + 6	58	384	0,15	326	11,0	В	95	1	6					
7 + 8	478	3566	0,13	3088	1,2	Α	95	1	6					

Knotenpunkt: Erkrather Straße / Zufahrt TG+P

Verkehrsdaten: Datum:

Prognose vormittägliche Spitzenstunde Uhrzeit:

innerorts Lage:

Verkehrsregelung: Zufahrt C: Z 205 - Vorfahrt beachten

1150 Fz/h Knotenverkehrsstärke:

	Kapazitäten der Einzelströme												
Strom (Rang)	Verkehrsstärke	erkehrsstärke übergeordnete Verkehrsstärke		Kapazität	Sättigungs- grad	Wahrscheinlich- keit rückstau- freier Zustand	mittlere Wartezeit	Qualitäts- stufe					
	q _{PE,i}	$\mathbf{q}_{p,i}$	\mathbf{G}_{i}	C_{i}	9i	p ₀ , p ₀ * oder p ₀ **	w	QSV					
	[Pkw-E/h]	[Fz/h]	[Pkw-E/h]	[Pkw-E/h]	[-]	[-]	[s]						
2 (1)	689	0	1800	1800	0,38	1,000	0,0	Α					
3 (1)	60	0	1800	1800	0,03	1,000	0,0	Α					
4 (3)	10	1100	225	214	0,05	-	17,6	В					
6 (2)	10	708	390	390	0,03	-	9,5	Α					
7 (2)	25	738	585	585	0,04	0,952	6,4	Α					
8 (1)	370	0	3600	3600	0,10	1,000	0,0	Α					

	Qualität der Einzel- und Mischströme													
Strom	Verkehrsstärke	Kapazität	Sättigungs- grad	Kapazitäts- reserve	mittlere Wartezeit	Qualitäts- stufe	St	auraumbemes	sung					
	q _{PE}	С	g	R	w	QSV	s	Ns	I _{STAU}					
	[Pkw-E/h]	[Pkw-E/h]	[-]	[Pkw-E/h]	[s]		[%]	[Pkw-E]	[m]					
2 + 3	749	1800	0,42	1051	0,0	Α								
4 + 6	20	276	0,07	256	14,1	В	95	1	6					
7 + 8	395	3243	0,12	2848	1,3	Α	95	1	6					